二次根式的应用题型

合集下载

二次根式考试题型汇总

二次根式考试题型汇总

二次根式考试题型汇总二次根式题型一:二次根式的定义例1、(1)求自然数n的值,使得18-n是整数。

2)当x≥-1时,求式子√(x+1)+√(1-x)的值。

题型二:二次根式有意义的条件例2、当x>-1时,二次根式√(x+1)有意义。

例3、已知x、y为实数,y=√(y^2+8y+16-3xy),求y的值。

例4、已知y=√(x-3)+3-√(x+4),求x的值使得有意义。

题型三:二次根式的性质与化简例5、已知实数a,b在数轴上的位置如图所示:化简(1/(a+3))^2-(1/(b-23))^2.例6、计算(1/(x-1))-((1-x)/(x-1)(x+1))。

已知a、b、c为正数,d为负数,化简(ab-c^2d^2)/(ab+cd)^2.例7、化简求值:1)(a^2-a+b)/((c-a)^2+b+c);2) 11/[(2-1)/(2+1)+(2-1-√2)/(2-1+√2)];3)若x<y<z,则x^2-2xy+y^2+z^2-2yz+xz;4)[(x-1)^2+4-(x+1)^2]/(x^2-1);5)化简(a<0)得-1/(a)。

6)当a<0,b<0时,-a+2ab-b可变形为(a-b)^2.题型四:最简二次根式例8、下列式子中,属于最简二次根式的是9,而1/√3和√(9+x^2)都不是最简二次根式。

题型五:二次根式的乘除法例9、已知m=(3/3-2)(3/3+2-1),则有-5<m<-4.例10、计算:1)(5-3+2)(5-3-2);2) (a+3b)/(a+b)-(a-b)/(a+2b);3)(a^2/n-m^2/mn+n)/(a^2b^2);4)(a+b)/(ab+b-a)/(ab-a).a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013答案解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)20131.求解x的值:$$\frac{x+a}{x^2+a^2}+\frac{2x-x^2+a^2}{x^2-a^2}+\frac{1}{x^2+a^2/2}$$2.若x,y为实数,且$y=1-4x+4x^{-1}+x^{-2}$,求$\frac{x+y}{y+x^2}-2\frac{y}{yx^2}$的值。

(完整版)专题:二次根式重难点综合题型

(完整版)专题:二次根式重难点综合题型

专题:二次根式重难点综合题型题型一:二次根式的性质1.写出下列各式有意义时x 的取值范围.(1)12--x ; (2) .2.已知:,x y 为实数,且311+-+-<x x y , 化简:23816y y y ---+。

3.已知,a b , 求20152014a a -的值。

4.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(|2|||22b b c c a a a ---++--.题型二:二次根式的化简1.判断下列各式是不是最简二次根式,如果不是,请化简成最简二次根式.(1) (2) (3) (4)2.已知231-=a ,231+=b ,求值: (1)33ab b a - ; (2) 22b ab a ++。

3.化简下列二次根式(1) 549549++- (2)4.已知:625+=+b a ,625-=-b a ,求20152212⎪⎪⎭⎫ ⎝⎛--b a 的值。

题型三:二次根式的运算 1.计算下列各题: (1) (2)(3) (4)(5) (6)2.计算:2004200320032004132231221++++++a1-42+x 38m -()x x --11131+x 356356++-()21341183122⨯-⨯;223b a b a ab ⨯÷-⎪⎪⎭⎫ ⎝⎛-+483814122223321825038a a a a a a -+(1110a b b +--).3218)(8321(-+.)21()21(20092008-+※课后练习1.若53+的小数部分是a ,5-3的小数部分是b ,求a +b 的值。

2.已知411+=-+-y x x ,则xy 的平方根为______.3.已知25-=x ,求4)25()549(2++-+x x 的值.4.计算下列各题:(1)(2)(3) (4)5.已知,23,23-=+=y x求(1)x 2-xy +y 2; (2)x 3y +xy 3的值.6.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.7.已知:11a a +=221a a+的值。

二次根式各种题型核心题40道——韩春成老师

二次根式各种题型核心题40道——韩春成老师



2
八、比较大小 39. 【中】(2011 南京三中期末考试)若 c 1 , x c c 1 , y c 1 c , z c 2 c 1 ,则 x 、 y 、 z 的大小关系是________. 40. 【中】(北京西城区期末)下列判断正确的是( ) 3 A. 2 3 2 B. 2 2 3 3 C.1
原式 2 【答案】C
1 1 1 4x 1≥ 0 ,故 x ,y ,∴ 可知, 1 4 x ≥ 0 , 2 4 2
题型三: a 2b a b 【答案】C
3 【解析】由题意, a 1 a ≥ 0 , 1 a 0 ,∴ a 3≥0 ,即 a ≤ 0 ,
故 a3 1 a a a 1 a 【答案】D 题型四: a a ≥ 0
题不在多,而在于精!
越付出越富有!
【各章节核心题系列——二次根式 40 题】
(韩春成长期班学员内部资料)
第一部分:题型框架(涵盖 8 大题型)
二次根式的概念和性质
一、 二次根式的定义 题型一:二次根式的定义 题型二:二次根式有意义 二、 二次根式的性质 题型一:
a
2
a
题型二: a 2 a 题型三: a 2b a b 题型四: a a ≥ 0 题型五: a ≥ 0 二次根式的运算及化简求值
越付出越富有!
29. 【中】(北京西城初二下期末)计算:
2( 2 2) ( 7 5)( 7 5)
1 1 1 30. 【中】(沈阳)计算 2 5 1 2 3 3 4 1 2



99 100 1
31. 【中】(湖南省邵阳市中考)阅读下列材料,然后回答问题。 5 2 3 在进行二次根式去处时,我们有时会碰上如 3 , 2 , 3 1 一样的式子,其实我们 还可以将其进一步化简: 5 5 3 5 3 3 ; 3 3 3 (一)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

