高一数学易错题集
高一必数学错题集完整版
高一必数学错题集HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】1、设集合M={x|x2-x<0},N={x||x|<2},则…()A.M∩N=B.M∩N=MC.M∪N=MD.M∪N=R参考答案与解析:解:M={x|0<J<1},N={x|-2<x<2},M N.∴M∩N=M,M∪N=N.答案:B主要考察知识点:集合2、下列四个集合中,是空集的是( )A. {x|x+3=3}B. {(x, y)| y2=-x2, x、y∈R}C. {x|x2≤0}D. {x|x2-x+1=0}参考答案与解析:解析:空集指不含任何元素的集合.答案:D3、下列说法:①空集没有子集;②空集是任何集合的真子集;③任何集合最少有两个不同子集;④{x|x2+1=0,x∈R};⑤{3n-1|n∈Z}={3n+2|n∈Z}.其中说法正确的有( )A.0个B.1个C.2个D.3个参考答案与解析:解析:空集、子集、真子集是本题考查的重点,要明确空集是除了它自身之外的任何一个集合的真子集,当然是任何集合的子集.根据集合的含义、性质和运算法则逐一判断真假.空集也有子集,是它本身,所以①不正确;空集不是它自身的真子集,所以②也是不正确的;空集就只有一个子集,所以③也是不正确的;因为空集是任何集合的子集,所以④是正确的;设A={3n-1|n∈Z},B={3n+2|n∈Z},则A={3n-1|n∈Z}={3(k+1)-1|(k+1)∈Z}={3k+2|k∈Z}=B={3n+2|n∈Z},所以⑤也是正确的.因此,选C.答案:C主要考察知识点:集合4、函数f(x)=-1的定义域是()A.x≤1或x≥-3B.(-∞,1)∪[-3,+∞)C.-3≤x≤1D.[-3,1]参考答案与解析:思路解析:考查函数的定义域.由1-x≥0,x+3≥0可知,-3≤x≤1,所以原函数的定义域为[-3,1],故选D.答案:D主要考察知识点:函数5、下列各组函数中,表示同一个函数的是()A.y=x-1和y=B.y=x0和y=1C.f(x)=x2和g(x)=(x+1)2D.f(x)=和g(x)=参考答案与解析:解析:A中两函数定义域不同;B中y=x0=1(x≠0)与y=1的定义域不同;C中两函数的对应关系不同;D中f(x)==1(x>0),g(x)==1(x>0).∴D正确. 答案:D主要考察知识点:函数6、函数f(x)=若f(x)=3,则x的值是()A.1B.±C.,1D.参考答案与解析:解析:若x+2=3,则x=1(-∞,-1),应舍去.若x2=3,则x=±,∵-(-1,2),应舍去.若2x=3,∴x=[2,+∞),应舍去.∴x=.应选D.答案:D主要考察知识点:函数7、如下图,可表示函数y=f(x)的图象的只可能是()参考答案与解析:D主要考察知识点:函数8、设b>0,二次函数y=ax2+bx+a2-1的图象是下列图象之一,则a的值为()A.1B.-1C.-1-52D.-1+52参考答案与解析:解析:令y=f(x),若函数的图象为第一个图形或第二个图形,对称轴为y轴,即b=0,不合题意;若函数的图象为第三个图形,由对称轴的位置可得->0,由于b>0,所以a<0,符合题意.又f(0)=0,解得a=-1.若函数的图象为第四个图形,则->0,由于b>0,所以a<0,函数的图象开口应该向下,不符合题意.因此,a=-1.答案:B主要考察知识点:函数9、在下列选项中,可表示函数y=f(x)的图象的只可能是( )您的答案:C参考答案与解析:解析:判断一幅图象表示的是不是函数的图象,关键是在图象中能不能找到一个x对应两个或两个以上的y,如果一个x对应两个以上的y,那么这个图象表示的就不是函数的图象.A的图象表示的不是函数的图象,∵存在一个自变量x的取值(如:x=0)有两个y与之对应,不符合函数的定义.因此A不正确;B的图象是关于x轴对称也不符合函数的定义.因此B也不正确;C的图象是关于原点对称,但是当自变量x=0时,有两个y值与之对应,不符合函数的定义.∴C选项也不正确;D表示的图象符合函数的定义,因此它表示的是函数的图象.因此选D.答案:D主要考察知识点:函数10、甲、乙两人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B地,又知甲骑自行车比乙骑自行车的速度快,并且两人骑车速度均比跑步速度快.若某人离开A地的距离s与所用时间t的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙的图象为( )A. 甲是图①,乙是图②B. 甲是图①,乙是图④C. 甲是图③,乙是图②D. 甲是图③,乙是图④参考答案与解析:B主要考察知识点:映射与函数11、设a、b都是非零实数,y=++可能的取值组成的集合为()A.{3}B.{3,2,1}C.{3,1,-1}D.{3,-1}参考答案与解析:解析:根据两个字母的符号分类讨论即可得出答案D,在讨论的过程中,注意集合元素的互异性.答案:D主要考察知识点:集合12、下列说法中,正确的命题个数是( )①-2是16的四次方根②正数的n次方根有两个③a的n次方根就是④=a(a≥0)A.1B.2C.3D.4参考答案与解析:解析:从n次方根和n次根式的概念入手,认清各概念与各符号之间的关系.(1)是正确的.由(-2)4=16可验证.(2)不正确,要对n分奇偶讨论.(3)不正确,a的n次方根可能有一个值,可能有两个值,而只表示一个确定的值,它叫根式.(4)正确,根据根式运算的依据,当n为奇数时,=a是正确的,当n为偶数时,若a≥0,则有=a.综上,当a≥0时,无论n为何值均有=a成立.答案: B主要考察知识点:指数与指数函数参考答案与解析:解析:此函数可以看成是以u=(x+1)(x-3)与y=(-1) u复合而成的函数,显然y=(-1) u单调递减,所以求内层函数也是递减区间即可,借助二次函数图象可知它在(-∞,1)上满足要求.答案:B主要考察知识点:指数与指数函数13、把根式-2改写成分数指数幂的形式为()A. B.C. D.参考答案与解析:思路解析:考查根式与分数指数幂的转化.原式可化为=.故选A.答案:A主要考察知识点:指数与指数函数14、化简()-4等于()A. B. C. D.参考答案与解析:解析:原式====.答案:A主要考察知识点:指数与指数函数15、下列命题中,错误的是()A.当n为奇数时,=xB.当n为偶数时,=xC.当n为奇数时,=xD.当n为偶数时,=x参考答案与解析:解析:由对根式性质中奇偶条件限制的理解,很容易知道选B.答案:B16、函数y=(a2-3a+3)a x是指数函数,则有()A.a=1或a=2B.a=1C.a=2D.a>0,且a≠1参考答案与解析:解析:由指数函数的定义解得a=2.答案:C主要考察知识点:指数与指数函数17、函数y=-e x的图象()A.与函数y=e x的图象关于y轴对称B.与函数y=e x的图象关于坐标原点对称C.与函数y=e -x的图象关于y轴对称D.与函数y=e -x的图象关于坐标原点对称参考答案与解析:解析:y=f(-x)的图象与y=f(x)的图象关于y轴对称;y=-f(x)与y=f(x)的图象之间关于x轴对称,y=f(-x)与y=f(x)的图象之间关于原点对称.所以选D.答案:D主要考察知识点:指数与指数函数18、如果函数f(x)=(a 2-1) x在R上是减函数,那么实数a的取值范围是( )A. |a|>1B. |a|<2C. |a|>3D.1<|a|<参考答案与解析:解析:由函数f(x)=(a 2-1) x的定义域是R且是单调函数,可知底数必须大于零且不等于1,因此该函数是一个指数函数,由指数函数的性质可得0<a 2-1<1,解得1<|a|<.答案:D主要考察知识点:指数与指数函数19、设f(x)=,若0<a<1,试求:(1)f(a)+f(1-a)的值;(2) f()+f()+f()+…+f()的值..参考答案与解析:解:(1)f(a)+f(1-a)=+=+=+=+==1.(2)f()+f()+f()+…+f()=[f()+f()]+[f()+f()]+…+[f()+f()]=500×1=500.主要考察知识点:指数与指数函数20、函数y=(-1) (x+1)(x-3)的单调递增区间是( )A. (1, +∞)B. (-∞, 1)C. (1, 3)D. (-1, 1)您的答案:C参考答案与解析:解析:此函数可以看成是以u=(x+1)(x-3)与y=(-1) u复合而成的函数,显然y=(-1) u单调递减,所以求内层函数也是递减区间即可,借助二次函数图象可知它在(-∞,1)上满足要求.答案:B主要考察知识点:指数与指数函数21、函数y=(2m-1) x是指数函数,则m的取值范围是__________.参考答案与解析:解析:考查指数函数的概念.据指数函数的定义,y=a x中的底数a约定a>0且a≠1.故此2m-1>0且2m-1≠1,所以m>且m≠1.答案:m>且m≠1主要考察知识点:指数与指数函数。
高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)
高中数学必修一第四章指数函数与对数函数易错题集锦单选题1、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B2、设函数f(x)=lg(x2+1),则使得f(3x−2)>f(x−4)成立的x的取值范围为()A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x <−1或x >32, 故选:D .3、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19, 所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C. 小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.4、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解.由题意,令x 2−5x +6=0,解得x =2或3,不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56. 故选:D.5、已知9m =10,a =10m −11,b =8m −9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出.[方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b .[方法二]:【最优解】(构造函数)由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1,令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b ,又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、若2x =3,2y =4,则2x+y 的值为( )A .7B .10C .12D .34答案:C分析:根据指数幂的运算性质直接进行求解即可.因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12,故选:C7、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.8、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.多选题9、已知函数f(x)=log2x,g(x)=2x+a,若存在x1,x2∈[1,2],使得f(x1)=g(x2),则a的取值可以是()A.-4B.-2C.2D.3答案:AB分析:根据条件求出两个函数的值域,结合若存在x1,x2∈[1,2],使得f(x1)=g(x2),等价为两个集合有公共元素,然后根据集合的关系进行求解即可.当1≤x≤2时,0≤log2x≤1,即0≤f(x)≤1,则f(x)的值域为[0,1],当1≤x≤2时,2+a≤g(x)≤4+a,则g(x)的值域为[2+a,4+a],若存在x1,x2∈[1,2],使得f(x1)=g(x2),则[2+a,4+a]∩[0,1]≠∅,若[2+a,4+a]∩[0,1]=∅,则2+a>1或4+a<0,解得a>−1或a<−4.所以当[2+a,4+a]∩[0,1]≠∅时,a的取值范围为−4≤a≤−1.故选:AB10、已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1B.0<a<1C.c>1D.0<c<1答案:BD分析:根据对数函数的图象判断.由图象知0<a<1,可以看作是y=log a x向左移动c个单位得到的,因此0<c<1,故选:BD .11、已知函数f (x )={(12)x−1,x ≤0x 12,x >0,则下列结论中错误的是( ) A .f (x )的值域为(0,+∞)B .f (x )的图象与直线y =2有两个交点C .f (x )是单调函数D .f (x )是偶函数答案:ACD分析:利用指数函数、幂函数的性质画出f (x )的图象,由图象逐一判断即可.函数f (x )的图象如图所示,由图可知f (x )的值域为[0,+∞),结论A 错误,结论C ,D 显然错误,f (x )的图象与直线y =2有两个交点,结论B 正确.故选:ACD填空题12、函数f (x )=log 12(x 2−5x +6)的单调递减区间为___________.答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x 2−5x +6>0,解得x >3或x <2.令t =x 2−5x +6,则y =log 12t 为减函数.所以t ∈(−∞,2),t =x 2−5x +6为减函数,f (x )=log 12(x 2−5x +6)为增函数,t ∈(3,+∞),t =x 2−5x +6为增函数,f (x )=log 12(x 2−5x +6)为减函数.所以函数f (x )=log 12(x 2−5x +6)的单调递减区间为(3,+∞).所以答案是:(3,+∞)13、解指数方程2x+3=3x 2−9:__________.答案:x =−3或x =3+log 32分析:直接对方程两边取以3为底的对数,讨论x +3=0和x +3≠0,解出方程即可. 由2x+3=3x2−9得log 32x+3=log 33x 2−9,即(x +3)log 32=(x −3)(x +3),当x +3=0即x =−3时,0=0显然成立;当x +3≠0时,log 32=x −3,解得x =log 32+3;故方程的解为:x =−3或x =3+log 32. 所以答案是:x =−3或x =3+log 32.14、设x 13=2,则√x 53⋅x −1=___________.答案:4分析:由根式与有理数指数幂的关系,结合指数幂的运算性质,求值即可.由√x 53⋅x −1=x 53⋅x −1=x 23=(x 13)2=22=4. 所以答案是:4.解答题15、证明:函数f (x )=log 3(1+x )的图象与g (x )=log 2x 的图象有且仅有一个公共点. 答案:证明见解析分析:把要证两函数的图象有且仅有一个公共点转化为证明方程log 3(1+x )=log 2x 有且仅有一个实根.易观察出x =2为其一根,再假设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点,然后得出矛盾即可. 要证明两函数f (x )和g (x )的图象有且仅有一个公共点,只需证明方程log 3(1+x )=log 2x 有且仅有一个实根,观察上述方程,显然有f (2)=g (2),则两函数的图象必有交点(2,1).设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点.则log 3(1+x 0)=log 2x 0,1+x 0=3y 0,x 0=2y 0,∴1+2y 0=3y 0,即(13)y 0+(23)y 0=1, 令M (x )=(13)x +(23)x ,易知函数M (x )=(13)x +(23)x 为指数型函数.显然M (x )在(−∞,+∞)内是减函数,且M (1)=1,故方程(13)y 0+(23)y 0=1有唯一解y 0=1,从而x 0=2,与x 0≠2矛盾, 从而知两函数图象仅有一个公共点.。
数学必修1期末复习(易错60题28个考点)
高一数学期末复习(易错60题28个考点)一.集合的包含关系判断及应用(共1小题)1.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A.1B.2C.3D.4二.交集及其运算(共1小题)2.设全集U=R,集合A={x|x2﹣x﹣2≤0},B={x|lgx>0},则A∩B=()A.{x|﹣1≤x≤2}B.{x|1<x≤2}C.{x|1<x<2}D.{x|x≥﹣1}三.充分条件与必要条件(共1小题)3.已知命题p:|x﹣a|<4,命题q:(x﹣2)(3﹣x)>0.若¬p是¬q的充分不必要条件,则实数a的取值范围是()A.[﹣1,6]B.(﹣∞,﹣1)C.(6,+∞)D.(﹣∞,﹣1)∪(6,+∞)四.全称量词和全称命题(共1小题)4.若命题“∀x0∈(0,+∞)使得+ax0+a+3≥0”为假命题,则实数a的取值范围是()A.(﹣∞,﹣2)∪(6,+∞)B.(﹣∞,﹣2)C.[﹣2,6]D.[2﹣,2+]五.基本不等式及其应用(共4小题)5.已知,则的最小值为()A.B.C.20D.46.已知m>n>1,则的最小值为()A.B.2C.4D.7.已知正数a,b满足:+1=a+2b+,则以下结论中(1)a+2b=1(2)a+2b=2(3)的最小值为9(4)的最小值为3正确结论个数为()A.1B.2C.3D.48.已知a,b为正实数,且.(1)求a2+b2的最小值;(2)若(a﹣b)2=4(ab)3,求ab的值.六.一元二次不等式及其应用(共4小题)9.已知不等式ax2+bx+2>0的解集为{x|﹣1<x<2},则不等式2x2+bx+a<0的解集为()A.B.{x|x<﹣1,或x>}C.{x|﹣2<x<1}D.{x|x<﹣2,或x>1}10.关于x的不等式x2+ax﹣2<0在区间[1,4]上有解,则实数a的取值范围为()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)11.已知p:﹣4<x﹣a<4,q:(x﹣2)(3﹣x)>0,若¬p是¬q的充分条件,则实数a 的取值范围是()A.[﹣1,6]B.(﹣∞,﹣1]C.[6,+∞)D.(﹣∞,﹣1]∪[6,+∞)12.已知不等式ax2﹣3x+6>4的解集为{x|x<1或x>b}.(1)求a、b的值;(2)m为何值时,ax2+mx+3≥0的解集为R;(3)解不等式ax2﹣(ac+b)x+bc<0.七.判断两个函数是否为同一函数(共1小题)13.下列各组函数f(x)与g(x)的图象相同的是()A.f(x)=x,g(x)=()2B.f(x)=|x|,g(x)=C.f(x)=1,g(x)=x0D.f(x)=x2,g(x)=(x+1)2八.函数单调性的性质与判断(共2小题)14.已知f(x)=是(﹣∞,+∞)上的减函数,那么实数a的取值范围是.15.已知是R上的严格增函数,那么实数a的取值范围是.九.函数的最值及其几何意义(共2小题)16.已知函数且(a≠1).(1)求函数f(x)的定义域;(2)是否存在实数a,使得函数f(x)在区间[1,2]上的最大值为2?若存在,求出a 的值;若不存在,请说明理由.17.已知f(x)=2+log3x,x∈[1,9],g(x)=[f(x)]2+f(x2),(1)求g(x)的定义域;(2)求g(x)的最大值以及g(x)取最大值时x的值.一十.函数奇偶性的性质与判断(共1小题)18.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.一十一.幂函数的概念、解析式、定义域、值域(共1小题)19.已知幂函数y=f(x)的图象经过点,则的值是()A.﹣B.1C.D.﹣1一十二.幂函数的性质(共2小题)20.若幂函数f(x)过点(4,2),则满足不等式f(2﹣a)>f(a﹣1)的实数a的取值范围是.21.若幂函数f(x)=(2m2+m﹣2)x2m+1在其定义域上是增函数.(1)求f(x)的解析式;(2)若f(2﹣a)<f(a2﹣4),求a的取值范围.一十三.对数值大小的比较(共2小题)22.已知,则()A.b<a<c B.a<b<c C.c<b<a D.c<a<b 23.设a=log32,b=log64,c=log3e(2e),则()A.c<b<a B.a<b<c C.b<a<c D.a<c<b一十四.对数函数的图象与性质(共1小题)24.设函数f(x)=log2(2x)•log2.(1)解方程f(x)+6=0;(2)设不等式≤43x﹣2的解集为M,求函数f(x)(x∈M)的值域.一十五.反函数(共1小题)25.已知函数f(x)=4x﹣a•2x+1.(Ⅰ)当a=2时,求f(x)的反函数f﹣1(x);(Ⅱ)若x∈[1,2]时f(x)的最小值是g(a),求g(a)解析式.一十六.三角函数的周期性(共2小题)26.如果函数f(x)=sinωx+cosωx(ω>0)的两个相邻零点间的距离为2,那么f(1)+f(2)+f(3)+…+f(9)的值为()A.1B.﹣1C.D.﹣27.已知函数x﹣1,x∈R (1)求函数f(x)的最小正周期;(2)函数f(x)的单调递增区间和对称轴方程.(3)求函数f(x)在区间上的最大值和最小值.一十七.正弦函数的单调性(共1小题)28.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.一十八.正弦函数的奇偶性和对称性(共1小题)29.已知同时满足下列三个条件:①T=π;②是奇函数;③.若f(x)在[0,a)上没有最小值,则实数a的取值范围是()A.B.C.D.一十九.正切函数的奇偶性与对称性(共1小题)30.已知函数f(x)=tan(2x+),则下列说法正确的是()A.f(x)在定义域内是增函数B.f(x)的最小正周期是πC.f(x)的对称中心是(),k∈ZD.f(x)的对称轴是x=二十.函数y=Asin(ωx+φ)的图象变换(共2小题)31.为了得到函数y=sin3x+cos3x+1的图象,可以将函数y=sin3x的图象()A.向右平移个单位,向下平移1个单位B.向左平移个单位,向下平移1个单位C.向右平移个单位,向上平移1个单位D.向左平移个单位,向上平移1个单位32.为了得到函数y=sin(x+)的图:只需把函数y=sin x图象上的所有点()A.向左平移个单位长度B.向右平移个单位长度C.向上平移个单位长度D.向下平移个单位长度二十一.由y=Asin(ωx+φ)的部分图象确定其解析式(共6小题)33.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),若g(x)•f(x)=1,且函数g(x)的部分图象如图所示,则φ等于()A.B.C.34.已知函数f(x)=sinωx+cosωx(ω>0)的图象的一个对称中心的横坐标在区间内,且两个相邻对称中心之间的距离大于,则ω的取值范围为()A.(0,3)B.C.D.(1,3)35.如图为函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象.则函数f(x)=A sin(ωx+φ)的解析式是()A.f(x)=sin(2x﹣)B.f(x)=sin(2x﹣)C.f(x)=2sin(2x﹣)D.f(x)=sin(2x+)36.已知函数f(x)=sin(2ωx+φ)(其中ω>0,|φ|<)的最小正周期为π,它的一个对称中心为.(1)求函数y=f(x)的解析式;(2)求时,函数f(x)的值域.37.