中考数学压轴题类填空题专题复习
中考数学动点压轴题
中考数学专题复习:动点压轴题1.ABC 中,90B ∠=︒,5cm AB =,6cm BC =,点P 从点A 开始沿边AB 向终点B 以1cm /s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2cm /s 的速度移动.如果点P 、Q 分别从点A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ =________,PB =________(用含t 的代数式表示);(2)是否存在t 的值,使得PBQ △的面积等于24cm ?若存在,请求出此时t 的值;若不存在,请说明理由.2.如图,在△ABC 中,∠C =90°,AC =16cm ,BC =8cm 动点P 从点C 出发沿着CB 方向以2cm /s 的速度向点B 运动,另一动点Q 从点A 出发沿着AC 方向以4cm /s 的速度向点C 运动,P 、Q 两点同时出发,当点P 到达B 点或点Q 到达C 点即停止运动,设运动时间为t (s ).(1)当t 为多少秒时,以P 、C 、Q 为顶点的三角形和△ABC 相似?(2)当t 为多少秒时,△PCQ 的面积是△ACB 面积的143.如图,在ABC 中,90B ∠=︒,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm /s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm ,(用含t 的代数式表示)(2)当t 为几秒时,PBQ △的面积等于25cm ?(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由.4.如图①,在Rt △ABC 中,90C ∠=︒,8BC cm =,6AC cm =,点P 由A 点出发以1cm /s 的速度向终点C 匀速移动,同时点Q 由点C 出发以2cm /s 的速度向终点B 匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)填空:在______秒时,△PCQ 的面积为△ACB 的面积的38;(2)经过几秒,以P ,C ,Q 为顶点的三角形与△ACB 相似?(3)如图②,D 为AB 上一点,且AD AC =,运动时间t 为多少时,CD PQ ⊥?5.如图所示,在平面直角坐标系中,直线3:3(0)4=-+>AB y x b b 与x 轴,y 轴分别交于B 点、A 点,点P 从点B 开始沿BA 边向终点A 以1厘米/秒的速度移动;点Q 从点A开始沿AO 边向终点O 以1厘米/秒的速度移动.若点P ,Q 同时出发,运动时间为t 秒.(1)当5s =t 时,①P 点的坐标__________;(用b 来表示)②当APQ 为直角三角形时,求b 的值;(2)当APQ 的面积为8平方厘米时,求b 与t 的数量关系.6.如图,在直角梯形ABCD 中,AB CD ∥,90BCD ∠=︒,10cm AB AD ==,8cm BC =.点P 从点A 出发,以每秒3cm 的速度沿折线ABC 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动.已知动点P 、Q 同时发,当点Q 运动到点C 时,P 、Q 运动停止,设运动时间为t .(1)求CD 的长;(2)当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;(3)在点P 、点Q 的运动过程中,是否存在某一时刻,使得BPQ V 的面积为215cm ?若存在,请求出所有满足条件的t 的值;若不存在,请说明理由.7.已知:如图,菱形ABCD 中,5AB =cm ,6AC =cm ,动点P 从点B 出发,沿BA 方向匀速运动;同时,动点Q 从点C 出发,沿CB 方向匀速运动,它们的运动速度均为1cm/s .过点P 做PM BC ∥,过点B 做BM PM ⊥,垂足为M ,连接QP .设运动时间为t (s )()05t <<.解答下列问题:(1)菱形ABCD 的高为______cm ,cos ABC ∠的值为______;(2)在运动过程中,是否存在某一时刻t ,使四边形MPQB 为平行四边形?若存在,求出t 的值;若不存在,请说明理由.(3)是否存在某一时刻t ,使四边形MPQB 的面积是菱形ABCD 面积的225若存在,求出t 的值;若不存在,请说明理由.(4)是否存在某一时刻t ,使点M 在PQB ∠的角平分线上?若存在,求出t 的值;若不存在,请说明理由.8.如图,△ABC 是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 匀速移动,它们的速度都是2cm/s ,当点P 到达点B 时,P ,Q 两点都停止运动,设点P 的运动时间为t s ,解答下列问题:(1)求△ABC 的面积;(2)当t 为何值时,△PBQ 是直角三角形?(3)是否存在t ,使四边形APQC 的面积是△ABC 面积的23若存在,求出t 的值;若不存在,请说明理由.9.如图,在矩形ABCD 中,AD =4cm ,AB =8cm ,点P 以1cm/s 的速度沿DA 向终点A 运动;同时点Q 从点B 出发,以2cm/s 的速度沿BA 向终点A 运动;当一个点到达终点时,另一个点同时停止运动.设点P 的运动时间为t ()s ,线段PQ 扫过的面积2(cm )y .(1)AQ =cm (用含t 的代数式表示);(2)求y 与t 之间的函数关系式;(3)当线段PQ 扫过的面积为矩形ABCD 面积的38时,求t 的值.10.如图,以等边△OAB 的边OB 所在直线为x 轴,点O 为坐标原点,使点A 在第一象限建立平面直角坐标系,其中△OAB 边长为6个单位,点P 从O 点出发沿折线OAB 向B 点以3单位/秒的速度向B 点运动.点Q 从O 点出发以2单位/秒的速度沿折线OBA 向A 点运动,两点同时出发.运动时间为t (单位:秒),当两点相遇时运动停止.(1)点A 坐标为;(2)当t =2时,S △OPQ =;当t =3时,S △OPQ =;(3)当t =2时,试求在y 轴上能否找一点M ,使得以M 、P 、Q 为顶点的三角形是等腰三角形,若能找到请直接写出M 点的坐标,若不能找到请简单说明理由.(4)设△OPQ 的面积为S ,直接写出S 关于t 的函数关系式.11.如图所示,在矩形ABCD 中,AB =12cm ,BC =6cm .点P 沿AB 边从点A 开始向点B 以2cm/秒的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/秒的速度移动,如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),那么:(1)点Q 运动多少秒时,△APQ 的面积为5cm 2;(2)当t 为何值时,△QAP 与△ABC 相似?12.如图,在矩形ABCD 中,6cm AB =,12cm BC =,点P 从点A 出发沿边AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿边BC 以2cm/s 的速度向点C 移动,当点P 运动到点B 后,运动停止,设运动时间为x (s ).(1)BP =______cm ,CQ =______cm (用含x 的式子表示);(2)若PQ =时,求x 的值;(3)当x 为何值时,DPQ V 将成为以DP 为斜边的直角三角形.13.如图所示,在△ABC 中,∠C =30°,BC =20,AC =16,E 为BC 中点.动点P 从点B 出发,沿BE 方向匀速运动,速度为每秒1个单位长度;同时,点Q 从点C 出发,沿CE 方向匀速运动,速度为每秒1个单位长度,当一个点停止移动时,另一个点也立即停止移动.过点P 作PD //AC ,交AB 于D ,连接DQ ,设点P 运动的时间为t (s ).(0<t <10)(1)当t =3时,求PD 的长;(2)设△DPQ 面积为y ,求y 关于t 的函数关系式;(3)是否存在某一时刻t ,使S △DPQ :S △ABC =3:25?若存在,请求出t 的值;如果不存在,请说明理由.14.如图,在Rt △ABC 中,90ACB ∠=︒,10AC BC ==cm .点D 从A 出发沿AC 以1cm/s 的速度向点C 移动;同时,点F 从B 出发沿BC 以2cm/s 的速度向点C 移动,移动过程中始终保持DE CB ∥(点E 在AB 上).当其中一点到达终点时,另一点也同时停止移动.设移动时间为t (s )(其中0t ≠).(1)当t 为何值时,四边形DEFC 的面积为182cm ?(2)是否存在某个时刻t ,使得DF BE =,若存在,求出t 的值,若不存在,请说明理由.(3)点E 是否可能在以DF 为直径的圆上?若能,求出此时t 的值,若不能,请说明理由.15.如图,在等腰梯形ABCD 中,AB ∥CD ,AB =8cm ,CD =2cm ,AD =6cm .点P 从A 点出发,以2cm /s 的速度沿AB 向B 点运动(运动到B 点即停止);点Q 从C 点出发,以1cm/s的速度沿CD−DA向A点运动(当点P停止运动时,点Q也即停止),设P、Q同时出发并运动了t秒.(1)求梯形ABCD的高和∠A的度数;(2)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(3)试问是否存在这样的t的值,使四边形PBCQ的面积是梯形ABCD面积的一半,若存在,请求出t的值;若不存在,请说明理由.16.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm.点P由B出发沿BA方向向点A匀速运动,速度为1cm/;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动时间为xs(0<x<2),解答下列问题:(1)如图①,当x为何值时,△APQ与△ACB相似;(2)如图②,连接PC,当x为何值时,PQ=PC;(3)是否存在某时刻x,使线段PQ恰好把Rt△ACB面积平分?若存在,求出此时x 的值;若不存在,说明理由.17.如图,矩形ABCD中,AB=8cm,BC=12cm,P、Q分别是AB、BC上运动的两点.若点P从点A出发,以1cm/s的速度沿AB方向运动,同时,点Q从点B出发以2cm/s的速度沿BC 方向运动,设点P ,Q 运动的时间为x 秒.(1)当x 为何值时,△PBQ 的面积等于12cm 2;(2)当x 为何值时,以P ,B ,Q 为顶点的三角形与△BDC 相似18.如图,,,,A B C D 为矩形的四个顶点,16cm,6cm AB AD ==,动点,P Q 分别从点,A C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达B 点为止,点Q 以2m/s 的速度向D 点移动,当点P 到达B 点时点Q 随之停止运动,(1)AP =,BP =,CQ =,DQ =(用含t 的代数式表示);(2)t 为多少时,四边形PBCQ 的面积为233cm ;(3)t 为多少时,点P 和点Q 的距离为10cm .19.如图,在矩形ABCD 中,AB =10cm ,BC =12cm ,点P 从点A 开始沿边AB 向终点B 以2cm /s 的速度移动,点Q 从点B 开始沿边BC 向终点C 以4cm /s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,当点Q 运动到点C 时,两点都停止运动.设运动时间为t s (t >0).(1)线段BQ =cm ,PB =cm ;(用含t 的代数式表示)(2)当t 为何值时,PQ 的长为cm ?(3)是否存在t ,使得五边形APQCD 的面积等于99cm 2?若存在,请求出此时t 的值;若不存在,请说明理由.20.如图,在矩形ABCD中,AB=6cm,BC=12cm.点M从A点出发沿AB以1cm/s的速度向B点运动;同时点N从B点出发沿BC以2cm/s的速度向C点运动.当其中一点到达终点时,另一点也停止运动.设点M、N的运动时间为t秒.(1)当t为何值时,MN29cm?(2)当t为何值时,MN的长度最短,最短长度是多少?(3)当t为何值时,△DMN为等腰三角形.参考答案:1.(1)2t ,5t-(2)存在,当1t =时,PBQ △的面积等于24cm 2.(1)当点P 、Q 同时运动2秒或165秒后,△PCQ 与△ACB 相似;(2)当t =2s 时△PCQ 的面积为△ABC 面积的14.3.(1)2t ,()6-t ;(2)当1t =时,PBQ △的面积等于25cm ;(3)ABC 面积的23,t 的值为24.(1)3;(2)经过125秒或1811秒,以P ,C ,Q 为顶点的三角形与△ACB 相似;(3)运动时间t 为1.2秒时,PQ ⊥CD5.(1)①(44,3)b -;②当APQ ∆为直角三角形时,b 的值为85或2516或83;(2)当APQ ∆的面积为28cm 时,b 与t 的关系式为25200t bt -+=或15310b t -=.6.(1)16CD =;(2)四边形PBQD 的周长为8+(3)满足条件的t 的值为2512秒或5秒7.(1)245cm ,725(2)存在,当12532t =时,四边形MPQB 为平行四边形,理由见详解;(3)存在,当12536t -=时,四边形MPQB 的面积是菱形ABCD 面积的225,理由见详解;(4)不存在,理由见详解8.(1)2(2)1t =或2t =(3)不存在9.(1)82t-(2)28y t t =-(3)2t =10.(1)(3,2(3)点M的坐标为(0,)或(0,19)或(00,0,﹣(4)S()()2202231835ttt⎧≤≤⎪⎪⎪⎪=+≤⎨⎪⎪⎫+≤⎪⎪⎭⎪⎩<<11.(1)1或5秒(2)3或1.212.(1)(6)x-,(122)x-(2)10.4x=或22x=(3)当x为1.5或6时,DPQV是以DP为斜边的直角三角形13.(1)125(2)()2240105y t t t=-+<<(3)4t=或6t=14.(1)4t=(2)不存在(3)能,103t=15.(1)梯形ABCD的高为,∠A=60°(2)53t=(3)存在t为92s时,使四边形PBCQ的面积是梯形ABCD面积的一半16.(1)当x=107或2513秒时,△APQ与△ACB相似;(2)109x=;(3)存在x使线段PQ恰好把△ABC的面积平分17.(1)2或6;(2)247或218.(1)AP=3t,BP=16-3t,CQ=2t,DQ=16-2t;(2)5;(3)85s或4.8s.19.(1)(10−2t);4t;(2)t=1秒(3)t=32秒或t=72秒20.(1)t=1s或75s;(2)t=65s;(3)t=(8-)s或t=(18)s。
中考数学填空题压轴题(含答案)
根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。
题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。
【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。
中考数学填空题压轴精选(答案详细)1
中考数学填空题压轴精选(答案详细)19.如图,四边形ABCD 中,AB =4,BC =7,CD =2,AD =x ,则x 的取值范围是( ).10.已知正数a 、b 、c 满足a2+c2=16,b2+c2=25,则k =a2+b2的取值范围是_________________.11.如图,在△ABC 中,AB =AC ,D 在AB 上,BD =AB ,则∠A 的取值范围是_________________.12.函数y =2x2+4|x |-1的最小值是____________.13.已知抛物线y =ax2+2ax +4(0<a<3),A (x 1,y 1),B (x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a ,则y 1 __________ y 2(填“>”、“<”或“=”)14.如图,△ABC 中,∠A 的平分线交BC 于D ,若AB =6,AC =4,∠A =60°,则AD 的长为___________.A xD B C74215.如图,Rt △ABC =6,BC =8,点D 在交AC 于E ,DF ⊥AD =x ,四边形CEDF 析式为_______________________________________________.16.两个反比例函数y =x k 和y =x 1在第一象限内的图象如图所示,点P 在y =xk 的图象上,PC ⊥x 轴于点C ,交y=x 1的图象于点A ,PD ⊥y 轴于点D ,交y =x 1的图象于点B ,当点P 在y =x k 的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_________________.(把你认为正确结论的序号E都填上,少填或错填不给分).17.如图,△ABC 中,BC =8,高AD =6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为___________.18.已知二次函数y =a (a +1)x2-(2a +1)x +1,当a 依次取1,2,…,2010时,函数的图像在x 轴上所截得的线段A 1B 1,A 2B 2,…,A 2010B 2010的长度之和为_____________.19.如图是一个矩形桌子,一小球从P 撞击到Q ,反射到R ,又从R 反射到S ,从S 反射回原处P ,入射角与反射角相等(例如∠PQA =∠RQB 等),已知AB =8,BC =15,DP =3.则小球所走的路径的长为_____________.20.如图,在平行四边形ABCD 中,点E 、F 分别在AB 、AD 上,且AE =31AB ,AF =41AD,连结EF 交对角线AC 于G ,则ACAG =_____________. D B CE F A BCGD E F21.已知m ,n 是关于x 的方程x2-2ax +a +6=0的两实根,则(m -1)2+(n -1)2的最小值为_____________.22.如图,四边形ABCD 和BEFG 均为正方形,则AG :DF :CE =_____________.23.如图,在△ABC 中,∠ABC =60°,点P是△ABC 内的一点,且∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB =________.24.如图,AB 、CD 是⊙O 的两条弦,∠AOB 与∠C 互补,∠COD 与∠A 相等,则∠AOB 的度数是________.25.如图,一个半径为2的圆经过一个半径为2的圆的圆心,则图中阴影部分的面积为_____________. EAP BOC DAB26.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2.作△ABC的高CD,作△CDB的高DC1,作△DC1B的高C1D1,……,如此下去,则得到的所有阴影三角形的面积之和为__________.27.已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线顶点,若△ABC为直角三角形,则m=__________.28.已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线顶点,若△ABC为等边三角形,则该抛物线的解析式为___________________________.29.已知抛物线y=ax2+(4+3a)x+4与x轴交于A、B3两点,与y轴交于点C.若△ABC为直角三角形,则a =__________.30.如图,在直角三角形ABC中,∠A=90°,点D在斜边BC 上,点E 、F 分别在直角边AB 、AC 上,且BD =5,CD =9,四边形AEDF 是正方形,则阴影部分的面积为__________.31.小颖同学想用“描点法”画二次函数y =ax2+bx +c (a ≠0)的图象,取自变量x 的5个值,分别计算出对应的y 值,如下表:由于粗心,小颖算错了其中的一个y 值,请你指出这个算错的y 值所对应的x =__________.32.等边三角形ABC 的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC 边在x 轴上,BC 边上的高OA 在y 轴上。
2022年中考数学专题训练 填空题压轴题
2022年中考数学专题训练---填空题压轴题1.如图,在平面直角坐标系中,直线(0)y kx k =≠经过点(,3)a a (0)a >,线段BC 的两个端点分别在x 轴与直线y kx =上(点B 、C 均与原点O 不重合)滑动,且BC =2,分别作BP x ⊥轴,CP ⊥直线y kx =,交点为P .经探究,在整个滑动过程中,P 、O 两点间的距离为定值 .2.如图,反比例函数的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E ,假设四边形ODBE 的面积为12,那么k 的值为 .3.如图,一段抛物线y=﹣x 〔x ﹣3〕〔0≤x≤3〕,记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…如此进行下去,得到一条“波浪线〞.假设点P 〔37,m 〕在此“波浪线〞上,那么m 的值为 .4.如图,在平面直角坐标系中,直线y=kx 〔k≠0〕经过点〔a , a 〕〔a >0〕,线段BC 的两个端点分别在x 轴与直线y=kx 上〔点B 、C 均与原点O 不重合〕滑动,且BC=2,分别作BP ⊥x 轴,CP ⊥直线y=kx ,交点为P .经探究,在整个滑动过程中,P 、O 两点间的距离为定值______.5.如图,矩形ABOC 的顶点O 在坐标原点,顶点B 、C 分别在x 轴、y 轴的正半轴上,顶点A 在反比例函数ky x=(k 为常数,0,0k x >>)的图像上,将矩形ABOC 绕点A 按逆时针方向旋转90°得到矩形'''AB OC ,假设点O 的对应点'O 恰好落在此反比例函数的图像上,那么OBOC的值是 .6.如图,四边形ABCD 与四边形1111A B C D 是以O 为位似中心的位似图形,满足11=OA A A ,E F ,,1E ,1F 分别是AD BC ,,11A D ,11B C 的中点,那么11=E F EF.F EA 1A DB7.在平面直角坐标系xOy 中,点(2,)A m -绕坐标原点O 顺时针旋转90︒后,恰好落在右图中阴影区域〔包括边界〕内,那么m 的取值范围是 .8.如图9所示,在平面直角坐标系中,△PQR 是△ABC 经过某种变换后得到的图形,观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系.在这种变换下,如果△ABC 中任意一点M 的坐标为(x ,y ),那么它的对应点N 的坐标是________.9.如图10所示,小明尝试着将矩形纸片ABCD(如图10a ,AD>CD)沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE 〔如图10b 〕;再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG(如图10c).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为________.1O yx10.如图为一个半径为4m的圆形广场,其中放有六个宽为1m的矩形临时摊位,这些摊位均有两个顶点在广场边上,另两个顶点紧靠相邻摊位的顶点,那么每个矩形摊位的长为m.11.如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,假设BP=4cm,那么EC= cm.12.如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点〔不与B,C重合〕,点P关于直线AB,AC的对称点分别为M,N,那么线段MN长的取值范围是.13.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .假设⊙O 的半径为2,那么GE +FH 的最大值为 .14.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14DC .假设AB =16,BC =20,那么图中阴影局部的面积是 .O CBFEGA。