典型二次根式计算及解析

典型二次根式计算及解析

二次根式计算及解析一.解答题(共40小题)1.计算:÷×2÷2. 2.计算:()﹣||3.计算:×÷. 4.?(÷2).5.. 6..7.计算:. 8.÷×3÷6.9.计算:÷×. 10.计算:×(﹣)×.11.计算:= .12.12.化简:x2?()(x>0,y≥0).13.计算:×(﹣)2×÷.14.计算:×()﹣1÷.15.计算:÷(x>0,y>0).16.计算:×()÷.18.(1)计算下列各式:①;②;(2)通过上面的计算,你一定有所体会吧?请计算:.19.计算:. 20.计算:?.21.化简:. 22..23.(a>0,b>0)24.已知x=,y=,求x2y+xy2的值.25.已知x1=,x2=,求下列代数式的值:(1)x12+x1﹣1;(2)x1+x2+x1x2+1.26.已知a=,b=,求a2b+ab2的值.27.求a=2+,b=3时,代数式a2+b2﹣4a+4的值.28.(1)计算﹣()2+()0﹣+|| (2)已知a=,求﹣的值.29.计算题(1)(2).30.计算:×(+)﹣. 31.计算:()﹣2﹣|2﹣3|+.32.计算:(2﹣)0+|2﹣|+(﹣1)2017﹣×.计算:33.34.先化简,再求值,5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1﹣.35.计算:.36.计算:37.计算:.计算:(﹣2)2×﹣4(4﹣)+38.39.计算:+(2﹣)0﹣2﹣1+||40.计算:(﹣)﹣1×+(﹣2)2÷(﹣1)﹣3.计算大礼包-学而思期中考试特别订制版参考答案与试题解析一.解答题(共40小题)1.计算:÷×2÷2.【分析】先把除法变成乘法,再根据二次根式的乘法法则进行计算即可.【解答】解:原式=××2×=1.【点评】本题考查了二次根式的乘除法法则,能灵活运用法则进行化简是解此题的关键.2.计算:()﹣||【分析】直接利用二次根式乘法运算法则化简进而利用绝对值的性质化简,再合并求出答案.【解答】解:原式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【点评】此题主要考查了二次根式的乘法以及绝对值的性质,正确掌握运算法则是解题关键.3.计算:×÷.【分析】先进行二次根式的乘除法运算,再进行二次根式的化简即可.【解答】解:原式=÷=.【点评】本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则和二次根式的化简.4.?(÷2).【分析】根据二次根式的乘除法,可得答案.【解答】解:原式=?=.【点评】本题考查了二次根式的乘除法,熟记法则并根据法则计算是解题关键.5..【分析】利用二次根式的乘除法则计算即可得到结果.【解答】解:原式===.【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.6..【分析】先把最后一个二次根式根号外的因式移到根号内,转化成乘法,进而把根号外的式子,根号内的式子,分别进行运算即可.【解答】解:原式=×4÷=×4÷=×4×=×4××=1.【点评】考查二次根式的乘除混合运算;注意应先把乘除混合运算统一成乘法运算.7.计算:.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3××=10.【点评】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.8.÷×3÷6.【分析】先把除法变成乘法,再根据二次根式的乘法法则进行计算即可.【解答】解:原式=××3×=×3=.【点评】本题考查了二次根式的乘除法法则的应用,能灵活运用法则进行计算是解此题的关键.9.计算:÷×.【分析】直接利用二次根式的乘除运算法则化简求出即可.【解答】解:÷×==.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.10.计算:×(﹣)×.【分析】根据二次根式的乘法法则进行运算即可.【解答】解:原式=﹣=﹣4.【点评】本题考查了二次根式的乘法运算,属于基础题,注意掌握?=.11.计算:= .【分析】根据二次根式的乘法法则=,求解即可.【解答】解:原式==.故答案为:.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则=.12.化简:x2?()(x>0,y≥0).【分析】根据二次根式的乘法及二次根式的化简,进行运算即可.【解答】解:原式=x=2xy2.【点评】本题考查了二次根式的乘法运算,属于基础题,解答本题的关键是掌握二次根式的乘法法则.13.计算:×(﹣)2×÷.【分析】先开方及乘方,再从左向右运算即可.【解答】解:×(﹣)2×÷=(﹣1)×3×÷,=(9﹣3),=9﹣3.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记二次根式的乘除法的法则.14.计算:×()﹣1÷.【分析】先算负指数幂,再从左向右的顺序运算即可.【解答】解:×()﹣1÷=×÷,=3÷,=3.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记二次根式的乘除法的法则.15.计算:÷(x>0,y>0).【分析】根据二次根式的除法:=,可得答案.【解答】解:原式==.【点评】本题考查了二次根式的乘除法,利用了二次根式的除法,注意要化简二次根式.16.计算:×()÷.【分析】根据二次根式乘除法及分母有理化的知识解答即可.【解答】解:原式=b2×(﹣a)÷3=2b×(﹣a)×=﹣a2b.【点评】此题考查了二次根式的乘除法,熟悉二次根式乘除法的法则是解题的关键.17.【分析】运用平方差公式将二次根式展开即可.【解答】解:原式=(+)(﹣)=﹣=3﹣5=﹣2.【点评】此题比较简单,只要熟知平方差公式便可直接解答.18.(1)计算下列各式:①;②;(2)通过上面的计算,你一定有所体会吧?请计算:.【分析】(1)先将各二次根式化为最简二次根式,然后再进行计算;(2)可逆用二次根式的乘法法则:?=,再将所求的二次根式进行化简即可.【解答】解:(1)①原式=2×3=6,(2分)②原式=×4=;(2分)(2)原式===.(2分)【点评】此题主要考查了二次根式的乘法运算,有时先将二次根式化简比较简单(如(1)题),有时运用乘法法则进行计算比较简便(如(2)题),要针对不同题型灵活对待.19.计算:.【分析】先将二次根式化为最简,然后从左至右依次运算即可.【解答】解:原式=4×÷=3÷=.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘除运算法则.20.计算:?.【分析】从左至右依次进行运算即可得出答案.【解答】解:原式=÷==.【点评】本题考查了二次根式的乘除运算,属于基础题,掌握二次根式的乘除法则是解答本题的关键.21.化简:.【分析】先进行二次根式的乘法运算,然后将二次根式化为最简,最后合并即可.【解答】解:原式=﹣5=6﹣5=1.【点评】本题考查了二次根式的乘法运算,属于基础题,掌握二次根式的乘法法则及二次根式的化简是关键.22..【分析】根据二次根式的乘除法则,从左至右依次进行运算即可.【解答】解:原式=6÷15=×=×5=2.【点评】本题考查了二次根式的乘除法则,属于基础题,解答本题的关键是掌握二次根式的乘除法则.23.(a>0,b>0)【分析】先将二次根式化为最简二次根式,然后再进行乘除法的运算.【解答】解:原式=2b?(﹣a)÷3,=﹣3a2b2÷3,=﹣a2b.【点评】本题考查二次根式的乘除法运算,难度不大,注意先将二次根式化为最简再计算.24.已知x=,y=,求x2y+xy2的值.【分析】首先将原式提取公因式xy,进而分解因式求出答案.【解答】解:∵x═2﹣,y=,∴x2y+xy2=xy(x+y)=[(2﹣)+(2+)]×1=4.【点评】此题主要考查了二次根式的化简求值,正确掌握乘法公式是解题关键.25.已知x1=,x2=,求下列代数式的值:(1)x12+x1﹣1;(2)x1+x2+x1x2+1.【分析】(1)把x1的值代入,先利用完全平方公式求解,然后进行加减计算即可;(2)把x1和x2的值代入求解即可.【解答】解:(1))x12+x1﹣1=()2+﹣1=+﹣1=+﹣1=0;(2)原式=++×+1=﹣1++1=﹣1.【点评】本题考查了二次根式的化简求值,正确理解完全平方公式和平方差公式的结构是关键.26.已知a=,b=,求a2b+ab2的值.【分析】先化简a、b的值,然后代入所求的式子中,即可解答本题.【解答】解:∵a=,b=,∴a=,b=,∴a2b+ab2=ab(a+b)===.【点评】本题考查二次根式的化简求值的方法,解题的关键是明确二次根式化简求值的方法.27.求a=2+,b=3时,代数式a2+b2﹣4a+4的值.【分析】可用完全平方公式对代数式进行整理即:a2+b2﹣4a+4=(a﹣2)2+b2,然后再代入求值.【解答】解:a2+b2﹣4a+4=(a﹣2)2+b2,当a=2+,b=3时,得原式=(2+﹣2)2+(3)2=29.【点评】本题考查了二次根式的化简求值,在计算时,巧用公式能化繁为简,起到简化计算得作用.28.(1)计算﹣()2+()0﹣+||(2)已知a=,求﹣的值.【分析】(1)利用二次根式的化简,零指数幂,绝对值的性质,算术平方根的性质运算即可;(2)首先将原式化简,在将a的值分母有理化,代入可得结果.【解答】解:(1)﹣()2+()0﹣+||=+1+2=﹣3;(2)﹣=﹣=(a﹣1)﹣,∵a==2﹣,∴a﹣1=2﹣﹣1=1﹣<0,∴原式=(a﹣1)﹣=a﹣1,把a=2﹣代入上式得,a﹣1=1﹣=3.【点评】本题主要考查了二次根式的化简求值,零指数幂的运算等,先化简再代入求值是解答此题的关键.29.计算题(1)(2).【分析】(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.【解答】解:(1)=3﹣2+﹣3=﹣;(2)=4××=.【点评】本题考查的是二次根式的混合运算,掌握二次根式乘法、除法及加减法运算法则是解题的关键.30.计算:×(+)﹣.【分析】先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的乘除法运算.【解答】解:原式=(+)﹣=?﹣=3﹣1=2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.31.计算:()﹣2﹣|2﹣3|+.【分析】根据负整数指数幂的意义和分母有理化得到原式=4+2﹣3+,然后合并同类二次根式即可.【解答】解:原式=4+2﹣3+=1+.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.32.计算:(2﹣)0+|2﹣|+(﹣1)2017﹣×.【分析】根据零指数幂的意义和绝对值的意义进行计算.【解答】解:原式=1+﹣2﹣1﹣=﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.33.计算:【分析】根据实数的运算法则依次进行计算即可.【解答】解:原式=﹣4×2+9﹣12﹣+1=﹣8+9﹣11﹣=﹣11.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并,相乘的时候,被开方数简单的直接让被开方数相乘,再化简,较大的也可先化简,再相乘,灵活对待.34.先化简,再求值,5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1﹣.【分析】去括号,合并同类项,化为最简式,再代入数据计算求值.【解答】解:5x2﹣(3y2+5x2)+(4y2+7xy),=5x2﹣3y2﹣5x2+4y2+7xy,=y2+7xy,当x=﹣1,y=1﹣时原式=(1﹣)2+7×(﹣1)×(1﹣)=1﹣2+2﹣7+7=﹣4+5.【点评】本题考查了去括号法则,熟练掌握法则是解本题的关键.35.计算:.【分析】先化简二次根式,能合并的合并,再做乘法.【解答】解:====.【点评】此题考查二次根式的运算,注意运算顺序.36.计算:【分析】先把根式化为最简二次根式,再根据实数的运算法则进行计算.【解答】解:原式=(3+1﹣2)+=4﹣2+4+2=8.【点评】二次根式的混合运算,一般应先化简成最简二次根式,再进行计算,比较简单.37.计算:.【分析】先做乘法、分母有理化,再合并同类二次根式.【解答】解:原式=3++2﹣=5.【点评】此题考查二次根式的运算,注意正确确定有理化因式.38.计算:(﹣2)2×﹣4(4﹣)+【分析】先将各式化为最简二次根式,分母中含有根式的要分母有理化,然后再进行计算.【解答】解:原式=4×2﹣16+12+16+8=28.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.39.计算:+(2﹣)0﹣2﹣1+||【分析】零指数幂、负整数指数幂以及分母有理化得到原式=﹣﹣1+1﹣+﹣,然后合并同类二次根式.【解答】解:原式=﹣﹣1+1﹣+﹣=﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.40.计算:(﹣)﹣1×+(﹣2)2÷(﹣1)﹣3.【分析】先根据负整数指数幂的意义得到原式=×+4÷(﹣1),再分母有理化得到原式=(+)×﹣4,然后进行二次根式的乘法后合并即可.【解答】解:原式=×+4÷(﹣1)=(+)×﹣4=3+﹣4=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.。