已知函数f(x)=A sin(ωx+φ),(ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)若x∈(﹣),求f(x)的取值范围.38.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图像如图所示.(1)求f(x)的解析式及对称中心;(2)先将f(x)的图像纵坐标缩短到原来的倍,再向右平移个单位后得到g(x)的图像,求函数y=g(x)在上的单调减区间和最值.二十二.三角函数的最值(共1小题)39.已知函数.(1)求f(x)的单调递增区间;(2)求f(x)在上的最大值与最小值.二十三.两角和与差的三角函数(共2小题)40.已知定义在R上的偶函数f(x)=对任意x∈R都有f(x)+f(x+)=0,当ω取最小值时,的值为()A.1B.C.D.41.,,.(1)求的值;(2)求sin(α+β)的值.二十四.三角函数应用(共3小题)42.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图,某摩天轮的转盘直径为110米,摩天轮的中心O点距离地面的高度为80米,摩天轮匀速逆时针旋转,每30分钟转一圈.若摩天轮上点P的起始位置在最低点处,下列说法中错误的是()A.经过10分钟,点P上升了82.5米B.在第20分钟和第40分钟时点P距离地面的高度相同C.摩天轮旋转一周的过程中,点P距离地面的高度不低于55米的时间大于20分钟D.点P从第5分钟至第10分钟上升的高度是其从第10分钟到第15分钟上升的高度的2倍43.如图,一个半径为3米的筒车按逆时针方向每4分钟转1圈,筒车的轴心O距离水面的高度为1.5米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数),若以盛水筒W刚浮出水面时开始计算时间,且d与时间t(单位:分钟)之间的关系式为:,则d与时间t之间的关系是.44.如图,在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在单位圆上,∠xOA=α,,且,过点B作x轴的垂线,垂足为C,记△BOC的面积为S.(1)若,用α的三角函数表示x2并求x2的值;(2)设S=f(α),求函数f(α)的值域.二十五.函数零点的判定定理(共1小题)45.函数f(x)=lnx+3x﹣1﹣6的零点所在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)二十六.函数的零点与方程根的关系(共5小题)46.已知函数,g(x)=x2﹣ax+1,若y=g(f(x))有6个零点,则a的取值范围为()A.B.C.(3,+∞)D.47.已知函数,有下列两个结论:①f(x)的值域为R;②对任意的正有理数a,g(x)=f(x)﹣a存在奇数个零点则下列判断正确的是()A.①②均正确B.①②均错误C.①对②错D.①错②对48.定义在R上的奇函数f(x),当x≥0时,,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.2a﹣1B.1﹣2a C.2﹣a﹣1D.1﹣2﹣a49.已知函数,当a>1时,方程f2(x)﹣(a2+a)f(x)+a3=0的根的个数是()A.6B.5C.4D.350.已知函数,若方程f(x)=a恰有四个不同的实数解,分别记为x1,x2,x3,x4,则x1+x2+x3+x4的取值范围是二十七.分段函数的应用(共6小题)51.设函数,若实数a,b,c满足0<a<b<c,且f(a)=f(b)=f(c).则下列结论不能恒成立的是()A.abc>2B.C.D.a+2b>352.设函数若f(x)存在最小值,则实数a的取值范围为()A.B.C.D.53.若函数的图象上存在两点关于直线x=﹣1对称,则实数a的取值范围为()A.[﹣e﹣3,e3]B.[﹣e﹣3,+∞)C.[﹣ln3,+∞)D.[﹣e3,+∞)54.“空气质量指数(AQI)”是定量描述空气质量状况的无量纲指数.当AQI大于200时,表示空气重度污染,不宜开展户外活动.某地某天0~24时的空气质量指数y随时间t变化的趋势由函数y=描述,则该天适宜开展户外活动的时长至多为()A.5小时B.6小时C.7小时D.8小时55.已知函数f(x)的最大值为m,f(x)的最小值为n,则m+n=.56.函数g(x)=|x﹣k|+|x﹣2|,若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立.(1)求函数g(x)的最小值;(2)求k的取值范围.二十八.根据实际问题选择函数类型(共4小题)57.2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,碳14的半衰期为5730年,≈1.1665,以此推断水坝建成的年份大概是公元前()A.3500年B.2900年C.2600年D.2000年58.放假期间,小明一家准备去淄博旅游,已知他家汽车行驶速度v(km/h)与每公里油费w(元)的关系式为,当每公里油费最低时,v=()A.60km/h B.80km/h C.100km/h D.120km/h59.甲、乙两地相距800km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成:可变成本是速度v (km/h)的平方的倍,固定成本为a元.(1)将全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?并求出全程运输成本的最小值.60.随着我国经济发展,医疗消费需求增长,人们健康观念转变以及人口老龄化进程加快等因素的影响,医疗器械市场近年来一直保持了持续增长的趋势.宁波医疗公司为了进一步增加市场竞争力,计划改进技术生产某产品.已知生产该产品的年固定成本为300万元,最大产能为80台.每生产x台,需另投入成本G(x)万元,且,由市场调研知,该产品的售价为200万元,且全年内生产的该产品当年能全部销售完.(1)写出年利润W(x)万元关于年产量x台的函数解析式(利润=销售收入﹣成本);(2)当该产品的年产量为多少时,公司所获利润最大?最大利润是多少?。
高一数学易错题习题集
精心整理一试题部分轴左侧的图象,如图所示,请补全完整若函数满足对任意的,都有成立,则称函数上是“被约束的”上是“被约束的”,则实数一个几何体的三视图如图所示,则该几何体的表面积为()A.?B.?C.?D.?如下图,是长方形,平面,且是的中点(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积;(Ⅲ)若点是线段上的一点,且平面平面,求线段题目来源:2017-2018学年辽宁省庄河市高级中学高一上学期期末考试如图,在多面体中,平面与平面垂直,是正方形,在直角梯形,,且,为线段的中点)求证:平面;)求证:平面;)求三棱锥的体积二答案部分x-+-的最大值是, 为偶函数【解析】由图形可知.'y轴,根据斜二测画法规则,在原图形中应有∴为直角三角形,ABC故选B.知识点:三视图;求空间几何体的表面积和体积,PAC PAB为直角三角形,ABC=90°,AB=4,AC=5.90得0⋅=,PA PB即实数m表示点P直线m>0,直线,点)由已知直线的斜率,因为倾斜角中,令,得,所以点;令直线的方程为代入,得3=(2)n与l垂直,y=0得2 =-a3 xAC,即可得结论;1CC,可得AC1AB C中求解即1AC1平面CDBAA,AA1底面ABC,∴AB C中,1(Ⅰ)由平面平面,得到平面,即,又因为进而证明平面;(Ⅱ)根据(Ⅰ)知道就是三棱锥的高,又因为,所以(Ⅲ)根据平面,过做的平行线交与点,则有平面平面,确定线段的长度,所以在平面内作交于点.【解析】(Ⅰ)证明:平面平面,平面平面平面平面,又平面,.又是,又平面平面平面.(Ⅱ)由(Ⅰ)知,平面.中,,11(Ⅲ)证明:在平面内作于点.平面平面,平面平面,平面,又平面..与共面,设该平面为是长方形,,又平面平面,平面,又平面,又,四边形是平行四方形.,又是,.中点为平行四边形,再利用线线平行得到线面平行;(2)由梯形中各边的数量关系,利用勾股定理,可得,又由已知条件可得,则由线面垂直的判定定理可得结论)三棱锥也就是三棱锥,易求,可得.)取中点三角形中,,则四边形为平行四边形,,,则2)在梯形中,,可得三角形为直角三角形,其中又平面与平面垂直,是正方形,则所以,BC⊥平面BDE;。
高一数学易错试题及答案
高一数学易错试题及答案一、选择题1. 已知函数f(x)=2x^2+3x-5,下列说法正确的是()A. 函数在x=-1处有最小值B. 函数在x=-1处有最大值C. 函数在x=-1处无极值D. 函数在x=-1处取得最小值答案:A2. 集合A={1,2,3},集合B={2,3,4},则A∩B等于()A. {1,2,3}B. {2,3}C. {1,4}D. {4}答案:B二、填空题1. 若直线y=2x+1与直线y=-x+4平行,则它们的斜率之比为______。
答案:12. 函数y=x^3-3x^2+4x-5的导数是______。
答案:3x^2-6x+4三、解答题1. 已知等差数列{an}的前三项依次为a1, a2, a3,且a1+a3=10,a2=6,求数列的通项公式。
答案:设等差数列的公差为d,则有a1+a1+2d=10,a1+d=6。
解得a1=4,d=2。
因此,数列的通项公式为an=4+2(n-1)=2n+2。
2. 已知函数f(x)=x^2-4x+3,求函数在区间[1,3]上的最大值和最小值。
答案:函数f(x)=x^2-4x+3的对称轴为x=2,且函数开口向上。
在区间[1,3]上,函数在x=1处取得最小值f(1)=0,在x=3处取得最大值f(3)=2。
四、证明题1. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,且满足a^2+b^2=c^2,求证:三角形ABC是直角三角形。
答案:由题意知,a^2+b^2=c^2,根据勾股定理的逆定理,若三角形的三边满足a^2+b^2=c^2,则三角形ABC是直角三角形,其中角C为直角。
因此,三角形ABC是直角三角形。
(完整)高一数学必修一易错题集锦答案
高一数学必修一易错题集锦答案1. 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1},注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2}3 。
已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个)解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。
4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围.解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5. 由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. 6 设A 是实数集,满足若a∈A,则a -11∈A ,1≠a 且1∉A.⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒ 21∈A ⇒ 2∈A∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ a -11∈A ⇒ a--1111∈A ⇒111---a a∈A ,即1-a 1∈A⑷由⑶知a∈A 时,a -11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a -11②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a 1③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11.综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.7 设M ={a ,b ,c },N ={-2,0,2},求(1)从M 到N 的映射种数;(2)从M 到N 的映射满足 f (a)>f (b)≥f(c),试确定这样的映射f 的种数. 解:(1)由于M ={a ,b ,c },N ={-2,0,2},结合映射的概念,有一共有27个映射(2)符合条件的映射共有4个0222,2,2,0,0,2220a a a ab b b bc c c c →→→→⎧⎧⎧⎧⎪⎪⎪⎪→-→-→→⎨⎨⎨⎨⎪⎪⎪⎪→-→-→-→⎩⎩⎩⎩8.已知函数()f x 的定义域为[0,1],求函数(1)f x +的定义域解:由于函数()f x 的定义域为[0,1],即01x ≤≤∴(1)f x +满足011x ∴≤+≤ 10x -≤≤,∴(1)f x +的定义域是[-1,0]9根据条件求下列各函数的解析式:(1)已知()f x 是二次函数,若(0)0,(1)()1f f x f x x =+=++,求()f x .(2)已知1)f x x x =+,求()f x(3)若()f x 满足1()2(),f x f ax x +=求()f x解:(1)本题知道函数的类型,可采用待定系数法求解设()f x =2(0)ax bx c a ++≠由于(0)0f =得2()f x ax bx =+,又由(1)()1f x f x x +=++,∴22(1)(1)1a x b x ax bx x +++=+++即 22(2)(1)1ax a b x a b ax b x ++++=+++211021a b b a a b a b +=+⎧⎪∴≠∴==⎨⎪+=⎩ 因此:()f x =21122x x +(2)本题属于复合函数解析式问题,可采用换元法求解设22()(1)2(1)1(1)f u u u u u ∴=-+-=-≥∴()f x =21x - (1x ≥)(3)由于()f x 为抽象函数,可以用消参法求解用1x 代x 可得:11()2(),f f x a x x +=与 1()2()f x f ax x +=联列可消去1()f x 得:()f x =233a axx -.点评:求函数解析式(1)若已知函数()f x 的类型,常采用待定系数法;(2)若已知[()]f g x 表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法. 10 已知x y x 62322=+,试求22y x +的最大值.分析:要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值.解 由 x y x 62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y xx y 又,29)3(2132322222+--=+-=+x x x x y x∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+--点评:上述解法观察到了隐蔽条件,体现了思维的深刻性.大部分学生的作法如下:由 x y x 62322=+得 ,32322x x y +-=1(0),1(1)u x x x u u =+≥=-≥,29)3(2132322222+--=+-=+∴x x x x y x ∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误.因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题.. 11设()f x 是R 上的函数,且满足(0)1,f =并且对任意的实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的表达式.解法一:由(0)1,f =()()(21)f x y f x y x y -=--+,设x y =,得(0)()(21)f f x x x x =--+,所以()f x =21x x ++解法二:令0x =,得(0)(0)(1)f y f y y -=--+即()1(1)f y y y -=--+又将y -用x 代换到上式中得()f x =21x x ++点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数.具体取什么特殊值,根据题目特征而定. 12判断函数1()(1)1xf x x x -=++.解:1()(1)1x f x x x -=++有意义时必须满足10111xx x -≥⇒-<≤+即函数的定义域是{x |11x -<≤},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数13 判断22()log (1)f x x x =++的奇偶性.正解:方法一:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f =11log 22++x x =)1(log22++-x x =-)(x f ∴)(x f 是奇函数方法二:∵)1(log )1(log )()(2222++-+++=-+x x x x x f x f =01log )1()1[(log 2222==++-⋅++x x x x)()(x f x f -=- ∴)(x f 是奇函数14函数y=245x x --的单调增区间是_________. 解:y=245x x --的定义域是[5,1]-,又2()54g x x x =--在区间[5,2]--上增函数,在区间[2,1]-是减函数,所以y=245x x --的增区间是[5,2]--15已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x<6,又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 16 作出下列函数的图像(1)y=|x-2|(x +1);(2)|lg |10x y =.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.在变换函数解析式中运用了转化变换和分类讨论的思想.解:(1)当x ≥2时,即x-2≥0时,当x <2时,即x-2<0时,所以⎪⎪⎩⎪⎪⎨⎧<+--≥--=)2(49)21()2(49)21(22x x x x y这是分段函数,每段函数图像可根据二次函数图像作出(见图)(2)当x ≥1时,lgx ≥0,y =10lgx=x ;当0<x <1时,lgx <0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图)点评:作不熟悉的函数图像,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x ,y 的变化范围.因此必须熟记基本函数的图像.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图像.17若f(x)= 21++x ax 在区间(-2,+∞)上是增函数,求a 的取值范围解:设12121212112,()()22ax ax x x f x f x x x ++-<<-=-++12211212121221121122121212(1)(2)(1)(2)(2)(2)(22)(22)(2)(2)22(21)()(2)(2)(2)(2)ax x ax x x x ax x ax x ax x ax x x x ax x ax x a x xx x x x ++-++=+++++-+++=++--+--==++++由f (x )=21++x ax 在区间(-2,+∞)上是增函数得12()()0f x f x -<210a ∴-> ∴a >21点评:有关于单调性的问题,当我们感觉陌生,不熟悉或走投无路时,回到单调性的定义上去,往往给我们带来“柳暗花明又一村”的感觉.18已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xy yx ++1),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减解:证明:(1)由f (x )+f (y )=f (xy yx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0.∴f (x )在(-1,1)上为减函数.点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高. 如果“赋值”不够准确,运算技能不过关,结果很难获得. 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是解题的焦点.19已知18log 9,185,ba ==求36log 45解:∵185,b =∴18log 5b =∴1818183621818181818log 45log 5log 9log 451818log 36log 4log 92log ()2log ()99b ab a b a aa a++++=====+-++20知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是 解:∵)2(log ax y a -=是由u y a log =,ax u -=2复合而成,又a >0∴ax u -=2在[0,1]上是x 的减函数,由复合函数关系知u y a log =应为增函数,∴a >1又由于x 在[0,1]上时 )2(log ax y a -=有意义,ax u -=2又是减函数,∴x =1时,ax u -=2取最小值是a u -=2min >0即可, ∴a <2综上可知所求的取值范围是1<a <221已知函数()log (3)a f x ax =-.(1)当[0,2]x ∈时()f x 恒有意义,求实数a 的取值范围.(2)是否存在这样的实数a 使得函数()f x 在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.分析:函数()f x 为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一般先假设存在后再证明.解:(1)由假设,ax -3>0,对一切[0,2]x ∈恒成立,0,1a a >≠显然,函数g(x)= ax -3在[0,2]上为减函数,从而g(2)=32a ->0得到a <32∴a 的取值范围是(0,1)∪(1,32)(2)假设存在这样的实数a ,由题设知(1)1f =,即(1)log (3)a f a =-=1∴a =32此时3()log (3)2a f x x =-当2x =时,()f x 没有意义,故这样的实数不存在.点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立.即不存在,反之没有矛盾,则问题解决.22已知函数f (x )=1421lg 2+-⋅++a a ax x , 其中a 为常数,若当x ∈(-∞, 1]时, f (x )有意义,求实数a 的取值范围.分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”. 解:14212+-⋅++a a ax x >0, 且a 2-a +1=(a -21)2+43>0,∴ 1+2x +4x ·a >0, a >)2141(x x +-,当x ∈(-∞, 1]时, y =x 41与y =x 21都是减函数,∴ y =)2141(x x +-在(-∞, 1]上是增函数,)2141(x x +-max =-43,∴ a >-43, 故a 的取值范围是(-43, +∞).点评:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解,是解题人思维品质高的表现.