发动机试验数据

合集下载

航空发动机试验测试及数据管理技术

航空发动机试验测试及数据管理技术

航空发动机试验测试及数据管理技术【摘要】航空发动机测试技术和数据管理对航空发动机的可靠性和耐久性至关重要。

为了不断提高航空发动机的生产效率,需要了解影响发动机的因素,通过连续的实验和数据分析,可以在工作期间对发动机进行测试,从而对发动机的性能进行改进。

本文介绍了国内发动机试验测试技术的发展,测试操作和测试数据。

目的是通过航空发动机试验的数据来提供一些思路。

【关键词】航空发动机实验;数据管理;测试随着我国航空技术的不断发展,我国的航空事业不断发展生产技术也得到了显著改进。

不仅是安全性和可访问性得到了保证,效率、经济、环保性也得到了不断提高。

为了充分将信息技术管理信息流充分应用于航空发动机实验测试数据管理技术中,创建测试引擎和测试管理系统对整个航空发动机的生命周期内的数据进行分析,确保有效控制测试数据的分析是准确和全面性的【1】。

进一步研究航空发动机试验测试和数据管理技术,这对提高数据管理的效率和航空发动机实验的安全可靠性有着重要的意义。

1国内航空发动机试验测试技术发展现状大多数光航空发动机试验测试技术用于数字模拟技术和实验仿真技术。

近些年,自动化和智能技术得到了飞速的发展。

智能检测技术,电磁感应技术和光电检测技术也逐渐引入航空发动机的试验测试中,这不仅仅能丰富其测试的方法,还能够减少航空发动机的测试次数,并有效提高测试的准确性。

现如今,基本上有三种适合航空发动机试验的设备,主要有飞行试验设备,高空试验设备,地面试验设备。

能够满足不同情况下对航空发动机的性能测试。

从建立和测试航空发动机的角度来看,我国处理航空发动机的工具和方法相对普遍,这满足对测试航空发动机的基本要求【2】。

此外,飞行试验技术也在不断发展和改进,一些系统使用红外和激光技术以及远程网络管理技术,这不仅有利于对航空发动机的测试操作,也能够进一步保证对航空发动机性能和精度的准确测量。

2航空发动机实验设备、系统及测试特点2.1航空发动机实验设备1)飞行试验设备。

5.86L发动机万有特性数据

5.86L发动机万有特性数据

1901 1900 1901 1900 1900
58.8 295.3 12.4 47.0 236.1 10.4 35.3 177.6 23.5 118.3 11.9 59.6 8.4 6.5 4.6
211.6 222.0 239.0 274.6 383.8 201.7 201.4 201.3 201.1 200.8 204.0 209.1 216.5 232.3 270.6 376.1 201.9 199.9 199.4 199.9 202.1 206.9 215.5 228.2 266.0 363.7 200.7 200.6 199.8 200.8 202.6 206.3 213.3 227.7 256.9 358.4 200.0 201.0 200.8
127.6 123.7 125.4 49.4 0.74 111.1 119.6 109.1 48.5 0.56 94.6 79.2 66.3 54.1 43.0 32.9 24.5 18.0 108.8 92.4 98.0 88.0 78.3 69.0 61.0 54.1 48.9 77.4 64.3 52.3 41.2 31.3 23.0 16.5 48.2 0.42 47.3 0.31 46.1 0.32 45.7 0.31 46.2 0.31 45.3 0.28 43.8 0.28 45.0 0.28
66.9 64.8 64.9 68.7 72.6 71.8 71.4 71.1 69.7 68.7 66.4 63.7 64.7 67.6 70.3 70.2 73.2 71.3 70.0 68.5 66.6 64.2 64.5 68.7 71.3 72.3 72.0 71.2 71.1 70.7 70.5 68.9 67.6 68.8 76.9 25.2 72.0 71.2 71.0

实验二发动机负荷特性试验

实验二发动机负荷特性试验

实验二发动机负荷特性试验“发动机负荷特性试验” 实验指导书(中南林机电院刘谦钢)一、实验目的及要求(参见“发动机原理实验教程”P8)1 实验目的:1.1掌握发动机负荷特性的试验方法。