清单05 二次根式 全章复习(3个考点梳理+11种题型+10类型)(解析版)

清单05 二次根式 全章复习(3个考点梳理+11种题型+10类型)(解析版)

清单05二次根式全章复习(3个考点梳理+10种题型+10类型)考点一二次根式的相关概念二次根式的概念:一般地,我们把形如(≥0)的式子叫做二次根式,“”称为二次根号,二次根号下的数叫做被开方数.二次根式有意义的条件:当a≧0时,即被开方数大于或等于0,二次根式有意义.最简二次根式:开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.最简二次根式必须同时满足以下两个条件:①开方数所含因数是整数,因式是整式(分母中不应含有根号);②不含能开得尽方的因数或因式的二次根式,即被开方数的因数或因式的指数都为1.同类二次根式的概念:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式.【考试题型1】二次根式有意义的条件1.(20-21九年级上·吉林长春·在实数范围内有意义的条件是.x的值.2.(2023·浙江杭州·1.(22-23七年级下·广东汕头·m的最小值是()A.2B.3C.8D.11∴12m -是完全平方数,当120m -=时,即12m =,当121m -=时,即11m =,当124m -=时,即8m =,当129m -=时,即3m =,综上所述,自然数m 的值可以是3、8、11、12,所以m 的最小值是3,故答案选:B .【点睛】本题考查了二次根式的化简及自然数的定义,掌握二次根式的化简法则及自然数是指大于等于0的整数是解答本题的关键.2.(22-23八年级下·福建莆田·开学考试)若实数a ,b 4b +,则a b -=.3.(20-21七年级下·广东广州·期中)若()230a -+=,则a b -的立方根是.【点睛】本题考查平方、二次根式的非负性以及求立方根,得到30a -=,50b +=是解题的关键.4.(20-21八年级上·四川达州·期中)已知a ,b 0b =(1)a=_______,b=______(2)把a ,b 的值代下以下方程并求解关于x 的方程()221a xb a ++=-1.(23-24八年级上·上海青浦·)ABC D2.(23-24八年级上·山东滨州·期末)下列各式化成最简二次根式正确的是()A=B =C =D 10=()A .2个B .3个C .4个D .5个4.(22-23八年级下·海南省直辖县级单位·是同类二次根式,则=a .【答案】5-【分析】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键,化成最简二1.(23-24九年级上·四川宜宾·a 的值可能是()A .16B .0C .2D .任意实数2.(22-23九年级上·四川遂宁·是同类二次根式,则m 的值为()A .4m =B .3m =C .5m =D .6m =3.(22-23八年级下·山东泰安·是最简二次根式,则m,n的值为()A.0,1-B.1-,0C.1,1-D.0,04.(21-22八年级下·江西赣州·期中)若考点二二次根式的性质与化简二次根式的化简方法:1)利用二次根式的基本性质进行化简;2)利用积的算术平方根的性质和商的算术平方根的性质进行化简.a =•(≥0,≥0)(≥0,>0)化简二次根式的步骤:1)把被开方数分解因式;2)利用积的算术平方根的性质,把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【考试题型5】利用二次根式的性质化简【类型一】数形结合法1.(22-23八年级下·四川绵阳·阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简2a b b c --+.【答案】a-【分析】本题考查了数轴的定义、二次根式的运算、绝对值运算.观察数轴可得0c b a <<<,从而得到0,0,0a b c a b c ->-<+<,再根据二次根式的运算、绝对值运算计算即可.【详解】解:观察数轴得:0c b a <<<,2.(23-24八年级上·重庆万州·阶段练习)已知实数x 、y 、z 在数轴上的对应点如图所示:(1)若5x =-,y =x 对应的点与z 对应的点恰好关于y 对应的点对称,求z 的值.(2)2+3.(23-24八年级上·湖北襄阳·开学考试)已知实数x ,y ,z 在数轴上的对应点如图所示,试化简:.【类型二】估值法方法简介:先运用二次根式的运算法则化简,再将最后的化简结果化成根式再确定取值范围.1.(2023·重庆·(最接近的整数是()A .7B .8C .9D .10A .5m <-B .54m -<<-C .43m -<<-D .3m >-3.(23-24九年级上·四川宜宾·阶段练习)若a ,则a 的值所在的范围为()A .2a ≥B .2a >C .12a <<D .01a <<【类型三】公式法方法简介:根据题目已知条件,通过变形、凑元等方法,凑成可用乘法公式,快速求解.1.(23-24九年级上·河南周口·阶段练习)已知2M=,2N,则M与N的关系为()A.相等B.绝对值相等C.互为相反数D.互为倒数2.(23-24八年级上·云南文山·阶段练习)计算题:;(2)【类型四】换元法方法简介:根据已知条件,利用未知变量替换有规律表达式,寻找规律,快速求解.1.(19-20八年级上·福建泉州·期中)若ab=1,我们称a与b1与1互为倒数:方法一:∵)22111211+-=-=-=1+1互为倒数.()2211111211⋅--====--111互为倒数.(1)互为倒数;(2)若()21x x -=,求21x x ⎛⎫- ⎪⎝⎭的值;(3)利用“换元法”求((101022⨯的值.=1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质是,选择合适的解题途径,往往能事半功倍.【类型五】拆项法【类型六】整体代入法方法简介:由已知条件,通过加减乘除运算,得到与求解表达式相关的表达数值,整体代入.1.(23-24八年级下·云南昭通·期中)已知x =2(8x x -+的值.2.(23-24八年级下·海南省直辖县级单位·期中)已知33a b ==-求下列各式的值:(1)a b +和ab ;(2)22a ab b ++.22(1)223x xy y ++(2)x y y x +【类型七】因式分解法【类型八】配方法1.(23-24八年级下·北京·期中)阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)1===-.材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:(2222311x x x++=+++=+,(20x+≥,(211x∴+≥,即231x++≥.23x∴++的最小值为1.阅读上述材料解决下面问题:_______=______;(2)求211x++的最值;(3)2-2.阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)根号,1材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:2222321(x 1x x x ++=+++=+∵2(0x ≥,∴2(11x ++≥,即231x ++≥∴23x ++的最小值为1阅读上述材料解决下面问题:(1=,=;(2)求211x ++的最值;(3)已知x =221(41)54x y xy -++-的最值.【类型九】辅元法【类型十】先判断后化解解题的关键.【考试题型6】分母有理化1.(新疆维吾尔自治区克孜勒苏柯尔克孜自治州2023-2024学年八年级下学期4月期中考试数学试题)在进样的式子,这样的式子我们可以将其进一步化简:行二次根式化简时,我们有时会碰上如1==;====.