本题主客换位后,利用新建函数y =)2141(x x +-的单调性转换为函数最值巧妙地求出了实数a 的取值范围.此法也叫主元法.23若1133(1)(32)a a --+<-,试求a 的取值范围.解:∵幂函数13y x -=有两个单调区间,∴根据1a +和32a -的正、负情况,有以下关系10320.132a a a a +>⎧⎪->⎨⎪+>-⎩① 10320.132a a a a +<⎧⎪-<⎨⎪+>-⎩② 10.320a a +<⎧⎨->⎩③解三个不等式组:①得23<a <32,②无解,③a <-1∴a 的取值范围是(-∞,-1)∪(23,32)点评:幂函数13y x -=有两个单调区间,在本题中相当重要,不少学生可能在解题中误认为132a a +>-,从而导致解题错误.24 已知a>0 且a ≠1 ,f (log a x ) = 12-a a(x -x 1)(1)求f(x);(2)判断f(x)的奇偶性与单调性;(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2 ) < 0 ,求m 的集合M . 分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=log a x(t ∈R),则).(),(1)(),(1)(,22R x a a a a x f a a a a t f a x xx t t t ∈--=∴--==--,101,.)(,10,)(,01,1.)(,),()(1)()2(22<<><<-=>->∴∈-=--=---a a x f a a a x u a aa x f R x x f a a a a x f x x x x 或无论综上为增函数类似可判断时当为增函数时当为奇函数且f(x)在R 上都是增函数.)1,1().1()1(,)(,0)1()1()3(22-∈-<-∴<-+-x m f m f R x f m f m f 又上是增函数是奇函数且在.211111111122<<⇒⎪⎩⎪⎨⎧-<-<-<-<-<-∴m m m m m点评:对含字母指数的单调性,要对字母进行讨论.对本例的③不需要代入f (x )的表达式可求出m 的取值范围,请同学们细心体会.25已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围. 解:设()f x 的最小值为()g a(1)当22a-<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在;(2) 当[2,2]2a-∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2又-4≤a ≤4,故-4≤a ≤2;(3)22a->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4故-7≤a <-4综上,得-7≤a ≤226已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围. 解:设2()1f x mx x =++,(1)当m =0时方程的根为-1,不满足条件.(2)当m ≠0∵210mx x ++=有且只有一根在区间(0,1)内又(0)f =1>0∴有两种可能情形①(1)0f <得m <-2 或者②1(1)02f m =-且0<<1得m 不存在综上所得,m <-227.是否存在这样的实数k ,使得关于x 的方程x 2+(2k -3)x -(3k -1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由.解:令2()(23)(31)f x x k x k =+---那么由条件得到2(23)4(31)0(0)130(2)42(23)(31)023022k k f k f k k k ⎧∆=-+-≥⎪=->⎪⎪⎨=+--->⎪-⎪<<⎪⎩即24501313722k k k k ⎧+≥⎪⎪<⎪⎨>⎪⎪<<⎪⎩即此不等式无解即不存在满足条件的k 值.28已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).解:设F (x )=()f x -121[()()]2f x f x +,则方程 ()f x =121[()()]2f x f x + ①与方程 F (x )=0 ② 等价 ∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在. 29试确定方程322420x x x --+=最小根所在的区间,并使区间两个端点是两个连续的整数.分析:只要构造函数()f x =32242x x x --+,计算()f x 的自变量x 取整数值时的函数值,根据其符号,确定方程根的个数及根的分布. 解:令()f x =32242x x x --+∵(3)f -=-54-9+12+2=-49<0 (2)f -=-16-4+8+2=-10<0 (1)f -=-2-1+4+2=3>0,,(0)f =0-0-0+2=2>0 (1)f =2-1-4+2=-1<0, (2)f =16-4-8+2=6>0根据(2)f -·(1)f -<0,(0)f ·(1)f <0,(1)f ·(2)f <0 可知()f x 的零点分别在区间(-2,-1),(0,1),(1,2)内.因为方程是一个一元三次方程,所以它最多有三个根,所以原方程的最小根在区间(-2,-1)内.点评:计算一元高次函数值可借助于计算器来完成,在实数范围内一元n 次方程最多有n 个实根,当然本题也可以用因式分解方法来解.32242x x x --+221(21)2(21)2()(2)212()(2)(2)2x x x x x x x x =---=--=-所以32242x x x --+=0有三个根:12,22-30设二次函数2()(0),f x ax bx c a =++>方程0)(=-x x f 的两个根21,x x ,满足0<21x x <a1<. (1)当),0(1x x ∈时,证明1)(x x f x <<;(2)设函数2()(0),f x ax bx c a =++>的图像关于直线0x x =对称,证明:210x x <. 分析:(1)用作差比较法证明不等式1)(x x f x <<;(2)函数2()(0),f x ax bx c a =++>图像关于直线0x x =对称,实际直线0x x =就是二次函数的对称轴,即abx 20-=,然后用已知条件证明不等式即可. 证明:(1)依题意,设))(()()(21x x x x a x x f x F --=-= 当),0(1x x ∈时,由于21x x <,∴0))((21>--x x x x ,又0>a ∴))(()()(21x x x x a x x f x F --=-=>0即)(x f x <)1)(()1)(()()]([)(2121111ax x x ax ax x x x F x x x F x x x f x -->-+-=--=+-=-∵0<21x x x <<a1<.∴01,021>->-ax x x ∴0)(1>-x f x 综合得1)(x x f x << (2)依题意知a b x 20-=,又ab x x 121--=+ ∴aax ax a x x a a bx 2121)(221210-+=-+=-=∵,012<-ax ∴22110x a ax x =<点评:解决本题的关健有三:一是用作差比较法证明不等式;二是正确选择二次函数的表达式,即本题选用两根式表示;三要知道二次函数的图像关于直线对称,此直线为二次函数的对称轴,即ab x 20-= 31已知函数0)1(),1(2)(2=<<++=f b c c bx x x f ,且方程01)(=+x f 有实根. (1)求证:-3<c ≤-1,b ≥0.(2)若m 是方程01)(=+x f 的一个实根,判断)4(-m f 的正负并加以证明 分析:(1)题中条件涉及不等关系的有1<<b c 和方程01)(=+x f 有实根.及一个等式0)1(=f ,通过适当代换及不等式性质可解得;(2)本小题只要判断)4(-m f 的符号,因而只要研究出4-m 值的范围即可定出)4(-m f 符号. (1)证明:由0)1(=f ,得1+2b+c=0,解得21+-=c b ,又1<<b c , 1c c >+->21解得313-<<-c , 又由于方程01)(=+x f 有实根,即0122=+++c bx x 有实根, 故0)1(442≥+-=∆c b 即0)1(4)1(2≥+-+c c 解得3≥c 或1-≤c ∴13≤<-c ,由21+-=c b ,得b ≥0. (2)c bx x x f ++=2)(2=)1)(()1(2--=++-x c x c x c x ∵01)(<-=m f ,∴c<m<1(如图) ∴c —4<m —4<—3<c. ∴)4(-m f 的符号为正.点评:二次函数值的符号,可以求出其值判断,也可以灵活运用二次函数的图像及性质解题.32定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<.(1)试求()0f 的值;(2)判断()f x 的单调性并证明你的结论; (3)设()()()(){}()({}22,1,,21,A x y f x f y f B x y f ax y a R =⋅>=-=∈,若A B ⋂=∅,试确定a 的取值范围.(4)试举出一个满足条件的函数()f x .解:(1)在()()()f m n f m f n +=⋅中,令1,0m n ==.得:()()()110f f f =⋅.因为()10f ≠,所以,()01f =.(2)要判断()f x 的单调性,可任取12,x x R ∈,且设12x x <.在已知条件()()()f m n f m f n +=⋅中,若取21,m n x m x +==,则已知条件可化为:()()()2121f x f x f x x =⋅-.由于210x x ->,所以()2110f x x >->.为比较()()21f x f x 、的大小,只需考虑()1f x 的正负即可.在()()()f m n f m f n +=⋅中,令m x =,n x =-,则得()()1f x f x ⋅-=. ∵ 0x >时,()01f x <<, ∴ 当0x <时,()()110f x f x =>>-.又()01f =,所以,综上,可知,对于任意1x R ∈,均有()10f x >. ∴ ()()()()2112110f x f x f x f x x -=--<⎡⎤⎣⎦. ∴ 函数()f x 在R 上单调递减.(3)首先利用()f x 的单调性,将有关函数值的不等式转化为不含f 的式子.()()()222211f x f y f x y ⋅>+<即,(()210f ax y f -==,即20ax y -+=.由A B ⋂=∅,所以,直线20ax y -+=与圆面221x y +<无公共点.所以,2211a ≥+.解得 11a -≤≤.(4)如()12xf x ⎛⎫= ⎪⎝⎭.点评:根据题意,将一般问题特殊化,也即选取适当的特值(如本题中令1,0m n ==;以及21,m n x m x +==等)是解决有关抽象函数问题的非常重要的手段;另外,如果能找到一个适合题目条件的函数,则有助于问题的思考和解决. 33设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值.解:(1)当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(2)(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.点评:(1)探索函数的奇偶性,可依据定义,通过)()(x f x f =-代入有1||1||)(22+-+=+--+-a x x a x x ,即||||a x a x -=+可得,当0=a 时,||||a x a x -=+,函数)()(x f x f =-函数为偶函数. 通过)()(x f x f -=-可得 1||1||)(22----=+--+-a x x a x x 化得 ||||222a x a x x -++=+此式不管0=a 还是0≠a 都不恒成立,所以函数不可能是奇函数.(2)由于本题中含有绝对值,需要去掉,故分类讨论,既要对二次函数值域的研究方法熟练掌握,又要将结论综合,对学生的综合运用数学知识能力及数学思想作了较好的考查.34某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其它费用为每月130元. (1)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数; (2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?分析:本题题目的篇幅较长,所给条件零散杂乱,为此,不仅需要划分段落层次,弄清每一层次独立的含义和相互间的关系,更需要抓住矛盾的主要方面.由题目的问题找到关键词——“收支平衡”、“还清所有债务”,不难想到,均与“利润”相关.从阅读和以上分析,可以达成我们对题目的整体理解,明确这是一道函数型应用题.为此,首先应该建立利润与职工人数、月销售量q 、单位商品的销售价p 之间的关系,然后,通过研究解析式,来对问题作出解答.由于销售量和各种支出均以月为单位计量,所以,先考虑月利润. 解:(1)设该店的月利润为S 元,有职工m 名.则()4010060013200S q p m =-⨯--.124584060q p81又由图可知:()()2140, 405882 5881p p q p p -+≤≤⎧⎪=⎨-+<≤⎪⎩. 所以,()()()()()()21404010060013200 4058824010060013200 58<81p p m p S p p m p -+-⨯--≤≤⎧⎪=⎨-+-⨯--≤⎪⎩ 由已知,当52p =时,0S =,即()()214040100600132000p p m -+-⨯--=,解得50m =.即此时该店有50名职工.(2)若该店只安排40名职工,则月利润()()()()()()21404010037200 4058824010037200 58<81p p p S p p p -+-⨯-≤≤⎧⎪=⎨-+-⨯-≤⎪⎩. 当4058p ≤≤时,求得55p =时,S 取最大值7800元. 当5881p <≤时,求得61p =时,S 取最大值6900元. 综上,当55p =时,S 有最大值7800元.设该店最早可在n 年后还清债务,依题意,有 1278002680002000000n ⨯--≥. 解得5n ≥.所以,该店最早可在5年后还清债务,此时消费品的单价定为55元.点评:求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题. (3)数理关:运用恰当的数学方法去解决已建立的数学模型.。
高一上册数学必修一易错题集
初高中链接: 1、因式分解()()128222++-+x x x x()()8323222----x x x x2、解不等式(1)1113>+-x x ; (2)1212<++x x ; (3)02322>--x x高一易错题集:1. 函数()()R x x f y ∈=为偶函数,则其函数必经过点( )A. ()()a f a ---,B. ()()a f a -,C. ⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛a f a 1,D. ()()a f a ,-2. 已知函数()⎩⎨⎧<≥=0,0,22x x x x x f ,则()[]=-2f f ____________3. 函数86-=x y 单调减区间是________________.4. 若b a ==3lg ,2lg ,则=12log 5_________.(用b a ,表示)5. 若函数()x f 满足()()x f x f =+4,当()1,0∈x 时,()x x f 2=,则()23log 2f =_____________.6. 若A b a ==53,且211=+ba 则=A ___________ 7. 定义在R 上的函数()x f 满足()()x f x f =+6,当13-<≤-x 时,()()22+-=x x f ,当31<≤-x 时,()x x f =.则()()()()=+⋯+++2014321f f f f ________________. 8. 若()21++=x ax x f 在区间()+∞-,2上是减函数,则a 的取值范围是____________. 9. 判断下列函数的奇偶性:(1)()()012≠+=a x axx f (2)()()00≠≠+=b a xbax x f 且(3)()⎪⎩⎪⎨⎧>+-<+=)0()0(22x x x x x x x f ()()01||2≠+-+=a a x x x f10. 已知函数()xax x x f ++=22,若对任意的[)()0,,1>+∞∈x f x 恒成立,求a 的取值范围.11. 讨论函数()12-=x axx f 在()1,1-时的单调性,其中a 是非零实数.12. 设函数()()R a R x a x x x f ∈∈--=,||2 (1)若()x f 为偶函数,求实数a 的值;(2)已知0≥a ,若对任意R x ∈都有()1-≥x f 恒成立,求实数a 的取值范围.13. 已知函数()xx x f 4+= (1)试判断并证明函数()x f 分别在区间(]2,0和区间[)+∞,2上的单调性; (2)求函数()x f 在区间()+∞,0上的最小值.14. 是否存在实数a 使()a ax x x f +-=22的定义域[]1,1-,值域为[]2,2-?若存在,求出a 的值;若不存在,说明理由。
高一数学必修一易错题集锦答案
高一数学必修一易错题集锦答案21.已知集合M=y| y = x + 1,x € R},N={y| y = x+ 1,x € R},贝U MA N=()2解:M={y| y=x + 1,x € R}={ y| y > 1}, N={y|y=x + 1,x € R}={y|y € R}.••• M A N={y|y > 1} A {y|(y € R)}={ y|y> 1},注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+ 1}、y|y=x22+ 1, x€ R}、{( x, y)| y=x + 1,x € R},这三个集合是不同的.2 .已知A={x|x2—3x + 2=0},B={ x|ax —2=0}且A U B=A 求实数a 组成的集合 C.解:••• A U B=A •圧 A 又A={x| x2—3x+ 2=0}={1 , 2} • B# 或1 或2 • C={0, 1, 2}3 。
已知m A, n B,且集合A= x | x 2a,a Z , B= x| x 2a 1, a Z,又C= x | x 4a 1,a Z,则有:m+n __________________________________ (填A,B,C 中的一个)解:T m A, •••设m=2a1,a1 Z, 又T n B , • n=2a2+1, a2 Z ,•n+n=2(a1+a2)+1,而a1+a2 Z , • n+n B。
4 已知集合A={x|x 2—3x—10W 0},集合B={x|p + 1< x< 2p—1}.若荃A 求实数p的取值范围.解:①当B M * 时,即p + K 2p—1='p》2.由吐A得:一2< p+ 1 且2p —K 5. 由一3w p W 3. •- 2w p W3②当B==时,即p + 1>2p—1=p v 2.由①、②得:p W 3.点评:从以上解答应看到:解决有关A A B=±、A U B=±,心B等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.25 已知集合A={a,a + b,a + 2b} , B={a,ac,ac }.若A=B 求c 的值.分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a+ b=ac 且a+ 2b=ac2,消去 b 得:a+ ac2—2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故0.• c2—2c+仁0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+ b=ac 且a+ 2b=ac,消去 b 得:2ac —ac —a=0,2-a M 0,.. 2c —c—仁0,1即(c —1)(2c + 1)=0,又C M 1,故c=—2点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.16 设A是实数集,满足若a€ A,则——A, a 1且1 A.1 a⑴若2€ A,则A中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由•1 一⑶若a € A,证明:1 —€ A.⑷求证:集合A中至少含有三个不同的兀素a解:⑴2€ A — 1€A••• A 中至少还有两个元素:⑵如果A 为单元素集合,则-€ A2€A11和丄2 a =丄即a 21 a该方程无实数解,故在实数范围内, A 不可能是单兀素集⑶a € A1~T~r a€AA ,即卩1 —丄€Aa ⑷由⑶知 a €A 时,1 a€ A ,.现在证明a,1 —丄a1一三数互不相等.1 a1,即a2-a+仁0,方程无解,•1 a 12I②若a=1 — ,即a -a+1=0,方程无解• a 丰1 ——aa1 1 1③若1— = ,即a2-a+仁0,方程无解• 1—-①若a=1a 丰—1 a 点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨(2)从M 到N 的映射满足f (a)> f (b) > f(c),试确定这样的映射f 的种数•解:(1)由于 M={ a , b , c }, N ={ —2,0,2 },结合映射的概念,有一共有27个映射a0 a 2 a 2 a 2 (2)符合条件的映射共有 4个,b2, b 2, b 0 , b 0, c2 c2 c2 c8.已知函数f (x)的定义域为[0 , 1] ,求函数 f(x 1)的定义域解:由于函数f (x)的定义域为[0 , 1],即 0 x 1 • f (x 1)满足0x111 x 0,• f(x 1)的定义域是[—1, 0]9根据条件求下列各函数的解析式:(1) 已知f (x)是二次函数,若 f(0) 0, f (x 1) (2) 已知 f ( , x 1) x 2、x ,求 f (x)f (x) x 1,求 f (x).7 设 M ={ a , b , c }, N = {— 2,0,2 },求(1 )从 M 到 N 的映射种数;1(3)若f(x)满足f (x) 2f(—) ax,求f(x)x解:(1)本题知道函数的类型,可采用待定系数法求解设f(x)= 2 ax bx c(a0)由于f(0)0得f(x)ax2 bx又由[f (x 1)f(x)x 1 , --a(x 1)2 b(x1) ax2bx x 1即ax2(2 a b)x a b 2ax(b 1)x 12a b b1f (x) = ^x2 ^xa 0a b1因此:222a b 1⑵本题属于复合函数解析式:问题,可采用换兀法求解设u x1(x0),u 1 (u1)f(u) (u 1)22(u 1) u2 1 (u 1) ••• f(x) = x2 1 (x 1)(3)由于f (x)为抽象函数,可以用消参法求解用1代x 可得:f(l) 2f(x) a1,与f (x) 2f』) axx x x x联列可消去f($得:f (x)=空空.X 3x 3点评:求函数解析式(1)若已知函数f(x)的类型,常采用待定系数法;(2)若已知f[g(x)] 表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法.10已知3x2 2y2 6x,试求x2 y2的最大值.