02(填空题)-2021年中考数学专题(湖南长沙卷)(解析版)
2021年中考数学冲刺挑战压轴题专题汇编(湖南长沙卷)02挑战压轴题(填空题)1.(2020年长沙)如图,点P在以MN为直径的半圆上运动(点P不与M、N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F。
(1)=+PMPEPQPF(2)若MNPMPN•=2,则=NQMQ【答案】(1)1 (2)21-5【解析】90901===∴∴=∴∠=∠=∠∴︒=∠+∠︒=∠+∠∠=∠∴∠=∴⊥PFEGMEPFGFEGPEPEGFPFPEEFPQFNPEFMNEQFNPNEPENMNEPNEMNPNEEPEGPFEGGFMNEG为菱形四边形,∵,平分∵,∥。
,连接)如图:作((2)由射影定理:MN QN PN •=2 ∵MN PM PN •=2∴QN=PM 设QN=PM=m MQ=x 则MN MQ PM •=2 215(2)51(2)15()(2-==∴---=∴+=∴a x QN MQ a a x a x x m 舍去)或2.(2019年长沙)如图,函数k y x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM为等边三角形,则2k =25MF MB =,则MD=2MA .其中正确的结论的序号是_______.【答案】①③④【解析】①设点A(m,km),M(n,kn),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+2km,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.解:①设点A(m,km),M(n,kn),则直线AC的解析式为y=-kmnx+kn+km,∴C(m+n,0),D(0,()m n kmn+),∴1()()1(),()2222 ODM OCAm n k m n k k m n kS n S m nmn m m m∆∆+++ =⨯⨯==⨯+⨯=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴),AM n m OM=-=∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+2km,∵m>0,k>0,∴m=k,∵OM=AM,∴(1-m)2+(k−km)2=1+k2,∴k2-4k+1=0,∴k m>1,∴k如图,作MK∥OD交OA于K.∵OF∥MK,∴25FM OKBM KB==,∴23OKOB=,∵OA =OB ,∴23OK OA =,∴21OK KA =, ∵KM ∥OD ,∴2DM OK AM AK ==,∴DM =2AM ,故④正确. 故答案为①③④.3.(2018年长沙)如图,点A ,B ,D 在⊙O 上,∠A =20°,BC 是⊙O 的切线,B 为切点,OD 的延长线交BC 于点C ,则∠OCB = 度.【答案】50°【解析】由圆周角定理易求∠BOC 的度数,再根据切线的性质定理可得∠OBC =90°,进而可求出求出∠OCB 的度数。
中考数学几何选择填空压轴题精选
中考数学几何选择填空压轴题精选一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个2.(2013•连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A.B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有( )A.1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③B.②④C.①④D.②③5.(2008•荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3B.3:5C.4:3D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )A.B.6C.D.38.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①P M=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个9.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.(2012•无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有() A.①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD 于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④13.(2013•钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.16二.填空题(共16小题)14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.(2012•门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n 次操作得到△A n B n C n,则△A n B n C n的面积S n= _________ .(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,16.使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.(2012•通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= _________ .18.(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= _________ S△ABC(用含n的代数式表示).19.(2011•丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ (用含n的代数式表示).20.(2013•路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2011的阴影三角形共有_________ 个.23.(2010•鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.(2013•松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于_________ .25.(2007•淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于_________ .26.(2009•泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.(2012•贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________ cm2.29.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围().参考答案与试题解析一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22。
初三数学总复习:填空题精选150题(附参考答案)
初三数学总复习:填空题精选150题(附参考答案) 一、概念理解应用类1.-8的绝对值是________.2.若∠α=35°,则∠α的补角为 度. 3.若分式53x -有意义,则实数x 的取值范围是___. 4.若分式13x x -+有意义,则x 的取值范围是 . 5.二次根式中,x 的取值范围是 .6.若在实数范围内有意义,则x 的取值范围是 .7.在函数y =中,自变量x 的取值范围是 . 8.函数y =中自变量x 的取值范围是 . 9.函数y =的自变量x 的取值范围是 .10.若二次根式在实数范围内有意义,则x 的取值范围是 .11.函数y =1-x x中,自变量x 的取值范围是 . 12.若29x y -+与3x y --互为相反数,则x +y 的值为_________.13.已知点P (﹣2,1),则点P 关于x 轴对称的点的坐标是 .14.地球与月球的平均距离大约384000km ,用科学计数法表示这个距离为 km . 15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为6700000米,将6700000用科学记数法表示为 .16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为17. 在人体血液中,红细胞的直径约为7.7×10-4 cm ,7.7×10-4用小数表示为 18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于 . 19.一个多边形每个外角都是36︒,则这个多边形的边数是20.已知菱形的两条对角线分别为2cm ,3cm ,则它的面积是 2cm . 21.若点()P x y ,是平面直角坐标系xOy 中第四象限内的一点,且满足24x y -=,x y m +=,则m 的取值范围是 .22.下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有 (填序号).23.如果5x +3与﹣2x +9是互为相反数,则x ﹣2的值是 . 24.若a m =2,a n =3,则a m ﹣n 的值为 . 25.若a ,b 都是实数,b =+﹣2,则a b 的值为 .26.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为 .27.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 . 28.如果点(m ,﹣2m )在双曲线上,那么双曲线在 象限.29.一个多边形的每一个外角为30°,那么这个多边形的边数为 . 30.命题“同旁内角互补”是一个 命题(填“真”或“假”) 31.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 . 32.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 . 33.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是 . 34.已知x m =6,x n =3,则x m ﹣n 的值为 . 35.9的平方根是 .36.若一个多边形的内角和是540°,则这个多边形是 边形. 37.若∠α=35°,则∠α的补角为 度.38.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积为 cm². 二、计算、化简、因式分解类、 39.计算:23()a =________. 40.计算:182⨯=________. 41.分解因式:4m 2﹣16n 2= . 42.化简﹣(﹣)的结果是 . 43.因式分解2a 3b -8ab 3= . 44.因式分解:a 3﹣ab 2= .45.在实数范围内因式分解:23x y y -=_________. 46.计算:|﹣3|﹣1= . 47.化简:= .48.分解因式:3x 2﹣6x+3= . 49.化简:22(5)x x +-= . 50.已知a <0,那么|﹣2a |可化简为 .51.分解因式:x 3y ﹣2x 2y +xy = .52.分解因式:a 3﹣4ab 2= . 53.因式分解2a 3b -8ab 3= .54.在实数范围内分解因式:2232x -= . 55.化简:239m m --= .56.当﹣1<a <0时,则= .三、方程、不等式类57.不等式组()112333x x x +≥+->⎧⎨⎩的解集是__________.58.平面直角坐标系中一点P (m ﹣3,1﹣2m )在第三象限,则m 的取值范围是 . 59.若m 、n 是一元二次方程x 2–5x –2=0的两个实数根,则m +n –mn =_________. 60.设0a <,0b >,且a b >,用“<”号把a ,a -,b ,b -连接起来为__________. 61.关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则m 的值是 . 62.已知关于x 的方程x 2+3x ﹣m =0有两个相等的实数根,则m 的值为 . 63.已知关于x 的一元二次方程x 2﹣2x +k =0有两个不相等的实数根,则k 的取值范围是 .64.关于x 的一元二次方程x 2﹣2mx +(m ﹣1)2=0有两个不相等的实数根.则m 的取值范围是 .65.已知关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则b 的值为 .66.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是 米.67.已知x =-m 和x =m -4时,多项式ax 2+bx +4a +1的值都相等,且m ≠2.若当-1<x<2时,存在x 的值,使多项式ax 2+bx +4a +1的值为3,则a 的取值范围是 .四、函数类68.反比例函数y=kx(k≠0)的图像经过点A(-2,4),则在每一个象限内,y随x的增大而________.(填“增大”或“减小”)69.已知二次函数y=24x x k-+的图像的顶点在x轴下方,则实数k的取值范围是________.70.如图,点A(1,n)和点B都在反比例函数xky=(x>0)的图像上,若∠OAB=90°,23OAAB=,则k的值是.71.下列关于变量x和y的关系式:①y=x,②2x2-y=0,③y2=x,④2x-y2=0,其中y是x的函数的是 .72.如图,抛物线1C:223y x x=+-的顶点为P,将该抛物线绕点(0)A a,(0)a>旋转180︒后得到抛物线2C,抛物线2C的顶点为Q,与x轴的交点为B,C,点B在点C的右侧.若90PQB∠=︒,则a=.73.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.74.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.xyBOA75.如图所示,反比例函数y=(x<0)的图象经过矩形OABC的对角线AC的中点M,分别与AB,BC交于点D、E,若BD=3,OA=4,则k的值为.76.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l 上时,线段AC扫过的面积为平方单位.77.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.78.如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B 点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P 点是x轴上一动点,当PA+PB最小时,P点的坐标为.79.如图,点A(1,n)和点B都在反比例函数xky=(x>0)的图像上,若∠OAB=90°,23OAAB=,则k的值是.80.如图,点A是反比例函数kyx=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C 为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是.五、几何计算、证明类81.如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB= .82.如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.83.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.xyBOA84.如图,在Rt △ABC 中,90C ∠=︒,CD 是AB 边上的中线,且5CD =,则△ABC 的中位线EF 的长是 .85.如图,12∠=∠,添加一个条件 ,使得△ADE ∽△ACB .86.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为______.87.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是 .88.在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,则这个三角形的外接圆的直径长为 .89.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则在 ①3.6②4,③5.5,④7,这四个数中AP 长不可能是 (填序号)90.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为 .91.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=.92.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.93.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC =4,则AD的长为.94.在平面直角坐标系中,已知A(2,4)、P(1,0),B为y轴上的动点,以AB为边构造△ABC,使点C在x轴上,∠BAC=90°.M为BC的中点,则PM的最小值为.95.如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC =.96.如图所示,⊙O是△ABC的外接圆,AD⊥BC于D,且AB=5,AC=4,AD=4,则⊙O 的直径的长度是.597.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.98.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.99.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.100.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.101.如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=.102.把一块矩形直尺与一块直角三角板如图放置,若∠1=40°,则∠2的度数为.103.如图,在Rt△ABC中,∠C=90°,CD是AB边上的中线,且CD=5,则△ABC的中位线EF的长是.104.已知□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,若AB=3,则□ABCD 的面积为.105.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是.106.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC 于点E,则AE的长度是.ABDE107.如图,正方形ABCD中,BC=2,点M是AB边的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=,则DP的长为;则CE=.108.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.109.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.110.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.111.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是.112.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=cm.113.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.114.四边形ABCD为⊙O的内接四边形,已知∠A:∠B=4:5,则∠A=度.115.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x 的取值范围为.116.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为.117.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,则矩形ABCD的周长为.118.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.则CG =.119.如图,AB∥EF,设∠C=90°,那么x,y,z的关系是.120.已知□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,若AB=3,则□ABCD 的面积为.121.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为.122.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF+∠D=90°;(2)∠AEF+∠ECF=90°;(3)S△BEC=2S△CEF;(4)若∠B=80°,则∠AEF=50°.其中一定成立的是(把所有正确结论的序号都填在横线上)123.T1、T2分别为⊙O的内接正六边形和外切正六边形.设T1的半径r,T1、T2的边长分别为a、b,T1、T2的面积分别为S1、S2.下列结论:①r:a=1:1;②r:b=;③a:b =1:;④S1:S2=3:4.其中正确的有.(填序号)124.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为.125.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.126.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC 的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是.127.如图,将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC =4:5,则tan ∠CFD= .128.如图,在△ABC 中,CA =CB =4,∠ACB =90°,以AB 中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分面积为 .129.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 满足的条件是130.如图,在Rt △ABC 中,∠C =90°,点D 是线段AB 的中点,点E 是线段BC 上的一个动点,若AC =6,BC =8,则DE 长度的取值范围是 .131.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB =________°C DABOABCDE132.