以上这种化简的方法叫做分母有理化,通过观察请利用分母有理化解答下列问题:(1)利用你观察到的规律,化简L(2)2.(23-24八年级下·山东济宁·期中)【阅读材料】(材料一)细心观察图形,认真分析各式,总结其中蕴含的规律.22212OA =+=,112S =(1S 是12RtA A O △的面积);22313OA =+=,22S =(2S 是23Rt A A O △的面积);22414OA =+=,32S =(3S 是34Rt A A O △的面积);.==【问题解决】利用你总结的规律,解答下面的问题:(1)填空:100S =_________,11OA =_________;(2)求11111S S S S S S S S S S +++++++++的值.3.(23-24七年级下·上海嘉定·期中)阅读下列解题过程:1⨯-()()221⨯===-请回答下列问题:(1)=______()2n≥.(2)利用上面所提供的解法,请化简:+(3)模仿上面所提供的解法,试一试化简:+考点三二次根式的运算乘法法则:两个二次根式相乘,把被开方数相乘,根指数不变.即:a =•(≥0,≥0).除法法则:=加减法法则:先把各个二次根式化为最简二次根式后,再将被开方数相同的二次根式合并.【口诀】一化、二找、三合并.分母有理化:通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程.【分母有理化方法】==2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分.==混合运算顺序:先乘方、再乘除,最后加减,有括号的先算括号里的(或先去掉括号).【考试题型7】二次根式的乘除运算1.(2024·陕西西安·三模)计算:)()02252π---2.(23-24八年级下·安徽铜陵·00)b ⎛÷⨯>> ,3.(23-24八年级下·全国·课后作业)计算:(1)÷;()0,0x y ⎫÷>>⎪⎪⎭.1.(23-24八年级下·吉林松原·期中)计算:((-.2.(23-24八年级下·广东阳江·期中)已知b=-,求22a=+,11a b+的值.3.(23-24八年级下·北京海淀·这个数叫做黄金分割数,著名数学家华罗庚优选法中就应用了黄金分割数.设a=b=(1)直接写出a b+和ab的值:a b+=______,ab=______;(2)求1111sa b=+的值.2.(23-24九年级下·山东烟台·期中)计算:(2)3.(23-24八年级下·辽宁营口·期中)(1)先化简,再求值:111a a -⎛⎫-÷⎪--⎝⎭,其中,2a =.1.(23-24八年级下·浙江金华·的计算,将分母转化为有理数,这就是“分母有理化()22==;()()2232++====+--.类似地,将分子转化为有理数,就称为“分子有理化21===()222111+-==.根据上述知识,请你解答下列问题:(1)(2)的大小,并说明理由.2.(23-24八年级下·福建福州·期中)如图,正方形A,B的面积分别为25cm和27cm,现将正方形A的边长分别增加2cm和3cm得到矩形甲;将正方形B的边长都增加2cm得到一个新的正方形乙,请通过计算比较甲、乙两个图形的面积的大小.【答案】矩形甲的面积小于矩形乙的面积.【分析】此题考查了二次根式混合运算的应用,根据题意表示出矩形甲和乙的面积,然后相减得到3.(23-24八年级下·江苏扬州·阶段练习)观察下列等式:1==-;==;==;……像)221-=()0a a =≥,)()1110b b -=-≥,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.11,与-答下列问题:(1)化简:(2)=___________(n为正整数).(3)计算:)1+ =___________;(4)已知a==b试比较a、b的大小,则a___________b.(填“<”“>”或“=”)1.(23-24八年级下·甘肃庆阳·期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足t=(不考虑风速的影响).(1)从30m高处抛下的物体落地所需的时间1t=s;从60m高处抛下的物体落地所需的时间2t=s(2)2t是1t的多少倍?(3)若从高空抛下的物体经过4s落地,则该物体下落的高度是多少?2.(23-24八年级下·江西宜春·阶段练习)有一块长方形木板,木工师傅采用如图所示的方式,在木板上截出面积分别为218dm 和232dm 的两块正方形木板.(1)截出的两块正方形木板的边长分别为______dm ,______dm ;(2)求剩余木板的面积;(3)如果木工师傅想从剩余的木板中截出长为1.5dm 、宽为1.2dm 的长方形木条,最多能截出______个这样的木条. 1.414≈)3.(23-24八年级下·广东东莞·期中)小乐是一个善于思考的学生,学习完“二次根式”和“勾股定理”后,他发现可以有多种方法求三角形的面积,以下是他的数学笔记,请认真阅读并完成任务,的面积;(1)请根据思路1的公式,求ABC(2)请你结合思路2,在如图所示的网格中(正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点),完成下列任务,,要求三个顶点都在格点上;①画出ABC面积的计算过程.②结合图形,写出ABC②过点A 作AD CB ⊥∴4.(23-24八年级下·广西南宁·期中)安全问题,时刻警醒.高空坠物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.经过查阅相关资料,小南同学得到高空坠物下落的时间t (单位:s )和高度h (单位:m )近似满足公式t 10N /kg g ≈)(1)求从45m 高空抛物到落地的时间;(2)已知高空拋物动能(单位:J )10=(单位:N /kg )⨯物体质量(单位:kg )⨯高度(单位:m ),某质量为0.2kg 的玩具在高空被抛出后经过4s 后落在地上,根据以上信息,小南判断这个玩具产生的动能会伤害到楼下的行人,请通过计算说明小南的判断是否正确.(注:伤害无防护人体只需要65J 的动能)5.(23-24八年级下·安徽铜陵·期中)铜陵市各小区都有“禁止高空抛物”的宣传标语,高空抛物极其危险,是我们必须杜绝的行为.据研究,从高度为h(单位:m)的高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)从50m高空抛出的物体从抛出到落地所需时间1t,从100m高空抛出的物体从抛出到落地所需时间2t,那么2t是1t的多少倍?(2)从足够高的高空抛出物体,经过1.5s,所抛物体下落的高度是多少?6.(23-24八年级下·湖北孝感·期中)学习完《二次根式》后,聪聪发现了下面这类有趣味的试题,请你根据他的探索过程,解答下列问题:(1)具体运算,发现规律:131711122236=+==+=⨯⨯11313412=+=⨯,…计算:=(2)观察归纳,写出结论=(1n ≥且n 为正整数)(3)灵活运用,提升能力请利用你所发现的规律,。

二次根式知识点归纳及题型总结

二次根式知识点归纳及题型总结

二次根式知识点及题型归纳1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.4. 二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。

2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。

3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

二次根式计算专题-30题(教师版含答案解析)

二次根式计算专题-30题(教师版含答案解析)

完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

二次根式计算专题-30题(教师版含答案解析)