分析:要求x2y2的最大值, 由已知条件很快将 2y变为一元二次函数1 2 f(x) ^(x 3)2 出最大值. 即然后求极值点的x值,联系到这一条件,既快又准地求又x235C2 2y26x得3x3x.0, -x2 3x20, 0x2. 2时,x1(x3)29J22 2y有最大值,最大值为3)2点评:上述解法观察到了隐蔽条件,体现了思维的深刻性由3x2 2y2 6x得y2- x2 3x,29 4.2.大部分学生的作法如下:=log 2x 」x2—1log 2(x ■- x 21) =- f (x) • f (x)是奇函数方法二:••• f (x) f ( x) log 2(xx 2 1) log 2( x 、x 2 1)=log 2[(x -x 2 1)(x 2 1) log 21 0f( x) f (x)••• f (x) 是奇函数2 2 232 1 2 9 x y x x 3x (x 3),22 2229 当x 3时,x y 取最大值,最大值为 - 2这种解法由于忽略了 y 20这一条件,致使计算结果出现错误•因此,要注意审题,不仅能 从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题 ..11设f(x)是R 上的函数,且满足 f(0)1,并且对任意的实数f (x y) f (x) y(2x y 1),求 f (x)的表达式.点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入, 或使这两个变量相等代入,再用已知条件,可求出未知的函数 •具体取什么特殊值,根据题目特征而定•12判断函数f (X ) (1 x)的奇偶性.解:f(x) (1 x); x 有意义时必须满足右一x 0 1 x 1即函数的定义域是{ x | 1 x 1},由于定义域不关于原点对称,所以该函数既不是函数也不是偶函数 13判断f(x) log 2(xx 2 1)的奇偶性.正解:方法一:••• f( x) log 2( x .( x)21) log 2( x x 2 1)x, y 都有解法一:由 f(0)1, f(x y) f (x) y(2x y 1),设 x 得 f(0) f(x) x(2x x 1),所以 f(x) = x 2 x 1 解法二:令x 0,得f (0 y) f(0) y( y 1)即 f( y) 1 y( y 1)又将 y 用x 代换到上式中得f (x) = x 2 x 114函数y= J5 4x x 2的单调增区间是 _______________ .解:y= ,5 4x x 2的定义域是[5,1],又g(x) 5 4x x 2在区间[5, 2]上增函数,在区间[2,1]是减函数,所以y=「5 4x x 2的增区间是[5, 2]15已知奇函数f (x )是定义在(—3,3)上的减函数,且满足不等式f (x — 3)+f (x 2— 3)<0,求x 的取值范围3 x 23 3 V6 x 辰又・ f (x )是奇函数,• • f (x — 3)< — f (x — 3)= f (3 — x ),又 f (x )在(一3, 3)上是减函数,x — 3>3— X 2,即 x 2+x — 6>0,解得 x >2 或 x <— 3,综上得 2<x < , 6 ,即 A ={x |2< x < . 6 },16 作出下列函数的图像(1)y=|x-2|(x+ 1) ; (2) y 10|lg .分析:显然直接用已知函数的解析式列表描点有些困难, 除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形 •在变换函数解析式中运用了转化变换和分类讨论的思想.解:(1)当x > 2时,即x-2 > 0时,1 9y =-2)(^ + 1)二 / _?? - 2 二(si 迈]空-才¥号当 X V 2 时,即 x-2 v 0 时,_一⑵ 当 x > 1 时,lgx > 0, y =10lgx=x ;当 0v x v 1 时,lgx v 0,0x6,故 0<x < . 6,解:由所以y这是分段函数,每段函数图像可根据二次函数图像作出 (见图)(x (x 2) (x(x 2)X,宴》1,y O<X<L所以[签这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图)点评:作不熟悉的函数图像,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意X, y的变化范围.因此必须熟记基本函数的图像.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图像17 若f(x)=ax1在区间(—2, + )上是增函数,求a的取值范围X2解:设2X1X2, f (X1) f (X2)ax1 1 ax21x1 2 x22(a^1)(X2 2)(ax21)(X1 2)(X2)(X2 2)(ax i x22a% 屜 2) (a^ x22ax2x 2)(X i 2)(X2 2)2a^ x12ax2x2(2 a 1)(x1x2)(X i 2)(X2 2) (X i 2)(X2 2)ax i由f (x)= 在区间(一2,+ )上是增函数得x 21f(xj f (x2) 0 2a 1 0 -^a>2点评:有关于单调性的问题,当我们感觉陌生,不熟悉或走投无路时,回到单调性的定义上去,往往给我们带来“柳暗花明又一村”的感觉118已知函数f(x)在(一1, 1)上有定义,f( - )= —1,当且仅当0<x<1时f(x)<0,且对任意X、2y€ ( —1,1)都有f(x)+f (y)=f(),试证明:1 xy(1) f (x)为奇函数;(2) f(x)在(—1, 1)上单调递减解:证明:(1)由f (x)+f (y)=f(丄丄),令x=y=0,得f (0)=0,令y= —x,得f (x)+f (—1 xy X xx)=f ( 2)=f(0)=0. ••• f(x)= —f( —x). ••• f (x)为奇函数•1 x2(2) 先证f(x)在(0 , 1)上单调递减.令0<X1<X2<1,则f(X2)—f (X1)= f (X2) + f ( —X1)= f( )1 X1X2•/ 0<X i<X2<1, ••• X2—X i>0,1 —X i X2>0,.・.__ >0,1 X1X2又(X2—X I)—(1 —X2X l) = ( X2 —1)( X l + 1)<0• X2 —X1<1 —X2X1,... 0<X 2X 1<1,由题意知 1 X 2X 1即 f (X 2)<f (X 1).• f (X )在(0 , 1)上为减函数,又f (X )为奇函数且f (0)=0. • f (x )在(—1 , 1)上为减函数点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想 •对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高•如果“赋值”不够准确,运算技能不过关,结果很难获得.对于(1),获得f (0)的值进而取X =— y 是解题关键;对于(2),判定X2 X1的范围是解题的焦点1 X 1X 219 已知 log 18 9a,18b 5,求 log 36 45解:v 18b 5, • log 18 5 blog 36 45匕匹log 1845 l0g18 5log 18 9b ab ab a 36 log 18 4 log 18 9. 八8、2log 18 ( ) a92log 18(》a2 a20知y log a (2 ax)在[0 , 1]上是X 的减函数,贝y a 的取值范围是 _____________ 解:v y log a (2 ax)是由 y log a u , u 2 ax 复合而成,又 a > 0• u 2 ax 在[0 , 1]上是X 的减函数,由复合函数关系知y log a u 应为增函数,• a > 1又由于X 在[0 , 1]上时y log a (2 ax)有意义,u 2 ax 又是减函数,• X = 1时,u 2 ax 取最小值是u min 2 a >0即可, • a < 2综上可知所求的取值范围是 1 < a < 221 已知函数 f(x) log a (3 ax).(1 )当X [0,2]时f(x)恒有意义,求实数 a 的取值范围.(2)是否存在这样的实数 a 使得函数f(x)在区间[1 , 2]上为减函数,并且最大值为1,如f (H )<0, 1 X 1X 2果存在,试求出a 的值;如果不存在,请说明理由.分析:函数f(x)为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题 思路,是否存在性问题,分析时一般先假设存在后再证明 解:(1 )由假设,3 ax >0,对一切x [0,2]恒成立,a 0,a 13显然,函数g(x)= 3 ax 在[0 , 2]上为减函数,从而 g(2) = 3 2a >0得到a v —23a 的取值范围是(0, 1) u ( 1,2⑵ 假设存在这样的实数 a ,由题设知f(1) 1,即f(1) log a (3 a) = 13••• a =此时 f (x)2当x 2时,f (x)没有意义,故这样的实数不存在点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处 理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立 即不存在,反之没有矛盾,则问题解决 .求实数a 的取值范围.分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于 a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把 a 分离出来,重新认识 a 与其它变元(x )的依存 关系,利用新的函数关系,常可使原问题“柳暗花明”13 >0,且 a 2 — a +仁(a —)2+ >0,124c z 1 1、 -a >0, a > (飞—), 4x 2x1 1 当x € ( —a , 1]时,y =一 与y = 一都是减函数,4x2x11113• y =(—一一)在(—a , 1]上是增函数, (一一一)ma =——4 24233• a >——,故a 的取值范围是(——,+ a ).4 4点评:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、 位,创设新的函数,并利用新函数的性质创造性地使原问题获解,1 1现.本题主客换位后,利用新建函数y =(=一)的单调性转换为函数最值巧妙地求出了4 2log a (3 |x)22已知函数f (x )= |g x x1 24 a2"~a a 1其中a 为常数,若当x € ( —a , 1 ]时,f (x )有意义,• 1+2 +4反客为主,主客换 是解题人思维品质高的表实数a的取值范围.此法也叫主元法.1 123若(a 1) 3(3 2a) 3,试求a的取值范围.1解:•••幕函数y x 3有两个单调区间,•••根据a 1和3 2a的正、负情况,有以下关系a10a10a10 -32a0 .①32a0 .②③32a0a1 3 2a a1 3 2a2 3解三个不等式组:①得2v a v -,②无解,③a v—13 22 3• a的取值范围是(一m, —1) u(—,—)3 21点评:幕函数y x 3有两个单调区间,在本题中相当重要,不少学生可能在解题中误认为a 1 3 2a,从而导致解题错误•a 124 已知a>0 且a 丰 1 ,f (log a x ) = —2 (x —)a 1 x(1) 求f(x);(2) 判断f(x)的奇偶性与单调性;2(3) 对于f(x), 当x € ( —1 , 1) 时,有f( 1 —m ) +f (1 —m ) < 0 , 求m 的集合M . 分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=log a x(t € R),贝U(2) f( x) 身(a x a x) f(x),且x R, f(x)为奇函数当a 1 时,¥0,a2 1 a2 1u(x) a x a彷增函数,当0 a 1时,类似可判断f(x)为增函数综上,无论a 1或0 a 1,f(x)在R上都是增函数.(3) f (1 m) f(1 m2) 0, f(x)是奇函数且在R上是增函数,f(1 m) f(m2 1)又x ( 1,1)1 1 m 11 m2 1 1 1 m .2.1 m m 1点评:对含字母指数的单调性,要对字母进行讨论.对本例的③不需要代入 f (x)的表达式可求出m的取值范围,请同学们细心体会225已知函数f (x) x ax 3 a若x [ 2,2]时,解:设f(x)的最小值为g(a)(1 )当-22即a >4时,g(a) = f ( 2) = 7 —3 a > 0,得a —故此时a不存在;3x a t, f (t) "at),f(x)L a x),(x R).f (x) > 0恒成立,求a的取值范围28已知二次函数f(x) ax2bx c对于x 1、X2 R,且X1V x2时f(xj f (x2),求证:方程 f (x)1=尹(xjf(X2)]有不等实根,且必有一根属于区间(X1, X2).解:设则方程1F ( x) = f (x)—?[f (xj1f(x)= ?[f(%)f(X2)],f(X2)]2 a a(2)当[2,2]即—4W a < 4 时,g(a) = 3- a —>o,得一6< a < 22 4又—4w a w 4,故—4w a w 2;a(3) 2即a v — 4 时,g(a) = f (2) = 7 + a》0,得a》一7,又a v —4 2故一7w a v—4综上,得—7 w a w 2 26已知mx2 x 1 0有且只有一根在区间(0,1 )内,求m的取值范围解:设f(x) mx2 x 1,( 1)当m = o时方程的根为一1,不满足条件2(2)当m丰0v mx x 1 0有且只有一根在区间(0,1 )内又f (0) = 1 > 0•••有两种可能情形① f(1) 0得m V—21或者②f(1) 0且0< <1得m不存在2m综上所得,m v—227.是否存在这样的实数2x + (2k—3)k的取值范围;k,使得关于x的方程x —( 3k —1) = 0有两个实数根,且两根都在如果没有,0与2之间?如果有,试确定试说明理由解:令f (x) x2(2 k 3)x (3k 1)那么由条件得到(2 k1 f(0)f(2)2k 0 3)23k4(3k1)4k2 5 2(2k 3)32(3k 1) 即此不等式无解即不存在满足条件的k值.与方程F ( x )= 0②等价1 1••• F ( X 1) = f(xj - 2【f(xJ f(X 2)] = 2【f(xJ f(X 2)]1 1F ( X 2)= f(X 2)— 2【f(xj f(X 2)] = -[ f(xj f(X 2)]1 2F ( X 1)•F ( X 2)=—: [ f (X 1) f(X 2)],又 f(xj f (X 2)4••• F ( X 1) • F ( X 2)v 0故方程②必有一根在区间(X 1, X 2)内•由于抛物线y = F ( x )在x 轴上、下方均有分布, 所以此抛物线与x 轴相交于两个不同的交点, 即方程②有两个不等的实根, 从而方程①有两 个不等的实根,且必有一根属于区间( X 1,X 2).1点评:本题由于方程是 f (x) = - [ f (X 1) f (X 2)],其中因为有f(x)表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明f (X)的图像与X 轴相交于两个不同的点,从而证题中着眼于证f(x 1)f (x 2) < 0,使本题没法解决•本题中将问题转化为F(X )= f(x) — 1[f (x 1) f (x 2)]的图像与X 轴相交于两个不同的两点是解题的关健所在根据其符号,确定方程根的个数及根的分布 解:令 f (x) = 2x 3 x 2 4x 2••• f ( 3) =— 54 — 9+ 12+ 2= — 49 V 0 f ( 2) =— 16— 4+ 8 + 2 = — 10< 0 f ( 1) = — 2 — 1 + 4+ 2= 3> 0, , f (0) = 0 — 0— 0 + 2 = 2> 0 f (1) = 2 — 1 — 4+ 2=— 1< 0, f (2) = 16 — 4 — 8 + 2 = 6>0根据 f( 2) • f( 1) < 0,f(0) • f(1)< 0, f(1) • f(2) < 0可知f(X )的零点分别在区间(一2, — 1), (0,1 ), (1,2 )内•因为方程是一个一元三次方程,所以它最多有三个根,所以原方程的最小根在区间(一 2,—1 )内•点评:计算一元高次函数值可借助于计算器来完成,在实数范围内一元 n 次方程最多有 n个实根,当然本题也可以用因式分解方法来解2x 3 x 2 4x 229试确定方程2x 32x 4x 20最小根所在的区间, 并使区间两个端点是两个连续的整分析:只要构造函数 f(x) = 2x 3x 2 4x 2,计算f(x)的自变量X 取整数值时的函数值,2 1 2 X2(2X 1) 2(2x 1) 2(x —)(x22)22(X f)(x 2)( X、三)2所以2X3 X24X 2 = 0有三个根:-r,2, 2230设二次函数f (x) ax2 bx c(a 0),方程f (X) X 0的两个根0 X i X2(1 )当X (0,xJ 时,证明X f (X) X-I;2(2)设函数f (x) ax bx c(a 0),的图像关于直线X x°对称,证明:X- ,X2 ,满足X o X 2分析:(1)用作差比较法证明不等式X f(X) X,;2(2)函数f(x) ax bx c(a 0),图像关于直线X x°对称,实际直线K次函数的对称轴,即X0——,然后用已知条件证明不等式即可•a证明:(1)依题意,设F(x) f (X) X a(x X,)(X X2 )当X (0,X i)时,由于X i X2,二(X X i )(X X2) 0 ,又a 0X X0就是•- F(X) f(x) X a(x X- )(X X2)>0 即X f (X)X i f (X) X i[X F(X)]X-X F(X)(x i x)(1 ax ax2)(X i X)(1ax?)T 0 X X i1X2••• X i X0,1ax 20 a二X- f (X)0综合得X f (X) X i(2 )依题意知Xb又X-X2b1 2a ab a(x-X2)1ax i ax21 (X0)2a2a2a点评:解决本题的关健有三:一是用作差比较法证明不等式; 二是正确选择二次函数的表达 式,即本题选用两根式表示; 三要知道二次函数的图像关于直线对称, 此直线为二次函数的31 已知函数 f(x) x 2 2bx c(c b 1), f(1) 0,且方程 f (x)1 0 有实根.(1)求证:-3<c < -1,b > 0.⑵若m 是方程f(x) 10的一个实根,判断 f (m 4)的正负并加以证明•- c ——4<m4<——3<c. • f (m 4)的符号为正.点评:二次函数值的符号,可以求出其值判断,也可以灵活运 用二次函数的图像及性质解题.32定义在R 上的函数f x 满足:对任意实数 m, n ,总有f m n f m f n ,且当x 0 时,0 f x 1.ax 2 1 0, ••• x 0ax 1 2aX i 2对称轴,即x 0b 2a分析:(1) 及一个等式f(1)题中条件涉及不等关系的有 c b 1和方程f(x) 0,通过适当代换及不等式性质可解得;(1)证明:由f(1) c 10 ,得 1+2b+c=0,解得 b1 -----------c2解得 3 c13又由于方程 f(x) 1 0有实根,即 x 2 2bx故4b 2 4(c 1)0即(c 1)2 4(c 1) 3 c1,由 bc 1 得b 》0.2(2) f(x)x 2 2bx小 2 c = x(c 1)x c1 0有实根.(2)本小题只要判断 f(m 4)4)符号.又 c b 1 ,f (m 2c 1 0有实根,0解得c 3或c 1(x c )(x1)f (m) 1 0 ,• c<m<1 (如图)的符号,因而只要研究出 m 4值的范围即可定出(1)试求f 0的值;(2)判断f X的单调性并证明你的结论;(3)设A x, y f x2f y2 f 1 ,B x, y f ax y 貶1,a R ,若A B ,试确定a的取值范围.(4)试举出一个满足条件的函数 f x .解:(1 )在f m n f m f n 中,令m 1,n 0.得:f 1 f 1 f 0 .因为f 1 0,所以,f 0 1.(2)要判断f x的单调性,可任取x1, x2 R,且设X1 X2.在已知条件fmn fm fn中,若取m n x2, m x1,则已知条件可化为:f x2 f f x2由于x2 x1 0,所以1 f x20.为比较f x2、f %的大小,只需考虑f x!的正负即可.在fmn fmfn 中,令mx,n x,则得f x f x 1.T x 0 时,0 f x 1,1•••当x 0时,f x 1 0.f x又f 0 1,所以,综上,可知,对于任意x1 R,均有f为0.函数f x在R上单调递减(3)首先利用f x的单调性,将有关函数值的不等式转化为不含f的式子.f x2f y2 f 1 即x2y21,f ax y .2 1 f 0 ,即ax y 二0.由A B ,所以,直线ax y .2 0与圆面x2 y21无公共点.所以,f x2 f f x-! f x2x1 1 0.解得1 a 1.(4)如f x点评:根据题意,将一般问题特殊化,也即选取适当的特值(如本题中令m 1,n 0 ;以及m n x2,m 为等)是解决有关抽象函数问题的非常重要的手段;另外, 如果能找到一个适合题目条件的函数,则有助于问题的思考和解决33设a为实数,函数f(x)x2 |x(1)讨论f (x)的奇偶性;(2)求f(x)的最小值.解:(1 )当a 0时,函数f( x)( x)2I x| 1 f(x)此时, f (x)为偶函数0 时,f(a) a2f( a) a22|a| 1,f(a) f( a),f (a) f( a)此时f (x)既不是奇函数, 也不是偶函数(2)(i )当x a 时,f (x) (x£212,则函数 f (x)在( ,a]上单调递减, 从而函数 f (x)在( ,a]上的最小值为f(a) a21.1,则函数2 f (x)在( (ii )当x a时, 函数f(x)f(a)f(1)3f(?);1 \2 (x 2)1 ,a]上的最小值为1-,则函数f(x)在(12,则函数f (x)在[a, ,a]上的最小值为f()2 )上单调递增,从而函数a21.1a,且f (-) f(a).3 a -4314 a,且f ( ?) f(a)f (x)在[a,)上的最小值为1 3 综上,当a —时,函数f(x)的最小值为一a24112当a 时,函数f (x)的最小值为a 2 12 21 3 当a 时,函数f (x)的最小值为a .24 点评:(1)探索函数的奇偶性,可依据定义,通过f( x) f (x)代入有(x)2I xa| 1 x 2|x a I 1,即 | x a I |x a| 可得,当a 0 时,| x a ||x a |,函数f( x) f (x)函数为偶函数.通过f ( x) f (x)可得( x)2 1x a 11 x2 | x a | 1化得 2x 2 2 1x a 1Ixa 1此式不管a0还是a 0都不恒成立,所以函数不可能是奇函数•(2 )由于本题中含有绝对值,需要去掉,故分类讨论,既要对二次函数值域的研究方法熟 练掌握,又要将结论综合,对学生的综合运用数学知识能力及数学思想作了较好的考查 34某公司为帮助尚有 26.8万元无息贷款没有偿还的残疾人商店,借出 20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中 的一条折线(实线)表示;职工每人每月工资为 600元, 该店应交付的其它费用为每月 130元.(1) 若当销售价p 为52元/件时,该店正好收支平衡, 求该店的职工人数;(2) 若该店只安排40名职工,则该店最早可在几年后 还清所有债务,此时每件消费品的价格定为不仅需要划分段落层次, 弄清每一层次独立的含义和相互间的关系, 方面•由题目的问题找到关键词 “收支平衡”、“还清所有债务”,不难想到,均与“利润” 更需要抓住矛盾的主要多少元?分析:本题题目的篇幅较长,所给条件零散杂乱,为此,相关.从阅读和以上分析,可以达成我们对题目的整体理解,明确这是一道函数型应用题•为此,首先应该建立利润与职工人数、月销售量q、单位商品的销售价p之间的关系,然后,通过研究解析式,来对问题作出解答.由于销售量和各种支出均以月为单位计量,所以,先考虑月利润解:(1)设该店的月利润为S 元,有职工m名.则S q p 40 100 600m 13200.2p 140, 40 p 58又由图可q.p 82 58 p 812p 140 p 40 100 600m 1320040 p 58所以,Sp 82 p 40 100 600m 1320058<p 81由已知,当p 52时,S 0,即2p 140 p 40 100 600m 13200 0 ,解得m 50 .即此时该店有50 名职工. (2)若该店只安排40 名职工,则月利润2p 140 p 40 100 37200 40 p 58 S.p 82 p 40 100 37200 58<p 81当40 p 58时,求得p 55时,S取最大值7800元.当58 p 81时,求得p 61时,S取最大值6900元.综上,当p 55时,S有最大值7800元.设该店最早可在n 年后还清债务,依题意,有12n 7800 268000 200000 0.解得n 5. 所以,该店最早可在 5 年后还清债务,此时消费品的单价定为55元.点评:求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题.(3)数理关:运用恰当的数学方法去解决已建立的数学模型.。
