物体的受力分析 (隔离法与整体法)

合集下载

整体法和隔离法

整体法和隔离法
B保持静止,且F≠0。则下列描述正确的是( )
A
F
B
❖ A、B可能受到3个或者4个力的作用 ❖ B、斜面对B的摩擦力方向可能沿斜面向下 ❖ C、A对B的摩擦力可能为0 ❖ D、AB整体可能受到三个力作用
思考:
1、用整体法还是隔离法?
2、是先整体后隔离?还是先 隔离后整体?
分析方法:对于受力复杂的系统,先整体
研究对象的选择:
1、对于连结体问题,通常用隔离法,但有时也可 采用整体法.
2、如果能够运用整体法,我们应该优先采用整体 法,这样涉及的研究对象少,未知量少,方程少, 求解简便;
3、 不计物体间相互作用的内力,或物体系内的物 体的运动状态相同,一般首先考虑整体法.
4、 对于大多数动力学问题,单纯采用整体法并不 一定能解决,通常采用整体法与隔离法相结合的 方法.
G 2G
❖ 整体法:求系统外力
N
f地
F
ABC
3G
由图中可知:AB间的摩擦力为0,BC、 C与地面间的摩擦力为F。
(2)、若A、B、C一起以加速度a向右加速运动, AB、BC、C与地间的摩擦力又为多少?
(注:学生在练习本画受力分析)
❖ 练习题、如图所示,固定斜面上叠放着A、B两木块,木块 A与B的接触面是水平的,水平力F作用于木块A,使木块A、
后隔离。
N
N1
FN
f
f
F AB
FA
f f’ B mAg
G (1)、整体法
mAg
mBg
(2)、隔离法
❖ 例2、如图所示,人的质量为60kg,木板A的质量 为30kg,滑轮及绳的质量不计,若人想通过绳子拉 住木板,他必须用力的大小( )
❖ A. 225N B. 300N C. 450N D. 600N

高中物理整体法、隔离法受力分析专题讲解

高中物理整体法、隔离法受力分析专题讲解

受力分析、物体的平衡1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。

隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。

当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。

2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。

整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a =0)时,命题要研究的是外力,而非内力时,选整体为研究对象。

(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。

(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。

3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。

考点二:共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件 在共点力作用下物体的平衡条件是合力为零,即0F =合。

3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。

(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。

(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。

(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。

3 物体的受力分析(隔离法与整体法)

3 物体的受力分析(隔离法与整体法)

3 物体的受力分析(隔离法与整体法)知识目标一、物体受力分析方法把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。

对物体进行正确地受力分析,是解决好力学问题的关键。

1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)2、受力分析的几个步骤.①灵活选择研究对象:也就是说根据解题的目的,从体系中隔离出所要研究的某一个物体,或从物体中隔离出某一部分作为单独的研究对象,对它进行受力分析.所选择的研究对象要与周围环境联系密切并且已知量尽量多;对于较复杂问题,由于物体系各部分相互制约,有时要同时隔离几个研究对象才能解决问题.究竟怎样选择研究对象要依题意灵活处理.②对研究对象周围环境进行分析:除了重力外查看哪些物体与研究对象直接接触,对它有力的作用.凡是直接接触的环境都不能漏掉分析,而不直接接触的环境千万不要考虑进来.然后按照重力、弹力、摩擦力的顺序进行力的分析,根据各种力的产生条件和所满足的物理规律,确定它们的存在或大小、方向、作用点.③审查研究对象的运动状态:是平衡态还是加速状态等等,根据它所处的状态有时可以确定某些力是否存在或对某些力的方向作出判断.④根据上述分析,画出研究对象的受力分析图;把各力的方向、作用点(线)准确地表示出来.3、受力分析的三个判断依据:①从力的概念判断,寻找施力物体;②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。