二次根式计算专题-30题(教师版含答案解析)

完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。

(带答案)人教版初中数学二次根式常考题型例题

(带答案)人教版初中数学二次根式常考题型例题

(带答案)人教版初中数学二次根式常考题型例题(文末附答案)单选题1、下列二次根式中,是最简二次根式的是( )A .√18B .√13C .√27D .√122、下列等式中成立的是( )A .(−3x 2y )3=−9x 6y 3B .x 2=(x+12)2−(x−12)2 C .√2÷(√2√3)=2+√6D .1(x+1)(x+2)=1x+1−1x+2 3、下列计算正确的是( )A .√8÷√2=2√2B .√9=±3C .√(−3)2=3D .√24=√2 4、已知m=(﹣√33)×(﹣2√21),则有( )A .5.0<m <5.1B .5.1<m <5.2C .5.2<m <5.3D .5.3<m <5.45、式子√a+1a−2有意义,则实数a 的取值范围是( )A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >2 6、(√24-3√15+√223)×√2的值是 ( )A .163√3-3√30B .3√30-23 √3C .2√30-23 √3D .203√3- √307、√2的相反数是【 】A .√2B .√22C .−√2D .−√22 8、下列二次根式是最简二次根式的是( )A .√12B .√0.3C .√8D .√6填空题9、已知√a −b +|b −1|=0,则a +1=__.10、若二次根式√1x−1有意义,则x 的取值范围是__________.11、比较大小:√22 __________12(填写“>”或“<”或“=”). 12、已知x ﹣2=√2,则代数式(x +1)2﹣6(x +1)+9的值为_____.13、计算:(√5-2)2018(√5+2)2019的结果是_____.解答题 14、观察下列等式: √2+1=√2(√2+1)(√2−1)=√2−1 √3+√2=√3√2(√3+√2)(√3−√2)=√3−√2 √4+√3=√4√3(√4+√3)(√4−√3)=√4−√3 解答下列问题:(1)写出一个无理数,使它与3−√2的积为有理数; (2)利用你观察的规律,化简2√3+√11; (3)计算:1+√2√2+√3+⋯…3+√10.15、已知x =2+√3,y =2-√3.试求代数式x y +y x 的值.(带答案)人教版初中数学二次根式_003参考答案1、答案:B解析:根据最简二次根式的定义对各选项分析判断利用排除法求解.A 、√18=3√2不是最简二次根式,错误;B 、√13是最简二次根式,正确;C 、√27=3√3不是最简二次根式,错误;D 、√12=2√3不是最简二次根式,错误,故选B .小提示:本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2、答案:D解析:根据幂的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则计算即可.解:A 、(−3x 2y )3=−27x 6y 3,故选项A 错误;B 、(x+12)2−(x−12)2=x 2+2x+14−x 2−2x+14=x 2+2x +1−x 2+2x −14=x ,故选项B 错误;C 、√2÷(√2√3)=√2÷(√3√2⋅√3√2√2⋅√3) =√2√3+√2√6=√2√6√3+√2=√3√3√2)(√3+√2)(√3−√2) =6−2√6,故选项C 错误;D 、1x+1−1x+2=x+2(x+1)(x+2)−x+1(x+1)(x+2)=x +2−x −1(x +1)(x +2) =1(x+1)(x+2),故选项D 正确,故选:D .小提示:本题考查了的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则,熟练掌握相关运算法则是解决本题的关键.3、答案:C解析:根据二次根式的乘除运算法则以及利用二次根式的性质化简,逐项计算,即可判断.A、√8÷√2=√4=2,故此选项错误;B、√9=3,故此选项错误;C、√(−3)2=3,正确;D、√2×4=√22×4=2√2,故此选项错误;故选:C.小提示:本题考查了二次根式的乘除运算,熟练掌握二次根式的加减乘除运算法则以及二次根式的性质化简是解题的关键.4、答案:C解析:直接利用二次根式的乘法运算法则化简,进而得出m的取值范围.∵m=(−√33)×(−2√21)=2√7=√28,5.22=27.4,5.32=28.09,∴5.2<m<5.3.故选C.小提示:考查二次根式的乘除法,估算无理数的大小,掌握无理数的估算方法是解题的关键.5、答案:C解析:根据被开方数大于等于0,分母不等于0列式计算即可.解:由题意得,a+1≥0,a≠2解得,a≥-1且a≠2,所以答案是:C.小提示:本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.6、答案:A解析:解:原式=√48−3√30+√163=4√3−3√30+4√33=16√33−3√30.故选A.7、答案:C解析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此√2的相反数是−√2.故选C.8、答案:D解析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、被开方数含分母,故A不符合题意;B、被开方数0.3=310,含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.小提示:本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、答案:2.解析:利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.∵√a−b+|b﹣1|=0,又∵√a−b≥0,|b−1|≥0,∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.10、答案:x>1解析:概念二次根式被开方数大于或等于0,分母不为0求解即可.解:二次根式√1x−1有意义,则1x−1≥0且x−1≠0,解得,x>1,所以答案是:x>1.小提示:本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式.11、答案:>解析:直接用√22−12,结果大于0,则√22大;结果小于0,则12大.解:√22−12=√2−12>0,∴√22>12,所以答案是:>.小提示:本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.12、答案:2解析:利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,∵x﹣2=√2,∴原式=(√2)2=2,故答案为2.小提示:本题考查应用完全平方公式进行因式分解,进而利用整体代入法求代数式的值,灵活应用公式进行因式分解是关键.13、答案:√5+2解析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.14、答案:(1)3+√2;(2)2√3−√11;(3)√10−1.解析:(1)由平方差的运算法则,即可得到答案;(2)找出题目中的规律,把分母有理化,即可得到答案;(3)先把分母有理化,然后进行化简,即可得到答案.解:(1)∵(3−√2)(3+√2)=9−2=7,∴这个无理数为:3+√2;(2)2√3+√11=√3−√11)(2√3+√11)(2√3−√11)=2√3−√1112−11=2√3−√11;(3)1+√2√2+√3+⋯…+3+√10=√2−1+√3−√2+⋯+√10−√9=√10−1.小提示:本题考查了二次根式的运算法则,分母有理化,平方差运算,熟练掌握运算法则,正确的发现题目中的规律是解题关键.15、答案:14解析:先计算出x+y、xy的值,再代入原式=x 2+y2xy=(x+y)2−2xyxy计算可得.解:∵x=2+√3,y=2−√3,∴x+y=2+√3+2−√3=4,xy=(2+√3)×(2−√3)=1,则原式=x 2+y2xy=(x+y)2−2xyxy=42−2×11=14.小提示:本题主要考查分母有理化与分式的加减运算,解题的关键是掌握分式加减运算法则、完全平方公式与平方差公式及二次根式的运算法则.11。

二次根式【八大题型】(举一反三)(北师大版)(原卷版)

二次根式【八大题型】(举一反三)(北师大版)(原卷版)