高一数学易错题集
高中数学易错题集函数错题集 1. 方程组11x y x y +=⎧⎨-=-⎩的解集是___________[错解一]{}0,1x y ==或{0,1}[错解二](){,01}x y x ory ==[错解分析]用列举法把答案写成{}0,1x y ==或{0,1},既不是列举法也不是描述法,也就是不符合集合表示法的基本模式,而集合{0,1}(){0,1}≠.或用描述法把集合写成(){,01}x y x ory ==也是不正确的.这个集合的元素有无限多个,它表示这样的点()0,y 或(),1x [正解](){0,1} 2. "23""5"x y x y ≠≠+≠且是的____________条件[错解]充分但不必要条件 [错解分析]未能搞清原命题与逆否命题的等价关系 [正解]既不充分也不必要条件3.在R 内,下列对应是否是一对一映射?若是,说明之,若不是,能否对x 或k 加以限制,使之成为一一映射?(1)x y kx →= (2)x y x →=[错解]上述对应皆为一对一映射[错解分析]概念不清,考虑问题不严谨 [正解](1)0k =时,不是一对一映射,0k ≠时,是一对一映射 (2)不是一对一映射,当0(0)x x ≥≤或时,是一对一映射4.若函数222(3)lg 4x f x x -=-,则()f x 的定义域为[错解]{}22x x orx ><-[错解分析]()f x 与()23f x -是两个不同的函数,有不同的定义域和对应法则[正解]{}1x x >5.函数()(f x x =-的奇偶性是 ______ [错解]()f x 为偶函数[错解分析]没有考虑定义域且变形是出现了错误[正解] ()f x 为非奇非偶函数 6.函数2(1)y x x =≤-的反函数是________________[错解]0)y x =≥[错解分析]一是符合错误,二是定义域未从原函数值域去确定[正解]1)y x =≥7.当[]0,2x ∈时,函数2()4(1)3f x ax a =+--在2x =时取最大值,则实数a 的取值范围是______________[错解]203a a ora ⎧⎫≥<⎨⎬⎩⎭[错解分析]对函数的单调性的概念不清,导致错误[正解]23a a ⎧⎫≥⎨⎬⎩⎭ 8.若224x y +=,那么285x y +-的最大值为__________ [错解]10、12、15[错解分析]忽略了[]2,2y ∈-的限制[正解]119.若不等式210x nx m m++>的解集为{}24x x <<,求这个不等式 [错解]不等式可设为()()240x x -->这个不等式210x nx m m ++>应与同解1681n m m-∴==m ∴=±m =n =;当m =-, n =∴所求的不等式为202x x -+>202x +-[错解分析]忽略了0m <的隐含条件 [正解]202x x +->即2680x x -+->10.设关于x 的二次方程227(13)20x k x k k -++--=的两根12,x x 满足12012x x <<<<,求k 的取值范围.[错解]12012x x <<<<12121302x x x x <+<⎧∴⎨<<⎩解:222131372027(13)28(2)0k k k k k k +⎧<<⎪⎪--⎪<<⎨⎪∆=+---≥⎪⎪⎩得(11)(2,1k ∈-⋃[错解分析]从第一步到第二步导致了范围的扩大[正解]设22()7(13)20f x x k x k k =-++--= 方程()0f x =的两个根12,x x 满足12012x x <<<<(0)0(1)1(2)0f f f >⎧⎪∴<⎨⎪>⎩2222028030k k k k k k ⎧-->⎪⇒--<⎨⎪->⎩解之得:21,34k k -<<-<< (2,1)(3,4)k ∴∈--⋃向量、三角函数1已知方程01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan , 且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+的值是_________________. 错误分析:忽略了隐含限制βαtan ,tan 是方程01342=+++a ax x 的两个负根,从而导致错误. 正确解法:1>a ∴a 4t a n t a n -=+βα0<,o a >+=⋅13tan tan βα ∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫ ⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα 由tan()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a=34可得.22tan -=+βα 答案: -2 .2若向量a =)(x x 2,,b =)(2,3x -,且a ,b 的夹角为钝角,则x 的取值范围是______________.错误分析:只由b a ,的夹角为钝角得到,0<⋅b a 而忽视了0<⋅b a 不是b a,夹角为钝角的充要条件,因为b a ,的夹角为180时也有,0<⋅b a 从而扩大x 的范围,导致错误.正确解法: ,的夹角为钝角, ()⋅+-⋅=⋅∴x x x b a 23 04322<+-=x x解得0<x 或 34>x (1) 又由b a,共线且反向可得31-=x (2)由(1),(2)得x 的范围是 ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31 答案: ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31 . 3为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B4 函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )Aπ B π2 C2π D 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错. 答案: B 5已知αβαcos 4cos 4cos 522=+,则βα22cos cos +的取值范围是_______________.错误分析:由αβαcos 4cos 4cos 522=+得ααβ22cos 45cos cos -=代入βα22cos cos +中,化为关于αcos 的二次函数在[]1,1-上的范围,而忽视了αcos 的隐含限制,导致错误. 答案: ⎥⎦⎤⎢⎣⎡2516,0.略解: 由αβαcos 4cos 4cos 522=+得ααβ22cos 45cos cos -= ()1 []1,0c o s 2∈β⎥⎦⎤⎢⎣⎡∈∴54,0cos α 将(1)代入βα22c o s c o s +得βα22cos cos +=()12cos 412+--α∈⎥⎦⎤⎢⎣⎡2516,0. 6若()π,0∈A ,且137cos sin =+A A ,则=-+AA AA cos 7sin 15cos 4sin 5_______________. 错误分析:直接由137cos sin =+A A ,及1cos sin 22=+A A 求A A cos ,sin 的值代入求得两解,忽略隐含限制⎪⎭⎫⎝⎛∈ππ,2A 出错.答案: 438. 7在ABC ∆中,︒===60,8,5C b a ,则CA BC ⋅的值为 ( )A 20B 20-C 320D 320-错误分析:︒==60C ,从而出错.答案: B略解: ︒=120,故CA BC ⋅202185-=⎪⎭⎫⎝⎛-⨯⨯=. 8 关于非零向量a 和b,有下列四个命题:(1)“b a b a +=+”的充要条件是“a 和b的方向相同”; (2)“b a b a -=+” 的充要条件是“a 和b的方向相反”;(3)“b a b a -=+” 的充要条件是“a 和b有相等的模”; (4)“b a b a -=-” 的充要条件是“a 和b 的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 4错误分析:对不等式b a b a b a+≤±≤-的认识不清.答案: B.9 已知向量⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=2sin ,2cos ,23sin ,23cos x x b x x a ,且,2,0⎥⎦⎤⎢⎣⎡∈πx 求(1) b a ⋅及b a+;(2)若()b a b a x f +-⋅=λ2的最小值是23-,求实数λ的值.错误分析:(1)求出b a+=x 2cos 22+后,而不知进一步化为x cos 2,人为增加难度;(2)化为关于x cos 的二次函数在[]1,0的最值问题,不知对对称轴方程讨论.答案: (1)易求x b a 2cos =⋅, b a +=x cos 2 ;(2) ()b a b a x f +-⋅=λ2=x x cos 222cos ⋅-λ=1cos 4cos 22--x x λ=()12cos 222---λλx⎥⎦⎤⎢⎣⎡∈2,0πx []1,0c o s ∈∴x 从而:当0≤λ时,()1min -=x f 与题意矛盾,0≤λ 不合题意;当10<<λ时,()21,23122min =∴-=--=λλx f ; 当1≥λ时,(),2341min -=-=λx f 解得85=λ,不满足1≥λ; 综合可得: 实数λ的值为21. 10 在ABC ∆中,已知()()k ,1,3,2==,且ABC ∆的一个内角为直角,求实数k 的值.错误分析:是自以为是,凭直觉认为某个角度是直角,而忽视对诸情况的讨论. 答案: (1)若,90︒=∠BAC 即,AC AB ⊥故0=⋅AC AB ,从而,032=+k 解得32-=k ; (2)若,90︒=∠BCA 即AC BC ⊥,也就是0=⋅AC BC ,而(),3,1--=-=k 故()031=-+-k k ,解得2133±=k ; (3)若,90︒=∠ABC 即AB BC ⊥,也就是,0=⋅而()3,1--=k ,故()0332=-+-k ,解得.311=k 综合上面讨论可知,32-=k 或2133±=k 或.311=k 数列1.在等比数列{}n a 中,若379,1,a a =-=-则5a 的值为____________ [错解]3或3-[错解分析] 没有意识到所给条件隐含公比为正 [正解]3-2.实数项等比数列{}n a 的前n 项的和为n S ,若1053132S S =,则公比q 等于________- [错解]18 [错解分析]用前n 项的和公式求解本题,计算量大,出错,应活用性质 [正解]12-3.从集合{}1,2,3,4,,20⋅⋅⋅中任取三个不同的数,使这三个数成等差数列,这样的等差数列最多有-_________ [错解]90个[错解分析]没有考虑公差为负的情况,思考欠全面 [正解]180个4.设数列{}{}(),0,n n n a b b n N *>∈满足12lg lg lg nn b b b a n++⋅⋅⋅+=,则{}n a 为等差数列是{}n b 为等比数列的____________条件 [错解]充分[错解分析] 对数运算不清,判别方法没寻求到或半途而废 [正解]充要5.若数列{}n a 是等差数列,其前n 项的和为n S ,则{},,nn n S b n N b n*=∈也是等差数列,类比以上性质,等比数列{},0,n n c c n N *>∈,则n d =__________,{}n d 也是等比数列 [错解]nS n[错解分析] 没有对nS n仔细分析,其为算术平均数, [正解6.已知数列{}n a 中,12213,6,,n n n a a a a a ++===-则2003a 等于______________ [错解]6或 3或3-[错解分析] 盲目下结论,没能归纳出该数列项的特点 [正解]6-7.已知数列{}n a 中,2n a n n λ=+(λ是与n 无关的实数常数),且满足1231n n a a a a a +<<<⋅⋅⋅<<⋅⋅⋅,则实数λ的取值范围是___________ [错解](),3-∞-[错解分析]审题不清,若能结合函数分析会较好 [正解]()3,-+∞8.一种产品的年产量第一年为a 件,第二年比第一年增长1p ﹪,第三年比第二年增长2p ﹪,且0,0,2p >>+=1212p p p p ,若年平均增长x ﹪,则有x ___p (填≤≥或或=)[错解]≥[错解分析]实际问题的处理较生疏,基本不等式的使用不娴熟 [正解]≤⒐设数列的前n 项和为224()n S n n n N +=++∈,求这个数列的通项公公式 [错解]()1,21n n n n a S S a n n N-*=-∴=+∈[错解分析]此题错在没有分析1n =的情况,以偏概全.误认为任何情况下都有()1n n n a S S n N *-=-∈[正解]1111,S 7,221n n n n a n a S S n -===≥=-=-时时,因此数列的通项公式是()()17221n n a n n =⎧=⎨≥+⎩ ⒑已知一个等比数列{}n a 前四项之积为116[错解]四个数成等比数列,可设其分别为33,,,,a a aq aq q q则有4116a a aq q⎧=⎪⎪⎨⎪+=⎪⎩1q =或1q =,故原数列的公比为23q =+23q =-[错解分析]按上述设法,等比数列公比20q >,各项一定同号,而原题中无此条件 [正解]设四个数分别为23,,,,a aq aq aq则462116a q aq aq ⎧=⎪⎨⎪+=⎩,()42164q q ∴+=由0q >时,可得2610,3q q q -+=∴=± 当0q <时,可得21010,5q q q ++=∴=--不等式1、 设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac>1错解原因是没有数形结合意识,正解是作出函数()lg f x x =的图象,由图可得出选D. 2、 设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。
高一数学必修一集合错题集
第一讲 集合与函数概念对应练习1(对应易错点1、易错点2、易错点3)已知集合A ={x |x 2-1=0},则下列式子表示正确的有( )①1∈A ②{-1}∈A ③∅⊆A ④{1,-1}⊆AA .1个B .2个C .3个D .4个 答案:答案:C C解析:A ={x |x 2-1=0}={1,-1}.∴①③④均正确.对应练习2(对应易错点5)集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R ),选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B 答案C解析:集合A 中元素y 是实数,不是点,故选项B ,D 不对.集合B 的元素(x ,y )是点而不是实数,2∈B 不正确,所以A 错.错.对应练习3(对应易错点8、易错点9)已知集合M ={y |y =x 2+1,x ∈R },N ={x |y =x +1},则M 与N 之间的关系( )A .M ⊆NB .M ∈NC .M =ND .M 与N 关系不确定关系不确定答案:A解析:∵M ={y |y ≥1},N ={x |x ≥-1},∴M ⊆N .对应练习4(对应易错点15)集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R ),选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B答案:C解析:集合A 中元素y 是实数,不是点,故选项B ,D 不对.集合B 的元素(x ,y )是点而不是实数,2∈B 不正确,所以A 错.错.对应练习5(对应易错点6)已知集合A ={x |x 2-3x +2=0},B ={x |x 2-x +2m =0}.若A ∩B =B ,求m 的取值范围.的取值范围.答案:m >18.解析:(1)由题意得A ={1,2}.因为A ∩B =B ,所以B ⊆A .①当B =∅时,方程x 2-x +2m =0无实数解,因此其判别式Δ=1-8m <0,即m >18; ②当B ={1}或B ={2}时,方程x 2-x +2m =0有两个相同的实数解x =1或x =2,因此其判别式Δ=1-8m =0,解得m =18,代入方程x 2-x +2m =0解得x =12,矛盾,显然m =18不符合要求;不符合要求;③当B ={1,2}时,方程x 2-x +2m =0有两个不相等的实数解x =1或x =2,因此1+2=1,2m =2.显然第一个等式不成立.显然第一个等式不成立.综上所述,m >18. 对应练习6(对应易错点11)下列各图中,可表示函数y =f (x )图象的只可能是( )答案:D 解析:由函数的定义“对于自变量x 每取一个值都有唯一的一个y 值与之对应”知 答案:D. 对应练习7(对应易错点12、易错点13、易错点20)已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[12,3]上的最大值和最小值;上的最大值和最小值; (2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.的取值范围.答案:(1) 在区间[12,3]上 最大值是5,最小值是1. (2) m 的取值范围是(-∞,2]∪[6,+∞). 解析:(1)∵f (x )=x 2-2x +2=(x -1)2+1,x ∈[12,3],∴ f (x )的最小值是f (1)=1.又f (12)=54,f (3)=5, ∴f (x )的最大值是f (3)=5, 即f (x )在区间[12,3]上的最大值是5,最小值是1.(2)∵g (x )=f (x )-mx =x 2-(m +2)x +2,∴m +22≤2或m +22≥4,即m ≤2或m ≥6. 故m 的取值范围是(-∞,2]∪[6,+∞).对应练习8(对应易错点14)已知f (x )=îïíïìx +1,x ≥04x ,x <0,若f (a )=2,则实数a =________. 答案:1解析:∵当a ≥0时,f (a )=a +1=2,∴a =1.∵当a <0时,f (a )=4a =2,∴a =12(舍去舍去)). 对应练习9(对应易错点13)已知函数f (3x -2)的定义域是[-2,0),则函数f (x )的定义域是__________;若函数f (x )的定义域是(-2,4],则f (-2x +2)的定义域是__________.答案:[-8,-2) [-1,2)解析:∵f (3x -2)的定义域是[-2,0),∴f (3x -2)中的x 满足-2≤x <0.∴-8≤3x -2<-2.∴f (x )的定义域是[-8,2).∵f (x )的定义域是(-2,4],∴-2<x ≤4.∴f (-2x +2)中,-2<-2x +2≤4,即-1≤x <2.∴f (-2x +2)的定义域是[-1,2).答案:[-8,-2) [-1,2)对应练习10(对应易错点15)若f (x )是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f (-32)与f (a 2+2a +52)的大小关系是( ) A .f (-32)>f (a 2+2a +52) B .f (-32)≥f (a 2+2a +52) C .f (-32)<f (a 2+2a +52) D .f (-32)≤f (a 2+2a +52) 答案:B解析:∵a 2+2a +52=(a +1)2+32≥32, 又函数f (x )为偶函数,f (-32)=f (32),f (x )在(0,+∞)上为减函数. ∴f (-32)≥f (a 2+2a +52). 对应练习11(对应易错点17)已知集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ⊆B ,求实数a 的值.的值.答案:a =0或1或12.解析:B ={1,2},且A 为∅或单元素集合,由A ⊆B ⇒A 可能为∅,{1},{2}.(1)A =∅⇒a =0;(2)A ={1}⇒a =1;(3)A ={2}⇒a =12. 综上得a =0或1或12. 对应练习12(对应易错点18、易错点19)已知函数f(x)=îïíïì(a -3)x +5,x ≤1,2a x,x>1 是(-∞,+∞)上的减函数,那么a 的取值范围是( ) A .(0,3)B .(0,3]C .(0,2)D .(0,2]答案:D解析:由题意可知îïíïì a -3<0,a>0,a -3+5≥2a ,解得0<a ≤2.对应练习13(对应易错点4).已知U ={0,2,x 2-2},∁U A ={2,x },则A =________. 答案:{-2}或{0}解析:∵(∁U A )⊆U ,∴x ∈U 且x ≠2. 当x =0时,U ={0,2,-2},∁U A ={0,2},A ={-2}. 当x =x 2-2时得x =-1或x =2(舍去) x =-1时,U ={0,2,-1},∁U A ={2,-1},A ={0}.。
高一数学易错题85道(经典)
则.故
44. 函数的单调减区间为
。
解答:,令,函数的定义域为函数的单调减区间为
说明:此题考查基本函数的导数及导数的运算法则
45. 一个膨胀中的球形气球,其体积的膨胀率恒为,则但其半径增至
时,半径的增长率是
.