二、隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。

在许多问题中可以用整体法比较方便,但整体法不能求解系统的内力。

2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分根据地,分别列出方程,再联立求解的方法。

3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。

有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用规律方法1、物体的受力分析【例1】以下四种情况中,物体处于平衡状态的有(D )A、竖直上抛物体达最高点时B、做匀速圆周运动的物体C、单摆摆球通过平衡位置时D、弹簧振子通过平衡位置时解析:竖直上抛物体在到达最高点时a=g,匀速园周运动物体的加速度a=v2/R,单摆摆球通过平衡位置时,平切向加速度a切=0,法向加速度a法=v2/R,合加速度a=v2/R,弹簧振子通过平衡位置时,a=0,故D正确思考:单摆摆到最高点时是否是平衡状态?【例2】如图所示,小车M 在恒力作用下,沿水平地面做直线运动,由此可以判断(CD )A 、若地面光滑,则小车一定受三个力作用B.若地面粗糙,则小车可能受三个力作用C 若小车做匀速运动,则小车一定受四个力作用 D.若小车加速运动,则小车可能受三个力作用解析:由于F 的垂直分力可能等于重力,因此地面可能对物体无弹力作用,A 选项错误。

力学专题:整体法和隔离法

力学专题:整体法和隔离法

专题整体法和隔离法法。

在力学中,就是把几个物体视为一个整体作为研究对象,受力分析时,只分析这一整体之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。

整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。

通常在分析外力对系统的作用时,用整体法。

法。

在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。

隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。

在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。

例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力(取)解析:(1)隔离法:先对物体m受力分析,如图甲所示。

由平衡条件有垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。

(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。

但并非所有情况都可以用整体法,当要求出物体之间的相互作用力时,则必须用隔离法求出物体间的相互作用力,因为整体法不能暴露出物体之间的相互作用力。

例2. 如图2所示,在两块相同的竖直木板之间,有质量均为m的四块完全相同的砖,用两个同样大小的水平力压木板,使砖静止不动。

受力分析中的整体和隔离法教学文稿

受力分析中的整体和隔离法教学文稿

受力分析中的整体和隔离法教学文稿受力分析是力学中非常重要的一部分,它是研究物体受力情况的基础。

在受力分析中,有两种常用的方法,分别是整体法和隔离法。

下面是关于这两种方法的教学文稿。

一、整体法整体法是指将一个物体作为整体来考虑,分析物体受力情况时将整个物体看做一个整体,考虑物体受力的平衡条件以及物体受力的不平衡条件。

使用整体法进行受力分析的步骤如下:1.确定物体所受的外力和内力,并绘制物体所受力的示意图。

2.使用平衡条件,即物体的合力为零,将所有的外力合成。

如果合力为零,则物体处于平衡状态。

如果合力不为零,则物体处于不平衡状态。

3.对于不平衡状态的物体,使用不平衡条件,即物体受力的和力矩为零,解析出物体所受的其他未知力。

4.根据计算所得的未知力,确定物体的受力情况。

使用整体法进行受力分析时,可以较好地观察和分析物体的受力情况。

但是,对于复杂的受力情况,整体法可能会比较繁琐,不易分析。

二、隔离法隔离法是指将物体切割成多个部分,将部分物体看作单独的物体进行受力分析,然后根据物体间的作用和反作用原理,将所得到的结果合成为整个物体的受力情况。

使用隔离法进行受力分析的步骤如下:1.根据物体的形状、结构和受力情况,将物体切割成多个部分,并绘制每个部分物体所受力的示意图。

2.针对每个部分物体,使用整体法分析其受力情况,得到每个部分物体所受力的大小和方向。

3.利用作用和反作用原理,将各个部分物体所受力的大小和方向合成为整个物体所受力的大小和方向。

4.根据计算所得的整体受力情况,确定物体的受力情况。

使用隔离法进行受力分析时,可以将复杂的受力情况简化为多个简单的受力情况,易于分析。

但是,使用隔离法需要较为熟练地掌握物体切割和合成的方法,且容易出现计算错误。

总结:整体法和隔离法是受力分析中常用的两种方法。

整体法将物体看作一个整体进行分析,适用于简单的受力情况;而隔离法将物体切割成多个部分,单独分析各部分物体的受力情况后再进行合成,适用于复杂的受力情况。

高中物理力学方法-整体法 隔离法

高中物理力学方法-整体法 隔离法

整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。

当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。

运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。

二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。

为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。

运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。

三、应用整体法和隔离法解题的方法1、合理选择研究对象。

这是解答平衡问题成败的关键。

研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。

但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。

为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。

但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。

2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。

3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。

所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。

整体法和隔离法

整体法和隔离法

整体法和隔离法一.整体法和隔离法在平衡中的应用1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。

在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。

整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的应用。

整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。

通常在分析外力对系统的作用时,用整体法。

2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。

在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。

隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。

在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。

3.实例分析例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力(取)解析:(1)隔离法:先对物体m受力分析,如图甲所示。