如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B对应点B′落在BA的延长线上,若sin∠B′AC=910,则AC=________.133.如图,点E,F,G分别在菱形ABCD的边AB,BC,AD上,AE=13AB,CF=13CB,AG=13A D.已知△EFG的面积等于6,则菱形ABCD的面积等于________.六、统计、概率类134.已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于.135.已知一组数据1,2,0,–1,x,1的平均数是1,则这组数据的中位数为__________.136.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.137.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.138.三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为.139.初三(1)班统一购买夏季校服,统计出各种尺码的校服的数量如下表所示:CDFGABECABB'A'校服的尺码(单位:厘米)160 165 170 175 180 185 195 数量(单位:件) 2 4 10 22 14 6 1 由表可以看出,在校服的尺码组成的一组数据中,众数是.140.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵树与成活棵树:移栽棵树100 1000 10000 20000成活棵树89 910 9008 18004 依此估计这种幼树成活的概率是.(结果用小数表示,精确到0.1)141.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.142.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.143.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.144.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是.145.如图,⊙O的半径为,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是.七、规律探究类146.下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.147.如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为.148.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有个正方形.149.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=.150.观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;…根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1=.参考答案:1. 82.1453. x ≠34.3x ≠-5. x ≥﹣16.x ≤27. x ≥﹣1且x ≠08. x ≥9. x ≥﹣且x ≠3 10. x ≥2019 11. x ≥0且x ≠112. 27 13.(﹣2,﹣1) 14. 3.84×10515. 6.7×10616. 4×10-8 17. 0.00077 18. 12π 19. 10 20. 3 21. 42m -<< 22. ①③ 23.﹣6 24. 25. 4 26. 300π 27. 60°或120°28. 第二、四 29. 12 30. 假31. 4 32. 60°或120° 33.0<m <1 34. 2 35. ±3 36. 五 37. 145 38. 10π 39. a 640. 2 41. 4(m +2n )(m ﹣2n ) 42. 43. 2ab (a +2b ) (a -2b ) 44. a (a +b )(a ﹣b ) 45. y(x+3)(x- 3 ) 46. 2 47. 1 48. 3(x ﹣1)2 49. 1025x + 50. ﹣3a . 51. xy (x ﹣1)2 52. a (a +2b )(a ﹣2b ) 53. 2ab (a +2b ) (a -2b ) 54. 2(4)(4)x x +- 55.13m + 56. 2 57. 0 ≤ x <358. 0.5<m <3 59. 7 60. a < - b < b < - a 61. 1 62.- 63. k <3. 64. m >. 65. ±2. 66. 175 67.81<a <2 68. 增大 69. k < 4 70. 2 71. ①② 72.7 73.- 74. x <﹣2. 75. ﹣4. 76. 40 77. (,), 78. (,0) 79. 2 80. ﹣881. 40° 82. 2 83. 3≤AP <4. 84. 5 85. C D ∠=∠(答案不唯一) 86. 3 87. 10 88. 10. 89. ④ 90. 2﹣2.91. 40° 92. 30° 93. 94.95. 70°96. 5 97. 6 98. 68 99. 20 100. 22° 101.102. 130° 103. 5 104. 93 105. 3≤DE ≤5106. 3 107.108. 57° 109. 12 110. 144°.111. 47° 112.3 113. 2 114. 80 115. x =4或x ≥8.116. 12 117.12 118.12.5. 119. x +y ﹣z =90°. 120. 93 121. 122. (1)(2)(4). 123. ①②④ 124.2 125. 22° 126. 3 127. 43128. 2π﹣4129. 0x =,424x =-或442x << 130. 3≤DE ≤5131.40 132. 25 2 /9 133. 27 134. 5.2 135.1 136. 45 137.138 . 1/3 139. 175 140. 0.9141. 142. 1.3 143. 2 144. 85 145. 28146.15a 16 147. 4a +2×a , 2n ﹣1•4a +2×()n a .148. 55 149.150. (n 2+5n +5)2。
中考数学选择填空压轴题训练整理
中考数学选择填空压轴题训练1。
如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF⊥AB 于点F,EG⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是2. 如图,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC的延长线于点F ,BG⊥AE,垂足为G,BG=24,则ΔCEF 的周长为( ) (A )8 (B )9.5 (C )10 (D)11.5 3、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与 对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1B .34C .23D .25.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时, 点B 的坐标为(A )(0,0) (B )(22,22) (C)(-21,-21) (D )(-22,-22)6.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )A ′G DBCA图 yxOBA(第5题图)G DCEF ABba(第6题图)stOA .stOB .C .stOD .stO7 如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC,交DE 于点F ,若BC=6,则DF 的长是(A )2 (B )3 (C )25(D )4 9.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( )12如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转(含答案)
2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转一.填空题(共10小题)1.(2021秋•鼓楼区校级期末)如图,在△ABC中,AB=AC,BC=6,tan∠ACB=2,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为.2.(2021秋•历城区期末)如图,在矩形ABCD中,AB=3,AD=9,点E,F分别在边AD,BC上,且AE=2,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,分别在线段EF,A′B′上取点M,N,沿直线MN二次翻折,使点F与点E重合,则线段MN的长为.3.(2021•綦江区校级三模)如图,在矩形ABCD中,E为AB边上的一点,将△ADE沿DE 翻折,得到△DEF,且F在BC边上,G为AD边上的一点,过点G作AD的垂线交DF 于点H,连接AH交DE于点P,连接AF,若AB=7,BF=3,HA平分∠GHF,则AG 的长度为.4.(2021•马鞍山模拟)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q连接PQ,则△GPQ的周长最小值是.5.(2020•海安市模拟)如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.6.(2021春•东阳市期末)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图1所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是;(2)A′B+D′B的最小值为.7.(2021•路北区一模)如图,边长为1的正方形ABCD在等边长的正六边形外部做顺时针滚动,滚动一周回到初始位置时停止.第一次滚动时正方形旋转了°,点A在滚动过程中到出发点的最大距离是.8.(2021•河北区模拟)如图,四边形ABCD是边长为2的正方形,E是BC边的中点,F 是直线DE上的动点.连接CF,将线段CF逆时针旋转90°得到CG,连接EG,则EG 的最小值是.9.在正方形ABCD中,点P是对角线AC上一点,连接DP,将DP绕点D逆时针旋转90°后得到线段DE,连接PE,点C关于直线PE的对称点是C′,连接C′E、C′P、C′A.若四边形AC′ED是平行四边形,PC=2,则平行四边形AC′ED的面积是.10.(2020•衢州二模)如图,在矩形ABCD中,AD=8,AB=6,点E是CD的中点,过点E作EF∥BC,交对角线BD于点F.将△DEF绕点D逆时针方向旋转得到△DE1F1,连接CE1,BF1,设旋转角度为α(0°<α<180°),则=;连接CF1,当△DF1B 为直角三角形时,CF1=.2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转(10题)参考答案与试题解析一.填空题(共10小题)1.(2021秋•鼓楼区校级期末)如图,在△ABC中,AB=AC,BC=6,tan∠ACB=2,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为.【考点】轴对称﹣最短路线问题;旋转的性质;解直角三角形;等腰三角形的性质.【专题】图形的相似;推理能力.【分析】以BC为边构建出和△BPD相似的三角形,通过将CD边转化为其他边来求值.【解答】解:如图所示,以BC为底边向上作三等腰△BQC,连接BP.由题意可得△BQC和△BPQ均为顶角为120°的等腰三角形,可得,∠QBC=∠PBD=30°,∴∠QBC﹣∠QBD=∠PBD﹣∠QBD,∴∠PBQ=∠DBC,∴△PBQ∽△DBC,∴,∴当PQ⊥AC时,有PQ最小,即此时CD最小,如图所示,设OP′⊥AC,延长AQ与BC交K,此时QP'为QP的最小值,可得AK⊥BC,∵△BQC中,∠BQC=120°,BC=6,∴BK=3,∠QBK=30°,∴QK==,∵tan∠ACB==,KC=3,∴AK==,∴AQ=AK﹣QK=,AC==,∵∠AP'Q=∠AKC=90°,∠QAP'=∠CAK,∴△AQP'∽△ACK,∴,∴,∴QP'=,∴CD==.【点评】本题考查的是瓜豆原理的知识点,重难点在于构造相似三角形的手拉手模型,属于难题.2.(2021秋•历城区期末)如图,在矩形ABCD中,AB=3,AD=9,点E,F分别在边AD,BC上,且AE=2,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,分别在线段EF,A′B′上取点M,N,沿直线MN二次翻折,使点F与点E重合,则线段MN的长为.【考点】翻折变换(折叠问题);相似三角形的判定与性质;矩形的性质.【专题】几何综合题;压轴题;推理能力.【分析】如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC 交EF于J.证明△FTE∽△ADC,求出ET=1,EF=,设A′N=x,根据NF=NE,可得12+(3﹣x)2=22+x2,解方程求出x,可得结论.【解答】解:如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC交EF于J.∵四边形ABFT是矩形,∴AB=FT=3,BF=AT,∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=9,∠B=∠D=90°∴AC===3,∵∠TFE+∠AEJ=90°,∠DAC+∠AEJ=90°,∴∠TFE=∠DAC,∵∠FTE=∠D=90°,∴△FTE∽△ADC,∴==,∴==,∴TE=1,EF=,∴BF=AT=AE﹣ET=2﹣1=1,设A′N=x,∵NM垂直平分线段EF,∴NF=NE,∴12+(3﹣x)2=22+x2,∴x=1,∴FN===,∴MN===,故答案为:.【点评】本题属于几何综合题,考查矩形的性质,翻折变换,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.3.(2021•綦江区校级三模)如图,在矩形ABCD中,E为AB边上的一点,将△ADE沿DE 翻折,得到△DEF,且F在BC边上,G为AD边上的一点,过点G作AD的垂线交DF 于点H,连接AH交DE于点P,连接AF,若AB=7,BF=3,HA平分∠GHF,则AG 的长度为7.【考点】翻折变换(折叠问题);相似三角形的判定与性质;角平分线的性质;矩形的性质.【专题】推理填空题;矩形菱形正方形;推理能力.【分析】过点A作AN⊥DF于点N,延长AB,DF交于点M,设AE=x,AD=y,由翻折可知:EF=AE=x,DF=AD=BC=y,则BE=AB﹣AE=7﹣x,CF=BC﹣BF=y﹣3,在Rt△BEF和Rt△DFC中,根据勾股定理得x=,y=,证明△BFM∽△ADM,可得BM=,证明△EFM∽△ANM,可得AN=7,然后根据角平分线的性质可以解决问题.【解答】解:如图,过点A作AN⊥DF于点N,延长AB,DF交于点M,设AE=x,AD=y,由翻折可知:EF=AE=x,DF=AD=BC=y,则BE=AB﹣AE=7﹣x,CF=BC﹣BF=y﹣3,在Rt△BEF和Rt△DFC中,根据勾股定理,得:BE2+BF2=EF2,DC2+CF2=DF2,∴(7﹣x)2+32=x2,72+(y﹣3)2=y2,解得x=,y=,∴EF=,AD=,∴BE=7﹣x=,CF=y﹣3=,∵BF∥AD,∴△BFM∽△ADM,∴=,∴=,∴BM=,∴EM=BM+BE=+=,∴AM=AB+BM=7+=,由翻折可知:∠EFD=∠EAD=90°,∵AN⊥DF,∴∠EFM=∠ANM=90°,∴EF∥AN,∴△EFM∽△ANM,∴=,∴=,∴AN=7,∵HA平分∠GHF,AN⊥DF,HG⊥AD,∴AG=AN=7.故答案为:7.【点评】本题考查了矩形的相关证明与计算,相似三角形的判定与性质,熟练掌握矩形的性质与相似三角形的性质与判定是解题的关键.4.(2021•马鞍山模拟)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB 边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q连接PQ,则△GPQ的周长最小值是2+2.【考点】翻折变换(折叠问题);正方形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称.【分析】如图,取CD的中点N,连接PN,PB,BN.首先证明PQ=PN,PB=PG,推出PQ+PG=PN+PB≥BN,求出BN即可解决问题.【解答】解:如图,取CD的中点N,连接PN,PB,BN.由翻折的性质以及对称性可知;PQ=PN,PG=PC,HG=CD=4,∵QH=QG,∴QG=2,在Rt△BCN中,BN==2,∵∠CBG=90°,PC=PG,∴PB=PG=PC,∴PQ+PG=PN+PB≥BN=2,∴PQ+PG的最小值为2,∴△GPQ的周长的最小值为2+2,故答案为2+2.【点评】本题考查翻折变换,正方形的性质,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考填空题中的压轴题.5.(2020•海安市模拟)如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.【考点】翻折变换(折叠问题);三角形的面积;矩形的性质.【专题】推理填空题;平移、旋转与对称;几何直观;运算能力;推理能力.【分析】根据矩形ABCD中,AB=3,BC=4,可得AC=5,由AE=可得点F是边BC上的任意位置时,点C始终在AC的下方,设点G到AC的距离为h,要使四边形AGCD 的面积的最小,即h最小.所以点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD 的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.根据锐角三角函数先求得h 的值,再分别求得三角形ACD和三角形ACG的面积即可得结论.【解答】解:如图,在矩形ABCD中,AB=3,BC=4,∠B=∠D=90°,连接AC,∴AC=5,∵AB=3,AE=,∴点F是边BC上的任意位置时,点G始终在AC的下方,设点G到AC的距离为h,S四边形AGCD=S△ACD+S△ACG=3×4+×5h,=6+h.要使四边形AGCD的面积最小,即h最小.∵点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=,sin∠BAC==,解得EH=AE=,EG=BE=AB﹣AE=3﹣,∴h=EH﹣EG=﹣(3﹣)=﹣3.∴S四边形AGCD=6+×(﹣3)=﹣=.故答案为:.【点评】本题考查了翻折变换,解决本题的关键是确定满足条件的点G的位置,运用相似、锐角三角函数等知识解决问题.6.(2021春•东阳市期末)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图1所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是平行四边形;(2)A′B+D′B的最小值为2.【考点】作图﹣平移变换;正方形的性质;轴对称﹣最短路线问题.【专题】作图题;推理能力.【分析】(1)利用平移的性质证明即可.(2)如图2中,作直线DD′,作点C关于直线DD′的对称点C″,连接D′C″,BC″,过点B作BH⊥CC″于H.求出BC″,证明A′B+BD′=BD′+CD′=BD′+D′C″≥BC″,可得结论.【解答】解:(1)如图2中,∵A′D′=BC,A′D′∥BC,∴四边形A′BCD′是平行四边形,故答案为:平行四边形.(2)如图2中,作直线DD′,作点C关于直线DD′的对称点C″,连接D′C″,BC″,过点B作BH⊥CC″于H.∵四边形ABCD是正方形,∴AB=BC=2,∠ABC=90°,∴AC=AB=2,∵BJ⊥AC,∴AJ=JC,∴BJ=AC=,∵∠BJC=∠JCH=∠H=90°,∴四边形BHCJ是矩形,∵BJ=CJ,∴四边形BHCJ是正方形,∴BH=CH=,在Rt△BHC″中,BH=,HC″=3,∴BC″===2,∵四边形A′BCD′是平行四边形,∴A′B=CD′,∴A′B+BD′=BD′+CD′=BD′+D′C″≥BC″,∴A′B+BD′≥2,∴A′B+D′B的最小值为2,故答案为:2【点评】本题考查作图﹣平移变换,轴对称最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.7.(2021•路北区一模)如图,边长为1的正方形ABCD在等边长的正六边形外部做顺时针滚动,滚动一周回到初始位置时停止.第一次滚动时正方形旋转了150°,点A在滚动过程中到出发点的最大距离是+.【考点】旋转的性质;正多边形和圆;轨迹.【专题】平移、旋转与对称;解直角三角形及其应用.【分析】如图,点A的运动轨迹是图中红线.延长AE交红线于H,线段AH的长,即为点A在滚动过程中到出发点的最大距离.【解答】解:第一次滚动正方形旋转了240°﹣90°=150°.如图,点A的运动轨迹是图中红线.延长AE交红线于H,线段AH的长,即为点A在滚动过程中到出发点的最大距离.易知EH=EA2==,在△AEF中,∵AF=EF=1,∠AFE=120°,∴AE=,∴AH=AE+EH=+.∴点A在滚动过程中到出发点的最大距离为+.故答案为:150,+【点评】本题考查旋转变换,正方形的性质,正六边形的性质,解直角三角形等知识,解题的关键是理解题意,学会正确寻找点A的运动轨迹,属于中考填空题中的压轴题.8.(2021•河北区模拟)如图,四边形ABCD是边长为2的正方形,E是BC边的中点,F 是直线DE上的动点.连接CF,将线段CF逆时针旋转90°得到CG,连接EG,则EG的最小值是.【考点】旋转的性质;正方形的性质.【专题】矩形菱形正方形.【分析】如图,作直线BG.由△CBG≌△CDF,推出∠CBG=∠CDF,因为∠CDF是定值,推出点G在直线BG上运动,且tan∠CBG=tan∠CDF==,根据垂线段最短可知,当EG⊥BG时,EG的长最短.【解答】解:如图,作直线BG.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠FCG=∠DCB=90°,∴∠BCG=∠DCF,∵CG=CF,∴△CBG≌△CDF,∴∠CBG=∠CDF,∵∠CDF是定值,∴点G在直线BG上运动,且tan∠CBG=tan∠CDF==,根据垂线段最短可知,当EG⊥BG时,EG的长最短,此时tan∠EBG==,设EG=m,则BG=2m,在Rt△BEG中,∵BE2=BG2+EG2,∴1=m2+4m2,∴m=(负根已经舍弃),∴EG的最小值为,故答案为.【点评】本题考查旋转变换、正方形的性质、全等三角形的判定和性质、垂线段最短、解直角三角形等知识,解题的关键是准确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考填空题中的压轴题.9.在正方形ABCD中,点P是对角线AC上一点,连接DP,将DP绕点D逆时针旋转90°后得到线段DE,连接PE,点C关于直线PE的对称点是C′,连接C′E、C′P、C′A.若四边形AC′ED是平行四边形,PC=2,则平行四边形AC′ED的面积是2+4.【考点】旋转的性质;平行四边形的性质;正方形的性质;轴对称的性质.【专题】矩形菱形正方形.【分析】如图,连接DC′,作PH⊥CD于H,设CD交EC′于K.只要证明△ADC′≌△CDP,△DKC′,△PCH是等腰直角三角形即可解决问题;【解答】解:如图,连接DC′,作PH⊥CD于H,设CD交EC′于K.