解答:
说明:考查对导数概念的理解能力
46. 若函数在内单调递减,则实数a的范围为____________.
判断角所在的象限.
23. 已知
.
说明:本题考查了倍角公式的应用,在公式应用是注意符号的取
舍,特别关注的是角的范围.
24. 已知
.
说明:本题通过降冪联想到三角函数的基本公式和倍角公式进行化
简求值.
25. 要得到函数只需将函数的图像
.
解:,图像向右平移个单位就得到的图像.
说明:本题考查三角函数的平移变换,掌握“左加右减”法则,以及正
可取回的钱的总数(元)为
.
正确答案:] 错因: 学生对存款利息的计算方法没掌握。
43. 定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积
都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的
公积.
已知数列是等积数列,且,公积为5,则这个数列的前项和的计算
公式为:
.
解:这个数列为2,,2,,2,,…,若是偶数,则,若是奇数,
余弦之间的转化是解决问题的关键.
26. 已知有最小值,无最大值,则
。
说明:本题考查正弦的对称轴及周期,以及正弦图像的知识。
27. 将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
高一数学易错题集
高中数学易错题集函数错题集 1. 方程组11x y x y +=⎧⎨-=-⎩的解集是___________[错解一]{}0,1x y ==或{0,1}[错解二](){,01}x y x ory ==[错解分析]用列举法把答案写成{}0,1x y ==或{0,1},既不是列举法也不是描述法,也就是不符合集合表示法的基本模式,而集合{0,1}(){0,1}≠.或用描述法把集合写成(){,01}x y x ory ==也是不正确的.这个集合的元素有无限多个,它表示这样的点()0,y 或(),1x [正解](){0,1} 2. "23""5"x y x y ≠≠+≠且是的____________条件[错解]充分但不必要条件 [错解分析]未能搞清原命题与逆否命题的等价关系 [正解]既不充分也不必要条件3.在R 内,下列对应是否是一对一映射?若是,说明之,若不是,能否对x 或k 加以限制,使之成为一一映射?(1)x y kx →= (2)x y x →=[错解]上述对应皆为一对一映射[错解分析]概念不清,考虑问题不严谨 [正解](1)0k =时,不是一对一映射,0k ≠时,是一对一映射 (2)不是一对一映射,当0(0)x x ≥≤或时,是一对一映射4.若函数222(3)lg 4x f x x -=-,则()f x 的定义域为[错解]{}22x x orx ><-[错解分析]()f x 与()23f x -是两个不同的函数,有不同的定义域和对应法则 [正解]{}1x x >5.函数()(f x x =-的奇偶性是 ______ [错解]()f x 为偶函数[错解分析]没有考虑定义域且变形是出现了错误[正解] ()f x 为非奇非偶函数 6.函数2(1)y x x =≤-的反函数是________________[错解]0)y x =≥[错解分析]一是符合错误,二是定义域未从原函数值域去确定[正解]1)y x =≥7.当[]0,2x ∈时,函数2()4(1)3f x ax a =+--在2x =时取最大值,则实数a 的取值范围是______________[错解]203a a ora ⎧⎫≥<⎨⎬⎩⎭[错解分析]对函数的单调性的概念不清,导致错误[正解]23a a ⎧⎫≥⎨⎬⎩⎭8.若224x y +=,那么285x y +-的最大值为__________ [错解]10、12、15[错解分析]忽略了[]2,2y ∈-的限制[正解]119.若不等式210x nx m m++>的解集为{}24x x <<,求这个不等式 [错解]不等式可设为()()240x x -->这个不等式210x nx m m ++>应与同解1681n m m-∴==m ∴=±m =n =;当m =-, n =∴所求的不等式为202x x -+>202x x +->[错解分析]忽略了0m <的隐含条件 [正解]202x x +->即2680x x -+->10.设关于x 的二次方程227(13)20x k x k k -++--=的两根12,x x 满足12012x x <<<<,求k 的取值范围.[错解]Q 12012x x <<<<12121302x x x x <+<⎧∴⎨<<⎩解:222131372027(13)28(2)0k k k k k k +⎧<<⎪⎪--⎪<<⎨⎪∆=+---≥⎪⎪⎩得(11)(2,1k ∈-⋃+[错解分析]从第一步到第二步导致了范围的扩大[正解]设22()7(13)20f x x k x k k =-++--=Q 方程()0f x =的两个根12,x x 满足12012x x <<<<(0)0(1)1(2)0f f f >⎧⎪∴<⎨⎪>⎩2222028030k k k k k k ⎧-->⎪⇒--<⎨⎪->⎩解之得:21,34k k -<<-<< (2,1)(3,4)k ∴∈--⋃向量、三角函数1已知方程01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan , 且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tanβα+的值是_________________. 错误分析:忽略了隐含限制βαtan ,tan 是方程01342=+++a ax x 的两个负根,从而导致错误. 正确解法:1>a Θ ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα ∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα 由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα答案: -2 .2若向量a =)(x x 2,,b =)(2,3x -,且a ,b 的夹角为钝角,则x 的取值范围是______________.错误分析:只由b a ϖρ,的夹角为钝角得到,0<⋅b a ρρ而忽视了0<⋅b a ρρ不是b a ρρ,夹角为钝角的充要条件,因为b a ϖρ,的夹角为ο180时也有,0<⋅b a ρρ从而扩大x 的范围,导致错误.正确解法:Θ ,的夹角为钝角, ()⋅+-⋅=⋅∴x x x b a 23ρρ04322<+-=x x解得0<x 或 34>x (1) 又由b a ρρ,共线且反向可得31-=x (2)由(1),(2)得x 的范围是Y ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31Y 答案: Y ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31Y . 3为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B4 函数⎪⎭⎫⎝⎛⋅+=2tantan 1sin x x x y 的最小正周期为 ( ) A π B π2 C2π D 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错. 答案: B 5已知αβαcos 4cos 4cos 522=+,则βα22cos cos +的取值范围是_______________.错误分析:由αβαcos 4cos 4cos 522=+得ααβ22cos 45cos cos -=代入βα22cos cos +中,化为关于αcos 的二次函数在[]1,1-上的范围,而忽视了αcos 的隐含限制,导致错误. 答案: ⎥⎦⎤⎢⎣⎡2516,0.略解: 由αβαcos 4cos 4cos 522=+得ααβ22cos 45cos cos -= ()1 []1,0cos 2∈βΘ⎥⎦⎤⎢⎣⎡∈∴54,0cos α将(1)代入βα22cos cos +得βα22cos cos +=()12cos 412+--α∈⎥⎦⎤⎢⎣⎡2516,0. 6若()π,0∈A ,且137cos sin =+A A ,则=-+AA A A cos 7sin 15cos 4sin 5_______________. 错误分析:直接由137cos sin =+A A ,及1cos sin 22=+A A 求A A cos ,sin 的值代入求得两解,忽略隐含限制⎪⎭⎫⎝⎛∈ππ,2A 出错.答案: 438. 7在ABC ∆中,︒===60,8,5C b a ,则CA BC ⋅的值为 ( )A 20B 20-C 320D 320-错误分析:︒==60C ,从而出错.答案: B略解: ︒=120,故CA BC ⋅202185-=⎪⎭⎫⎝⎛-⨯⨯=. 8 关于非零向量a ρ和b ρ,有下列四个命题:(1)“b a b a ρρρρ+=+”的充要条件是“a ρ和b ρ的方向相同”;(2)“b a b a ρρρρ-=+” 的充要条件是“a ρ和b ρ的方向相反”;(3)“b a b a ρρρρ-=+” 的充要条件是“a ρ和b ρ有相等的模”; (4)“b a b a ρρρρ-=-” 的充要条件是“a ρ和b ρ的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 4错误分析:对不等式b a b a b a ρρρρρρ+≤±≤-的认识不清.答案: B. 9 已知向量⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=2sin ,2cos ,23sin ,23cos x x b x x a ρρ,且,2,0⎥⎦⎤⎢⎣⎡∈πx 求(1) b a ρρ⋅及b a ρρ+;(2)若()b a b a x f ρρρρ+-⋅=λ2的最小值是23-,求实数λ的值.错误分析:(1)求出b a ρρ+=x 2cos 22+后,而不知进一步化为x cos 2,人为增加难度;(2)化为关于x cos 的二次函数在[]1,0的最值问题,不知对对称轴方程讨论.答案: (1)易求x b a 2cos =⋅ρρ, b a ρρ+=x cos 2 ;(2) ()b a b a x f ρρρρ+-⋅=λ2=x x cos 222cos ⋅-λ=1cos 4cos 22--x x λ=()12cos 222---λλx⎥⎦⎤⎢⎣⎡∈2,0πx Θ []1,0cos ∈∴x 从而:当0≤λ时,()1min -=x f 与题意矛盾,0≤λ 不合题意; 当10<<λ时,()21,23122min =∴-=--=λλx f ; 当1≥λ时,(),2341min -=-=λx f 解得85=λ,不满足1≥λ; 综合可得: 实数λ的值为21. 10 在ABC ∆中,已知()()k ,1,3,2==,且ABC ∆的一个内角为直角,求实数k 的值.错误分析:是自以为是,凭直觉认为某个角度是直角,而忽视对诸情况的讨论. 答案: (1)若,90︒=∠BAC 即,AC AB ⊥故0=⋅AC AB ,从而,032=+k 解得32-=k ; (2)若,90︒=∠BCA 即AC BC ⊥,也就是0=⋅AC BC ,而(),3,1--=-=k 故()031=-+-k k ,解得2133±=k ; (3)若,90︒=∠ABC 即AB BC ⊥,也就是,0=⋅而()3,1--=k ,故()0332=-+-k ,解得.311=k 综合上面讨论可知,32-=k 或2133±=k 或.311=k数列1.在等比数列{}n a 中,若379,1,a a =-=-则5a 的值为____________ [错解]3或3-[错解分析] 没有意识到所给条件隐含公比为正 [正解]3-2.实数项等比数列{}n a 的前n 项的和为n S ,若1053132S S =,则公比q 等于________- [错解]18 [错解分析]用前n 项的和公式求解本题,计算量大,出错,应活用性质 [正解]12-3.从集合{}1,2,3,4,,20⋅⋅⋅中任取三个不同的数,使这三个数成等差数列,这样的等差数列最多有-_________ [错解]90个[错解分析]没有考虑公差为负的情况,思考欠全面 [正解]180个4.设数列{}{}(),0,n n n a b b n N *>∈满足12lg lg lg nn b b b a n++⋅⋅⋅+=,则{}n a 为等差数列是{}n b 为等比数列的____________条件 [错解]充分[错解分析] 对数运算不清,判别方法没寻求到或半途而废 [正解]充要5.若数列{}n a 是等差数列,其前n 项的和为n S ,则{},,nn n S b n N b n*=∈也是等差数列,类比以上性质,等比数列{},0,n n c c n N *>∈,则n d =__________,{}n d 也是等比数列 [错解]nS n[错解分析] 没有对nS n仔细分析,其为算术平均数, [正解6.已知数列{}n a 中,12213,6,,n n n a a a a a ++===-则2003a 等于______________ [错解]6或 3或3-[错解分析] 盲目下结论,没能归纳出该数列项的特点 [正解]6-7.已知数列{}n a 中,2n a n n λ=+(λ是与n 无关的实数常数),且满足1231n n a a a a a +<<<⋅⋅⋅<<⋅⋅⋅,则实数λ的取值范围是___________ [错解](),3-∞-[错解分析]审题不清,若能结合函数分析会较好 [正解]()3,-+∞8.一种产品的年产量第一年为a 件,第二年比第一年增长1p ﹪,第三年比第二年增长2p ﹪,且0,0,2p >>+=1212p p p p ,若年平均增长x ﹪,则有x ___p (填≤≥或或=)[错解]≥[错解分析]实际问题的处理较生疏,基本不等式的使用不娴熟 [正解]≤⒐设数列的前n 项和为224()n S n n n N +=++∈,求这个数列的通项公公式[错解]()1,21n n n n a S S a n n N-*=-∴=+∈Q[错解分析]此题错在没有分析1n =的情况,以偏概全.误认为任何情况下都有()1n n n a S S n N *-=-∈ [正解]1111,S 7,221n n n n a n a S S n -===≥=-=-时时,因此数列的通项公式是()()17221n n a n n =⎧=⎨≥+⎩⒑已知一个等比数列{}n a 前四项之积为116[错解]Q 四个数成等比数列,可设其分别为33,,,,a a aq aq q q则有4116a a aq q⎧=⎪⎪⎨⎪+=⎪⎩,解得1q =±或1q =,故原数列的公比为23q =+23q =-[错解分析]按上述设法,等比数列公比20q >,各项一定同号,而原题中无此条件 [正解]设四个数分别为23,,,,a aq aq aq则462116a q aq aq ⎧=⎪⎨⎪+=⎩,()42164q q ∴+=由0q >时,可得2610,3q q q -+=∴=± 当0q <时,可得21010,5q q q ++=∴=--不等式1、 设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac>1错解原因是没有数形结合意识,正解是作出函数()lg f x x =的图象,由图可得出选D. 2、 设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。
高一数学易错题型集锦【学生版】
【题型一】正弦定理和余弦定理
1.在△ABC 中,a,b,c 分别为角 A,B,C 的对边,若△ABC 的面为 S,且 4 3 =
( + )2 − 2,则 th( + 4 ) =( )
A.1 B. 2 C. 6− 2 D. 6+ 2
2
4
4
2.△ABC 中,角 A,B,C 的对边分别为 a,b,c,且 asinA﹣csinC=(a﹣b)
为 S,若 a12+S≤96,则数列{an}至多有
项.
【题型五】等比数列的性质
18.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项 am、an,使得 aman=16a12,
则1
+
9的最小值为(
h
)
A.3 B.8 C.11 D.不存在
2
3
4
19.在等比数列{an}中,a1+a2=3,a5+a6=48,则 a9+a10 等于( )
2
=
h
1 (n∈N*),记 bn=
h+1
h21⋅2h,则数列{bn}的前
n 项和 Sn=
.
27. 已知数列{an}的前 n 项和为 Sn,Sn=n2(n∈N*),数列{bn}为等比数列,且
a2+1,a4+1 分别为数列{bn}第二项和第三项.
(1)求数列{an}与数列{bn}的通项公式;
(2)若数列 cn=anbn+ 1 ,求数列{cn}的前 n 项和 Tn. h h+1
sinB,c=4,则△ABC 面积的最大值为( )
A.2 3B.4 C.4 3D.8 3
3.在△ABC 中,a,b,c 分别是角 A,B,C 的对边,且(a+b+c)(a+b﹣c)= 3ab. (Ⅰ)求角 C 的值; (Ⅱ)若 c=2,且△ABC 为锐角三角形,求 a+b 的取值范围.