由平衡条件有甲垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有乙水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。

(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:丙水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。

整体法和隔离法

整体法和隔离法

整体法与隔离法选择研究对象是解决物理问题的首要环节.若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法.对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法.1.隔离法:(1)定义:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法.(2)原则:把相连接的各物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来.当然,对隔离出来的物体而言,它受到的各个力就应视为外力了.2.整体法:(1)把相互连接的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法.(2)原则:①当整体中各物体具有相同的加速度或都处于平衡状态(即a=0)时考虑运用整体法.②试题要分析的是外力,而不是分析整体中各物体间的相互作用(内力)时考虑运用整体法.整体法和隔离法不是完全独立的,很多情况下需要整体法和隔离法交替使用来解决问题,比如连接体问题,一般既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交替运用方法,当然个别情况也可按先隔离(由已知内力解决未知内力)再整体的顺序运用.3.整体法和隔离法的使用要点整体和部分是相对的,二者在一定条件下可以相互转化.一定层次上的整体是更大系统中的一个部分,具有部分的功能;一定层次上的部分也是由更小层次上的部分所组成的系统,具有整体的功能.由于整体和部分是辩证的统一,所以解决问题时不能把整体法和隔离法对立起来,而应该灵活地把两种方法结合起来使用;既可以先从整体考虑,也可以先对某一部分进行隔离,从整体到部分,由部分再回到整体,应据具体问题灵活选取研究对象,多方位、多角度地展开思路.【例1】在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的作用力为F2,地面对A的支持力为F3.若F缓慢增大而整个装置仍保持静止,截面如图所示,在此过程中( )A.F1保持不变,F3缓慢增大B.F1缓慢增大,F3保持不变C.F2缓慢增大,F3缓慢增大D.F2缓慢增大,F3保持不变【解析】本题考查物体的平衡和隔离法、整体法分析受力等知识点.把AB看做整体,在竖直方向由平衡条件得F+m A g+m B g=F,,据此可知当,缓慢增大时,F3缓慢增大.隔离物体B分析受力,物体B 受到竖直向下的重力m B g、力F、水平向右的墙对B的作用力F1,斜向左上方的A对B的作用力F2′,设F2′的方向与竖直方向夹角为α,由平衡条件得F2′cosα=F+m B g,F2′sinα=F1,由这二式可知当F缓慢增大时,F2′缓慢增大,由牛顿第三定律可知,B对A的作用力F2也缓慢增大,F1也缓慢增大.所以正确选项是C.【练习1】半圆柱体P放在粗糙的水平面上,其右端有竖直挡板MN,在P和MN之间放一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图是这个装置的纵截面图,若用外力使MN保持竖直且缓慢地向右移动,在Q落到地面前,P始终保持静止.此过程中,下列说法正确的是(A.挡板MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C. P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大【解析】小圆柱体Q受重力、挡板MN对Q的弹力、P对Q的弹力作用处于平衡状态,即Q所受合力为零,由于重力大小方向不变,挡板MN对Q的弹力方向不变,对Q的动态变化过程分析可判断出挡板MN对Q的弹力逐渐增大,P对Q的弹力逐渐增大.