专题2.4 二次根式【八大题型】【北师大版】【题型1 判断二次根式】 (1)【题型2 根据二次根式有意义的条件求参数范围】 (2)【题型3 利用二次根式被开方数的非负性求值】 (2)【题型4 根据二次根式是整数求字母的值】 (2)【题型5 数轴与二次根式的化简的综合运用】 (3)【题型6 逆用(√a)2=a (a ≥0)在实数范围内分解因式】 (4)【题型7 根据含隐含条件的参数范围化简二次根式】 (4)【题型8 复合型二次根式的化简求值】 (4)【知识点1 二次根式的定义】形形√a 形a ≥0形形形形形形形形形形形√a 形形形形形形形a 形形形形形形.【题型1 判断二次根式】【例1】(2023春·八年级单元测试)a 是任意实数,下列各式中:形√a +2;形√(−2a)4;形√a 2+3;形√a 2+6a +9;形√a 2−3,一定是二次根式的个数是( )A .1B .2C .3D .4【变式1-1】(2023春·湖北孝感·八年级统考期中)下列各式中,一定是二次根式的是( )A .√aB .√23C .√12D .√−4【变式1-2】(2023春·全国·八年级专题练习)下列式子一定是二次根式的是 ( )A .√a 2B .-√aC .√a 3D .√a【变式1-3】(2023春·陕西·八年级阶段练习)下列式子:√7,√2x ,√1−m ,√a 2+b 2,√100,√a 2−1,√|a |+1中,一定是二次根式的是( )A .3个B .4个C .5个D .6个【知识点2 二次根式有意义的条件】(1)形形形形形形形形形形形形形形形形2形形形形形形形形形形形√a ≥0.【题型2 根据二次根式有意义的条件求参数范围】【例2】(2023·辽宁丹东·八年级统考期末)在函数y =√2−x √x−1中,自变量x 的取值范围是( ) A .−1<x ≤2 B .−2<x ≤1 C .1≤x ≤2 D .1<x ≤2【变式2-1】(2023春·湖北孝感·八年级统考期中)若式子√1−3x x有意义,则x 的取值范围是___. 【变式2-2】(天津市南开区2022-2023学年八年级下学期期末数学试题)下列各式中x 的取值范围是x ≥3的是( ) A .√3−x B .√x −3 C .√3+x D .√x−3【变式2-3】(2023春·浙江绍兴·八年级校联考期中)若x =2能使下列二次根式有意义,则这个二次根式可以是( ). A .√x −1 B .√1−x C .√x −3 D .√−x【知识点3 二次根式的性质】 性质1:(√a)2=a (a ≥0),即一个非负数的算术平方根的平方等于它本身;性质2:√a 2=|a |={a (a ≥0)−a (a <0),即一个任意实数平方的算术平方根等于它本身的绝对值. 【题型3 利用二次根式被开方数的非负性求值】【例3】(2023春·福建福州·八年级统考期中)已知y =√x −2022−√2023−x +1,其中x 为整数,则y 的值为__________.【变式3-1】(2023春·河北邢台·八年级校考期末)若√x −1+√y +3=0,求x −y 的值.【变式3-2】(2023春·黑龙江绥化·八年级统考期中)若y =√x −3+√3−x −2,则x y =______.【变式3-3】(2023·全国·八年级假期作业)已知实数a 满足√(2008−a)2+√a −2009=a ,求a −20082的值是多少?【题型4 根据二次根式是整数求字母的值】【例4】(2023春·八年级单元测试)若√36n 是整数,则整数n 的所有可能的值为_______.【变式4-1】(2023春·广东惠州·八年级校考期中)已知:√20n是整数,则满足条件的最小正整数n为()A.2B.4C.5D.20(2023春·湖北武汉·八年级统考期中)已知√10−n是整数,则自然数n所有可能的值的和为______.【变式4-2】【变式4-3】(2023春·江苏·八年级专题练习)如果√17+4a是一个正整数,则整数a的最小值是()A.-4B.-2C.2D.8【题型5 数轴与二次根式的化简的综合运用】【例5】(2023春·广东云浮·八年级统考期中)已知实数a,b,c在数轴上对应点的位置如图所示,化简:√a2+(√−a+b)2−|c−b|.【变式5-1】(2023春·八年级单元测试)已知:实数a,b在数轴上对应的点的位置如图所示,化简:√(a+1)2+ 2√(b−1)2−∣a−b∣.【变式5-2】(2023春·全国·八年级期末)实数a,b,c在数轴上对应的点的位置如图所示,则化简√c2−(√a)2+ 3)3得()(√a+bA.b−c B.−2a−b−c C.b+c D.−b−c【变式5-3】(2023春·山东临沂·八年级统考期中)阅读材料,解答问题。

2024八年级数学上册期末复习3二次根式3常考题型专练习题课件新版北师大版

2024八年级数学上册期末复习3二次根式3常考题型专练习题课件新版北师大版

1
2
3
4
5
6
7
8
类型3利用 ≥0求最值
6. 当 x 取何值时, + +3的值最小?最小值是多少?
解:∵ + ≥0,∴当 + =0,即当 x =-
时, + +3的值最小,最小值是3.
1
2
3
4
5
6
7
8


类型4利用二次根式的非负性解决代数式化简求值问题
7. 等式 ( − ) + ( − ) = − - − =0恒成
所以 − - − + = − - ( − ) =
− - − = y -3- y +1=-2.
1
2
3
4
5
6
7
8
类型2利用 ≥0求代数式的值或平方根
4. [2024十堰实验中学月考]若 + + +|2 a - b +1|
=0,则( b - a )2 024等于(
当 b =3时,此式的值最大,即 S 最大,最大值为 =
2 .
1
2
3
4
5
6
有意义,
∴ m -4≥0,即 m ≥4.
当 m ≥4时, ( − ) + ( − ) =( m -3)+( m -
4)=2 m -7.
1
2
3
4
5
6
题型3利用二次根式的性质进行计算
4. (1)设 = a , = b ,试用含 a , b 的代数式表示
.
解:(1) =6 =6
立,且 x , y , a 互不相等,求
1
2

二次根式的50道混合运算(5大题型)—2023-2024学年八年级数学下册重难点(浙教版)(解析版)

二次根式的50道混合运算(5大题型)—2023-2024学年八年级数学下册重难点(浙教版)(解析版)