1.1.1 掌握发动机负荷的加载方法和转速和燃油消耗率的测量方法。

1.1.2 掌握发动机功率、转速、油耗等测量仪器设备的选择、操作、使用方法。

1.1.3 熟悉发动机负荷特性测试数据的分析和处理方法。

1.2 通过实验,学习绘制、分析发动机负荷特性曲线。

1.2.1 依据原始数据和处理的数据,绘制发动机负荷特性曲线。

1.2.2 通过分析负荷特性曲线评价发动机在规定转速下,发动机部分负荷经济能,并为合理选用和调整发动机提供依据。

2 实验要求:2.1 每次参加试验的学生为10,20人。

2.2 实验前复习发动机负荷特性试验的相关内容,认真阅读实验指导书及其附件。

2.3 实验时应作好记录纸笔等准备,按指导书操作仪器设备、试验及作好实验记录。

2.4 实验后,严格按实际实验数据正确处理实验数据,绘制相应曲线,认真撰写实验报告。

二、实验预习及准备(参见“发动机原理实验教程”P8,P9。

)1 实验原理:当发动机油门(节气门)位置不变而通过测功器人为改变给发动机的所加负载,发动机转速必然改变。

为制取发动机某一恒定转速下燃油消耗量、燃油消耗率、排气温度等随负荷变化而变化的特性,因此,可通过调节发动机油门(节气门)的位置来改变供油量的大小,从而达到保持发动机转速不变的目的。

(参见“发动机原理实验教程”P1,P4。

)1.1 负荷特性定义:当转速n不变时,发动机其它性能参数(燃油耗量、燃油耗率、排气温度等)随负荷的改变而变化的关系。

1.2 负荷特性试验的作用负荷特性试验表明在某规定转速下,各种不同负荷时的油耗率g随功率P变化的关系。

通过负ee荷特性曲线可找出某转速下发动机所能达到的最大功率P和最低油耗率g,还可用来评价标定工emaxemin况下的经济性,判断功率标定的合理性及有关调整的正确性。

李昊晟-GBT18297-2001 汽车发动机性能试验方法

李昊晟-GBT18297-2001 汽车发动机性能试验方法
测量项目及数据整理 进气状态、转速、扭矩、燃料消耗量、点火或喷油提前角、点燃机进气
管真空度或绝对压力、空燃比和燃料牌号。按需要测量CO、HC、NOx排放 量等(点燃机按GB 14761,压燃机按GB 17691)。
绘制负荷特性曲线。
负荷特性试验 最低燃料消耗率/转速,g/kW·h/(r/min)__________/__________/___________ 转速为2000r/min,平均有效压力为200 kPa工况燃料消耗率g/kW·h___________
汽车发动机性能实验 ——GB/T 18297-2001
I. 试验要求及规定 II. 试验内容
a. 试验目的 b. 试验条件及方法 c. 数据处理
I. 试验要求及规定
扭矩 误差不超过所测发动机最大扭矩值的±1%。 转速 误差不超过所测值的±0.5%。 燃料消耗量
误差不超过所测值的±1%。 温度
a)冷却液温度:在靠近发动机冷却液出口及入口两处测量;误差不超过 ±2K。 b)机油温度:在主油道、主油道的入口或有代表性部位测量;误差不超 过±2K。 c)排气温度:传感器端头离发动机排气歧管出口或涡轮增压器出口50mm 处测量,并位于排气连接管的中心,传感器逆气流方向插入;误差不超 过±15K。
g)曲轴箱压力:在有代表性的部位测量,如加机油口、油标尺插入口等, 误差不超过±0.02kPa。
点火、喷油及供油提前角:误差不超过±1°曲轴转角。
发动机进气状态 进气温度
沿发动机进气口(即进气连接管、化油器、节气门体或空气滤清器的 进气口)的轴线,在进气口上游30~60mm处测量,若空气滤清器系 周边进气结构,可在空气滤清器里面的中间位置测量;传感器不得受 到热辐射,应采取措施进行热屏蔽;误差不超过±2K。 进气压力 在试验室内不受阳光和热辐射的部位测量;误差不超过±0.1kPa。 进气湿度 在试验室内不受阳光和热辐射的部位测量,采用抽风式干湿球温度计; 温度误差不超过±0.5K。 发动机空气消耗量 误差不超过所测值的±3%。 活塞漏气量 误差不超过所测值的±5%。