运用整体法分析可知地面对P的摩擦力大小应等于挡板MN对Q的弹力,所以地面对P的摩擦力逐渐增大.答案:B【例2】两刚性球a和b的质量分别为m a和m b直径分别为d a和d b(d a>d b).将a、b球依次放入一竖直放置、内径为d(d a<d<d a+d b)的平底圆筒内,如图所示.设a、b两球静止时对圆筒侧面的压力大小分别为f1和f2,筒底所受的压力大小为F.已知重力加速度大小为g.若所有接触都是光滑的,则A.F=(m a+m b)g,f1=f2B.F=(m a+m b)g,f1≠f2C.m a g<F<(m a+m b)g,f1=f2D. m a g<F<(m a+m b)g,f1≠f2【解析】本题考查物体的受力分析和整体法的应用,意在考查考生用受力分析和整体法综合分析物体受力情况的能力;以a、b整体为研究对象,其重力方向竖直向下,而侧壁产生的压力水平,故不能增大对底部的挤压,所以F=(m a+m b)g;水平方向,由于两球处于平衡状态,所以受力也是平衡的,因此力的大小是相等的,即f1=f2,故正确答案为A.【练习2】有一个直角支架AOB,AO杆水平放置,表面粗糙,OB杆竖直向下,表面光滑.AO杆上套有小环P,OB杆上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力F N和摩擦力f的变化情况是( )A.F N不变,f变大B.F N不变,f变小C.F N变大,f变大D.F N变大,f变小【解析】以两环和细绳整体为研究对象,可知竖直方向上始终受力平衡,F N=2mg不变;以Q环为研究对象,在重力、细绳拉力F和OB杆弹力N作用下平衡,如右图所示,设细绳和竖直方向的夹角为α,则P环向左移的过程中α将减小,N=mgtanα将减小.再以整体为研究对象,水平方向只有OB 杆对Q的压力N和OA杆对P环的摩擦力,作用,因此,f=N,则f也减小.故选项B正确.答案:B【例3】如右图所示,放置在水平地面上的质量为M的直角劈上有一个质量为m的物体,若物体在其上匀速下滑,直角劈仍保持静止,那么下列说法正确的是( )A.直角劈对地面的压力等于(M+m)gB.直角劈对地面的压力大于(M+m)gC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力【解析】方法1:隔离法先隔离物体,物体受重力mg、斜面对它的支持力N、沿斜面向上的摩擦力f,因物体沿斜面匀速下滑,所以支持力N和沿斜面向上的摩擦力f可根据平衡条件求出.再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力N′,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力N′和沿斜面向下的摩擦力f′,直角劈相对地面有没有运动趋势,关键看f′和N′在水平方向的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定.对物体:建立坐标系如图甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力N =mgcos θ,摩擦力f =mgsin θ.对直角劈:建立坐标系如图乙所示,由牛顿第三定律得,N =N′,f =f′,在水平方向上,压力N′的水平分量N ′sin θ=mgcos θsin θ,摩擦力f′的水平分量f′cosθ=mgsinθcos θ,可见f′cosθ=N ′s inθ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力.在竖直方向上,整体受力平衡,由平衡条件得:N 地=F′sinθ+N ′cos θ+Mg =mg +Mg.所以正确答案为:AC.方法2:整体法 直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等,方向相反。