∵四边形ABCD是正方形,∴AD=CD,∵四边形ADEC′是平行四边形,∴DE=AC′=DP,∠DAC′=∠DEK,∵AD⊥CD,AD∥EC′,∴CD⊥EC′,∵∠PDE=90°,∴∠PDC+∠CDE=90°,∠CDE+∠DEK=90°,∴∠CDP=∠DAC′,∴△ADC′≌△CDP,∴DC′=PC=2,∠ADC′=∠DCP=45°,∵∠ADC=∠PHC=90°,∴∠KDC′=45°,∴△DKC′,△PCH是等腰直角三角形,∴DK=KC′=CH=PH=,∴C′K=PH,CK′∥PH,∴四边形PHKC′是平行四边形,∵∠PHK=90°,∴四边形PHKC′是矩形,∴PH=PC′=PC=2,∴AD=CD=2+2,∴四边形AC′ED的面积=(2+2)=2+4.故答案为2+4.【点评】本题考查旋转变换、正方形的性质、平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.10.(2020•衢州二模)如图,在矩形ABCD中,AD=8,AB=6,点E是CD的中点,过点E作EF∥BC,交对角线BD于点F.将△DEF绕点D逆时针方向旋转得到△DE1F1,连接CE1,BF1,设旋转角度为α(0°<α<180°),则=;连接CF1,当△DF1B 为直角三角形时,CF1=或.【考点】旋转的性质;勾股定理;矩形的性质.【专题】平移、旋转与对称;图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】由△BDF1∽△CDE1可得=;分为∠BDF1=90°,∠DF1B=90°两种情形,分别解斜△CDF1即可得.【解答】解:如图1,∵△DEF绕点D逆时针方向旋转得到△DE1F1,∴∠EDF=∠E1DF1,∴∠EDF﹣∠EDF1=∠E1DF1﹣∠EDF1,∴∠F1DB=∠E1DC,∵==,==,∴=,∴△BDF1∽△CDE1,∴===,故答案是;如图2,当∠BDF1=90°时,在△CDF1中,CD=6,DF1=5,∠CDF1=90°﹣∠BDC,作F1G⊥CD于G,在Rt△AGF1中,DF1=5,∠AF1G=∠BDC,∴F1G=DF1•cos∠AF1G=5•cos∠BDC=5•=5×=3,DG=5•sin∠BDC=4,∴CG=CD﹣DG=2,∴CF==,如图3,当∠DF1B=90°时(图中F1′),∵,∴∠DCF1′=∠DBF1′=30°,作F1′H⊥CD于H,∴设F1′H=a,则CH=a,∴DH=6﹣,在Rt△DHF1′中,由勾股定理得,(6﹣)2+a2=52,∴,(舍去),\∴CF1′=2a=3﹣4,故答案是或3﹣4.【点评】本题以旋转为背景,考查了三角形相似和解直角三角形,解决问题的关键是正确分类和数量熟练掌握基本图形.考点卡片1.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.2.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE3.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.4.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.5.平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.6.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.8.正多边形和圆(1)正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.(2)正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.9.轨迹10.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.13.作图-平移变换(1)确定平移后图形的基本要素有两个:平移方向、平移距离.(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.14.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.15.相似三角形的判定与性质(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.16.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)。
2020年中考数学压轴题专题复习:一次函数与反比例函数-答案
2020年中考数学压轴题专题复习:一次函数与反比例函数一、选择题(本大题共6道小题)1. 如图,A 、B 两点在反比例函数y =k 1x 的图象上,C 、D 两点在反比例函数y =k 2x的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A. 4B.143 C. 163D. 62. 已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. 下列函数中,满足y 的值随x 的值增大而增大的是( )A. y =-2xB. y =3x -1C. y =1xD. y =x 24. 设函数y =kx (k ≠0,x >0)的图象如图所示,若z =1y,则z 关于x 的函数图象可能为( )5. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax+b 与反比例函数y =cx的图象可能是( )6. 若式子k-1+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是()二、填空题(本大题共5道小题)7. 已知反比例函数y =k x的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式____________.8. 如图所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E分别是AB ,OA 上的动点,则△CDE 周长的最小值是________.9. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________.10. 如图,一次函数y =kx +b 的图象分别与反比例函数y =a x的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA =OB .(1)求函数y =kx +b 和y =ax的表达式;(2)已知点C (0,5),试在该一次函数图象上确定一点M ,使得MB =MC .求此时点M 的坐标.11. 如图,已知点A ,C 在反比例函数y =a x的图象上,点B ,D 在反比例函数y =b x的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =34,CD =32,AB 与CD 间的距离为6,则a -b 的值是________.三、解答题(本大题共4道小题)12. 如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A (43,53),点D 的坐标为(0,1). (1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE相似时,求点E的坐标.13. 九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.14. 如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.(1)求m的值;(2)求A、B两点的坐标;(3)点P(a,b)(-3<a<1)是抛物线上一点,当△P AB的面积是△ABC面积的2倍时,求a、b的值.15. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A、B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.答案一、选择题(本大题共6道小题)1. 【答案】A 【解析】设E (x 1,0),F (x 2,0),则A (x 1,k 1x 1),D (x 2,k 2x 2),B (x 2,k 1x 2),C (x 1,k 2x 1),∴AC =k 1-k 2x 1=2,BD =k 2-k 1x 2=3,∴k 1-k 2=2x 1,k 2-k 1=3x 2,∴2x 1+3x 2=0,又∵EF =x 2-x 1=103,∴x 2=43,∴k 2-k 1=3x 2=3×43=4.2. 【答案】A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,∴满足题意的k 、b 情况为k >1,b <0.3. 【答案】B 【解析】一次函数y =-2x 中,y 随x 增大而减小;一次函数y =3x -1中,y 随x 的增大而增大;反比例函数y =1x 中,在每一个分支上,y 随x 的增大而减小;二次函数y =x 2中,当x >0时,y 随x 增大而增大,当x <0时,y 随x 的增大而减小,故答案为B .4. 【答案】D 【解析】函数y =k x(k ≠0,x >0)的图象在第一象限,则k >0,x >0.由已知得z =1y =1k x=xk,所以z 关于x 的函数图象是一条射线,且在第一象限,故选D.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b 过第一、三、四象限,反比例函数y =cx位于第二、四象限,故答案为C.6. 【答案】C 【解析】式子k -1+(k -1)0有意义,则k >1,所以1-k <0,k -1>0,所以一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.二、填空题(本大题共5道小题)7. 【答案】y =-2x(答案不唯一) 【解析】∵反比例函数的图象在每一个象限内y 随x的增大而增大,∴k <0,∴k 可取-2(答案不唯一).8. 【答案】10 【解析】作点C 关于y 轴的对称点C 1(-1,0),点C 关于直线AB 的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,∴C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=C 1B 2+C 2B 2=82+62=10.即△CDE 周长的最小值是10.9. 【答案】-4<b<-2 【解析】先求出直线y =2与y =|2x +b|的交点的横坐标,再由已知条件列出关于b 的不等式组,便可求出结果.由⎩⎪⎨⎪⎧y =2y =|2x +b|,得⎩⎪⎨⎪⎧y =2y =2x +b或⎩⎪⎨⎪⎧y =2y =-2x -b ,解得x =2-b 2或x =-2+b2,∵0<x<3,∴⎩⎨⎧2-b2<3-b +22>0,解得-4<b<-2.10. 【答案】(1)【思路分析】由点A 的坐标和OA =OB 可得点B 的坐标,用待定系数法即可求出一次函数的解析式;将点A 的坐标代入反比例函数解析式中即可求出反比例函数的解析式.解:∵点A(4,3),∴OA =42+32=5,∴OB =OA =5, ∴B(0,-5),将点A(4, 3),点B(0, -5)代入函数y =kx +b 得,⎩⎪⎨⎪⎧4k +b =3b =-5,解得⎩⎪⎨⎪⎧k =2b =-5,(2分) ∴一次函数的解析式为y =2x -5, 将点A(4, 3)代入y =ax 得,3=a 4, ∴a =12,∴反比例函数的解析式为y =12x, ∴所求函数表达式分别为y =2x -5和y =12x.(4分) (2)【思路分析】由题意可知,使MB =MC 的点在线段BC 的垂直平分线上,故求出线段BC 的垂直平分线和一次函数的交点即可.解:如解图,∵点B 的坐标为(0, -5),点C 的坐标为(0, 5),∴x 轴是线段BC 的垂直平分线, ∵MB =MC ,∴点M 在x 轴上,又∵点M 在一次函数图象上,∴点M 为一次函数的图象与x 轴的交点,如解图所示, 令2x -5=0,解得x =52,(6分)∴此时点M 的坐标为(52, 0).(8分)11. 【答案】3 【解析】设点A 的纵坐标为y 1,点C 的纵坐标为y 2,∵AB ∥CD ∥x轴,∴点B 的纵坐标为y 1,点D 的纵坐标为y 2,∵点A 在函数y =ax 的图象上,点B 在函数y =b x 的图象上,且AB =34,∴a y 1-b y 1=34,∴y 1=4(a -b )3,同理y 2=2(b -a )3,又∵AB与CD 间的距离为6,∴y 1- y 2=4(a -b )3-2(b -a )3=6,解得a -b =3.三、解答题(本大题共4道小题)12. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0), 将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12,∴直线AD 的解析式为y =12x +1.(3分) (2)直线AD 的解析式为y =12x +1,令y =0,得x =-2, ∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3,∴C(3,0),即BC =5,设E(x ,12x +1), ①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC ,∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1, 解得:y =52, ∴E 1(3,52).(6分) ②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2,∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°.∵∠E 2BF +∠BE 2F =90°,∠CE 2F +∠BE 2F =90°,∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F, 即E 2F 2=CF·BF ,(12x +1)2=(3-x)(x +2),解得:x 1=2,x 2=-2(舍去),∴E 2(2,2);(9分)③当∠EBC =90°时,此情况不存在.综上所述,点E 的坐标为E 1(3,52)或E 2(2,2).(10分)13. 【答案】解:(1)当0≤x≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b(k 、b 为常数且k≠0),∵y =kx +b 经过点(0,40),(50,90),∴⎩⎪⎨⎪⎧b =4050k +b =90, 解得⎩⎪⎨⎪⎧k =1b =40, ∴y =x +40,∴y 与x 的函数关系式为:y =⎩⎨⎧x +40 (0≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),(2分) 由数据可知每天的销售量p 与时间x 成一次函数关系.设每天的销售量p 与时间x 的函数关系式为p =mx +n(m ,n 为常数,且m≠0), ∵p =mx +n 过点(60,80),(30,140),∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(0≤x≤90,且x 为整数),(3分)当0≤x≤50时,w =(y -30)·p=(x +40-30)(-2x +200),=-2x 2+180x +2000,当50<x≤90时,w =(90-30)×(-2x +200)=-120x +12000,综上所述,每天的销售利润w 与时间x 的函数关系式是:w =⎩⎨⎧-2x 2+180x +2000 (0≤x≤50,且x 为整数)-120x +12000 (50<x≤90,且x 为整数).(5分) (2)当0≤x≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050,∵a =-2<0且0≤x≤50,∴x =45时,w 最大=6050(元),(6分)当50<x≤90时,w =-120x +12000,∵k =-120<0,∴w 随x 增大而减小.∴x =50时,w 最大=6000(元),∵6050>6000,∴x =45时,w 最大=6050(元),即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(8分)(3)24天.(10分)【解法提示】①当0≤x ≤50,若w 不低于5600元,则w =-2x 2+180x +2000≥5600,解得30≤x ≤60,∴30≤x ≤50;②当50<x ≤90时,若w 不低于5600元,则w =-120x +12000≥5600,解得x ≤1603, ∴50<x ≤1603, 综合①②可得30≤x ≤1603, ∴从第30天到第53天共有24天利润不低于5600元.14. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上,∴方程x 2-(m +3)x +9=0有两个相等的实数根,∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9,又∵抛物线对称轴大于0,即m +3>0,∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3,可得⎩⎪⎨⎪⎧y =x 2-6x +9y =x +3, 解得⎩⎪⎨⎪⎧x =1y =4或⎩⎪⎨⎪⎧x =6y =9, ∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15, S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分)又∵S △PAB =2S △ABC ,∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上,∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1,∴a =7-732, ∴b =15+7-732=37-732.(10分)15. 【答案】解:(1)∵二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0).∴⎩⎪⎨⎪⎧4a +2b =436a +6b =0, 解得⎩⎪⎨⎪⎧a =-12b =3.(4分) (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD·AD =12×2×4=4, S △ACD =12AD·CE =12×4×(x -2)=2x -4, S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x , 则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x.∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6).(10分)∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB ,则 S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12, 设直线AB 解析式为y 1=k 1x +b 1,将点A(2,4),B(6,0)代入,易得,y 1=-x +6,过C 作直线l ⊥x 轴交AB 于点D ,∴C(x ,-12x 2+3x),D(x ,-x +6), ∴S △ABC =S △ADC +S △BDC =12·CD·(x -2)+12·CD·(6-x)=12·CD·4=2CD , 其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6, ∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x<6), 即S 关于x 的函数表达式为S =-x 2+8x(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图②解法二:∵点C 在抛物线y =-12x 2+3x 上, ∴点C(x ,-12x 2+3x), 如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则 点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x)(x -2)+12(6-x)(-12x 2+3x)=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图③。
2020年江苏中考数学填空压轴题专题(含解析)