二次根式的50道混合运算专训(5大题型)【题型目录】题型一 利用二次根式的性质化简题型二 二次根式的乘除法题型三 二次根式的加减法题型四 已知字母的值化简求值题型五 分母有理化【经典计算题一 利用二次根式的性质化简】 1.(2023下·湖北随州·八年级校联考期中)计算: (1)18422−+; (2)2(23)(2335)(2335)+−+−.【答案】(1)2(2)3826+【分析】(1)先化简根式,再合并同类二次根式即可得到答案;(2)先根据完全平方公式及平方差公式展开,再合并即可得到答案;【详解】(1)解:原式22222=−+;2=;(2)解:原式()22631245=++−−22631245=++−+3826=+;【点睛】本题考查化简二次根式及实数的混合运算,解题的关键是熟练掌握222()2a b a b ab +=++, 22()()a b a b a b +−=−.2.(2023上·吉林长春·八年级校考阶段练习)计算:(1)201939327(1)+−+−−−(2)23(6)128−+−−【答案】(1)4 (2)32+【分析】(1)直接利用二次根式的性质以及立方根的性质、有理数的乘方运算法则分别化简,进而得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而得出答案.【详解】(1)解:201939327(1)33314+−+−−−=+−+=; (2)解:23(6)128621232−+−−=+−−=+.【点睛】本题主要考查了实数的运算,正确化简各数是解题关键. 3.(2019上·福建宁德·九年级开学考试)先化简,再求值:211211m m m m ⎛⎫÷− ⎪+++⎝⎭,其中31m =−. 【答案】11m +,33 【分析】原始第二项先化简括号里面的,再利用除法法则变形,约分后将m 的值代入即可【详解】211211m m m m ⎛⎫÷− ⎪+++⎝⎭ ()211m m m m =÷++ ()211m m m m +=⋅+11m =+,将31m =−代入得原式133311==−+.【点睛】此题考查分式的化简求值,二次根式的性质,关键在于正确化简计算.4.(2023下·福建龙岩·八年级校考阶段练习)先化简后求值:222122111a a a a a a a a−+−+−−−−,其中2a =−. 【答案】1a −,3−【分析】由2a =−得130a −=−<,再根据提公因式法和公式法因式分解及二次根式的性质化简原式即可得出答案.【详解】解:∵2a =−,∴130a −=−<,∴原式()()211111a a a a a a −−=−−−− ()()1111a a a a a −−=−−−−111a a a =−+−1a =−3=−【点睛】本题主要考查分式的化简求值,涉及到二次根式的性质,完全平方公式、提公因式,熟练掌握二次根式的性质是解题的关键. 5.(2023上·广东深圳·八年级校考阶段练习)填空: (1)9±= ________; (2)124= ________;(3)364=________ ;(4)48= ________;(5)43= ________; (6)63= ________; (7)()22−= ________;(8)()331−= ________;(9)23−= ________;【答案】(1)3±(2)32(3)4(4)43(5)23 3(6)2(7)2(8)1−(9)32−【分析】(1)直接化简即可;(2)将带分数化为假分数,即可化简;(3)根据立方根的定义,即可化简;(4)根据二次根式的化简方法和步骤进行化简即可;(5)根据二次根式的化简方法和步骤进行化简即可;(6)根据二次根式的化简方法和步骤进行化简即可;(7)根据二次根式的化简方法和步骤进行化简即可;(8)根据立方根的性质进行化简即可;(9)根据负数的绝对值是它的相反数,即可化简.【详解】(1)解:93±=±;故答案为:3±.(2)解:1932442==;故答案为:3 2.(3)解:3644=;故答案为:4.(4)解:4816316343=⨯=⨯=;故答案为:43.(5)解:442323 33333===⨯;故答案为:233.(6)解:66323=÷=; 故答案为:2.(7)解:()()22222−==;故答案为:2.(8)解:()3311−=−;故答案为:1−.(9)解:()232332−=−−=−; 故答案为:32−.【点睛】本题主要考查了二次根式和绝对值的化简,解题的关键是熟练掌握二次根式的化简方法和步骤. 6.(2023上·甘肃天水·九年级校联考阶段练习)根据所给数轴解决以下问题:(1)计算:2b =___________.(2)化简:()323c b a a b b c −−++−+【答案】(1)b −;(2)2a b −.【分析】(1)由数轴确定b 的符号,再根据二次根式的化简公式可得到答案;(2)由数轴可确定a 、b 、c 的大小,0a b c <<<,a b >,c b >,再根据二次根式的化简公式,去绝对值符合法则,立方根的定义计算即可.【详解】(1)由数轴可知0b <,∴2b b b ==−,故答案为:b −;(2)由数轴可得:0a b c <<<,c b >, ∴0b a −>,0b c +>,∴原式()()()c b a a b b c =−−++−+,c b a a b b c =−+++−−,2a b =−.【点睛】此题考查了数轴、二次根式的化简与立方根、化简绝对值、整式的加减,熟练掌握数轴的性质是解题的关键. 7.(2023上·四川内江·八年级校考阶段练习)计算:23= ,20.5= ,()26−= ,234⎛⎫−= ⎪⎝⎭ ,213⎛⎫= ⎪⎝⎭ ,20= , (1)根据计算结果,回答:当0a >时,2a = ;当0a =时,2a = ;当a<0时,2a = ;(2)利用以上的规律,计算:①若2x <,则()22x −= ;②()23.14−π= ;(3)若a ,b ,c 为三角形的三边,化简:()()()222a b c b c a b c a +−+−−++−【答案】(1)3,0.5,6,34,13,0;,0,a a −(2)2x −, 3.14π−(3)a b c ++【分析】(1)根据算术平方根的定义,逐个进行计算即可;(2)根据(1)中得出的结论,进行计算即可;(3)根据三角形三边之间的关系,得出0a b c +−>,0b c a −−<,0b c a +−>,再根据算术平方根的性质,进行化简,最后合并同类项即可.【详解】(1)解:2393==,20.50.250.5==,()26366−==,23934164⎛⎫−== ⎪⎝⎭,2111393⎛⎫== ⎪⎝⎭,2000== 故答案为:3,0.5,6,34,13,0;当0a >时,2a a =; 当0a =时,20a =;当a<0时,2a a =−;故答案为:,0,a a −;(2)解:①∵2x <,∴20x −<, ∴()()2222x x x −=−−=− ;②∵3.14π<,∴3.140π−<, ∴()()23.14 3.14 3.14ππ−π=−−=−,故答案为:2x −, 3.14π−;(3)解:∵a ,b ,c 为三角形的三边∴0a b c +−>,0b c a −−<,0b c a +−>,()()()222a b c b c a b c a +−+−−++− a b c b c a b c a=+−+−−++− a b c a c b b c a =+−++−++−a b c =++. 【点睛】本题主要考查了二次根式的性质,解题的关键是掌握2a a =. 8.(2023上·吉林长春·八年级校考阶段练习)我们学习二次根式时,掌握了它的两条性质:()()20a a a =≥()()200a a a a a a ⎧≥⎪==⎨−<⎪⎩(a 为任意实数). 利用上述两条性质解决下列问题.(1)化简()21x −,当______时,()21x −=______;当______时,()21x −=______. (2)解方程()213x −=; (3)方程()()22214x x −+−=的解是______; (4)方程()()221231x x −−+=−的解是______.【答案】(1)1x ≥,1x −;1x <,1x −;(2)4x =或2x =−(3)72x =(4)8x =−或43x =−【分析】(1)根据二次根式的性质化简即可;(2)结合(1)分类讨论求解即可;(3)由二次根式有意义的条件可求出2x ≥,从而得出11x −≤−,即可将原方程化简,再求解即可;(4)根据二次根式的性质分类讨论求解即可,注意舍去不合题意的解.【详解】(1)解:化简()21x −,当10x −≥,即1x ≥时,()211x x −=−; 当10x −<,即1x <时,()211x x −=−.故答案为:1x ≥,1x −;1x <,1x −;(2)解:()213x −=,由(1)可知当1x ≥时,原方程可化为13x −=,解得:4x =;当1x <时,原方程可化为13x −=,解得:2x =−.∴原方程的解为4x =或2x =−;(3)解:∵方程()()22214x x −+−=成立,∴20x −≥,∴2x ≥,∴11x −≤−, ∴原方程可化为214x x −+−=,解得:72x =; (4)解:()()221231x x −−+=−分类讨论:当3x <−时,即10x −<,30x +<,∴原方程可化为()1231x x −−−−=−,解得:8x =−;当31x −≤<时,即10x −<,30x +≥,∴原方程可化为()1231x x −−+=−, 解得:43x =−;当1x ≥时,即10x −>,30x +≥,∴原方程可化为()1231x x −−+=−,解得:6x =−(舍).综上可知该方程的解为8x =−或43x =−.【点睛】本题考查二次根式有意义的条件,利用二次根式的性质解方程.熟练掌握二次根式的性质是解题关键. 9.(2023上·福建漳州·八年级校考阶段练习)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如()232212+=+,善于思考的小明进行了以下探索:若设()22222222a b m n m n mn +=+=++(其中a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似2a b +的式子化为平方式的方法,请你仿照小明的方法探索并解决下列问题:(1)若()277a b m n +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:=a _____,b =_____; (2)若()2633a m n +=+,且a 、m 、n 均为正整数,求a 的值;(3)化简下列各式:①526+; ②4102541025−++++.