整体法和隔离法

整体法和隔离法

整体法和隔离法解决平衡问题(1)整体法:把几个物体视为一个整体,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。

(2)隔离法:对单个物体进行分析、研究。

使用原则:通常在分析外力对系统的作用时,用整体法,在分析系统内部物体间相互作用力时,用隔离法;有时候整体法和隔离法交替使用。

适用条件:两物体对地静止或作匀速直线运动.例题1、如图,质量m=5 kg的木块置于倾角θ=37︒、质量M=10 kg的粗糙斜面上,用一平行于斜面、大小为50 N的力F推物体,使木块沿静止在地上的斜面向上匀速运动,求地面对斜面的支持力和静摩擦力。

解:用整体法就可解出:以木块与斜面为一整体,则整体受到F与重力水平方向:Fcos37°=f摩竖直方向:N+Fsin37°=(m+M)g带入数据得:f摩=40NN=120N例题2、如图,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为θ。

质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,A和B都处于静止状态,求地面对三棱柱支持力和摩擦力各为多少?解答:解:选取A和B整体为研究对象,它受到重力(M+m)g,地面支持力N,墙壁的弹力F和地面的摩擦力f的作用(如图所示)而处于平衡状态.根据平衡条件有:N-(M+m)g=0,F=f,可得N=(M+m)g.再以B为研究对象,它受到重力mg,三棱柱对它的支持力N B,墙壁对它的弹力F的作用(如图所示),而处于平衡状态,根据平衡条件有:N B cosθ=mg,NsinθB=F,解得F=mgtanθ,所以f=F=mgtanθ.答:地面对三棱柱支持力为(M+m)g,摩擦力为mgtanθ例3、如图所示,人重600N,平板重400N,滑轮重力不计,如果人要拉住木板使其静止不动,他必须用力F______N,人对平台的压力为______N.对人和平板整体受力分析,受重力和三根绳子的拉力,根据平衡条件,有:T2+T3+F=(M+m)g其中:T2=2T3=2F4T3=(M+m)g解得:T3=0.25(M+m)g=250N,故人的拉力为250N;再对人受力分析,受重力、支持力和拉力,根据平衡条件和牛顿第三定律可得人对平台的压力等于重力减去绳子对人的拉力,为600-250N=350N ;故答案为:250,350.小试牛刀:1.在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放着质量为m 1和m 2的两个木块b 和c ,如图所示,已知m 1>m 2,三木块均处于静止状态,则关于粗糙地面对三角形木块下列说法正确的是( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力作用2.如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块, 小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为:A .(M+m )gB .(M+m )g -FC .(M+m )g +Fsin θD .(M+m )g -Fsin θ3.如图所示,人重700N ,平板重300N ,如果人要保持整个装置平衡,他须用多大的力拉绳(滑轮质量及摩擦均不计),及对板的压力是多少?4.如图所示,两木块的质量分别为m1和m 2,两轻质弹簧的劲度系数分别为K 1和K 2,上面木块压在上面的弹簧上(但不栓接),整个系统处于平衡状态。

受力分析中的整体法与隔离法

受力分析中的整体法与隔离法

整体法和隔离法的应用一、受力分析中的整体法与隔离法1、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。

当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。

运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程(2)画出系统或整体的受力图或运动全过程的示意图(3)选用适当的物理规律列方程求解2、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。

为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。

运用隔离法解题的基本步骤是(1)明确研究对象或过程、状态(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来(3)画出某状态下的受力图或运动过程示意图(4)选用适当的物理规律列方程求解二、应用整体法和隔离法解题的方法1、合理选择研究对象。

这是解答平衡问题成败的关键。

研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。

但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。

为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。

但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。

2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。

3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。

所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。

受力分析中的整体法和隔离法

受力分析中的整体法和隔离法

链接1.受力分析中的整体法和隔离法【记一记】1.受力分析的基本步骤(1)明确研究对象——即确定分析受力的物体,研究对象可以是单个物体,也可以是多个物体组成的系统.(2)隔离物体分析——将研究对象从周围的物体中隔离出来,进而分析周围物体有哪些对它施加了力的作用.(3)画受力示意图——边分析边将力一一画在受力示意图上,准确标出力的方向,标明各力的符号.2.整体法与隔离法当物理情景中涉及物体较多时,就要考虑采用整体法和隔离法.(1)整体法⎩⎨⎧研究外力对系统的作用各物体运动状态相同 同时满足上述两个条件即可采用整体法.(2)隔离法⎩⎨⎧分析系统内各物体(各部分)间相互作用各物体运动状态可不相同 物体必须从系统中隔离出来,独立地进行受力分析,列出方程.3.对整体法和隔离法的理解整体法是指将相互关联的各个物体看成一个整体的方法,整体法的优点在于只需要分析整个系统与外界的关系,避开了系统内部繁杂的相互作用.隔离法是指将某物体从周围物体中隔离出来,单独分析该物体的方法,隔离法的优点在于能把系统内各个物体所处的状态、物体状态变化的原因以及物体间的相互作用关系表达清楚.4.整体法和隔离法的使用技巧当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统的作用时,宜用整体法;而在分析系统内各物体(或一个物体各部分)间的相互作用时常用隔离法.整体法和隔离法不是独立的,对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法.【判一判】1.只有静止的物体才处于平衡状态(×)2.只要物体的速度为零,它就一定处于平衡状态(×)3.只要物体的运动状态不变,它就处于平衡状态(√)4.只有加速度为零的物体才处于平衡状态(√)。