2020年江苏中考数学填空压轴题专题一.填空题1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP 相似,则所有满足此条件的点P的坐标是.2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是度,阴影部分的面积为.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH ⊥AP交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为cm2.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B 顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是.19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为cm.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为.21.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是.22.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE 折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE 的长为.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D 是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为.28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC 沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC 的距离为.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.37.在矩形ABCD中,AB=3,BC=6,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C、D的对应点分别为C′、D′,折痕与边AD交于点F,当点B、C′、D′恰好在同一直线上时,AF的长为.38.如图,矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是.三.解答题39.如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y 轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.参考答案与试题解析一.填空题(共38小题)1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP 相似,则所有满足此条件的点P的坐标是P(5,2),P(8,8),P(0,﹣8),P(3,﹣2).【解答】解:∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣8,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==2,∴AP=4,∴m2+(2m)2=(4)2,∴m=±4,当m=4时,PC=8,OC=8,P点的坐标为(8,8),当m=﹣4时,如图2,PC=8,OC=0,P点的坐标为(0,﹣8),如图3,若△PAD∽△BPA,则==,PA=AB=×2=,则m2+(2m)2=()2,∴m=±1,当m=1时,PC=2,OC=5,P点的坐标为(5,2),当m=﹣1时,如图4,PC=2,OC=3,P点的坐标为(3,﹣2);则所有满足此条件的点P的坐标是:P(5,2 ),p(8,8),P(0,﹣8),P(3,﹣2).故答案为:P(5,2 ),p(8,8),P(0,﹣8),P(3,﹣2).2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是3<x<7.【解答】解:如图所示:∵抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),∴抛物线与x轴的另一个交点为:(7,0),∴不等式ax2+bx+c>0的解集是:3<x<7.故答案为:3<x<7.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为和.【解答】解:∵∠ABC=90°,AC=10,BC=8,∴AB==6,∵AD是∠BAC的平分线,∴∠BAD=∠EAD,在△ABD与△AED中,,∴△ABD≌△AED,∴∠AED=∠B=90°,BD=DE,如图1,过M作MP⊥DE于P,∵EM平分∠PEC,∴∠PEM=45°,∴PE=PM,∵△EC′M是△ECM沿EM折叠得到的,∴EC′=EC=AC﹣AE=4,设PE=PM=x,则PC′=4﹣x,∵tanC=tanC′=,∴,解得:x=,∴EM=PM=;如图2,∵tanC=,∴DE=BD=3,∴CD=C′D=5,∴C′E=2,∵tanC′=tanC=,∴EM=,∴DM===.综上所述:折痕的长度为:和.故答案为:和.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为或或.【解答】解:(1)当BD=BQ,∠C=∠F=90°,AC=DF=3,BC=EF=4,则AB=5,过D作DM⊥BC与M,DN⊥AC于N,如图,∵D为AB的中点,∴DM=AN=AC=,BD=AB=,DN=BM=BC=2,∴BQ=BD=,QM=﹣2=,∴∠3=90°﹣∠B,而∠2+∠3=90°,∴∠2=∠B,又∵Rt△ABC≌Rt△DEF,∴∠EDF=∠A=90°﹣∠B,而∠1+∠EDF+∠2=90°,∴∠1=∠B,即∠1=∠2,∴△DQM∽△DPN,∴PN:QM=DN:DM,即PN:=2:,∴PN=,∴AP=+=;(2)当DB=DQ,则Q点在C点,如图,DA=DC=,而Rt△ABC≌Rt△DEF,∴∠EDF=∠A,∴△CPD∽△CDA,∴CP:CD=CD:CA,即CP:=:3,∴CP=,∴AP=3﹣=;(3)当QB=QD,则∠B=∠BDQ,而∠EDF=∠A,∴∠EDF+∠BDQ=90°,即ED⊥AB,如图,∴Rt△APD∽Rt△ABC,∴AP:AB=AD:AC,即AP:5=:3,∴AP=.故答案为或或.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.【解答】解:∵AB=4,AD=3,∴BD=5,∵把△EBC沿BC折叠得到△BC′E,∴C′E=CE,BC′=BC=AD=3,∵当点C落在矩形ABCD的对角线上,∴D,C′,B三点共线,∴C′D=2,∠DC′E=90°,∵DE=4﹣CE,∵DE2=DC′2+C′E2,即(4﹣CE)2=22+CE2,∴CE=.故答案为:.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为2或5或18.【解答】解:由题意可知,AF⊥BE,∴∠BAF+∠ABE=90°,∵四边形ABCD是矩形,∴∠BAD=∠D=90°,∴∠BAF+∠DAM=90°,∴∠DAM=∠ABE,∴△ABE∽△DAM,∴=,∴=,∴DM=8,AM===10,①当MN=MD时,AN=AM﹣DM=10﹣8=2或AN=AM+DM=10+8=18,②当ND=NM时,易知点N是AM中点,所以AN=AM=5,综上所述,当AN=2或5或18时,△DMN是等腰三角形.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.【解答】解:∵将纸片的一角沿过点B的直线折叠,A落在MN上,落点记为A′,∴A′B=AB=1,∵AB∥MN,M是AD边上距D点最近的n等分点,∴MD=NC=,∴BN=BC﹣NC=1﹣=,在Rt△A′BN中,根据勾股定理得,A′N2=A′B2﹣BN2=12﹣()2=,所以,A′N==.故答案为:.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=﹣1或.【解答】解:连接AE,∵四边形ABCD、APEF是正方形,∴A、E、C共线,①当CD=CE=时,AE=AC﹣EC=2﹣,∴AP=AE=﹣1②当ED=EC时,∠DEC=90°,∠EDC=∠ECD=45°,EC=CD=1,∴AE=AC﹣EC=1,∴AP=AE=.∴当△CDE为等腰三角形时,AP=﹣1或.故答案为﹣1或.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是60度,阴影部分的面积为.【解答】解:∵AC=A′C,且∠A=60°,∴△ACA′是等边三角形.∴∠ACA′=60°,∴∠A′CB=90°﹣60°=30°,∵∠CA′D=∠A=60°,∴∠CDA′=90°,∵∠B′CB=∠A′CB′﹣∠A′CB=90°﹣30°=60°,∴∠CB′D=30°,∴CD=CB′=CB=×2=1,∴B′D==,=×CD×DB′=×1×=,∴S△CDB′S扇形B′CB==,则阴影部分的面积为:﹣,故答案为:﹣.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH ⊥AP交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=4﹣2、2或2.【解答】解:①当HD=HC时,过点H作HE⊥CD于点E,延长EH交AB于点F,连接DP,如图1所示.∵HD=HC,∴点E为CD的中点,∵EF∥AD,∴FH为△ABP的中位线,∴AH=HP.∵DH⊥AP,∴△DAP为等腰三角形,∴AD=DP.设BP=a,则CP=4﹣a,由勾股定理得:DP2=CD2+CP2,即16=8+(4﹣a)2,解得:a=4﹣2,或a=﹣4﹣2(舍去);②当DH=DC时,如图2所示.∵DC=AB=2,∴DH=2.在Rt△AHD中,AD=4,DH=2,∴AH==2,∴AH=DH,∴∠DAH=∠ADH=45°.∵AD∥BC,∴∠APB=∠DAH=45°,∵∠B=90°,∴△ABP为等腰直角三角形,∴BP=AB=2;③当CH=CD时,过点C作CE⊥DH于点E,延长CE交AD于点F,如图3所示.∵CH=CD,CE⊥DH,∴DE=HE=DH.∵DH⊥CF,DH⊥AP,∴CF∥AP,∵AF∥CP,∴四边形AFCP为平行四边形,∴AF=CP.∵EF∥AH,DE=HE,∴DF=AF=AD=2,∴BP=BC﹣CP=BC﹣AF=4﹣2=2.综上所述:BP的长度为4﹣2、2或2.故答案为:4﹣2、2或2.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为2或cm2.【解答】解:如图1,等腰三角形面积为:×2×2=2,如图2,等腰三角形的高为:=,则其面积为:×2×=.故答案为:2或.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B 顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=或1.【解答】解:∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,设BP=BP'=a,AP=CP'=b,则PP'=a,在RT△PP'C中,∵PP'2+P'C2=PC2,且PC=3,∴CP'==,∵BP的长a为整数,∴满足上式的a为1或2,当a=1时,AP=CP'=,当a=2时,AP=CP'=1,故答案为:或1.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是或4.【解答】解:根据△B′FC与△ABC相似时的对应情况,有两种情况:①△B′FC∽△ABC时,=,又因为AB=AC=6,BC=8,B′F=BF,所以=,解得BF=;②△B′CF∽△BCA时,=,又因为AB=AC=6,BC=8,B′F=CF,BF=B′F,又BF+FC=8,即2BF=8,解得BF=4.故BF的长度是或4.故答案为:或4.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.【解答】解:如图所示,设PF⊥CD,∵BP=FP,由翻折变换的性质可得BP=B′P,∴FP=B′P,∴FP⊥CD,∴B′,F,P三点构不成三角形,∴F,B′重合分别延长AE,CD相交于点G,∵AB∥CD,∴∠BAG=∠AGD,∵∠BAG=∠B′AG,∴∠AGD=∠B′AG,∴GB′=AB′=AB=5,∵PB′(PF)⊥CD,∴PB′∥AC,∴△ACG∽△PB′G,∵Rt△ACB′中,AB′=AB=5,AC=3,∴B′C==4,∴CB′=5﹣4=1,CG=CB′+B′G=4+5=9,∴△ACG与△PB′G的相似比为9:5,∴AC:PB′=9:5,∵AC=3,∴PB′=.故答案为:.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为2或2﹣2.【解答】解:Rt△ABC中,BC=AC=2,∴AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B=45°,∴A′C⊥AB,∴BH=BC=,DH=A′D=x,∴x+=2,∴x=2﹣2,∴AD=2﹣2;②如图2,当A′D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=2,综上所述:AD的长为:2或2﹣2.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是(2014,2016).【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2014(2014,2016).故答案为:(2014,2016).19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为2πcm.【解答】解:∵∠ACB=90°,AB=5cm,BC=4cm,∴AC=3cm,设⊙I的半径为x,∵⊙I是Rt△ABC的内切圆,∴AE=3﹣x,BF=4﹣x,故3﹣x+4﹣x=5,解得:x=1,故⊙I的周长为2πcm.故答案为:2π.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为或﹣1.【解答】解:∵等腰Rt△ABC中,AB=AC=2,∴BC=2,分两种情况:①当AF=CF时,∠FAC=∠C=45°,∴∠AFC=90°,∴AF⊥BC,∴BF=CF=BC=,∵直线l垂直平分BF,∴BD=BF=;②当CF=CA=2时,BF=BC﹣CF=2﹣2,∵直线l垂直平分BF,∴BD=BF=﹣1;故答案为:或﹣121.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是6﹣π.【解答】解:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=100°,∴S扇形AEF==π,S△ABC=AD•BC=×2×6=6,∴S阴影部分=S△ABC﹣S扇形AEF=6﹣π.故答案为:6﹣π.22.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为或.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD<DF,故分两种情况:①如图所示,当FA=FD时,过F作GH⊥AD与G,交BC于H,则HG⊥BC,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.【解答】解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为或.【解答】解:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案为:或.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE 折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE 的长为或.【解答】解:①:CD'=BD'时,如图,由折叠性质,得AD=AD′,∠DAE=∠D′AE,∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCD′为等腰三角形,∴D′B=D′C,∠D′BC=∠D′CB,∴∠DCD′=∠ABD′,在△DD′C和△AD′B中,,∴△DD′C≌△AD′B,∴DD′=AD′,∴DD′=AD′=AD,∴△ADD′是等边三角形,∴∠DAD′=60°,∴∠DAE=30°,∴DE=AE,设DE=x,则AE=2x,(2x)2﹣x2=42,解得:x=,即DE=.②:当CD'=CB时,如图,连接AC,由于AD'=4,CD'=4,而AC==>4+4;故这种情况不存在.③当BD'=BC时,如图过D'作AB的垂线,垂足为F,延长D'F交CD于G,由于AD'=BD',D'F=D'F;易知AF=BF,从而由勾股定理求得D'F===,又易证△AD'F∽△D'EG,设DE=x,D'E=x,∴,即;解得x=综上,故答案为:或.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D 是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为(2,2)或(2,4)或(2,2)或(2,﹣2).【解答】解:连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△ACE中,,∴△ABD≌△ACE,∴BD=EC.∠ABD=∠ACE=45°,∵∠ACB=45°,∴∠ECD=90°,∴点E在过点C垂直x轴的直线上,且EC=DB,①当DB=DA时,点D与O重合,BD=OB=2,此时E(2,2).②当AB=AD时,BD=CE=4,此时E(2,4).③当BD=AB=2时,E(2,2)或(2,﹣2),故答案为(2,2)或(2,4)或(2,2)或(2,﹣2).28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC 沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为7或.【解答】解:①当点A落在如图1所示的位置时,∵△ACB是等边三角形,∴∠A=∠B=∠C=∠MDN=60°,∵∠MDC=∠B+∠BMD,∠B=∠MDN,∴∠BMD=∠NDC,∴△BMD∽△CDN.∴得==,∵DN=AN,∴得==,∵BD:DC=1:4,BC=10,∴DB=2,CD=8,设AN=x,则CN=10﹣x,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得x=7,∴AN=7;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN.∴得==,∵BD:DC=1:4,BC=10,∴DB=,CD=,设AN=x,则CN=x﹣10,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得:x=,∴AN=.故答案为:7或.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC 的距离为2或1.【解答】解:连接B′D,过点B′作B′M⊥AD于M.∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:AM2=AB′2﹣B′M2即(7﹣x)2=25﹣x2,解得x=3或x=4,则点B′到BC的距离为2或1.故答案为:2或1.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是2.【解答】解:过点CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,在y=2x+4中,令x=0,解得:y=4,即B的坐标是(0,4).令y=0,解得:x=﹣2,即A的坐标是(﹣2,0).则OB=4,OA=2.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=4,DF=OA=BE=2,∴D的坐标是(﹣6,2),C的坐标是(﹣4,6).将点D代入y=得:k=﹣12,则函数的解析式是:y=﹣.∴OE=6,则C的纵坐标是6,把y=6代入y=﹣得:x=﹣2.即G的坐标是(﹣2,6),∴CG=4﹣2=2.∴a=2.故答案为:2.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为或.【解答】解:分两种情况:①如图所示,当∠DFE=90°时,△DEF为直角三角形,∵∠CDF+∠CFD=∠EFN+∠CFD=90°,∴∠CDF=∠EFN,由折叠可得,EF=EB,∴∠EFN=∠EBN,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴FN==,∴CN=CF+NF=+=;②如图所示,当∠EDF=90°时,△DEF为直角三角形,∵∠CDF+∠CDB=∠CDF+∠CBD=90°,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴NF==,∴CN=NF﹣CF=﹣=,综上所述,CN的长为或.故答案为:或.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB•sin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE 交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为≤CF≤3.【解答】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大=3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG==4,∴DG=AD﹣AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3﹣x)2+12=x2,∴x=,∴≤CF≤3.故答案为≤CF≤3.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.【解答】解:如图1,作CK⊥AB于K,过E点作EP⊥BC于P.∵∠B=60°,∴CK=BC•sin60°=4×=2 ,∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,∴点E到CD的距离是2 ,∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在△BCE和△GCF中,,∴△BCE≌△GCF(ASA);∴CE=CF,∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE•sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在Rt△ECP中,由勾股定理得(4﹣m)2+(﹣m)2=(6﹣2m)2,解得m=,∴EC=6﹣2m=6﹣2×=,∴CF=EC=,=××2 =,∴S△CEF故答案为.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.【解答】解:如图2中,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x,∵DE=EC,AB=CD=8,∴DE=CD=4,在RT△DEM中,∵DM2+DE2=EM2,∴(4)2+x2=(10﹣x)2,解得x=2.6,∴DM=2.6,AM=EM=7.4,∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,∴∠DEM=∠ENF,∵∠D=∠EFN=90°,∴△DME∽△FEN,∴=,∴=,∴EN=,。
2020年中考数学压轴题专题复习:二次函数-答案
∴y=x+40,
∴y与x的函数关系式为:
y= ,(2分)
由数据可知每天的销售量p与时间x成一次函数关系.
设每天的销售量p与时间x的函数关系式为p=mx+n(m,n为常数,且m≠0),
∵p=mx+n过点(60,80),(30,140),
∴ ,解得 ,
∴p=-2x+200(0≤x≤90,且x为整数),(3分)
11.【答案】(1+ ,2)或(1- ,2)【解析】抛物线y=-x2+2x+3与y轴交于点C,则点C坐标是(0,3),∵点D(0,1),点P在抛物线上,且△PCD是以CD为底的等腰三角形,∴易得点P的纵坐标是2,当y=2时,∴-x2+2x+3=2,则x2-2x-1=0,解得方程的两根是x= =1± ,∴点P的坐标是(1+ ,2)或(1- ,2).
14.【答案】
解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得:
,(1分)
解得 ,(2分)
∴抛物线的解析式为y= x2-x+2.(3分)
(2)抛物线解析式化为顶点式:y= (x-1)2+ ,则抛物线顶点D(1, ),(4分)
如解图①所示,过点B、D、C分别向x轴作垂线,垂足分别为点M、N、H,则有:
6.【答案】C【解析】抛物线开口向上,所以a>0,对称轴在y轴右侧,所以a、b异号,所以b<0,抛物线与y轴交于负半轴,所以c<0,所以直线y=ax+b过第一、三、四象限,反比例函数y= 位于第二、四象限,故答案为C.
二、填空题(本大题共5道小题)
7.【答案】(1,4)【解析】∵A(0,3)、B(2,3),两点纵坐标相同,∴A、B两点关于直线x=1对称,∴抛物线的对称轴是直线x=1,即- =1,解得b=2,∵当x=0时,y=3,∴c=3,∴抛物线的解析式为y=-x2+2x+3,当x=1时,y=-x2+2x+3=-12+2×1+3=4,∴抛物线的顶点坐标是(1,4).
2020年中考数学专题训练:压轴题