航空发动机试验过程详解

航空发动机试验过程详解

航空发动机试验过程详解静态试验是航空发动机试验的第一步。

在静态试验中,航空发动机会被安装在静力架上进行测试。

静力架是专门设计用来支撑航空发动机并模拟发动机在飞行中所受到的各种力和载荷的设备。

在静态试验中,可以对发动机的耐久性、结构强度、振动特性以及冷却系统进行综合测试。

这些测试能够验证发动机在飞行过程中的可靠性和安全性。

动态试验是航空发动机试验的第二步,也是较为重要的一步。

动态试验主要包括转速试验和负荷试验。

转速试验是对发动机旋转部件(如涡轮、风扇等)进行测试的过程,目的是验证发动机的转速范围、转速响应以及工作稳定性。

负荷试验是对发动机负荷性能进行测试的过程,包括测试发动机的推力、燃油消耗量、温度和压力变化等。

通过动态试验,可以验证发动机在各种转速和负荷下的性能表现,以及测试其稳定性和可调度性。

飞行试验是航空发动机试验的最后一步,也是最为关键的一步。

飞行试验通常在飞行测试架上进行,测试架是一种特殊的飞机,在其机身后部安装有发动机供测试使用。

飞行试验主要目的是验证发动机在实际飞行条件下的性能、可靠性和适航性。

在飞行试验中,测试架会模拟各种飞行状态和飞行环境,包括低空、高空、高速、低速、爬升和下滑等。

通过飞行试验,可以验证发动机在各种飞行条件下的性能表现,以及测试其在不同高度、温度和湿度下是否适应飞行任务的要求。

除了以上三个主要的试验步骤外,航空发动机试验还包括其他辅助试验,如燃油试验、启动试验和排放试验等。

燃油试验是对发动机燃油系统进行测试的过程,目的是验证燃油供给的稳定性和可靠性。

启动试验是对发动机启动系统进行测试的过程,目的是验证发动机的启动速度和可靠性。

排放试验是对发动机排放性能进行测试的过程,目的是验证发动机的排放标准是否符合航空环保要求。

在整个试验过程中,航空发动机试验工程师会全程监控和记录各种试验数据,如转速、温度、压力、燃油消耗量等。

试验数据的分析和比对是试验的重要环节,通过对试验数据的分析和比对,可以评估发动机的性能和可靠性,并为改进和优化发动机提供有价值的参考。

发动机实验报告

发动机实验报告

篇一:发动机实验报告柴油机性能试验报告班级:姓名:学号:柴油机负荷特性实验一、实验目的1.掌握柴油机负荷特性的试验方法。

了解电涡流测功机、油耗仪、转速传感器、扭矩传感器、温度传感器的测量原理和使用方法。

2.熟悉负荷特性试验测试数据的分析和处理方法,绘制柴油机负荷特性曲线并分析其经济性。

二、实验原理当转速n保持不变时,柴油机某些性能参数随负荷的改变而变化的关系称为负荷特性。

三、实验设备 1.试验用柴油机一台。

2.功率测量设备:电涡流测功机3.燃油消耗量测量:油耗仪4.转速测量传感器。

5.压力传感器、温度传感器。

6. fc3000发动机测控系统。

四、实验步骤 1.开机(1)检查发动机和测功机各连接件的螺丝和螺栓的松紧度、如发现过松须将其拧紧。

(2)先将测功机冷却水进水阀打开。

(3)将油耗仪电源打开。

(4)将启动稳压电源插头插到墙上的插座中,合上开关。

(5)打开控制台电源、将控制台下油门励磁控制仪打开、励磁电源开关打开、(注意:如果测功机冷却水未开、当油门励磁控制仪打开时会出现报警现象、这时需将测功机冷却水进水阀打开、复位可消除)(6)将启动钥匙顺时针转到底启动发动机,逐步将转速升高至标定转速。

2.实验(1)机器发动起来后,首先将控制模式选定“n/m”方式,将转速设定为2200r/min,扭矩设定为最大负荷点的数值,使柴油机在该状态运行2-3分钟,待热稳定后记录一次数据。

(2)将扭矩设定为次大负荷点的数值,使柴油机在该状态运行2-3分钟,待热稳定后,将控制切换到“m / n”模式, 使柴油机在该状态运行2-3分钟, 待工况稳定后,记录一次数据。