整体法与隔离法

整体法与隔离法
处理连结体问题的方法------整体法和隔离法 1. 整体法:指对物理问题中的整个系统进行分析、研 究的方法。在力学中,就是把几个物体视为一个整体, 作为研究对象,受力分析时,只分析这一整体对象之外 的物体对整体的作用力(外力),不考虑整体内部之间 的相互作用力(内力)。 2. 隔离法:隔离法是指对物理问题中的单个物体进行 分析、研究的方法。在力学中,就是把要分析的物体从 相关的物体体系中隔离出来,作为研究对象,只分析该 研究对象以外的物体对该对象的作用力,不考虑研究对 象对其他物体的作用力。
P
θ
B
A
Q
如图所示,由于静摩擦力的作用,A静止在粗 糙水平面上,地面对A的支持力为N,若将A稍 向右移动一点,系统仍保持静止,则下列说法 中正确的是( ) A.F、N都增大 B.F、N都减小 C.F增大,N减小 D.F减小,N增大
如右图所示,质量为m的小球用水平弹簧系住,并用与 竖直方向成 角的细绳系住,小球恰好处于静止状态. 当把细绳剪断瞬间,则小球的加速度为多少?
【同例3】如图,质量m=5 kg的木块置于倾角=37、质 量M=10 kg的粗糙斜面上,用一平行于斜面、大小为50 N 的力F推物体,使木块沿静止在斜面向上匀速运动,求地 面对斜面的支持力和静摩擦力。
m F M
m F


M
【例4】如图所示,质量为M的木板悬挂在滑轮组下,上 端由一根悬绳C固定在横梁下.质量为m的人手拉住绳端, 使整个装置保持在空间处于静止状态.求 (1)悬绳C所受拉力多大? (2)人对木板的压力(滑轮的质量不计).
【练习5】如图所示,物体A、B的质量均为6kg,接触面 间的动摩擦因数μ =0.3,水平力F=30N,那么、 1)A、B间摩擦力大小为__________N, 2)水平面对B的摩擦力的大小为_________N (滑轮和绳的质量均不计,)

整体法和隔离法的正确用法

整体法和隔离法的正确用法

整体法和隔离法的正确用法整体法和隔离法是物理学中常用的两种方法,它们在解决复杂系统的运动和相互作用问题时非常有用。

下面将介绍整体法和隔离法的正确用法。

一、整体法整体法是指将多个物体组成的系统作为一个整体进行研究的方法。

这种方法在解决一些涉及多个物体相互作用的问题时非常有效。

整体法的优点是可以减少研究对象的数量,从而简化问题的复杂性。

1. 适用范围整体法适用于以下情况:(1)多个物体组成的系统具有相同的运动状态,可以作为一个整体进行研究;(2)多个物体之间的相互作用力可以忽略不计,或者只考虑它们之间的外部力;(3)需要研究系统整体的力学性质,如加速度、动量等。

2. 解题步骤使用整体法解题的一般步骤如下:(1)明确研究对象,将多个物体组成的系统作为一个整体进行研究;(2)分析整体受到的外力,包括重力、支持力、摩擦力等;(3)根据牛顿第二定律列方程,求出整体的加速度;(4)根据加速度求出各个物体的运动状态,如速度、位移等。

3. 注意事项使用整体法时需要注意以下几点:(1)整体法只能考虑外部力,不能考虑内部相互作用力;(2)如果系统中有多个物体具有不同的运动状态,需要分别对它们进行受力分析;(3)在求解系统的加速度时,需要考虑各个物体之间的相互作用力。

二、隔离法隔离法是指将系统中的各个物体分别进行受力分析的方法。

这种方法在解决一些涉及相互作用力的问题时非常有效。

隔离法的优点是可以清晰地分析各个物体之间的相互作用关系。

1. 适用范围隔离法适用于以下情况:(1)需要研究系统中各个物体之间的相互作用力;(2)系统中各个物体具有不同的运动状态,需要分别进行分析;(3)需要求出各个物体受到的合外力。

2. 解题步骤使用隔离法解题的一般步骤如下:(1)明确研究对象,将系统中的各个物体分别作为研究对象;(2)对每个物体进行受力分析,包括重力、支持力、摩擦力等;(3)根据牛顿第二定律列方程,求出各个物体的加速度;(4)根据加速度求出各个物体的运动状态,如速度、位移等。