2020年中考数学专题训练:压轴题一、选择题1.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A.3 B.4 C.D.6第1题第2题2.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P 是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C 运动到点D时,点G移动的路径长为()A.1 B.2 C.3 D.63.如图,过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,在x轴有一点C(3,0),AC⊥BC,连结AC交反比例函数图象于点D,若AD=CD,则k的值为()A.B.2 C.2D.44.七巧板是我国祖先的一项卓越创造,如图正方形ABCD可以制作一副七巧板,现将这副七巧板拼成如图2的“风车”造型(内部有一块空心),连结最外围的风车顶点M、N、P、Q得到一个四边形MNPQ,则正方形ABCD与四边形MNPQ的面积之比为()A.5:8 B.3:5 C.8:13 D.25:495.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S△OBP=4,则k的值为()A.B.﹣C.﹣4 D.46.有一个著名的希波克拉蒂月牙问题:如图1,以直角三角形的各边为直径分别向上作半圆,则直角三角形的面积可表示成两个月牙形的面积之和,现将三个半圆纸片沿直角三角形的各边向下翻折得到图2,把较小的两张半圆纸片的重叠部分面积记为S1,大半圆纸片未被覆盖部分的面积记为S2,则直角三角形的面积可表示成()A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1•S2二、填空题1.如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1,S2,则S1:S2等于.第3题第4题2.如图,点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E.若△ABC与△DBC的面积之差为3,=,则k1的值为.3.如图,矩形ABCD中,将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.BF,EF分别交边AD于点G,H.若GH=4HD,则cos∠DBC的值为.第3题第4题4.如图,在矩形ABCD中,AB=3,BC=4,P是对角线BD上的动点,以BP为直径作圆,当圆与矩形ABCD的边相切时,BP的长为.5.如图,在平面直角坐标系中,菱形OABC的边长为2,∠AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊥AB时,CE的长为.第5题第6题6.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.三、解答题1.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC 的一条完美分割线.(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB 的中点,连结PD、PE,求cos∠PDE的值.2.抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.(1)求抛物线的解析式;(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q 的横坐标比点P的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.3.定义:有一组对边与一条对角线均相等的四边形为对等四边形,这条对角线又称对等线.(1)如图1,在四边形ABCD中,∠C=∠BDC,E为AB的中点,DE⊥AB.求证:四边形ABCD是对等四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的对等四边形ABCD,使BD是对等线,C,D在格点上.(3)如图3,在图(1)的条件下,过点E作AD的平行线交BD,BC于点F,G,连结DG,若DG⊥EG,DG=2,AB=5,求对等线BD的长.4.如图,AB为⊙O的直径,点C为下方的一动点,连结OC,过点O作OD⊥OC交BC 于点D,过点C作AB的垂线,垂足为F,交DO的延长线于点E.(1)求证:EC=ED.(2)当OE=OD,AB=4时,求OE的长.(3)设=x,tan B=y.①求y关于x的函数表达式;②若△COD的面积是△BOD的面积的3倍,求y的值.5.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD=3,请求出点P的坐标.(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.6.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.参考答案一、选择题1.【分析】利用A和B两个点求出解析式,将面积转化为二次函数的形式,利用二次函数的性质求最大值;【解答】解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=﹣2x+10,∵S△ODF=S△ECO=4,设点P的坐标(x,﹣2x+10),∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;故选:C.2.【分析】设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,判断出G的运行轨迹为△CSD的中位线,从而求出点G移动的路径长.【解答】解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点,即在点P运动过程中,G始终为PS的中点,∴G的运行轨迹为△CSD的中位线,∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,∴点G移动的路径长为×4=2.故选:B.3.【分析】设A(t,),利用线段的中点坐标公式得到D点坐标为(,),则•=k,解得t=1,所以A(1,k),再证明OC为Rt△ACB斜边上的中线,则OA=OC=3,然后利用勾股定理得到12+k2=32,最后解方程即可.【解答】解:设A(t,),∵C(3,0),AD=CD,∴D点坐标为(,),∵点D在反比例函数y=(k>0)的图象上,∴•=k,解得t=1,∴A(1,k),∵AC⊥BC,∴∠ACB=90°,∵过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,∴点A与点B关于原点对称,即OA=OB,∴OC=OA=OB=3,∴12+k2=32,解得k=2.故选:C.4.【分析】设AC=4a,解直角三角形求出AB、MQ,再求出两正方形的面积,即可得出答案.【解答】解:设AC=a+a+a+a=4a,则AB=BC=AC×sin45°=2 a,所以正方形ABCD的面积是(2 a)2=8a2;图2中ME=3a,EQ=2a,由勾股定理得:MQ==a,所以正方形MNPQ的面积为(a)2=13a2,所以图中正方形ABCD,MNPQ的面积比为,故选:C.5.【分析】先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD ∥OB,所以S△ABP=S△AOP,故S△AOB=S△OBP=4,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.【解答】解:如图:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△AOB=S△OBP=4,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB=2,∵点B在反比例函数y=的图象上,∴S△OBE=k,∴k=4故选:D.6.【分析】设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,根据圆的面积公式得到S小半圆=π×=BC2,S=AC2,S大半圆=AB2,根据勾股定理于是得到S△ABC=S2﹣S1.中半圆【解答】解:设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,∵S小半圆=π×=BC2,S中半圆=AC2,S大半圆=AB2,∴S大半圆﹣S中半圆﹣S小半圆=(AB2﹣BC2﹣AC2)=0,∵S△ABC+S大半圆﹣S中半圆﹣S小半圆+S1=S2,∴S△ABC+S1=S2,∴S△ABC=S2﹣S1,∴直角三角形的面积可表示成S2﹣S1,故选:B.二、填空题1.【分析】设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,求出两个阴影部分的面积即可解决问题.【解答】解:设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,∴S1=m2,S2=••CG2=m2,∴==,故答案为4:9.2.【分析】设CE=2t,则DE=3t,利用反比例函数图象上点的坐标特征得到C(,5t),B(,3t),A(,3t),再根据三角形面积公式得到×(﹣)×2t﹣×5t (﹣)=3,然后化简后可得到的值.【解答】解:设CE=2t,则DE=3t,∵点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴,∴C(,5t),B(,3t),∴A(,3t),∵△ABC与△DBC的面积之差为3,∴×(﹣)×2t﹣×5t(﹣)=3,∴k1=﹣9.故答案为﹣9.3.【分析】由旋转的性质可得∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,再由矩形的性质得出∠EDH=∠DBC,设HD=x,GH=4x,设BE=BC=y,分别用x和y表示出BC、BD、DE、DH,根据cos∠DBC=cos∠EDH,列出比例式,化简得=,即cos∠DBC=.【解答】解:∵将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.∴∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,∵矩形ABCD中,AD∥BC,∴∠EDH=∠DBC,∴∠FBE=∠DBC=∠EDH,∴BG=DG,∵GH=4HD,∴设HD=x,GH=4x,设BE=BC=y,则BG=DG=5x,∵∠DHE+∠EDH=90°,∠F+∠FBE=90°,∠FBE=∠EDH,∴∠F=∠DHE,∵∠FHG=∠DHE,∴∠F=∠FHG,∴GF=GH=4x,∴BF=BD=9x,DE=9x﹣y,∵cos∠DBC=cos∠EDH,∴=,∴=,∴xy=81x2﹣9xy,∴10xy=81x2,∴10y=81x,∴=,即cos∠DBC=.故答案为:.4.【分析】BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,先利用勾股定理计算出BD=5,根据切线的判定方法,当OE=OB时,⊙O与AD相切,根据平行线分线段成比例定理得=,求出r得到BP的长;当OF=OB时利用同样方法求出BP的长.【解答】解:BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,在矩形ABCD中,AB=3,BC=4,∴BD==5,当OE=OB时,⊙O与AD相切,∵OE∥AB,∴=,即=,解得r=,此时BP=2r=;当OF=OB时,⊙O与DC相切,∵OF∥BC,∴=,即=,解得r=,此时BP=2r=;综上所述,BP的长为或.故答案为或.5.【分析】先求出A(1,),B(3,),设BF=x,则CF=2﹣x,再由菱形的性质求出D(3﹣x,),由于抛物线经过O,A,D、E,根据抛物线的对称性可知点A与点D的中点横坐标与点O与点E的中点横坐标相同,可求E(4﹣x,0),由平行线分线段成比例可得=,从而建立等量关系=,求出x即可求CE.【解答】解:∵菱形OABC的边长为2,∠AOC=60°,∴OA=2,∴A(1,),∵菱形OABC,∴AB=OC=2,AB∥OC,∴B(3,),设BF=x,则CF=2﹣x,在菱形OABC中,∠B=∠AOC=60°,∵DF⊥AB,∴D(3﹣x,),∴点A与点D的中点为(2﹣x,),∵抛物线经过O,A,D、E,∴点O与点E的中点为(2﹣x,0),∴E(4﹣x,0),∴CE=4﹣x﹣2=2﹣x,∵AB∥CE,∴=,∴=,∴x=4+2(舍)或x=4﹣2,∴CE=,故答案为.6.【分析】在CB上找一点E,连接ED,使ED=BD,然后根据两间之间线段最短原量即可解决问题.【解答】解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.三、解答题1.【分析】(1)由勾股定理求出BC=6,设BE=x,则CE=6﹣x,则AD2+BE2=DE2,可得出32+x2=52+(6﹣x)2,解得:x=,则答案可求出;(2)证得AD2+BE2=DP2+EP2=DE2,则结论得证;(3)延长DP至F,使PF=PD,连接BF,EF,证明△APD≌△BPF(SAS),得出AD =BF,∠A=∠FBP,则∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE =90°﹣∠MPE,证明△MPD∽△NPE,得出PE=2PD,设PD=a,则PE=2a,则DE =a,则可求出答案.【解答】解:(1)∵AB=10,cos A=,∴cos A=,∴AC=8,CD=5,∴==6,设BE=x,则CE=6﹣x,在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,∵DE为完美分割线,∴AD2+BE2=DE2,∴32+x2=52+(6﹣x)2,解得:x=.∴BE=.故答案为:.(2)证明:如图2,∵DA=DP,∴∠DAP=∠DP A,∵PE⊥PD,∴∠DP A+∠EPB=90°,又∠A=∠B,∴∠EPB=∠B,∴EP=EB,∴AD2+BE2=DP2+EP2=DE2,∴DE是直角△ABC的完美分割线.(3)解:延长DP至F,使PF=PD,连接BF,EF,∵AP=BP,∠APD=∠BPF,∴△APD≌△BPF(SAS),∴AD=BF,∠A=∠FBP,∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,∵DE是完美分割线,∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.又PD=PF,∴∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE=90°﹣∠MPE,∴△MPD∽△NPE,∴,设PD=a,则PE=2a,则DE==a,∴cos∠PDE==.2.【分析】(1)求出对称轴得到顶点坐标,代入解析式求出a值即可.(2)当直线CM上满足条件的G点有且只有一个时,可分两种情况讨论:①NG⊥CM,且NG=NA,如图2,作CH⊥MD于H,如图2.设N(1,n),易得NG=MN=(4﹣n),NA2=22+n2=4+n2,由题可得NG=NA,由此即可得到关于n的方程,解这个方程就可解决问题;②A、N、G共线,且AN=GN,如图3,过点GT⊥x轴于T,则有AD=DT=2,运用待定系数法求出直线CM的解析式,从而得出点G的坐标,然后运用三角形的中位线定理就可解决问题.(3)根据点P在第一象限,点Q在第二象限,且横坐标相差1,进而设出点P(3﹣m,﹣m2+4m)(0<m<1);得出点Q(4﹣m,﹣m2+6m﹣5),得出CP2,AQ2,最后建立方程求解即可.【解答】解:(1)将顶点M坐标(1,4)代入解析式,可得a=﹣1,抛物线解析式为y =﹣x2+2x+3(2)当直线CM上满足条件的G点有且只有一个时,①NG⊥CM,且NG=NA,如图1,作CH⊥MD于H,则有∠MGN=∠MHC=90°.设N(1,n),当x=0时,y=3,点C(0,3).∵M(1,4),∴CH=MH=1,∴∠CMH=∠MCH=45°,∴NG=MN=(4﹣n).在Rt△NAD中,∵AD=DB=2,DN=n,∴NA2=22+n2=4+n2.则(4﹣n)2=4+n2整理得:n2+8n﹣8=0,解得:n1=﹣4+2,n2=﹣4﹣2(舍负),∴N(1,﹣4+2).②A、N、G共线,且AN=GN,如图2.过点GT⊥x轴于T,则有DN∥GT,根据平行线分线段成比例可得AD=DT=2,∴OT=3.设过点C(0,3)、M(1,4)的解析式为y=px+q,则,解得,∴直线CM的解析式为y=x+3.当x=3时,y=6,∴G(3,6),GT=6.∵AN=NG,AD=DT,∴ND=GT=3,∴点N的坐标为(1,3).综上所述:点N的坐标为(1,﹣4+2 )或(1,3).(3)如图3,过点P作PD⊥x轴交CQ于D,设P(3﹣m,﹣m2+4m)(0<m<1);∵C(0,3),∴PC2=(3﹣m)2+(﹣m2+4m﹣3)2=(m﹣3)2[(m﹣1)2+1],∵点Q的横坐标比点P的横坐标大1,∴Q(4﹣m,﹣m2+6m﹣5),∵A(﹣1,0).∴AQ2=(4﹣m+1)2+(﹣m2+6m﹣5)2=(m﹣5)2[(m﹣1)2+1]∵PC=AQ,∴81PC2=25AQ2,∴81(m﹣3)2[(m﹣1)2+1]=25(m﹣5)2[(m﹣1)2+1],∵0<m<1,∴[(m﹣1)2+1]≠0,∴81(m﹣3)2=25(m﹣5)2,∴9(m﹣3)=±5(m﹣5),∴m=或m=(舍),∴P(,),Q(,﹣),∵C(0,3),∴直线CQ的解析式为y=﹣x+3,∵P(,),∴D(,﹣),∴PD=+=∴S△PCQ=S△PCD+S△PQD=PD×x P+PD×(x Q﹣x P)=PD×x Q==.3.【分析】(1)由∠C=∠BDC,得出BC=BD,由等腰三角形的性质得出BD=AD,即可得出结论;(2)有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD;(3)过点E作EH⊥AD于H,易证四边形DGEH是矩形,得出EH=DG=2,求出AE =BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,S△ADE=EH•AD=y,S△BDE =BE•DE=x,由勾股定理得出BD2=BE2+DE2,即y2=()2+x2,则,解方程组即可得出结果.【解答】(1)证明:∵∠C=∠BDC,∴BC=BD,∵E为AB的中点,DE⊥AB,∴BD=AD,∴BC=AD=BD,∴四边形ABCD是对等四边形;(2)解:有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD,如图2﹣1所示;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD,如图2﹣2所示;(3)解:过点E作EH⊥AD于H,如图3所示:则∠EHD=90°,∵EG∥AD,DG⊥EG,∴∠EGD=∠HDG=90°,∴四边形DGEH是矩形,∴EH=DG=2,∵E为AB的中点,AB=5,∴AE=BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,则S△ADE=EH•AD=×2×y=y,S△BDE=BE•DE=××x=x,∵在Rt△BDE中,∠BED=90°,∴BD2=BE2+DE2,即y2=()2+x2,∴,解得:,∴BD=.4.【分析】(1)欲证明EC=ED,只要证明∠ECD=∠EDC.(2)证明△ECD是等边三角形,推出∠E=60°即可解决问题.(3)①连接AC.首先证明x==,再证明∠ACF=∠B,推出tan∠B=tan∠ACF ==y,令OC=k,则OF=kx,CF===k•,推出AF=OA﹣OF=k﹣kx=k(1﹣x),根据y=计算即可.②作OH⊥BC于H.设BD=m,利用相似三角形的性质求出OH,BH(用m表示)即可解决问题.【解答】(1)证明:∵OD⊥OC,∴∠COD=90°,∴∠OCD+∠ODC=90°,∵EC⊥AB,∴∠CEB=90°,∴∠B+∠ECB=90°,∵OC=OB,∴∠B=∠OCD,∴∠ODC=∠ECB,∴EC=EB.(2)解:∵OE=OD,OC⊥ED,∴CE=CE,∵EC=ED,∴EC=ED=CD,∴△ECD是等边三角形,∵∠E=60°,在Rt△EOC中,∵∠EOC=90°,OC=AB=2,∴OE==.(3)解:①连接AC.∵EC=ED,∠EOC=90°∴==sin∠ECO,∵∠OFC=90°,∴sin∠ECO=,∴x==,∵AB是直径,∴∠ACB=90°,∵CE⊥AB,∴∠AFC=90°,∴∠ACF+∠A=90°,∠B+∠A=90°,∴∠ACF=∠B,∴tan∠B=tan∠ACF==y,令OC=k,则OF=kx,CF===k•,∴AF=OA﹣OF=k﹣kx=k(1﹣x),∴y===(0<x<1).②作OH⊥BC于H.设BD=m,∵△COD的面积是△BOD的面积的3倍,∴CD=3BD=3m,CB=4m,∵OH⊥BC,∴CH=BH=2m,∴HD=m,∵∠OCH+∠COH=90°,∠COH+∠DOH=90°,∴∠OCH=∠DOH,∵∠OHC=∠OHD=90°,∴△OHC∽△DHO,∴=,∴OH2=2m2,∴OH=m,∴y=tan B===.5.【分析】(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B的坐标代入求出a的值即可得出答案;(2)过点P作PQ∥y轴交DB于点Q,求出直线BD的解析式,设P(m,﹣m2+2m+3),则Q(m,﹣m+3),可得出S△PBD=﹣m,解方程可求出m的值,则答案可求出;(3)设M(a,0),证明△AMN∽△ABD,可得,再由△DNM∽△BMD,可得,得出关于a的方程,解方程即可得出答案.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD=S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).6.【分析】(1)①利用勾股定理求出AC,由△PCB′∽△ACB,推出=,即可解决问题.②分三种情形分别求解即可:如图2﹣1中,当∠PCB′=90°时.如图2﹣2中,当∠PCB′=90°时.如图2﹣3中,当∠CPB′=90°时.(2)如图3﹣2中,首先证明四边形ABCD是正方形,如图3﹣2中,利用全等三角形的性质,翻折不变性即可解决问题.【解答】解:(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.∴t=PB=2﹣4.②如图2﹣1中,当∠PCB′=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB′=90°时,在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB′中则有:,解得t=6.如图2﹣3中,当∠CPB′=90°时,易证四边形ABP′为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB′M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB′=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B′AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB′=90°﹣x,∴∠DAB′=∠P AB′﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB′=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.。
中考数学备考填空压轴题精选(73题)学生版