(3)按上述步骤逐渐减小负荷测量,直到负荷特性曲线上的实验点全部做完,共做10个工况。

在试验中,每调节一次负荷,应同时调节油门位置,使转速保持不变。

各次测量均需同时记录下列参数:功率pe、扭矩te,燃油消耗量b、燃油消耗率be、排烟温度、机油温度等,一起填入表1所示的表格中。

发动机试验

发动机试验

发动机实验学院:能源与动力工程学号:1008180141姓名:阳维一、实验目的①、了解发动机实验台架主要仪器设备的功能、组成结构、工作原理;②、学习内燃机性能实验的基本方法,掌握一定的实验操作技能;③、应用课堂学习的相关理论,加深对理论的认识。

二、实验概述发动机诸性能特性中有一个叫做负荷特性,它是指当发动机转速一定时,经济性指标的有效比燃油消耗量随发动机负荷的变化关系。

利用这一变化曲线,可最全面地确定发动机在各种负荷和转速时的经济性。

衡量发动机经济性指标,工程技术人员用有效比燃油消耗量这一个指标,简称油耗率,用ge表示,它指每小时单位有效功率消耗的燃油量,单位是g/kw.h。

由于发动机转速是经常变化的,需要测定发动机不同转速下的负荷特性,才能全面评价不同转速和不同负荷下发动机的燃油经济性。

发动机负荷特性的读取在试验台架上进行。

以汽油机为例,启动发动机后逐渐开启节气门,直至最大,同时调节载荷使发动机保持某一转速稳定运行,测定此工况下发动机输出功率及燃油消耗量。

然后再关小节气门,调整载荷使发动机保持转速不变再测定。

如此依次进行下去,直到发动机能保持稳定工作的最小节气门开度,得到不同负荷和转速下的燃油消耗量。

不同转速下的发动机负荷特性曲线变化的趋势是差不多,只是具体数值的不同。

图2.1发动机负荷特性三、实验原理及方法发动机原理实验系统框图如图3.1所示。

测控系统通过测功机调节发动机的运行工况,同时测控系统可以实时监测发动机的各种运行参数。

图3.1实验系统框图四、实验仪器设备与条件发动机原理实验所使用的汽车动力装置实验台架为南京理工大学“211”建设项目之一,主要有电涡流测功机,转速转矩测试仪,油耗仪,冷却系统以及测控系统等组成,用于进行汽车发动机(最大功率为100KW,最高转速为6000r/min),变速器等汽车动力装置部件或总成性能及其控制的实验研究,可测试经济性,动力性以及传动效率等性能。

匹配其他相关设备或传感器后,还可测量发动机排气成分,发动机示工图等。

QCT 525-1999 汽车发动机可靠性 试验方法

QCT 525-1999 汽车发动机可靠性 试验方法

全速 全负荷试验时活塞漏气量 的测定 每 25h 测定一次 。
6 测且项 目及数据整f
运 行 持 续时 间(d、时数 )、转速 、扭矩 、燃油 消耗量 、机油 压力 、进气状态 ,全速全 负荷试验的机 油消耗 量 、活塞 漏气量、烟度 值等 。
随 时 记 录故 障停 车内容及排除时间 ,保养 内容及所用时 间,更换的零件及损坏情况等 。 绘 制 运 行持 续时间(小时数 )与全速全负荷的实测及校正有效功率 、超 速超 负荷 的实测有效功率、机油
凡 新 设 计或重大改进 的发动机定 型试验 、转厂生产 的发动机验证试验 等均按本标准规定的方法进行 。 1.2 本标准与 汽车发动机性能试验方法 的关 系
本 标 准 是 汽车发动 机试 验方法 的可靠性试验部分 ,QC/T 524- 1999《汽车发动 机性能试验 方法 》系 性 能 试 验 部 分 ,该 标 准 的 有 关 规 定 均 适 用 于本 标 准 。

走 全速全负荷试 验规范(见表 2), 表 2 全速全负荷试验规范
额 定 转 速 的 百 分数
额定功 率的百分数 10 0( 油 门全开)
5.1.3 超 速超 负荷 试验规范(见表 3)a 表 3 超速超负荷试验规范
工 况号 1 2 3 4
额定转速 的百分数
105
怠速
105
停车
额定功率的百分数
100
试验程序
4门 磨合 4.2 精密测量 。 4.3 汽油机怠速 排放量(一氧化碳及碳 氢化合 物)测定 按 QC/T 524 汽 车发 动机性能试验方法 、中 8.3 条的规定 4.4 总功率试验 :按 QC/T 524中 8.4条 的规定。 4.5 负荷特性试验 :按 QC/T5 24中 8.5条 的规定。 4.6 柴油机调速特性试验 :按 QC/T 524中 8.7 条的规定 。 4.7 机械损失功率试验 :按 QC/T 524中 8.8条的规定 。 4.8 机油消耗量试验 :按 QC/T 524中 8.10条 的规定 。 4.9 活塞漏气量试验 :按 QC/T 524中 8.11条的规定 4门 0 可靠性试验