受力分析中的整体和隔离法

受力分析中的整体和隔离法

受力分析的隔离法和整体法一、知识要点1、隔离法:保持物体的受力情景不变,而将物体隔离研究的方法.适用情况:求系统内各部分间的相互作用优缺点:分析细致、容易理解但比较麻烦2、整体法:将具有相同的运动状态的物体构成的物体系作为研究对象方法适用情况:求系统受到的外力优缺点:未知量少、方程数少,比较简捷,但不易理解,较抽象3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。

有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用A和B紧挨着匀速下滑,A与B的接触面光滑.已知A与斜面之2倍,斜面倾角为:.B与斜面之间的动摩擦因数是(A )B . -cor C3例2、用轻质细线把两个质量未知的小球悬挂起来,如右图所示.今对小球a持续施加一个向左偏下30°的恒力,并典型例题例1、如图,一固定斜面上两个质量相同的小物块间的动摩擦因数是B与斜面之间动摩擦因数的cot:-例3、完全相同的直角三角形滑块A、B如图1-25所示叠放, 设A、B接触的斜面光滑, A与桌面的动摩擦因数为现在B上施加一水平推力F,恰好使A、B保持相对静止且一起匀速运动,则A对桌面的动摩擦因数」跟斜面倾角二的关系为(C )1A. J二taB. J = 2taC. tan 二D.,与二无关2例4、如图所示,在倾角为a的固定光滑斜面上有一块用绳子拴着的长木板,木板上站着一只猫•已知木板的质量是猫的质量的2倍•当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变•则此时木板沿斜面下滑的加速度为(C )g 3A. fsin aB. gsin aC. ^gsin a D. 2gsin a例5、跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示,已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。

取重力加速度g =10m/s2,当人以440N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为(B)2 2A. a =1.0m/s , F =260NB. a =1.0m/s , F =330NA D对小球b持续施加一个向右偏上30°的同样大的恒力,最后达到平衡•表示平衡状态的图可能是(A )例6、如图所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为F 2的作用下运动.已知F!> F2,当运动达到稳定时,弹簧的伸长量为(C )例7、如图所示,在水平桌面上叠放着质量均为M的A、B两块木板,在木板板和物块均处于静止状态。

物体受力分析的常用方法

物体受力分析的常用方法

物体受力分析的常用方法(1)整体法和隔离法:将研究对象与周围物体分隔或将相对位置不变的物体系作为一个整体来分析。

分析两个以上的物体所组成的系统的受力情况时,若每个物体的运动状态都相同,可以先取整体研究,若分析物体间的相互作用时,需将物体隔离分析。

注意:区分内力和外力,对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。

例1:如图6-10所示,物体A 、B 和C 叠放在水平桌面上,水平力为F b =5N ,F c =10N ,分别作用于物体B 、C 上,A 、B 和C 均保持静止,以F f1、F f2、F f3分别表示A 与B ,B 与C ,C 与桌面间的静摩擦力的大小,则( )A .F f1=5N ,F f2=0N ,F f3=5NB .F f1=5N ,F f2=5N ,F f3=0NC .F f1=0N ,F f2=5N ,F f3=5ND .F f1=0N ,F f2=10N ,F f3=5N例2:质量均为m 的四块砖被夹在两竖直夹板之间,处于静止状态,如图6-11所示。

试求砖3对砖2的摩擦力。

例3:(08年崇文二模)如图6-12所示,A 、B 两物体叠放在动摩擦因数μ=0.50的水平 地 面上,A 物体质量 m =10kg , B 物体质量M =30kg 。

处于水平位置的轻弹簧一端固定于墙壁,另一端与A 物体相连,弹簧处于自然状态,其劲度系数为250N/m 。

现有一水平推力F 作用于物体B 上,使A 、B 两物体一起缓慢地向墙壁移动,当移动0.4m 时,水平推力F 的大小为( ) (g 取10m/s 2) A .100N B .200N C .250N D .300N例4:如图6-13所示,c 是水平地面,a 、b 是两个长方形物块,F 是作用在物块b 上沿水平方向的力,物体a 和b 以相同的速度作匀速直线运动。