2020年中考数学备考填空压轴题精选(73题)教师版1.(2019安徽省)在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x ﹣a +1和y =x 2﹣2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是 . 2.(2019北京市)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形.所有正确结论的序号是______.3.(2019福建省)如图,菱形ABCD 顶点A 在函数y =(x >0)的图象上,函数y =(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k = .4.(2019甘肃省)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,则n = .5.(2019甘肃省)如图,在Rt △ABC 中,∠C =90°,AC =BC =2,点D 是AB 的中点,以A 、B 为圆心,AD 、BD 长为半径画弧,分别交AC 、BC 于点E 、F ,则图中阴影部分的面积为 .6.(2019甘肃省武威市)把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于 .7.(2019广东省)如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).8.(2019广东省广州市)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论:①∠ECF =45°;②△AEG 的周长为(1+)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值a 2. 其中正确的结论是 .(填写所有正确结论的序号)9.(2019广东省深圳市)如图,在Rt△ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xk y 上,且y 轴平分脚ACB ,求k= 。
压轴题28填空压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)
2023年中考数学压轴题专项训练压轴题28填空压轴题(函数篇)一.填空题(共40小题)1.(2023•上虞区模拟)已知点A在反比例函数y=12x(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰直角三角形,则AB的长为.2.(2023•姑苏区校级一模)在平面直角坐标系xOy中,对于点P(a,b),若点P'的坐标为(ka+b,a+b k)(其中k为常数且k≠0),则称点P'为点P的“k—关联点”.已知点A在函数y=3x(x>0)的图象上运动,且A是点B的“3—关联点”,若C(﹣1,0),则BC的最小值为.3.(2023•海门市一模)如图,在平面直角坐标系xOy中,已知点A(m,n),B(m+4,n﹣2)是函数y=kx(k>0,x>0)图象上的两点,过点B作x轴的垂线与射线OA交于点C.若BC=8,则k的值为.4.(2023•建昌县一模)如图,在平面直角坐标系中,点A,B在反比例函数y=kx(k≠0,x>0)的图象上,点C在y轴上,AB=AC,AC∥x轴,BD⊥AC于点D,若点A的横坐标为5,BD=3CD,则k值为.5.(2023•碑林区校级模拟)如图,等腰直角△ABC的顶点A坐标为(﹣3,0),直角顶点B坐标为(0,1),反比例函数y=kx(x<0)的图象经过点C,则k=.6.(2023•宁波模拟)如图,在平面直角坐标系xOy中,△OAB为等腰直角三角形,且∠A=90°,点B的坐标为(4,0).反比例函数y=kx(k≠0)的图象交AB于点C,交OA于点D.若C为AB的中点,则ODOA=.7.(2023•龙港市二模)如图,Rt△ABO放置在平面直角坐标系中,∠ABO=Rt∠,A的坐标为(﹣4,0).将△ABO绕点O顺时针旋转得到△A′B′O,使点B落在边A′O的中点.若反比例函数y=kx(x>0)的图象经过点B',则k的值为.8.(2023•温州二模)如图,点A在x轴上,以OA为边作矩形OABC,反比例函数y=kx(k>0,x>0)的图象经过AB的中点E,交边BC于点D,连结OE.若OE=OC,CD=2,则k的值为.9.(2023•石家庄二模)已知A,B,C三点的坐标如图所示.(1)若反比例函数y=kx的图象过点A,B,C中的两点,则不在反比例函数图象上的是点;(2)当反比例函数的图象与线段AC(含端点)有且只有一个y=kx公共点时,k的取值范围是.10.(2023•郫都区二模)定义:若一个函数图象上存在横纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(﹣1,﹣1)是函数y=2x+1的图象的“等值点”.若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1、W2两部分组成的图象上恰有2个“等值点”时,m的取值范围为.11.(2023•双阳区一模)如图,抛物线y=﹣0.25x2+4与y轴交于点A,过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),连接BO、CO,若将△BOC向上平移使得B、C两点恰好落在抛物线y=﹣0.25x2+4上,则点O平移后的坐标为.12.(2023•衡水二模)如图,点A(a,−3a)(a<0)是反比例函数y=k x图象上的一点,点M(m,0),将点A绕点M顺时针旋转90°得到点B,连接AM,BM.(1)k的值为;(2)当a=﹣3,m=0时,点B的坐标为;(3)若a=﹣1,无论m取何值时,点B始终在某个函数图象上,这个函数图象所对应的表达式.13.(2023•市中区二模)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2023个点的坐标.14.(2023•沈阳二模)某商厦将进货单价为70元的某种商品,按销售单价100元出售时,每天能卖出20个,通过市场调查发现,这种商品的销售单价每降价1元,日销量就增加1个,为了获取最大利润,该种商品的销售单价应降 元.15.(2023•贵港二模)如图,抛物线y 1截得坐标轴上的线段长AB =OD =6,D 为y 1的顶点,抛物线y 2由y 1平移得到,y 2截得x 轴上的线段长BC =9.若过原点的直线被抛物线y 1,y 2所截得的线段长相等,则这条直线的解析式为 .16.(2023•江都区一模)如图,在平面直角坐标系中,点A ,B 坐标分别为(3,4),(﹣1,1),点C 在线段AB 上,且AC BC=13,则点C 的坐标为 .17.(2023•龙华区二模)如图,在平面直角坐标系中,OA =3,将OA 沿y 轴向上平移3个单位至CB ,连接AB ,若反比例函数y =kx (x >0)的图象恰好过点A 与BC 的中点D ,则k = .18.(2023•乐至县模拟)如图,在平面直角坐标系中,点A 、A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n在直线y =−√33x +√33上,若A (1,0),且△A 1B 1O 、△A 2B 2A 1…△A n B n A n ﹣1都是等边三角形,则点B n的横坐标为 .19.(2023•玄武区一模)已知函数y =2x 2﹣(m +2)x +m (m 为常数),当﹣2≤x ≤2时,y 的最小值记为a .a 的值随m 的值变化而变化,当m = 时,a 取得最大值.20.(2023•萧山区一模)已知点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上. (1)若x 1x 2=2,则y 1y 2= .(2)若x 1=x 2+2,y 1=3y 2,则当自变量x >x 1+x 2时,函数y 的取值范围是 . 21.(2023•灞桥区校级模拟)如图,点A ,B 分别在y 轴正半轴、x 轴正半轴上,以AB 为边构造正方形ABCD ,点C ,D 恰好都落在反比例函数y =k x(k ≠0)的图象上,点E 在BC 延长线上,CE =BC ,EF ⊥BE ,交x 轴于点F ,边EF 交反比例函数y =kx(k ≠0)的图象于点P ,记△BEF 的面积为S ,若S =k2+12,则k 的值为 .22.(2023•东莞市校级一模)如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上.以AB 为边长作正方形ABCD ,S 正方形ABCD =50,点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,则k 的值是 .23.(2023•长春一模)如图,正方形ABCD 、CEFG 的顶点D 、F 都在抛物线y =−12x 2上,点B 、C 、E 均在y 轴上.若点O 是BC 边的中点,则正方形CEFG 的边长为 .24.(2023•成都模拟)如图,在△AOB 中,AO =AB ,射线AB 分别交y 轴于点D ,交双曲线y =kx (k >0,x >0)于点B ,C ,连接OB ,OC ,当OB 平分∠DOC 时,AO 与AC 满足AO AC=23,若△OBD 的面积为4,则k= .25.(2023•北仑区二模)如图,将矩形OABC 的顶点O 与原点重合,边AO 、CO 分别与x 、y 轴重合.将矩形沿DE 折叠,使得点O 落在边AB 上的点F 处,反比例函数y =kx (k >0)上恰好经过E 、F 两点,若B 点的坐标为(2,1),则k 的值为 .26.(2023•合肥二模)已知函数y =x 2+mx (m 为常数)的图形经过点(﹣5,5). (1)m = .(2)当﹣5≤x ≤n 时,y 的最大值与最小值之和为2,则n 的值 .27.(2023•仓山区校级模拟)下表记录了二次函数y =ax 2+bx +2(a ≠0)中两个变量x 与y 的6组对应值,x … ﹣5 x 1 x 2 1 x 3 3 … y…m2nm…其中﹣5<x 1<x 2<1<x 3<3.根据表中信息,当−52<x <0时,直线y =k 与该二次函数图象有两个公共点,则k 的取值范围为 .28.(2023•西安二模)如图,在平面直角坐标系中,直线y =﹣x +1与x 轴,y 轴分别交于点A ,B ,与反比例函数y =kx (k <0)的图象在第二象限交于点C ,若AB =BC ,则k 的值为 .29.(2023•龙泉驿区模拟)在某函数的给定自变量取值范围内,该函数的最大值与最小值的差叫做该函数在此范围内的界值.当t ≤x ≤t +1时,一次函数y =kx +1(k >0)的界值大于3,则k 的取值范围是 ;当t ≤x ≤t +2时,二次函数y =x 2+2tx ﹣3的界值为2,则t = .30.(2023•姑苏区一模)如图①,四边形ABCD 中,AB ∥DC ,AB >AD .动点P ,Q 均以1cm /s 的速度同时从点A 出发,其中点P 沿折线AD ﹣DC ﹣CB 运动到点B 停止,点Q 沿AB 运动到点B 停止,设运动时间为t (s ),△APQ 的面积为y (cm 2),则y 与t 的函数图象如图②所示,则AB = cm .31.(2023•宁波模拟)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .则k = ;△BDF 的面积= .32.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y =3x 与反比例函数y =kx (k ≠0)的图象交于A ,B 两点,C 是反比例函数位于第一象限内的图象上的一点,作射线CA 交y 轴于点D ,连接BC ,BD ,若CD BC=45,△BCD 的面积为30,则k = .33.(2023•锦江区模拟)已知关于x的多项式ax2+bx+c(a≠0),二次项系数、一次项系数和常数项分别a,b,c,且满足a2+2ac+c2<b2.若当x=t+2和x=﹣t+2(t为任意实数)时ax2+bx+c的值相同;当x=﹣2时,ax2+bx+c的值为2,则二次项系数a的取值范围是.34.(2023•江北区一模)如图,菱形ABCO的顶点A与对角线交点D都在反比例函数y=kx(k>0)的图象上,对角线AC交y轴于点E,CE=2DE,且△ADB的面积为15,则k=;延长BA交x轴于点F,则点F的坐标为.35.(2023•吴兴区一模)如图1,点A是反比例函数y=kx(k>0)的图象上一点,连接OA,过点A作AA1∥y轴交y=1x(x>0)的图象于点A1,连接OA1并延长交y=k x(k>0)的图象于点B,过点B作BB1∥y轴交y=kx(k>0)的图象于点B1,已知点A的横坐标为1,S△AOA1=2S△BA1B1,连接OB1,小明通过对△AOA1和△BOB1的面积与k的关系展开探究,发现k的值为;如图2,延长OB1交y=kx(k>0)的图象于点C,过点C作CC1∥y轴交y=kx(k>0)的图象于点C1,依此进行下去.记S△BA1B1=S1,S△CB1C1=S2,…则S2023=.36.(2023•徐汇区二模)如图,抛物线C1:y=x2+2x−3与抛物线C2:y=ax2+bx+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A、B(点B在点A右侧),与y轴的交点分别为C、D.如果BD=CD,那么抛物线C2的表达式是.37.(2023•蜀山区校级模拟)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒,设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差).(1)m=,n=;(2)当2≤t≤3时,w的取值范围是.38.(2023•南充模拟)如图,平移抛物线y=ax2+bx+c,使顶点在线段AB上运动,与x轴交于C,D两点.若A(﹣2,﹣3),B(4,﹣3),四边形ABDC的面积为15,则a=.39.(2023•通州区一模)某学校带领150名学生到农场参加植树劳动,学校同时租用A,B,C三种型号客车去农场,其中A,B,C三种型号客车载客量分别为40人、30人、10人,租金分别为700元、500元、200元.为了节省资金,学校要求每辆车必须满载,并将学生一次性送到农场植树,请你写出一种满足要求的租车方案,满足要求的几种租车方案中,最低租车费用是元.40.(2023•武侯区模拟)某投球发射装置斜向上发射进行投球实验,球离地面的高度h(米)与球运行时间t(秒)之间满足函数关系式h=﹣5t2+mt+n,该装置的发射点离地面10米,球筐中心点离地面35米.如图,若某次投球正好中心入筐,球到达球筐中心点所需时间为5秒,那么这次投球过程中球离地面的高度h(米)与球运行时间t(秒)之间满足的函数关系式为(不要求写自变量的取值范围);我们把球在每2秒内运行的最高点离地面的高度与最低点离地面的高度的差称为“投射矩”,常用字母“L”表示.那么在这次投球过程中,球入筐前L的取值范围是.。
中考数学专题复习:三角形填空压轴题
中考数学专题复习:三角形填空压轴题1.如图所示,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB交BC 于点D,点D到AB的距离DE=3cm,则线段BC的长为________.第1题图第2题图第3题图2.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=100°,则∠BCA的度数为________.3.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C 在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB 的面积的,OD=2,则△AOB的面积为________.4.如图,在等腰△ABD中,∠A=32°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD,则∠EBD的度数为________.5.在Rt△ABC中,∠A=90°,AB=AC,BC=20,D、E分别是AB和AC的中点.请完成下列探究:(1)如图1,若点M是边BC中点,则DM=________;(2)如图2,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN和ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________.6.已知△ABC为等边三角形,D为边AC上一点,延长BC至E,使CE=CD=1,连接DE,则DE等于________.7.已知一个三角形三边的长分别为,,,则这个三角形的面积是____.8.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示.它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是40,tan∠1=,则小正方形的面积是_______.第8题图第9题图第10题图9.如图,边长为4的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是________.10.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=10,BC=16,则EF的长是_______.11.如图,△ABC中,∠C=90°,CA=CB,AD平分∠CAB.交BC于D,DE⊥AB于E,且AB=6,△DEB的周长为________.12.如图,已知Rt△ABC中,∠ABC=90°,△ABC的周长为17,斜边上中线BD长为.则Rt△ABC的面积为________.13.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,如果正方形A、B、C、D的边长分别为3,4,1,2.则最大的正方形E的面积是________.14.如图,在△ABC中,∠ABC=90°,过点C作CD⊥AC,且CD=AC,连接BD,若S△BCD=,则BC的长为________.15.如图所示,在△ABC中,∠BAC=90°,AB=AC=2,点D,E分别在BC,AC上(点D不与点B重合),且∠ADE=45°,若△ABD是等腰三角形,则AE=_________.16.如图所示,在△ABC中,AD是∠BAC的平分线,G是AD上一点,且AG =DG,连接BG并延长BG交AC于E,又过C作AD的垂线交AD于H,交AB为F,则下列说法:①D是BC的中点;②BE⊥AC;③∠CDA>∠2;④△AFC为等腰三角形;⑤连接DF,若CF=6,AD=8,则四边形ACDF的面积为24.其中正确的是(填序号)________.17.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边上的中线,点D,E分别在边AC和BC上,DB=DE,DE与BM相交于点N,EF⊥AC于点F,以下结论:①∠DBM=∠CDE;②S△BDE=S四边形BMFE;③AC=2DF.其中正确结论的序号是________.第17题图第18题图18.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC,若AC=10,则四边形ABCD的面积为________.19.如图所示,四边形ABCD中,AB=AD,∠BAD=90°,连接AC,BD交于点E,∠CBD=90°,若点E为AC的中点,CD=,则四边形ABCD的面积为________.20.如图,在Rt△ABC中,∠C=90°,点D在BC上,点E为Rt△ABC外一点,且△ADE为等边三角形,∠CBE=60°,若BC=7,BE=4,则△ADE的边长为________.21.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB =AC:AB;③BP垂直平分CE;④FP=FC;⑤∠APB=∠ACB,其中正确的判断有________.第21题图第22题图22.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于________.23.如图,△ABC中,AB=BC,∠ABC=120°,E是线段AC上一点,连接BE 并延长至D,连接CD,若∠BCD=120°,AB=2CD,AE=7,则线段CE长为________.24.如图,已知△ABC中,AB=AC,点D为△ABC外一点,连接BD、CD、DA,∠ADB=∠DBC=120°,取AB的中点E,连接DE,若CD=10,则DE 等于________.25.如图,△ABC中,AC的垂直平分线DE分别交BC于点E,交AC于点D,连接BD,AB=AD,∠CED=45°+∠BAC,△ABD的面积为54,则线段BD 的长为________.第25题图第26题图26.如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为①②③④⑤…,若第1个等腰直角三角形的直角边为1,则第2020个等腰直角三角形的面积为________.27.如图所示,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E 为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则DF的长为________.28.如图,AB∥CD,∠BCD=90°,AB=1,BC=CD=2,E为边AD上中点,则BE=_________.29.如图,在平面直角坐标系中,将边长为1的正方形OABC绕O点顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕O点连续旋转2021次得到正方形OA2021B2021C2021,则点A2021的坐标为________.30.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC的最大值为_________.参考答案1.解:∵在Rt△ABC中,∠C=90°,∠CAB=60°,∴∠B=180°﹣∠C﹣∠CAB=30°,∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠DAC=BAC=30°,∴∠B=∠BAD,∴BD=AD,∵AD平分∠BAC,∠C=90°,点D到AB的距离DE=3cm,∴CD=DE=3cm,∵在Rt△DCA中,∠C=90°,∠DAC=30°,CD=3cm,∴AD=2CD=6cm,∴BD=AD=6cm,∴BC=CD+BD=3cm+6cm=9cm,故答案为:9cm.2.解:如图所示:∵AO、BO、CO是△ABC三个内角的平分线,∴∠BAO=∠CAO,∠ABO=∠CBO,∠BCO=∠DCO,在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠CBO=∠D,又∵∠BAC=100°,∴∠CAO==,又∵AD=AO,∴∠D=∠AOD,又∵∠CAO=∠D+∠AOD,∴∠D===25°,∴∠CBO=25°,∴∠CBA=50°,又∵∠BAC+∠ABC+∠BCA=180°,∴∠BCA=180°﹣100°﹣50°=30°,故答案为30°.3.解:过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.4.解:∵AD=AB,∠A=32°,∴∠ABD=∠ADB=(180°﹣∠A)=74°,由作图可知,EA=EB,∴∠ABE=∠A=32°,∴∠EBD=∠ABD﹣∠ABE=74°﹣32°=42°,故答案为:42°.5.解:(1)∵∠A=90°,AB=AC,BC=20,∴2AC2=BC2=202,∴AC=10,∵D,M分别是AB,BC的中点,∴DM=AC=5;(2)如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE=BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴=,∴=,∴DO′=;当∠MON=90°时,∵△DOE∽△EFM,∴=,∵MF=BC﹣BM﹣FC=20﹣3﹣5=12,∴EM==13,∴DO=,故答案为:或.6.解:如图,过点C作CF⊥DE于点F,∵△ABC为等边三角形,∴∠ACB=60°,∵CE=CD=1,∴∠E=∠CDE=30°,∴EF=CE=,∴DE=2EF=.故答案为:.7.解:∵+=5+10=15,=15,∴:+=,∴该三角形为直角三角形,∴这个三角形的面积是:××=.故答案为:.8.解:如图所示:根据tan∠1=,可设AB=x,BC=3x,由勾股定理得:,∵大正方形的面积是40,∴=40,解得:x=2或x=﹣2(舍去),∴AB=2,BC=6,∴,∴四个三角形的面积之和=4×6=24,∴小正方形的面积=40﹣24=16.故答案为16.9.解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×4=2,∴EG=AG=×2=1,∴DF=1.故答案为:1.10.