发动机试验数据分析系统设计与实现

发动机试验数据分析系统设计与实现

中 图分 类 号 : 2 3 + V 6.5 4
文献 标 识 码 : A
文 章 编 号 : 6 2 2 2 ( 1)0 — 0 0 0 17 —6 0 2 0 3 0 1 —4 0
De i n a d Re l a i n o g n s t a y i y tm sg n a i to fEn i eTe tDa a An l ssS se z
2 试 验 数 据 分 析 系统 的 作 用
试验 数据分 析 系统 除 了可 以大 大增加 研制 阶段
整机 试 车的试验 效率 外 .在其 它发 动机试 验 中也有
重要 应用 。在发 动机 设计 定型 、 进人 批生产 以后 、 批 生产 的 常规试 车 中 .试验 数据 系统 可用来 全 面评 估
第2 3卷 第 3期
1 0
燃 气 涡轮 试 验 与研 究
Ga u b n p r n n s a c 1 3No3 o . . . 2
Au . 0 0 g, 1 2
21 0 0年 8月
摘 要 :本 文 以 发动 机 试 验 数 据 为 研 究 对 象 , 立 了 一 套 试 验 数据 分析 系统 , 系 统 可 对 研 制 和 生 产 过 程 中 的 整机 试 建 该
析 十分重要 。

每 台发动 机 的出厂状 态 ,形成有 使用 价值 的 出厂发 动机 性能 数据库 . 生产 流程 、 对 生产工 艺 的改善 与提 高很 有 帮助 。 除了针 对真 实试验 数据 以外 , 在发 动机
总体 方案设 计 阶段 ,试验 数据分 析 系统也 可 以通 过 数值 模拟 和虚拟 试验 的方 法来考 核所 设计 部件 的特 性和 整机性 能对 故 障诊 断难 易 的影 响。试 验数据 分

关于气门升程及速度试验的数据对比研究

关于气门升程及速度试验的数据对比研究
第 5期
杨建明 ,等 :关 于气 门升程及 速度 试验的数据对 比研 究
表 1 1 5 T 发 动 机 配 气 机 构 试 验 的试 验 数 据
l 5 T发 动机 的试 验数 据 见 表 1 ,位 移 曲线 见 图 8 。 1 5 L 发 动机 的配 气机 构 试 验数 据 见 表 2 ,位 移 曲线 见图 9 。1 8 T发 动 机 的试 验数 据 见 表 3 ,位 移 曲线
比较柔性调整方式 ,满足位移传感器对测量距离测 量角度 的要求。减少前期台架准备时间 ,提高实验 效率。 问题 3 :由于 试 验不 同缸 盖 ,外形 和 基础 结 构
表3 1 5 L发动机配气机构试验 的试验 数据
图 9某 1 5 L发动机 位移 曲线对 比

\ 一 —

- ・一 实 际位 移 — ・- 理论 位 移

1 0 0 0
2 0 0 0
3 UO O
40 0 0
转速l ( r ・ ai r n )
c . 气 门落座时反跳现象 出现。 d . 位移传感器光线 与气 门导杆轴线成一 定角
度。
解决方 案 :信号线一定 要采用屏蔽信号 线 , 对于采集卡采集模块等 ,增加屏蔽壳体 ,优化接线
方式 ,提高信号的精度 。 问题 7 :开始采集数据后 ,发现生成 的原始文 件总 是两 个 ,导致 数据 不完 全 ,经 过处 理生 成 曲线