高一数学易错题集学生版
高一数学易错题集 函数错题集1.方程组11x y x y +=⎧⎨-=-⎩的解集是___________2."23""5"x y x y ≠≠+≠且是的____________条件3.在R 内,下列对应是否是一一映射?若是,说明之,若不是,能否对x 或k 加以限制,使之成为一一映射?(1)x y kx →= (2)x y x →=4.若函数222(3)lg 4x f x x -=-,则()f x 的定义域为5.函数()(f x x =-的奇偶性是 ______ 6.函数2(1)y x x =≤-的反函数是________________7.当[]0,2x ∈时,函数2()4(1)3f x ax a =+--在2x =时取最大值,则实数a 的取值范围是______________ 加上一个x 8.若224x y +=,那么285x y +-的最大值为__________ 9.若不等式210x nx m m++>的解集为{}24x x <<,求这个不等式 10.设关于x 的二次方程227(13)20x k x k k -++--=的两根12,x x 满足12012x x <<<<,求k 的取值范围. 向量、三角函数 1已知01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+的值是_________________.2 若向量=)(x x 2,,=)(2,3x -,且,的夹角为钝角,则x 的取值范围是______________.3为了得到函数⎪⎭⎫ ⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( )A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π4 函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )A πB π2 C2π D 23π已知αβαcos 4cos 4cos 522=+,则βα22cos cos +的取值范围是_______________. 7 在ABC ∆中,︒===60,8,5C b a ,则CA BC ⋅的值为 ( )A 20B 20-C 320D 320-8 关于非零向量a和b ,有下列四个命题:(1)“b a b a +=+”的充要条件是“a和b 的方向相同”; (2)“b a b a -=+” 的充要条件是“a 和b 的方向相反”; (3)“b a b a -=+” 的充要条件是“a 和b 有相等的模”; (4)“b a b a -=-” 的充要条件是“a 和b 的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 49 已知向量⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=2sin ,2cos ,23sin ,23cos x x b x x a ,且,2,0⎥⎦⎤⎢⎣⎡∈πx 求(1) b a⋅及b a +;(2)若()b a b a x f +-⋅=λ2的最小值是23-,求实数λ的值.10 在ABC ∆中,已知()()k AC AB ,1,3,2==,且ABC ∆的一个内角为直角,求实数k 的值.数列1.在等比数列{}n a 中,若379,1,a a =-=-则5a 的值为____________ 异同等比数列隔项符号问题2.实数项等比数列{}n a 的前n 项的和为n S ,若1053132S S =,则公比q 等于________- 3.从集合{}1,2,3,4,,20⋅⋅⋅中任取三个不同的数,使这三个数成等差数列,这样的等差数列最多有_________4.设数列{}{}(),0,n n n a b b n N *>∈满足12lg lg lg nn b b b a n++⋅⋅⋅+=,则{}n a 为等差数列是{}n b 为等比数列的____________条件5.若数列{}n a 是等差数列,其前n 项的和为n S ,则{},,nn n S b n N b n*=∈也是等差数列,类比以上性质,等比数列{},0,n n c c n N *>∈,则n d =__________,{}n d 也是等比数列 6.已知数列{}n a 中,12213,6,,n n n a a a a a ++===-则2003a 等于______________7.已知数列{}n a 中,2n a n n λ=+(λ是与n 无关的实数常数),且满足1231n n a a a a a +<<<⋅⋅⋅<<⋅⋅⋅,则实数λ的取值范围是___________8.一种产品的年产量第一年为a 件,第二年比第一年增长1p ﹪,第三年比第二年增长2p ﹪,且0,0,2p >>+=1212p p p p ,若年平均增长x ﹪,则有x ___p (填≤≥或或=) ⒐ 设数列的前n 项和为224()n S n n n N +=++∈,求这个数列的通项公公式 ⒑已知一个等比数列{}n a 前四项之积为116的公比.不等式1、设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac<12、设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-13、不等式(0x -≥的解集是A {|1}x x >B {|1}x x ≥C {|21}x x x ≥-≠且D {|21}x x x =-≥或4、某工厂第一年的产量为A ,第二年的增长率为a,第三年的增长率为b ,这两年的平均增长率为x,则 A 2a b x += B 2a b x +≤ C 2a b x +> D 2a bx +≥5、已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是 A 1317(,)22- B 711(,)22- C 713(,)22- D 913(,)22-6、设220,0,12b a b a ≥≥+=,则的最大值为7、若,,x y R +∈≤a 的最小值是8、已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 。
(易错题)高中数学必修一第一单元《集合》测试(包含答案解析)
一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-23.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,34.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥5.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,6.定义一个集合A 的所有子集组成的集合叫做A 的幂集,记为()P a ,用()n A 表示有限集A 的元素个数,给出下列命题:(1)对于任意集合A ,都有()A P A ∈;(2)存在集合A ,使得()3nP A =;(3)若AB =Φ,则()()P A P B ⋂=Φ;(4)若A B ⊆,则()()P A P B ⊆;(5)若()()1n A n B -=,则[][]()2()n P A n P B =.其中正确命题的序号为( )A .(1)(2)(5)B .(1)(3)(5)C .(1)(4)(5)D .(2)(3)(4)7.对于下列结论:①已知∅ 2{|40}x x x a ++=,则实数a 的取值范围是(],4-∞; ②若函数()1y f x =+的定义域为[)2,1-,则()y f x =的定义域为[)3,0-;③函数2y =的值域是(],1-∞;④定义:设集合A 是一个非空集合,若任意x A ∈,总有a x A -∈,就称集合A 为a 的“闭集”,已知集合{}1,2,3,4,5,6A ⊆,且A 为6的“闭集”,则这样的集合A 共有7个. 其中结论正确的个数是( ) A .0B .1C .2D .38.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,19.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .210.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤11.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .3812.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则A B 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.14.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________.15.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且AB =________.16.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若U x A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.已知全集U =R 集合1|1A x x ⎧⎫=≤⎨⎬⎩⎭,则UA_______.19.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________.20.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-. (1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围.22.在①{}23B x x =-<<,②{}35RB x x =-<<,③{}26B x x a =≥+且{}A B x x a ⋃=>这三个条件中任选一个,补充在下面的问题中,并解答该问题. 问题:已知非空集合{}8A x a x a =<<-,______,若A B =∅,求a 的取值集合.23.已知集合{}2230A x x x =--≤,{}22210B x x mx m =-+-≤. (1)若332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,求实数m 的值; (2)x A ∈是x B ∈的________条件,若实数m 的值存在,求出m 的取值范围;若不存在,说明理由.(请在①充分不必要,②必要不充分,③充要;中任选一个,补充到空白处) 24.已知命题p :x ∈A ={x|a -1<x <a +1,x ∈R},命题 q :x ∈B ={x|x 2-4x +3≥0}. (1)或A∩B =∅,A ∪B =R ,求实数a (2)若是p 的必要条件,求实数a.25.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣9≤0,x ∈R ,m ∈R}. (1)若A∩B=[1,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围.26.已知集合2211{|}A x x =-≤-≤,集合{}11B x a x a =-<<+.(1)若1a =,试通过运算验证:()()()RRR A B A B =;(2)若A B ⋂≠∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =; 综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0;∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.3.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.5.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围.解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.6.C解析:C 【分析】直接利用新定义判断五个命题的真假即可. 【详解】由P (A )的定义可知①正确,④正确, 设n (A )=n ,则n (P (A ))=2n ,∴②错误, 若A ∩B =∅,则P (A )∩P (B )={∅},③不正确; n (A )﹣n (B )=1,即A 中元素比B 中元素多1个, 则n [P (A )]=2×n [P (B )].⑤正确, 故选:C . 【点睛】本题考查集合的子集关系,集合的基本运算,新定义的理解与应用.7.D解析:D 【分析】A .考虑方程有解的情况;B .根据抽象函数定义域求解方法进行分析;C .根据二次函数的取值情况分析函数值域;D .根据定义采用列举法进行分析. 【详解】①由∅ 2{|40}x x x a ++=可得²40x x a ++=有解,即2440a ∆=-,解得4a ≤,故①正确;②函数()1y f x =+的定义域为[)2,1-,则21x,故112x -≤+<,故()y f x =的定义域为[)1,2-,故②错误;③函数21y ==[)1,+∞,故(]2,1y =--∞,故③正确;④集合{}1,2,3,4,5,6A ⊆且A 为6的“闭集”,则这样的集合A 共有{}3,{}1,5,{}2,4,{}1,3,5,{}2,4,6,{}1,2,4,5,{}1,2,3,4,5共7个,故④正确.故正确的有①③④. 故选:D .本题考查命题真假的判定,考查集合之间的包含关系,考查函数的定义域与值域,考查集合的新定义,属于中档题.8.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.9.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.10.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.11.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.12.D解析:D 【分析】首先求得集合B ,然后进行交集运算即可. 【详解】由题意可得:{}1,3,5,7,9B =,则{}1,3A B =.故选D . 【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】先求出和再计算【详解】由已知则∴故答案为:【点睛】本题考查集合的新定义解题关键是理解新定义运算把新运算转化为集合的运算 解析:[3,1)(3,)--+∞【分析】先求出A B -和B A -,再计算A B ∆ 【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞, 故答案为:[3,1)(3,)--+∞【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.14.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.15.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.16.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的解析:8 【分析】由条件可得:当1A ∈,则2A ∉,即2UA ∈,则4U A ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. 【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉.当1A ∈,则2A ∉,即2UA ∈,则4U A ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ; 而元素5没有限制.{1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个. 故答案为:8. 【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】先解分式不等式确定集合A 再求补集即可【详解】则故答案为:【点睛】本题考查补集运算准确求得集合A 是关键是基础题解析:[0,1)【分析】先解分式不等式确定集合A,再求补集即可【详解】()1|1=,0[1,)A x x ⎧⎫=≤-∞⋃+∞⎨⎬⎩⎭,则[0,1)U A故答案为:[0,1)【点睛】 本题考查补集运算,准确求得集合A 是关键,是基础题19.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题 解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可.【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意;若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =. 【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题. 20.①③④【分析】对各个选项分别进行分析利用类的定义直接求解【详解】在①中∵2014÷5=402…4∴2014∈4故①正确;在②中∵﹣3=5×(﹣1)+2∴﹣3∉3故②错误;在③中∵整数集中的数被5除的解析:①③④【分析】对各个选项分别进行分析,利用类的定义直接求解.在①中,∵2014÷5=402…4,∴2014∈[4],故①正确;在②中,∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误;在③中,∵整数集中的数被5除的数可以且只可以分成五类,∴Z =[0]∪[1]∪[2]∪[3]∪[4],故③正确;在④中,∵2015÷5=403,2010÷5=402,∴2015与2010属于同一个“类”[0],故④正确.故答案为①③④.【点睛】本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题.三、解答题21.(1){}2A B x x ⋃=≥, (){}6R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或. (2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.答案见解析.【分析】选①:本题首先可根据A 是非空集合得出4a <,然后根据A B =∅得出3a ≥或82a -≤-,最后通过计算即可得出结果. 选②:本题首先可以根据A 是非空集合得出4a <,然后根据{}R35B x x =-<<求出集合B ,最后根据A B =∅列出不等式组,通过计算即可得出结果.选③:本题首先可以根据A 是非空集合得出4a <,然后根据题意得出268a a +=-,最后通过计算即可得出结果.【详解】选①:因为A 是非空集合,所以8a a ->,解得4a <, 因为{}23B x x =-<<,A B =∅,所以3a ≥或82a -≤-,解得3a ≥或10a ≥,综上所述,a 的取值集合是{}34a a ≤<.选②:因为A 是非空集合,所以8a a ->,解得4a <, 因为{}R 35B x x =-<<,所以{3B x x =≤-或}5x ≥,因为A B =∅,所以3854a a a ≥-⎧⎪-≤⎨⎪<⎩,解得34a ≤<,故a 的取值集合是{}34a a ≤<.选③:因为A 是非空集合,所以8a a ->,解得4a <,因为A B =∅,{}26B x x a =≥+,{}A B x x a ⋃=>,所以268a a +=-,解得2a =-或1,故a 的取值集合是{}2,1-.【点睛】关键点点睛:本题考查根据集合的运算结果求参数的取值范围,若两个集合的交集为空集,则这两个集合没有相同的元素,考查集合的混合运算,考查计算能力,是中档题. 23.(1)12-;(2)答案见解析. 【分析】(1)首先求出集合A 、B ,再根据并集的结果得到方程,解得即可;(2)若选①,则A B ,若选②,B A ,若选③,A B =,得到不等式组,解得即可;【详解】解:(1)对()()2:23013013A x x x x x --≤⇒+-≤⇒-≤≤ 即{}13A x x =-≤≤对()()22:210110B x mx m x m x m -+-≤⇔--⋅-+≤⎡⎤⎡⎤⎣⎦⎣⎦ 11m x m ⇒-≤≤+,即{}11B x m x m =-≤≤+332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,则312m -=-,即12m =- 经检验满足题意.(2)选①,1131m A B m -≤-⎧⇒⎨≤+⎩,此时m 必无解.即不存在实数m ,使得题意成立 选②,110213m B A m m -≤-⎧⇒⇒≤≤⎨+≤⎩ 选③,1113m A B m -=-⎧=⇒⇒⎨+=⎩此时m 无解,即不存在实数m ,使得题意成立; 【点睛】本题考查一元二次不等式的解法,并集的结果求参数的值,以及集合的包含关系求参数的取值范围,属于中档题.24.(1) a =2;(2) a =2【详解】解:(1)由题意得B ={x|x≥3或x≤1},由A∩B =∅,A ∪B =R ,可知A =∁R B =(1,3)∴⇒a =2-(2)∵B ={x|x≥3或x≤1},∴:x ∈{x|1<x <3}.∵是p 的必要条件.即p ⇒, ∴A ⊆∁R B =(1,3) ∴⇒2≤a≤2⇒a =2. 本试题主要考查了命题的真值,以及集合的运算的综合运用,以及二次不等式的求解问题.25.(1)m=4;(2) m >6,或m <﹣4.【解析】试题分析:(1)化简A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3},由A∩B=[1,3],得到:m=4;(2)若p 是¬q 的充分条件,即A ⊆C R B ,易得:m >6,或m <﹣4. 试题由已知得:A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3}.(1)∵A∩B=[1,3]∴ ∴, ∴m=4;(2)∵p 是¬q 的充分条件,∴A ⊆C R B ,而C R B=x|x <m ﹣3,或x >m+3}∴m ﹣3>3,或m+3<﹣1,∴m >6,或m <﹣4.26.(1)见解析;(2)3(,2)2-【分析】(1)先解不等式得集合A ,再分别求并集、补集、交集,根据结果进行验证; (2)结合数轴先求AB =∅情况,再根据补集得结果.【详解】 解:A ={2211}x x -≤-≤=1{|1}2x x -≤≤. (1)当1a =时,B ={02}x x <<∴A B =1{|1}2x x -≤≤{02}x x <<=1{|2}2x x -≤< ()R C A B =1{|2x x <-或2}x ≥ 又R C A =1{|2x x <-或1}x >,R C B ={|0x x ≤或2}x ≥ ∴()()R R C A C B =1{|2x x <-或2}x ≥ ∴()R C A B =()()R R C A C B . (2)若AB =∅,则:112a +≤-或11a -≥ ∴32a ≤-或2a ≥ ∴A B ⋂≠∅时,322a -<<,即实数a 的取值范围3(,2)2-. 【点睛】 本题考查集合交并补运算以及根据交集结果求参数,考查综合分析求解能力,属基础题.。
高一必修一错题集
高一数学必修一易错题集锦1. 已知集合M={y |y =x 2+1,x∈R},N={y|y =x +1,x∈R},则M∩N=( ) 2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C .3.已知m A,n B, 且集合A=,B=,又C=∈∈{}Z a a x x ∈=,2|{}Z a a x x ∈+=,12|,则有:m +n (填A,B,C 中的一个){}Z a a x x ∈+=,14|∈4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围.5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.6 设A 是实数集,满足若a∈A,则A ,且1∉A.⑴若2∈A,则A 中至少还有a-11∈1≠a 几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a1∈A.⑷求证:集合A 中至少含有三个不同的元素.7.已知函数的定义域为[0,1],求函数的定义域 ()f x (1)f x +8.根据条件求下列各函数的解析式:(1)已知是二次函数,若,求. ()f x (0)0,(1)()1f f x f x x =+=++()f x(2)已知,求1)f x +=+()f x(3)若满足求 ()f x 1()2(),f x f ax x+=()f x9.设是R 上的函数,且满足并且对任意的实数都有()f x (0)1,f =,x y ,求的表达式.()()(21)f x y f x y x y -=--+()f x10.判断的奇偶性.2()log (f x x =+11.已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围.12.若f(x)=在区间(-2,+)上是增函数,求a 的取值范围 21++x ax ∞13.已知函数f (x )在(-1,1)上有定义,f ()=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y 21∈(-1,1)都有f (x )+f (y )=f (),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)xyyx ++1上单调递减14.已知求 18log 9,185,ba ==36log 4515.已知函数.(1)当时恒有意义,求实数的取值范()log (3)a f x ax =-[0,2]x ∈()f x a 围.(2)是否存在这样的实数使得函数在区间[1,2]上为减函数,并且最大值为1,a ()f x 如果存在,试求出的值;如果不存在,请说明理由. a16.若,试求的取值范围.1133(1)(32)a a --+<-a17.已知a>0 且a ≠1 ,f (log a x ) =(x - )(1)求f(x);(2)判断f(x)的奇12-a a x 1偶性与单调性;(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2 ) < 0 ,求m 的集合M .18.已知函数若时,≥0恒成立,求的取值范围. 2()3f x x ax a =++-[2,2]x ∈-()f x a19.已知有且只有一根在区间(0,1)内,求的取值范围. 210mx x ++=m20.是否存在这样的实数k ,使得关于x 的方程2+(2k -3)-(3k -1)=0有两个实x x 数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由.21.已知函数,且方程有实根.(1)求0)1(),1(2)(2=<<++=f b c c bx x x f 01)(=+x f 证:-3<c ≤-1,b ≥0. (2)若m 是方程的一个实根,判断的正负并加01)(=+x f )4(-m f 以证明32定义在R 上的函数()f x 满足:对任意实数,总有()()()f m n f m f n +=⋅,且,m n 当时,.(1)试求的值;(2)判断()f x 的单调性并证明你的0x >()01f x <<()0f结论;(3) ,()()()(){}()({}22,1,,1,A x y f x f y f B x y f ax y a R =⋅>=-+=∈若,试确定a 的取值范围. A B ⋂=∅33设为实数,函数,(1)讨论的奇偶性;(2)求a 1||)(2+-+=a x x x f R x ∈)(x f 的最小值. )(x f34某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).(1)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数;(2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?1.解:M={y |y =x 2+1,x∈R}={y |y ≥1}, N={y|y=x +1,x∈R}={y|y∈R}. ∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1},注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R}、{(x ,y )|y =x 2+1,x ∈R},这三个集合是不同的. 2.解:∵A∪B=A ∴BA 又A={x |x 2-3x +2=0}={1,2}∴B=或∴C={0,1,2}{}{}21或3.解:∵m A, ∴设m =2a 1,a 1Z, 又∵n ,∴n =2a 2+1,a 2 Z , ∈∈B ∈∈∴m +n =2(a 1+a 2)+1,而a 1+a 2 Z , ∴m +n B 。