解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故答案为:3.11.解:△ABC中,∠C=90°,CA=CB,AB=6根据勾股定理得2CB2=AB2,∴CB=3,∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB∴∠DEA=90°=∠C∴△CAD≌△EAD(AAS)∴AC=AE=3,DE=CD∴EB=AB﹣AE=6﹣3故△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB=6﹣3+3=6.12.解:∵Rt△ABC斜边上中线BD长为,∴AC=2BD=7,∵△ABC的周长为17∴AB+BC=17﹣AC=17﹣7=10,∴(AB+BC)2=100,即AB2+BC2+2AB•BC=100,∵AB2+BC2=AC2=72=49,∴2AB•BC=51,∴S△ABC=AB•BC=,故答案为.13.解:由勾股定理得,正方形F的面积=正方形A的面积+正方形B的面积=32+42=25,同理,正方形G的面积=正方形C的面积+正方形D的面积=22+12=5,∴正方形E的面积=正方形F的面积+正方形G的面积=30,故答案为:30.14.解:过点D作DM⊥BC交BC延长线于点M,∵CD⊥AC,∠ABC=90°,∴∠ACB+∠MCD=90°,∠ACB+∠BAC=90°,∴∠BAC=∠MCD,∵CD=AC,∴△ABC≌△CMD(AAS),∴BC=DM,∴S△BCD=×BC×DM=BC2=,∴BC=3,故答案为3.15.解:∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°,BC==2,由题意点D不与点B重合,分两种情况:①BD=AD时,∠BAD=∠B=45°,如图1所示:∴∠ADC=∠B+∠BAD=45°+45°=90°,∴AD⊥BC,∵AB=AC,∴BD=CD=BC=,∴AD=BC=CD,∵∠ADE=45°,∴∠CDE=90°﹣45°=45°=∠ADE,∴DE平分∠ADC,∴AE=CE=AC=1;②BD=AB=2时,如图2所示:∵∠B=45°,∴∠BAD=∠BDA=(180°﹣45°)=67.5°,∵∠ADE=45°,∴∠CDE=180°﹣67.5°﹣45°=67.5°,∴∠CED=180°﹣∠C﹣∠CDE=67.5°,∴∠CDE=∠CED,∴CE=CD=BC﹣BD=2﹣2,∴AE=AC﹣CE=2﹣(2﹣2)=4﹣2;综上所述,若△ABD是等腰三角形,则AE的长为1或4﹣2,故答案为:1或4﹣2.16.解:①假设结论成立,则△ABC是等腰三角形,显然不可能,故①不符合题意;②只有∠ABE+∠BAE=90°时,该结论才成立,故②不符合题意;③∵∠ADC=∠1+∠ABD,∠1=∠2,∴∠ADC>∠2,故③符合题意;④∵∠1=∠2,AD=AD,∠AHF=∠AHC=90°,∴△AHF≌△AHC(ASA),∴AF=AC,故④符合题意;⑤∵AD⊥CF,∴S=•AD•CF=×6×8=24.四边形ACDF故⑤符合题意;故答案为:③④⑤.17.解:①设∠EDC=x,则∠DEF=90°﹣x∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∵BD=DE,∴∠DBM=∠DBE﹣∠MBE=45°+x﹣45°=x.∴∠DBM=∠CDE,故①正确;③在△BDM和△DEF中,,∴△BDM≌△DEF(AAS),∴BM=DF,∵∠ABC=90°,M是AC的中点,∴BM=AC,∴DF=AC,即AC=2DF;故③正确.②由③知△BDM≌△DEF(AAS)∴S△BDM=S△DEF,∴S△BDM﹣S△DMN=S△DEF﹣S△DMN,即S△DBN=S四边形MNEF.∴S△DBN+S△BNE=S四边形MNEF+S△BNE,∴S△BDE=S四边形BMFE,故②正确;综上所述,正确的结论有:①②③.故答案是:①②③.18.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N,∵∠BAD=∠BCD=90°,∴四边形AMCN为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN,在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN;∴△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;设AM=a,由勾股定理得:AC2=AM2+MC2,而AC=10;∴2a2=100,a2=50,所以四边形ABCD的面积为50.故答案为50.19.解:过A作AF⊥BD于F,如图所示:∵点E是AC的中点,∴CE=AE,∵AB=AD,∴AF⊥BD,∵∠CBD=90°,∴BC∥AF,∠CBE=∠AFE=90°,在△CBE和△AFE中,,∴△CBE≌△AFE(AAS),∴BC=AF,∵AB=AD,∠BAD=90°,∴BD=2AF=2BC,∵∠CBD=90°,CD=,∴BC2+BD2=CD2,∴BC2+(2BC)2=15,∴BC=(负值舍去),∴AF=BC=,BD=2BC=2,∴四边形ABCD的面积=S△ABD+S△CBD=2+=6,故答案为:6.20.解:在BC的延长线上取点F,使得∠AFD=60°,∵△ADE是等边三角形,∴AD=DE=AE,∠ADE=60°,∵∠ADB=∠AFD+∠DAF=∠ADE+∠EDB,∴∠DAF=∠EDB,在△AFD和△DBE中,,∴△AFD≌△DBE(AAS),∴FD=BE=4,AF=BD,设CF=x,则CD=4﹣x,BD=7﹣(4﹣x)=3+x,∵∠ACB=90°,∴∠ACF=90°,∴∠CAF=90°﹣60°=30°,∴AF=2CF=2x,∴2x=x+3,解得:x=3,∴CF=3,AC=3,∴CD=1,∴AD===2,故答案为:2.21.解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB,③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,又∵PG∥AD,∴∠FPC=∠DCP,∴FP=FC,⑤无法得出∠APB=∠ACB,故⑤错误;故①②③④都正确.故答案为:①②③④.22.解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴S△ABC=S△ABD+S△DBC=×AB×DE+×BC×DF==60,∴DF=DE=4.故答案为:4.23.解:作BM⊥AC,垂足为M,∵AB=BC,∠ABC=120°,∴∠A=∠ACB=30°,AM=CM,∴BM=AB,∵AB=2CD,∴BM=CD.∵∠DCB=120°,∴∠DCE=∠DCB﹣∠ACB=120°﹣30°=90°,∴∠BMC=∠DCE=90°.在△EMB和△ECD中,,∴△MEB≌△CED(AAS),∴ME=CE.设CE=x,则ME=x,AM=AE﹣ME=7﹣x.∵AM=CM,∴7﹣x=2x,∴x=,∴线段CE长为.故答案为.24.解:延长AD、CB交于点G,过点A作AH∥BD交BC的延长线于点H,延长DE交AH于N,∵∠ADB=∠DBC=120°,∴∠GDB=∠GBD=60°,∴△BDG是等边三角形,∴BG=DG=BD,∠G=60°,∵AH∥BD,∴∠H=∠GBD=60°,∴△AGH是等边三角形,∴AH=AG=GH,∵AB=AC,∴∠ABC=∠ACB,∴∠ABG=∠ACH,∴△ABG≌△ACH(AAS),∴BG=CH,∴DG=CH,∴AG﹣DG=GH﹣CH,即GC=AD,∵AN∥BD,∴∠NAE=∠DBE,∠ENA=∠EDB,∵E是AB的中点,∴AE=BE,∴△NAE≌△DBE(AAS),∴BD=AN,DE=EN=DN,在△GDC与△AND中,,∴△GDC≌△AND(SAS),∴ND=DC=10,∴DE=DN=5.故答案为:5.25.解:如图,作AH⊥BD于H交BC于M,作AK⊥CB交CB的延长线于K,作MP⊥AC于P.∵AB=AD,AH⊥BD,∴∠DAH=∠ABC,设∠DAH=α,则∠CED=45°+α,∵ED⊥AC,∴∠EDC=90°,∴∠C=45°﹣α,∴∠AMB=∠MAC+∠C=45°,∵AM垂直平分线段BD,∴MB=MD,∵MH⊥BD,∴∠BMH=∠DMH=45°,∴BH=MH=DH,设BH=MH=DH=a,则DM=a,∵AK⊥CK,∴∠K=90°,∵∠KMA=∠KAM=45°,∴AK=KM,∵∠DMC=∠K=90°,∴DM∥AK,∵AD=DC,∴KM=CM,∴AK=KM=2a,AM=4a,∵MH=a,∴AH=3a,∵S△ABD=•BD•AH=×2a×3a=54,∴a=3或﹣3(舍弃)∴BD=2a=6.故答案为26.解:第①个直角三角形的边长为1=()0,第②个直角三角形的边长为=()1,第③个直角三角形的边长为2=()2,第④个直角三角形的边长为2=()3,…第2020个直角三角形的边长为()2019,面积为:×()2019×()2019=22018.故答案为:2201827.解:如图,在Rt△BDC中,BC=4,∠DBC=30°,∴BD=2,连接DE,∵∠BDC=90°,点E是BC中点,∴DE=BE=CE=BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴,∴.解得:DF=.故答案为:.28.解:延长BE交CD于点F,∵AB∥CD,∴∠ABE=∠DFE,在△ABE与△DFE中,,∴△ABE≌△DFE(ASA),∴BE=EF=,AB=DF=1,∴CF=1,∴BE=,故答案为:.29.解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),A4(0,﹣),A5(﹣,﹣),…,发现是8次一循环,所以2021÷8=252……5,∴点A2021的坐标为(﹣,﹣).故答案为(﹣,﹣).30.解:如图:延长AB,CD交点于E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC面积最大,即S△BDC最大面积=××10×4=10.故答案为10.。
中考数学——填空压轴题模型(题目版)
填空压轴题一、勾股定理1.(2019方向卷一)如图在平行四边形ABCD 中,点E,F,C,H 分别在边AB,BC,CD,DA 上,AE=CG,AH=CF,且EG 平分∠HEF,EF=4,∠HEF=60°,则EG 的长是2.(2019方向卷二)如图,在矩形ABCD 中,AB=8,AD=6,P ,Q 分别是AB 和CD 上的点,且AP=CQ=3,线段EF 是PQ 的垂直平分线,交BC 于点F,交PQ 于点E,则BF 的长为3.(2019方向卷三)如图,在四边形ABCD 中,AC BAD ABC ,,︒=∠︒=∠6090平分BAD ∠,AD AC =,N M ,分别为CD AC ,的中点,1=AM ,连接BN MN ,,则BN 的长为 .4.(2019定心卷)如图,在等腰Rt △ABC 中,点D 是AB 的中点,点F 在BC 上,且BF=3CF ,过点D 作DE 丄AC 交AC 于点E ,连接EF ,若AB=8,则EF 的长为__________.5.(山西2018中考方向卷(一))如图,在△ABC 中,90C ∠=︒,AC=BC ,AB=5,点D在AB上,AD=1,过点D作DE⊥AC于点E,点F为BD的中点,连接EF,则EF= .6.(2016黑卷)如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC于点D,AE平分∠BAC,交BD于点F,交BC于点E,若BC=6,则AE 的长为.7.(2016白卷)如图,现有一张矩形纸片ABCD,其中4BC cm=,点E是BC的=,6AB cm中点,将纸片沿直线AE折叠,点B落在四边形ABCD内,记B'.则线段B C'的长为cm.8.(2018定心卷).如图,在等边△ABC中,点D是AB的中点,点E在BC上,且BE=3CE,过点D作DF⊥AC于点F,连接DE并延长交AC的延长线于点G,连接EF,若AB=4,则EF= .∠=∠,BH交AC于9.(18山西百校联考3)如图,在正方形ABCD中,H为AD上一点,ABH DBH点G.若HD=2,则线段AD的长为_________.10.(15百校联考1)如图,在矩形ABCD 中,AB=3,E ,F 为AD ,BC 上的点,且ED=BF ,连接EF 交对角线BD 于点O ,连接CE ,且CE=CF ,∠EFC=2∠DBC ,则BC 的长为 _________ .11.(15百校联考3)如图,四边形ABCD 是矩形,点E 在线段BC 的延长线上,连接AE 交CD 于点F ,∠AED=2∠AEB ,点G 是AF 的中点.若CE=1,AG=8,则AB 的长为 .12.(18太原模拟一)如图,在Rt ABC ∆中,90BAC ∠=︒,4AB AC ==,D 是BC 的中点,点E 在BA 的延长线上,连接ED . 若2AE =,则DE 的长为 _________ .13.(18太原模拟三)如图,将一对直角三角形卡片的斜边AC 重合摆放,直角顶点B ,D 在AC 的两侧,连接BD ,交AC 于点O ,取AC ,BD 的中点E ,F ,连接EF .若AB=12,BC=5,且AD=CD ,则EF 的长为_____.14.(2019年太原模拟一)如图,在矩形ABCD 中,点E,F 分别在BC,CD 边上,且CE=3,CF=4.若△AEF 是等边三角形,则AB 的长为_________ .二、相似1.(2019实战演练卷(一)如图,一块直角三角形木板ABC,∠C=90° ,AC=8cm,BC=6cm,现要用其加工出矩形DEFG,点D,G分别在AC,BC上,点E,F在AB边上,且EF=2DE,则加工出的矩形DEFG的周长是_______cm.2.(2019白卷).如图,在Rt∆ABC中,∠ACB=90°,∠A=30°,BC=3,点D在AB上,与AC相切于点E,连接DE并延长交BC的延长线于点F,则CF的长以BD为直径的O为.3.(2019冲刺卷).矩形ABCD中,AD=9 cm,AB=3 cm,将其沿EF翻折,使点C与点A重合,则折痕EF的长为▲cm.(第15题图)4.(山西2018中考方向卷(三))已知:四边形ABCD中,AD∥BC,∠A=∠B=90°,AB=7,AD=2,BC=3,点P从点A出发沿AB方向以每秒1个单位长度的速度向点B运动,在运动过程中,当PA的长度为时,△PAD与△PBC相似.5.(2017黑卷)如图,在矩形ABCD中,点E是AD的中点,连接BE,将△ABE沿着BE 翻折得到△FBE,EF交BC于点H,延长BF.DC相交于点G,若DG=16,BC=24,则BH=______6.(2017定心卷).如图,在菱形ABCD中,点P是对角线BD上的动点,连接CP并延长交AD于点E,交BA的延长线于点F,已知PE=2,EF=4,则PC的长为.7.(2018冲刺卷)如图,在Rt ABC中,∠ABC=90°,AB=BC=3 .点D是BC 边的中点,过点B作BE⊥AD,垂足为E,延长BE交AC于点F,则CF的长是.8.(2017冲刺卷)如图,已知点D、E分别是△ABC的边AB、AC上的点,且BD=AC, DE//BC,过点A作AF//BC交CD的延长线于点 F.若AD=5、AE=4、BC=16,则线段AF的长为.9.(19山西百校联考2)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6,点D 是AC 边上的一点,且AD =2,以AD 为直角边作等腰直角△ADE ,连接BE 并取BE 的中点F ,连接CF ,则CF 的长为 .10.(19山西百校联考3)如图,平行四边形ABCD 的边长AD =3,AB =2,∠BAD =120°,E 为AB 的中点,F 在边BC 上,且BF =2FC .AF 与DE 交于点G ,则AG 的长为 .11.(16百校联考1)如图,已知四边形ABCD 与四边形CFGE 都是矩形,点E 在CD 上,点H 为AG 的中点,AB=3,BC=2,CE=1.5,CF=1,则DH 的长为 _________ .12.(16百校联考4)如图,为一块面积为1.5m2的直角三角形模板,其中90B ∠=︒,AB=1.5m ,现要把它加工成正方形DEFG 木板(EF 在AC 上,点D 和点G 分别在AB 和BC 上),则该正方形木板的边长为 _________m .13.(18太原模拟二)如图,在△ABC中,AB=AC=25,BC=4.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为____________.14.(17太原模拟三)如图,在Rt△ABC中,AB=AC=4,∠BAC=90°,点E为AB的中点,以AE为对角线作正方形ADEF,连接CF并延长,交BD于G,则线段CG的长等于15.(16太原模拟一)如图,直角三角形纸片ABC,按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图.如果AB=10,则该正方体的棱长为.16.(15太原模拟二)如图,△ABC中,AB=AC,BC=6,D是AB上的一点,且AD=23AB,DF∥BC,E为BC的中点,若EF⊥AC,则线段EF的长为.三、三角函数1.(2018黑卷).矩形ABCD 中,BC=8,点E 在CD 边上,把△BCE 沿BE 折叠,点C 的对应点C’恰好落在矩形边AD 的中垂线MN 上时,设BE 与MN 交于点G,则CE 的长为 .2.(2017白卷)如图,△ABC 是等边三角形,点D,E 分别是BC.AC 上一点,且AE=CD ,连接AD,BE,AD 与BE 相较于点P,过点B 作BQ ⊥AD 于点Q ,PQ=3,PE=1,则AD 的长为 .3.(17百校联考2)如图是带支架功能的某品牌手机壳,将其侧面抽象为如图2所示的几何图形,已知AC=5.46 cm ,75ABC ∠=︒,45C ∠=︒,则点B 到AC 的距离为 _________cm (结果精确到0.1cm ,3»1.73)4.(15山西百校联考4)如图,ΔABC 是边长为6的等边三角形,点D 为AB 上一点,且AD=4,DE ⊥AC 于点E ,点F,G 分别为DE ,CD 的中点,则FG 的长为 _________.5.(18太原模拟一)太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB 的长为125cm ,支架CD .CE 的长分别为60cm.40cm ,支点C 到立柱顶点B 的距离为25cm ,支架CD ,CE 与立柱AB 的夹角︒=∠=∠45BCE BCD ,转盘的直径cm 60==MN FG .D ,E 分别是FG ,MN 的中点,且FG CD ⊥,MN CE ⊥.则两个转盘的最低点F ,N 距离地面的高度差为__________cm .(结果保留根号)四、转化1.(2019黑卷)如图,在Rt ABC ∆中,90BAC ∠=,AB AC =,AD BC ⊥于点D ,过B 点作ABC ∠的平分线BG 分别交AD ,AC 于点E ,F ,过点C 作CH BG ⊥交BA 的延长线于点H ,若EG=4,则BF 的长为2.(2017省适应)如图,D ABC 中,BD 平分ÐABC ,且AD ^BD ,E 为AC 的中点,AD=6cm,BD=8cm,BC=16cm,则DE 的长为 cm.E D B C A3.(2018白卷)如图,△CDE 与△CAB 是以C 为顶点的等腰三角形,其中CD=CE ,CA=CB ,且120DCE ACB ∠=∠=︒,A.D.E 三点在同一条直线上,连接BE ,若CE=2,BE=3,则AE 的长为 .4.(2016定心卷)如图,在△ABC 中,AB=9,BC=3,BD 平分∠ABC ,且AD ⊥BD 于点D ,点E 为AC 的中点,连接DE ,则DE 的长为 .5.(19山西百校联考4)在ABC ∆中,AB=10,AC=8,45BAC ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥于点E ,则DE 的长是______.6.(16太原模拟三)如图,过平行四边形ABCD 对角线交点O 的直线分别交AB 的延长线于点E ,交CD 的延长线于点F ,若AB=4,AE=6,则DF 的长等于五.最值1.线段最值(2019年太原模拟二)如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,点D是AC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AF,EF.在点E的运动过程中,线段AF的最小值为______.2.线段最值(15太原模拟三)如图,在边长为2的正方形ABCD中,E是AB的中点,F是AD边上的一个动点,将△AEF沿EF所在直线折叠得到△GEF,连接GC,则GC长度的最小值是3.(18山西百校联考1)如图,在平面直角坐标系中,圆A的圆心A的坐标为(1,0),半径为1,点P为直线y =34x+3上的动点,过点P作圆A的切线,切点为B,则PB的最小值是_________.11/ 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题类填空题专题复习
典型例题分析1:
如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.
解:∵抛物线y=﹣x2﹣2x+3与x轴交于点A、B,
∴当y=0时,则﹣x2﹣2x+3=0,
解得x=﹣3或x=1,
则A,B的坐标分别为(﹣3,0),(1,0),
AB的长度为4,
从C1,C3两个部分顶点分别向下作垂线交x轴于E、F两点.
根据中心对称的性质,x轴下方部分可以沿对称轴平均分成两部分补到C1与C2.如图所示,阴影部分转化为矩形.
根据对称性,可得BE=CF=4÷2=2,则EF=8
利用配方法可得y=﹣x2﹣2x+3=﹣(x+1)2+4
则顶点坐标为(﹣1,4),即阴影部分的高为4,
S阴=8×4=32.
型例题分析2:
如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:
①若C、O两点关于AB对称,则OA=2√3;
②C、O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为π/2;
其中正确的是(把你认为正确结论的序号都填上).
解:在Rt△ABC中,∵BC=2,∠BAC=30°,
∴AB=4,AC=√(42-22)=2√3,
①若C、O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则OA=AC=2√3;
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵∠AOB=∠ACB=90°,
∴OE=CE=AB/2=2,
当OC经过点E时,OC最大,
则C、O两点距离的最大值为4;
所以②正确;
③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,
∴AB与OC互相平分,
但AB与OC的夹角为60°、120°,不垂直,
所以③不正确;
④如图3,斜边AB的中点D运动路径是:
以O为圆心,以2为半径的圆周的1/4,
则:(90π×2)/180=π,
所以④不正确;
综上所述,本题正确的有:①②;
故答案为:①②.
典型例题分析3:
如图,△ABC中,∠C=90°,AC=6,AB=10,D为BC边的中点,以AD上一点O 为圆心的⊙O和AB、BC均相切,则⊙O的半径为.
∵AB、BC是⊙O的切线,
∴点E、F是切点,
∴OE、OF是⊙O的半径;
∴OE=OF;
在△ABC中,∠C=90°,AC=6,AB=10,
∴由勾股定理,得BC=8;
又∵D是BC边的中点,
∴S△ABD=S△ACD,
又∵S△ABD=S△ABO+S△BOD,
∴ABOE/2+BDOF/2=CDAC/2,即10×OE+4×OE=4×6,
解得OE=12/7,
∴⊙O的半径是12/7,
故答案为12/7.
考点分析:
切线的性质.
题干分析:
过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O 的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径.。