受力分析的方法

受力分析的方法

受力分析的方法受力分析方法分别有隔离法、整体法、假设法、利用牛顿第三定律分析和画出物体的受力示意图。

受力情况决定运动情况,要研究物体的运动,必须首先搞清物体的受力情况。

1.进行受力分析的基本方法是隔离体法,即将所选定的研究对象一般是一个物体,也可以是几个物体构成的整体从它所处的环境中隔离出来,然后依次分析环境中的物体对所选定的研究对象施加的力。

分析的依据,一是力的性质和各种力的产生条件;二是物体的运动状态即从共点力的平衡条件和牛顿第二定律入手分析。

2.整体法:即选择几个物体构成的整体作为研究对象,既可用于研究整体的受力,也可作为分析某个物体受力情况的辅助方法。

3.假设法:即在某个力的有无或方向不容易判断时,可先假设这个力不存在,看物体的运动会受什么样的影响,从而得出结论。

如分析弹力可用假设拿开法,分析静摩擦力可用假设光滑法等。

4.利用牛顿第三定律分析5.画出物体的受力示意图,这样会使问题形象直观。

在不涉及转动问题时,一般要将力的作用点平移到物体的重心上来,示意图不但要表示力的方向,还要定性表示力的大小。

图画的越准确,越便于分析解决问题。

(1)选取研究对象:对象可以是单个物体也可以是系统。

(2)隔离:把研究对象从周围的物体中隔离出来。

(3)画受力图:按照一定顺序进行受力分析。

一般先分析重力;然后环绕物体一周,找出跟研究对象接触的物体,并逐个分析弹力和摩擦力;最后再分析其它场力。

在受力分析的过程中,要边分析边画受力图(养成画受力图的好习惯)。

只画性质力,不画效果力。

(4)检查:受力分析完后,应仔细检查分析结果与物体所处状态是否相符。

感谢您的阅读,祝您生活愉快。

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法

碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学员物理科目第次个性化教案
的压力和摩擦力.因为假若存在其中的一个力,这个力会有一个向右的水平分量.其结果B-
那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P
变大 D.F N变大,
,可知竖直方向上始终二力平衡,F=2mg不变;以
) 图1 0092
图2
图4
作用下两物体一起加速运动,物
图11
和斜面对圆柱的大小.(g=10 m/s2
mgsin
s
很好较好一般较差很差很好较好一般较差很差很好较好一般较差很差认真较认真一般较差很差
1.解析:若斜面体P 受到的弹簧弹力F 等于
其重力mg ,则MN 对P 没有力的作用,如 图(a)所示,P 受到2个力,A 对;若弹簧弹 力大于P 的重力,则MN 对P 有压力FN , 只有压力FN 则P 不能平衡,一定存在向右
的力,只能是MN 对P 的摩擦力Ff ,因此P 此时受到4个力,如图(b)所示,C 对. 答案:AC
2.解析:物体在重力和F 的合力沿斜面向下分力的作用下将受到沿斜面向上的静摩擦力,故知,竖直向下的力F 会使其所受到的静摩擦力增大,D 正确. 答案:D
3.解析:对球受力分析,可以确定的力是水平力F 和重力mg ,根据平衡条件,斜面对球一定有弹力的作用,墙对球可能有弹力,也可能没有弹力. 答案:BC
4.解析: 楔形物块静止,小物块匀速上滑,
二者都处于平衡状态,取二者整体为研究 对象,由受力分析得FN+Fsin θ=(M+m)g , 所以FN=(M+m)g-Fsin θ,故选项D 正确. 答案:D
5.解析:A 恰好不离开地面,即A 与地面无作用力,故A 受重力、F 和B 对A 的作用力,共三个力,正确选项为A. 答案:A
6.解析:不正确,该同学没想到平行于斜面的皮带对圆柱体也有力的作用. 沿斜面方向:Fcos β+F =mgsin α 垂直于斜面方向:Fsin β+FN =mgcos α 得:F =sin α1+cos β mg =0.6
1+0.8
×30 N =10 N
FN =mgcos α-Fsin β=30×0.8 N -10×0.6 N =18 N.
答案:不正确 没想到平行于斜面的皮带对圆柱体也有力的作用 10 N 18 N
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档