高一数学必修一易错题汇总
集合部分错题库1.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个2.已知集合M ={(x ,y)|x +y =3},N ={(x ,y)|x -y =5},那么集合M ∩N 为 A.x =4,y =-1 B.(4,-1) C.{4,-1} D.{(4,-1)}3.已知集合A ={x|x 2-5x+6<0},B ={x|x< a2 },若A B ,则实数a 的范围为 A.[6,+∞)B.(6,+∞)C.(-∞,-1)D.(-1,+∞)4.满足{x|x 2-3x +2=0}M {x ∈N|0<x<6}的集合M 的个数为 A.2 B.4 C.6 D.85.图中阴影部分所表示的集合是( )A .)]([C A C B U ⋃⋂ B.)()(C B B A ⋃⋃⋃ C.)()(B C C A U ⋂⋃ D. )]([C A C B U ⋂⋃6.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有__________人.7.已知集合12,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭用列举法表示集合A 为8. 已知集合{}2210,A x ax x x R =++=∈,a 为实数 (1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值(3)若A 中至多只有一个元素,求a 的取值范围9.判断如下集合A 与B 之间有怎样的包含或相等关系: (1)A={x|x=2k-1,k ∈Z},B={x|x=2m+1,m ∈Z}; (2)A={x|x=2m,m ∈Z},B={x|x=4n,n ∈Z}.10.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m -1}, (1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.1、与函数y = )A.y =y =C. y =-D. y x =2、为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位C .沿x 轴向左平移1个单位D .沿x 轴向左平移12个单位3、若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是A .[0,1]B .[0,1)C . [0,1)(1,4]D .(0,1) 4、若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]35、已知函数f (x )=221x x +,那么f (1)+f (2)+f (21)+f (3)+f (31)+f (4)+f (41)=_____. 6、已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。
高一数学必修一易错题汇总
高一数学必修(Xiu)一易错题汇总1.若(Ruo)全(Quan)集,则集(Ji)合的真子(Zi)集共有()A.个(Ge) B.个(Ge) C.个(Ge) D.个2.已知集合M={(x,y)|x+y=3},N={(x,y)|x-y=5},那么集合M∩N为A.x=4,y=-1B.(4,-1)C.{4,-1}D.{(4,-1)}3.已知集合A={x|x2-5x+6<0},B={x|x< a2 },若A B,则实数a的范围为A.[6,+∞{}{},1,2,32UU CA==且B.(6,+∞)C.(-∞,-1)D.(-1,+∞)4.满足{x|x2-3x+2=0}M{x∈N|0<x<6}的集合M的个数为A.2B.4C.6D.85.图中阴影部分所表示的集合是()A.{}{} 0,1,2,32UU CA==且B.{}{},1,2,32UU CA==且C.{}{},1,2,32UU CA==且 D. {}{},1,2,32UU CA==且6.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有__________人.7.已知集合{}{},1,2,32UU CA==且用列举法表示集合A为8. 已知集合{}{},1,2,32UU CA==且,a为实数(1)若A是空集,求a的取值范围(2)若A是单元素集,求a的值(3)若A中至多只有一个元素,求a的取值范围9.判断如下集合A与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.10.集(Ji)合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},(1)若(Ruo)B {}{}0,1,2,32UU C A ==且A,求实(Shi)数m 的取值(Zhi)范围; (2)当(Dang)x ∈Z 时(Shi),求(Qiu)A 的非(Fei)空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.函数概念部分错题库1、与函数有相同图象的一个函数是( ) A.B.C. D. 2、为了得到函数的图象,可以把函数的图象适当平移,这个平移是( )A .沿轴向右平移个单位B .沿x 轴向右平移个单位C .沿x 轴向左平移1个单位D .沿x 轴向左平移个单位3、若函数{}{}0,1,2,32U U C A ==且的定义域是{}{}0,1,2,32UU C A ==且,则函数{}{}0,1,2,32UU C A ==且的定义域是 A .{}{}0,1,2,32UU C A ==且B .{}{}0,1,2,32UU C A ==且C .{}{}0,1,2,32UU C A ==且D .{}{}0,1,2,32UU C A ==且4、若函数{}{}0,1,2,32U U C A ==且的值域是{}{}0,1,2,32UU C A ==且,则函数{}{}0,1,2,32UU C A ==且的值域是( ) A .{}{}0,1,2,32UU C A ==且B .{}{}0,1,2,32UU C A ==且C .{}{}0,1,2,32UU C A ==且D .{}{}0,1,2,32UU C A ==且5、已知函数f (x )={}{}0,1,2,32UU C A ==且,那么f (1)+f (2)+f({}{}0,1,2,32U U C A ==且)+f (3)+f ({}{}0,1,2,32UU C A ==且)+f (4)+f({}{}0,1,2,32UU C A ==且)=_____.6、已知,则不等式的解集是 。
通用版高一数学集合易错题集锦
(每日一练)通用版高一数学集合易错题集锦单选题1、设集合A={−1,1,2,3,5},B={2,3,4},C={x∈R|1⩽x<3},则(A∩C)∪B=A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}答案:D解析:先求A∩C,再求(A∩C)∪B.因为A∩C={1,2},所以(A∩C)∪B={1,2,3,4}.故选D.小提示:集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2、集合A={x|x<−1或x≥1},B={x|ax+2≤0},若B⊆A,则实数a的取值范围是()A.[−2,2]B.[−2,2)C.(−∞,−2)∪[2,+∞)D.[−2,0)∪(0,2)答案:B解析:分B=∅与B≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可;解:∵B⊆A,∴①当B=∅时,即ax+2≤0无解,此时a=0,满足题意.②当B≠∅时,即ax+2≤0有解,当a>0时,可得x≤−2a,要使B⊆A,则需要{a>0−2a<−1,解得0<a<2.当a<0时,可得x≥−2a ,要使B⊆A,则需要{a<0−2a≥1,解得−2≤a<0,综上,实数a的取值范围是[−2,2).故选:B.3、已知集合A={x|x2−2x−3<0},集合B={x|x−1≥0},则∁R(A∩B)=(). A.(−∞,1)∪[3,+∞)B.(−∞,1]∪[3,+∞)C.(−∞,1)∪(3,+∞)D.(1,3)答案:A解析:算出集合A、B及A∩B,再求补集即可.由x2−2x−3<0,得−1<x<3,所以A={x|−1<x<3},又B={x|x≥1},所以A∩B={x|1≤x<3},故∁R(A∩B)={x|x<1或x≥3}.故选:A.小提示:本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.解答题4、已知集合A={x|ax2+2x+1=0,a∈R},(1)若A只有一个元素,试求a的值,并求出这个元素;(2)若A是空集,求a的取值范围;(3)若A中至多有一个元素,求a的取值范围.答案:(1)详见解析;(2)a>1;(3)a=0或a≥1解析:(1)根据方程为一次方程与二次方程分类讨论,对应求解得结果,(2)根据方程无解条件列不等式,解得结果,(3)A中至多只有一个元素就是A为空集,或有且只有一个元素,所以求(1)(2)结果的并集即可. (1)若A中只有一个元素,则方程ax2+2x+1=0有且只有一个实根,,当a=0时,方程为一元一次方程,满足条件,此时x=-12当a≠0,此时△=4-4a=0,解得:a=1,此时x=-1,(2)若A是空集,则方程ax2+2x+1=0无解,此时△=4-4a<0,解得:a>1.(3)若A中至多只有一个元素,则A为空集,或有且只有一个元素,由(1),(2)得满足条件的a的取值范围是:a=0或a≥1.小提示:本题考查方程的解与对应集合元素关系,考查基本分析求解能力,属基础题.5、在①B⊆(∁R A),②(∁R A)∪B=R,③A∩B=B这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若问题中的实数a不存在,请说明理由.已知集合A ={x |x 2−5x +4≤0},B ={x |a +1<x <2a −1},是否存在实数a ,使得________? 答案:答案见解析.解析:若选①:求出∁R A ,分B =∅和B ≠∅两种情况,列出不等式组可得答案; 若选②:由(∁R A )∪B =R ,得B ≠∅,列出不等式组可得答案;若选③:由A ∩B =B 可知B ⊆A ,分B =∅和B ≠∅列出不等式组可得答案. 集合A ={x |x 2−5x +4≤0}={x |1≤x ≤4}.若选①:∁R A ={x |x <1或x >4},由B ⊆(∁R A )得,当B =∅时,a +1≥2a −1,解得a ≤2;当B ≠∅时,{a +1<2a −12a −1≤1 或{a +1<2a −1a +1≥4, 解得a ∈∅或a ≥3,所以实数a 的取值范围是[3,+∞).综上,存在实数a ,使得B ⊆(∁R A ),且a 的取值范围为(−∞,2]∪[3,+∞).若选②:∁R A ={x |x <1或x >4},由(∁R A )∪B =R ,得B ≠∅,所以{2a −1>4a +1<1,解得a ∈∅, 所以不存在实数a ,使得(∁R A )∪B =R .若选③:由A∩B=B可知B⊆A,当B=∅时,a+1≥2a−1,解得a≤2;当B≠∅时,{a+1<2a−1a+1≥12a−1≤4,解得2<a≤52.综上,存在实数a,使得A∩B=B,且a的取值范围为(−∞,52].小提示:本题考查了集合的运算,解题关键点是对于B⊆(∁R A)和(∁R A)∪B=R中含有参数的集合要分情况进行讨论,要熟练掌握集合间的基本运算.。
高一数学集合易错题汇总
高一数学集合易错题汇总错题汇总1.设置a={边长为1且角度为40°的等腰三角形}包含元素()a.2、B.3、C.4、D.32.若以正实数x,y,z,w四个元素构成集合a,以a中四个元素为边长构成的四边形可能是()a、梯形B.平行四边形C.菱形D.矩形3.对于集合a={2,4,6},若a∈a,则6-a∈a,那么a的取值是________.4.给定m={2,a,B},n={2a,2,B2},m=n,试着找出a和B的值5.下列说法中正确的为()a、 Y=f(x)和Y=f(T)代表相同的函数b.y=f(x)与y=f(x+1)不可能是同一函数c.f(x)=1与f(x)=x0表示同一函数 d、定义字段和值字段相同的两个函数是同一个函数6.下列函数完全相同的是()a.f(x)=|x|,g(x)=(x)2b.f(x)=|x|,g(x)=x2x2c.f(x)=| x |,g(x)=xx2-9d、 f(x)=,g(x)=x+3x-37.以下陈述是正确的()a.函数值域中每一个数在定义域中一定只有一个数与之对应b.函数的定义域和值域可以是空集c.函数的定义域和值域一定是数集d、确定函数的定义域和值域后,也确定函数的对应关系8.下列集合a到集合b的对应f是函数的是()a.a={-1,0,1},b={0,1},f:a中的数平方b.a={0,1},b={-1,0,1},f:a中的数开方c.a=z,b=q,f:a中的数取倒数d、 A=R,B={正实数},F:A中的数字取绝对值x+1?09.函数y=的定义字段为___3-2x10.如果函数y=x2-2的定义域为{-1,0,1,2},则其值域为___11.求下列函数的定义域:三-x4x+8(1) y=2;(2)y=2。
2x-3x-23x-212.已知函数y=ax+1(a<0,a为常数)在区间(-中有意义∞, 1] ,得到实数a的取值范围13.设集合a={x|x+m≥0},b={x|-2<x<4},全集u=r,且(?ua)∩b=?,求实数m的取值范围为________.五14.已知全集u=r,a={x|-4≤x<2},b={x|-1<x≤3},p={x|x≤0或x≥},求二a∩b,(?ub)∪p,(a∩b)∩(?up).15.集合{1,5,9,13,17}用描述表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学易错题集函数错题集1. (如中)方程组11x y x y +=⎧⎨-=-⎩的解集是___________[错解一]{}0,1x y ==或{0,1} [错解二](){,01}x y x ory ==[错解分析]用列举法把答案写成{}0,1x y ==或{0,1},既不是列举法也不是描述法,也就是不符合集合表示法的基本模式,而集合{0,1}(){0,1}≠.或用描述法把集合写成(){,01}x y x ory ==也是不正确的.这个集合的元素有无限多个,它表示这样的点()0,y 或(),1x [正解](){0,1}2.(如中)"23""5"x y x y ≠≠+≠且是的____________条件[错解]充分但不必要条件[错解分析]未能搞清原命题与逆否命题的等价关系 [正解]既不充分也不必要条件 3.(如中)在R 内,下列对应是否是一一映射?若是,说明之,若不是,能否对x 或k 加以限制,使之成为一一映射?(1)x y kx →= (2)x y x →= [错解]上述对应皆为一一映射[错解分析]概念不清,考虑问题不严谨[正解](1)0k =时,不是一一映射,0k ≠时,是一一映射 (2)不是一一映射,当0(0)x x ≥≤或时,是一一映射4.(如中)若函数222(3)lg 4x f x x -=-,则()f x 的定义域为[错解]{}22x x orx ><-[错解分析]()f x 与()23f x -是两个不同的函数,有不同的定义域和对应法则[正解]{}1x x >5.(如中)函数()(f x x =-的奇偶性是 ______ [错解]()f x 为偶函数[错解分析]没有考虑定义域且变形是出现了错误 [正解] ()f x 为非奇非偶函数6.(如中)函数2(1)y x x =≤-的反函数是________________ [错解]0)y x =≥[错解分析]一是符合错误,二是定义域未从原函数值域去确定 [正解]1)y x =≥7.(如中)当[]0,2x ∈时,函数2()4(1)3f x ax a =+--在2x =时取最大值,则实数a 的取值范围是______________ [错解]203a a ora ⎧⎫≥<⎨⎬⎩⎭ [错解分析]对函数的单调性的概念不清,导致错误 [正解]23a a ⎧⎫≥⎨⎬⎩⎭8.(如中)若224x y +=,那么285x y +-的最大值为__________ [错解]10、12、15[错解分析]忽略了[]2,2y ∈-的限制 [正解]119.(如中)若不等式210x nx m m++>的解集为{}24x x <<,求这个不等式 [错解]不等式可设为()()240x x -->这个不等式210x nx m m++>应与同解 1681n m m-∴==m ∴=±当m =n =;当m =-, n =∴202x x -+>20x x ->[错解分析]忽略了0m <的隐含条件 [正解]202x x +->即2680x x -+->10.(如中)设关于x 的二次方程227(13)20x k x k k -++--=的两根12,x x 满足12012x x <<<<,求k 的取值范围.[错解] 12012x x <<<<12121302x x x x <+<⎧∴⎨<<⎩ 解:222131372027(13)28(2)0k k k k k k +⎧<<⎪⎪--⎪<<⎨⎪∆=+---≥⎪⎪⎩得(11)(2,1k ∈-⋃+ [错解分析]从第一步到第二步导致了范围的扩大 [正解]设22()7(13)20f x x k x k k =-++--=方程()0f x =的两个根12,x x 满足12012x x <<<<(0)0(1)1(2)0f f f >⎧⎪∴<⎨⎪>⎩2222028030k k k k k k ⎧-->⎪⇒--<⎨⎪->⎩解之得:21,34k k -<<-<<(2,1)(3,4)k ∴∈--⋃向量、三角函数1(如01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+的值是_________________.错误分析:忽略了隐含限制βαtan ,tan 是方程01342=+++a ax x 的两个负根,从而导致错误.正确解法:1>a ∴a 4t a n t a n-=+βα0<,o a >+=⋅13tan tan βα ∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫ ⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα 由tan()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a=34可得.22tan -=+βα 答案: -2 .2 (如中)若向量a =)(x x 2,,b =)(2,3x -,且a ,b 的夹角为钝角,则x 的取值范围是______________.错误分析:只由b a ,的夹角为钝角得到,0<⋅b a 而忽视了0<⋅b a 不是b a,夹角为钝角的充要条件,因为b a,的夹角为180时也有,0<⋅b a从而扩大x 的范围,导致错误.正确解法: ,的夹角为钝角, ()⋅+-⋅=⋅∴x x x b a 23 04322<+-=x x解得0<x 或 34>x (1) 又由b a,共线且反向可得31-=x (2)由(1),(2)得x 的范围是 ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31 答案: ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31 . 3(如中)为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B4 (如中)函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )Aπ B π2 C2π D 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错.答案: B 5(如中)已知αβαcos 4cos 4cos 522=+,则βα22cos cos +的取值范围是_______________.错误分析:由αβαcos 4cos 4cos 522=+得ααβ22cos 45cos cos -=代入βα22cos cos +中,化为关于αcos 的二次函数在[]1,1-上的范围,而忽视了αcos 的隐含限制,导致错误. 答案: ⎥⎦⎤⎢⎣⎡2516,0. 略解: 由αβαcos 4cos 4cos 522=+得ααβ22cos 45cos cos -= ()1 []1,0c o s 2∈β ⎥⎦⎤⎢⎣⎡∈∴54,0c o s α将(1)代入βα22cos cos+得βα22cos cos +=()12cos 412+--α∈⎥⎦⎤⎢⎣⎡2516,0. 6 (如中)若()π,0∈A ,且137cos sin =+A A ,则=-+AA AA cos 7sin 15cos 4sin 5_______________. 错误分析:直接由137cos sin =+A A ,及1cos sin 22=+A A 求A A cos ,sin 的值代入求得两解,忽略隐含限制⎪⎭⎫⎝⎛∈ππ,2A 出错. 答案:438. 7 (如中)在ABC ∆中,︒===60,8,5C b a ,则CA BC ⋅的值为 ( )A 20B 20-C 320D 320-错误分析:︒==60C ,从而出错. 答案: B略解: ︒=120,故CA BC ⋅202185-=⎪⎭⎫⎝⎛-⨯⨯=. 8 (如中)关于非零向量a 和b,有下列四个命题:(1)“b a b a +=+”的充要条件是“a 和b的方向相同”;(2)“b a b a -=+” 的充要条件是“a 和b的方向相反”; (3)“b a b a -=+” 的充要条件是“a 和b 有相等的模”; (4)“b a b a -=-” 的充要条件是“a 和b 的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 4错误分析:对不等式b a b a b a+≤±≤-的认识不清.答案: B.9 (如中)已知向量⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=2sin ,2cos ,23sin ,23cos x x b x x a ,且,2,0⎥⎦⎤⎢⎣⎡∈πx 求(1) b a ⋅及b a+;(2)若()b a b a x f +-⋅=λ2的最小值是23-,求实数λ的值.错误分析:(1)求出b a+=x 2cos 22+后,而不知进一步化为x cos 2,人为增加难度;(2)化为关于x cos 的二次函数在[]1,0的最值问题,不知对对称轴方程讨论.答案: (1)易求x b a 2cos =⋅, b a +=x cos 2 ;(2) ()b a b a x f +-⋅=λ2=x x cos 222cos ⋅-λ=1cos 4cos 22--x x λ=()12cos 222---λλx⎥⎦⎤⎢⎣⎡∈2,0πx []1,0c o s ∈∴x 从而:当0≤λ时,()1min -=x f 与,0≤λ 不合题意;当10<<λ时,()21,23122min =∴-=--=λλx f ; 当1≥λ时,(),2341min -=-=λx f 解得85=λ,不满足1≥λ; 综合可得: 实数λ的值为21. 10 (如中)在ABC ∆中,已知()()k AC AB ,1,3,2==,且ABC ∆的一个内角为直角,求实数k 的值.错误分析:是自以为是,凭直觉认为某个角度是直角,而忽视对诸情况的讨论. 答案: (1)若,90︒=∠BAC 即,AC AB ⊥故0=⋅,从而,032=+k 解得32-=k ; (2)若,90︒=∠BCA 即AC BC ⊥,也就是=⋅AC BC ,而(),3,1--=-=k AB AC BC 故()031=-+-k k ,解得2133±=k ; (3)若,90︒=∠ABC 即AB BC ⊥,也就是,0=⋅AB BC 而()3,1--=k BC ,故()0332=-+-k ,解得.311=k 综合上面讨论可知,32-=k 或2133±=k 或.311=k 数列1.(如中)在等比数列{}n a 中,若379,1,a a =-=-则5a 的值为____________ [错解]3或3-[错解分析] 没有意识到所给条件隐含公比为正 [正解]3-2.(如中)实数项等比数列{}n a 的前n 项的和为n S ,若1053132S S =,则公比q 等于________- [错解]18 [错解分析]用前n 项的和公式求解本题,计算量大,出错,应活用性质 [正解]12-3.(如中)从集合{}1,2,3,4,,20⋅⋅⋅中任取三个不同的数,使这三个数成等差数列,这样的等差数列最多有_________ [错解]90个[错解分析]没有考虑公差为负的情况,思考欠全面 [正解]180个4.(如中)设数列{}{}(),0,n n n a b b n N *>∈满足12lg lg lg nn b b b a n++⋅⋅⋅+=,则{}n a 为等差数列是{}n b 为等比数列的____________条件[错解]充分[错解分析] 对数运算不清,判别方法没寻求到或半途而废 [正解]充要5.(如中)若数列{}n a 是等差数列,其前n 项的和为n S ,则{},,nn n S b n N b n*=∈也是等差数列,类比以上性质,等比数列{},0,n n c c n N *>∈,则n d =__________,{}n d 也是等比数列[错解]nS n[错解分析] 没有对nS n仔细分析,其为算术平均数, [正解6.(如中)已知数列{}n a 中,12213,6,,n n n a a a a a ++===-则2003a 等于______________ [错解]6或 3或3-[错解分析] 盲目下结论,没能归纳出该数列项的特点 [正解]6-7.(如中)已知数列{}n a 中,2n a n n λ=+(λ是与n 无关的实数常数),且满足1231n n a a a a a +<<<⋅⋅⋅<<⋅⋅⋅,则实数λ的取值范围是___________[错解](),3-∞-[错解分析]审题不清,若能结合函数分析会较好 [正解]()3,-+∞8.(如中)一种产品的年产量第一年为a 件,第二年比第一年增长1p ﹪,第三年比第二年增长2p ﹪,且0,0,2p >>+=1212p p p p ,若年平均增长x ﹪,则有x ___p (填≤≥或或=) [错解]≥[错解分析]实际问题的处理较生疏,基本不等式的使用不娴熟 [正解]≤⒐ (如中)设数列的前n 项和为224()n S n n n N +=++∈,求这个数列的通项公公式 [错解]()1,21n n n n a S S a n n N -*=-∴=+∈[错解分析]此题错在没有分析1n =的情况,以偏概全.误认为任何情况下都有()1n n n a S S n N *-=-∈[正解]1111,S 7,221n n n n a n a S S n -===≥=-=-时时,因此数列的通项公式是()()17221n n a n n =⎧=⎨≥+⎩⒑(如中)已知一个等比数列{}n a 前四项之积为116的公比.[错解] 四个数成等比数列,可设其分别为33,,,,a a aq aq q q则有4116a a aq q⎧=⎪⎪⎨⎪+=⎪⎩1q或1q =,故原数列的公比为23q =+23q =-[错解分析]按上述设法,等比数列公比20q >,各项一定同号,而原题中无此条件 [正解]设四个数分别为23,,,,a aq aq aq则462116a q aq aq ⎧=⎪⎨⎪+=⎩, ()42164q q ∴+=由0q >时,可得2610,3q q q -+=∴=± 当0q <时,可得21010,5q q q ++=∴=--不等式1、 (如中)设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac>1错解原因是没有数形结合意识,正解是作出函数()lg f x x =的图象,由图可得出选D. 2、 (如中)设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。