6 4 2 0 8 6 4 2
g 8 ・

蠢7 ・
r - - ,7. 7.
- ・ 一实际位 移
— 一 理论位 移
7 . 2 7. 0 O
l 0 o 0

发动机热平衡试验方法

发动机热平衡试验方法
试验执行。
小循环管 散热器 加水管
3.3 试验方法 按 GB/T 18297-2001 《汽车发动机性能试验方法》进
行总功率试验。除了正常测量记录的数据外,必须测量表 2 中列出的需要实测的值。
在每个试验工况,必须在发动机达到热平衡以后才能测 量数据。发动机进、出水温度差值 T 出水-T 进水的波动不超过 0.1℃/min 时,认为发动机达到了热平衡。
Q排气
图 1 燃烧产生的总热量 Q 总的去向分布图
2.3 热平衡方程中各项的含义
表 1 名称、符号、单位及计算公式
序号
参数
符号
1 燃油燃烧产生的热量
Q 总
2 转化为有效功的热量
Qe
3 排气排出的热量
Q 排气
4 冷却液带走的热量
Q 冷却液
5 进气中冷带走的热量
Q 中冷
3 热平衡试验方法
G 燃油
kg/s G 燃油=Gf/3600
Hu kJ/kg 参考值:42780
G 排气
kg/s G 排气=G 进气+G 燃油
T 涡轮出口

T 环

Cp 排气 kJ/(kg·℃) 参考值:1.09924
G 冷却液 L/min
T 出水

T 中冷前℃ Fra bibliotekQ 总 Qe Q 排气 Q 冷却液 Q 中冷 Q 残余
kJ/s kJ/s kJ/s kJ/s kJ/s kJ/s
12 发动机输出总功率
Pe
13 燃油消耗量
Gf
单位
计算公式
说明与备注
kJ/s Q 总=G 燃油×Hu

汽车发动机可靠性试验方法 GBT 19055-2003

汽车发动机可靠性试验方法 GBT 19055-2003

GB/T 19055-2003前言本标准与GB/T 18297-2001《汽车发动机性能试验方法》属于同一系列标准,系汽车发动机试验方法的重要组成部分。

本标准自实施之日起,代替QC/T 525-1999。

本标准的附录A为规范性附录。

本标准由中国汽车工业协会提出。

本标准由全国汽车标准化技术委员会归口。

本标准起草单位:东风汽车工程研究院。

本标准主要起草人:方达淳、吴新潮、饶如麟、鲍东辉、周明彪。

引言本标准系在JBn 3744-84即QC/T 525-1999《汽车发动机可靠性试验方法》长期使用经验的基础上参考国外的先进技术,制定了本标准。

本标准对QC/T 525-1999的重大技术修改如下:——拓展了标准适用范围,不仅适用于燃用汽、柴油的发动机,还适用于燃用天然气、液化石油气和醇类等燃料的发动机;——修改了可靠性试验规范,对最大总质量小于3.5t的汽车用发动机采用更接近使用工况的交变负荷试验规范;对最大总质量在3.5t~12t之间的汽车用发动机采用混合负荷试验规范,以改进润滑状态;冷热冲击试验过去仅在压燃机上进行,现扩展到点燃机,并增加了“停车”工况,使零部件承受的温度变化率加大;——修改了全负荷时最大活塞漏气量的限值,首次推出适用于不同转速范围的非增压机、增压机、增压中冷机的限值计算公式,使评定更为合理;——为使汽车发动机满足国家排放标准对颗粒排放物限值的要求,修改了额定转速全负荷时机油/燃料消耗比的限值(由原来1.8%改为0.3%);——增加“试验结果的整理”的内容,并单独列为一事,要求对整机性能稳定性、零部件损坏和磨损等进行更为规范和详尽的评定;——增加“试验报告”的内容,并单独列为一章,明确试验报告主要内容,使试验报告更为规范。

——增加了附录A《汽车发动机可靠性评定方法》,使评定更为准确和全面,——鉴于汽车发动机排放污染物必须满足国家排放标准的要求,在认证时按排放标准进行专项考核,故本标准不再涉及。

发动机气缸体疲劳试验

发动机气缸体疲劳试验

2试验原理
气缸体疲劳试验的加载方式见图l。试验主 要考核主轴承壁(或连体主轴承壁)、缸套、气缸体
本体,同时对其它相关零件也有一定的考核作用。 I l

图1
在气缸体疲劳试验中,液压设备加载的压力 通过相关夹具首先传递到活塞连杆系统,然后传 递到主轴承壁及气缸体整体。在试验过程中,相
32
l汽车工艺与材料AT&M
试验状态
损坏部位
具体现象

备注
缸套穿孔
缸套 环形损坏 缸间短裂纹
缸套部位较“薄
主轴承壁损坏
理想状态
主轴承壁
主轴承盖损坏 主轴壁螺纹孑L损坏坏 端面损坏

“圆角”等应力集中部位易先损坏 气缸体本体 侧面损坏 顶面损坏
活塞 开裂
幕、
一般为铝活塞承受能力不足造成 气缸垫密封能力不足造成
环形脱落
气缸垫 非理想状态 螺栓 缸盖螺栓 缸间缺损 主轴承盖螺栓
断口:将裂纹处取样剖开后,未发现明显疲劳源。 受力:在气缸体疲劳试验中,气缸体端面会受 到从主轴承盖螺栓处垂直向下的频繁拉力作用, 受力方向见图18。 分析:对断口(图20)进行观察,倾向于此气缸体 在端面定位孔内侧下方的圆角处(图21)产生应力集
部门提供设计依据。圃
中国汽车年度盛典领航未来新趋势
2014年1月7日,凤凰汽车2013中国汽车年度盛典,在北京国贸大酒店正式启动。本次盛典以“领航・新趋势”为主题, 在中国国际贸易促进委员会汽车行业分会的大力支持下,聚焦中国汽车产业,以凤凰汽车购车消费评价报告为评选基础, 联合媒体、行业专家、车主及网友多方评定。2013中国汽车年度盛典年度最具人气车型:红旗H7。获奖理由:红旗H7唤起 了国人内心深处对于红旗品牌的敬仰,无数人钟情于红旗H7所呈现的民族精神面貌。面向所有用户销售的策略,更拉近 了国民与“国车”红旗H7的距离,它用设计、功能、舒适性、档次感,重新树立了自身的高档车形象。 2013中国汽车年度盛典年度都市suV:一汽丰田全新RAv4。获奖理由:一汽丰田全新RAV4实现了华丽转身,新的设 计语言使得受众面大为增加;一如既往的宽大空间和优秀的乘坐舒适性,配合全新2.5升发动机和无级变速器的动力系统, 让都市SUV的优点在全新RAV4上表现得淋漓尽致。

发动机制动耐久试验

发动机制动耐久试验

发动机制动耐久试验是指在特定条件下对发动机进行长时间的制动操作,以评估其在制动过程中的性能表现和耐久性能。

这项试验对于发动机的设计和开发至关重要,可以帮助工程师们了解发动机在制动时的受力情况,以及相关零部件的耐久性能。

以下是对发动机制动耐久试验的详细介绍。

一、试验目的发动机制动耐久试验旨在评估发动机在制动过程中的性能表现和耐久性能。

通过试验,可以了解发动机在长时间制动过程中的温度变化、磨损情况以及各种受力情况,为发动机的设计和改进提供重要参考。

二、试验条件1. 试验设备:试验台、测力传感器、温度传感器等。

2. 试验参数:制动力大小、制动时间、制动次数等。

3. 试验环境:试验室内温度、湿度等环境条件应符合相关标准。

三、试验步骤1. 准备工作:搭建试验台,安装测力传感器和温度传感器等必要设备。

2. 设定试验参数:根据设计要求,确定试验所需的制动力大小、制动时间和制动次数等参数。

3. 开始试验:将发动机安装在试验台上,并按照设定的制动参数进行制动操作。

记录下每次制动的时间、制动力大小和温度变化等数据。

4. 进行多次循环试验:重复进行多次制动操作,以评估发动机在不同制动次数下的性能表现和耐久性能。

5. 数据分析与评估:根据试验数据,对发动机的制动性能进行分析和评估,判断其是否满足设计要求,并提出改进意见。

四、试验结果分析通过发动机制动耐久试验,可以得到以下方面的试验结果:1. 温度变化:记录下发动机在制动过程中的温度变化,评估发动机的散热性能和温度控制效果。

2. 动力输出:分析发动机在制动过程中的动力输出情况,判断其在不同制动状态下的性能表现。

3. 磨损情况:观察发动机相关零部件的磨损情况,评估其耐久性能和寿命预测。

4. 受力情况:记录下发动机在制动过程中受到的力大小和方向,分析其对发动机结构的影响和潜在问题。

五、试验结论与改进建议根据试验结果的分析和评估,可以得出发动机制动耐久试验的结论,并提出相关的改进建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档