【答案】(1)227m n +,2mn (2)a 的值为12或28(3)①32+;②51+【分析】(1)利用完全平方公式展开可得到用含m 、n 表示a 、b ;(2)利用(1)中的结论得到62mn =,利用a 、m 、n 均为正整数得到1m =,3n =或3m =,1n =,再代入进行计算即可得到答案;(3)①将原式变形为()232+即可得到答案;②设4102541025t −++++=,两边平方得到2625t =+,再把625+写成完全平方式,即可得到t 的值,从而得到答案.【详解】(1)解:()22277727a b m n m n mn +=+=++,227a m n ∴=+,2b mn =;故答案为:227m n +,2mn ;(2)解:∵62mn =,∴3mn =,∵a m n 、、均为正整数,∴1m =,3n =或3m =,1n =,当1m =,3n =时,2222313328a m n =+=+⨯=;当3m =,1n =时,2222333112a m n =+=+⨯=;即a 的值为12或28;(3)解:①()2526322323232+=++⨯=+=+,②设4102541025t −++++=, 则()241025410252161025t =−+++++−+82625=+− ()28251=+− ()8251=+−625=+()251=+, ∴51t =+.【点睛】本题考查了根据二次根式的性质进行化简,完全平方公式的应用,熟练掌握以上知识点,准确进行计算是解此题的关键. 10.(2023下·浙江金华·八年级校联考阶段练习)求代数式()21a a +−,1007a =,如图是小亮和小芳的解答过程:解:原式()21a a =+− 1a a =+− 1= 解:原式()21a a =+−=+−1a a2013=(1)________的解法是正确的;(2)化简代数式269a a a +−+,(其中a<0);(3)若()()225813a a −++=,直接写出a 的取值范围.【答案】(1)小芳(2)3(3)85a −≤≤【分析】(1)根据题意,利用二次根式性质化简后求值即可验证;(2)由a<0得到30a −<,利用二次根式性质化简后求值即可得到答案;(3)利用二次根式性质化简后,利用绝对值的代数意义,分三类讨论求解即可得到答案.【详解】(1)解:1007a =,10a ∴−<,∴()2111a a a −=−=−,即()21a a +−=+−1a a 21a =−当1007a =时,原式2013=,∴小芳的解法是正确的,故答案为:小芳; (2)解:0a <,∴30a −<,∴269a a a +−+ ()23a a =+− 3a a =+− 3a a =−+3=;(3)解:()()225858a a a a −++=−+−, 当8a ≤−时,58582313a a a a a −++=−−−=−−=,解得8a =−; 当85a −<<时,585813a a a a −++=−++=; 当5a ≥时,58582313a a a a a −++=−++=+=,解得5a =;综上,a 的取值范围是85a −≤≤.【点睛】本题考查代数式化简求值,熟练掌握二次根式性质是解决问题的关键.【经典计算题二 二次根式的乘除法】 11.(2023上·江苏南通·八年级校考期中)计算: (1)20318*******−⎛⎫+−−−− ⎪⎝⎭ (2)()215432733÷−⨯ 【答案】(1)31−− (2)26−【分析】(1)本题考查实数的混合运算,先进行开方,去绝对值,零指数幂,负整数指数幂的运算,再进行加减运算即可;(2)本题考查二次根式的乘除混合运算,根据乘除运算法则,进行计算即可.【详解】(1)解:原式2231431=+−−−=−−;(2)原式213633326332633=−⨯÷⨯⨯=−÷⨯=−. 12.(2023上·北京丰台·九年级北京丰台二中校考开学考试)化简:(1)364(2)()22640,09b a b a >≥ (3)()290,064x x y y ≥> (4)()250,0169x x y y ≥> (5)212121335÷⨯ (6)53232ab a b b ⎛⎫⋅− ⎪⎝⎭【答案】(1)38(2)83ba(3)36xy (4)513xy(5)1(6)223a b −【分析】(1)根据二次根式的性质,进行化简即可;(2)根据二次根式的性质,进行化简即可;(3)根据二次根式的性质,进行化简即可;(4)根据二次根式的性质,进行化简即可;(5)利用二次根式的乘除法则,进行计算即可;(6)根据二次根式的乘法法则,进行计算即可.【详解】(1)解:33648=; (2)2264893b b a a =; (3)293646x x y y =; (4)25516913x x yy =; (5)2125371211335375÷⨯=⨯⨯=;(6)23535322233332a b ab a b ab a b a b b b b ⎛⎫⋅−=−⋅=−=− ⎪⎝⎭.【点睛】本题考查二次根式的性质,以及二次根式的乘除法,熟练掌握二次根式的性质和二次根式的运算法则,是解题的关键. 13.(2023下·广东东莞·八年级校联考期中)计算:(1)()()122035++−;(2)()0423622(8)π−÷−+. 【答案】(1)335+;(2)3312−. 【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的除法法则和零指数幂的意义计算,然后合并即可.【详解】(1)原式()()232535=++−,232535=++−,335=+;(2)原式()14236122=−⨯−,33212=−−,3312=−.【点睛】此题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法法则、除法法则和零指数幂是解决问题的关键. 14.(2023下·山东德州·八年级统考期中)计算:(1)()()0212221201916π−+−−−−; (2)()1223285227⎛⎫÷⨯− ⎪ ⎪⎝⎭. 【答案】(1)12−(2)51021−【分析】对于(1),由2124−=,0(2019)1π−=,11164=,再计算即可;对于(2),根据二次根式的乘除法法则计算即可.【详解】(1)原式1122144=+−−−12=−;(2)原式5116(5)27328=⨯⨯−5516132728=−⨯⨯510349=−⨯ 511037=−⨯⨯ 51021=−.【点睛】本题主要考查了实数的运算,掌握运算法则,理解零指数次幂和负整数指数次幂是解题的关键. 15.(2023下·山东济宁·八年级统考阶段练习)计算. (1)148312242÷+⨯− (2)()()()()22313223132−++−−+ 【答案】(1)46−(2)9【分析】(1)先根据二次根式的乘除法则计算乘除,再合并同类二次根式即可;(2)先根据完全平方公式和二次根式的乘法则分别进行计算,再合并同类二次根式即可.【详解】(1)解:148312242÷+⨯−148312262⨯=÷+−16626=+−46=−;(2)()()()()22313223132−++−−+()31233443232332=+−+++−+−−1123223=+−− 9=.【点睛】本题主要考查了二次根式的混合运算;熟练运用二次根式的运算法则和公式法是解题的关键. 16.(2022上·四川达州·八年级四川省渠县中学校考期中)计算:(1)()252(52)(52)+−++ (2)380151215−++− 【答案】(1)1045+(2)33+【分析】(1)先利用乘法公式进行二次根式的计算,然后合并即可;(2)先进行平方差公式的运算,然后合并.【详解】(1)解:()252(52)(52)+−++545454=−+++1045=+; (2)解:380151215−++−801523155=−+−43231=−+−33=+.【点睛】此题考查乘法公式、立方根以及二次根式的混合运算,解题关键在于掌握运算法则.17.(2023下·河南信阳·七年级统考期末)计算:(1)()()2236125−−+; (2)()33123⨯−+−. 【答案】(1)10(2)33+【分析】(1)先化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘法法则,去绝对值,再合并即可;【详解】(1)解:()()2236125−−+615=−+10=(2)解:()33123⨯−+−3323=−+33=+【点睛】本题考查了二次根式的混合运算,二次根式的性质等知识点,主要考查学生的计算和化简能力. 18.(2023下·浙江宁波·八年级统考期末)计算: (1)()18123−⨯; (2)()()()2311551+−−+. 【答案】(1)366−(2)823+【分析】(1)先利用二次根式的乘除法的法则运算,再将各项化简为最简二次根式即可.(2)利用平方差公式和完全平方公式进行化简,再计算加减即可.【详解】(1)解:原式5436=−366=−(2)解:原式323115=++−+823=+【点睛】本题考查二次根式的乘除,熟练掌握二次根式的乘法运算法则是解题的关键.19.(2023下·黑龙江鸡西·八年级统考期中)(1)计算:()()()2252522−+−−(2)下面是王鑫同学进行实数运算的过程,认真阅读并完成相应的问题:921224323⎛⎫−⨯+ ⎪ ⎪⎝⎭ 212243932⎛⎫−⨯+ =⎪ ⎪⎝⎭……第一步 322232623323=−⨯+⨯……第二步 32122622=−+……第三步 922=……第四步 ①以上化简步骤中第一步化简的依据是:______;②第______步开始出现错误,请写出错误的原因______;③该运算正确结果应是______.【答案】(1)742−+;(2)①商的算术平方根,等于算术平方根的商或a a b b =(a b ≥,0b >);②二,括号前是负号,去掉括号后第二项没有变号;③3322−. 【分析】(1)根据平方差公式,完全平方公式化简计算即可.(2)①根据二次根式的性质:a a b b =(a b ≥,0b >),即可得到答案;②括号前是负号,去掉括号后第二项没有变号.③根据二次根式的性质和运算法则,正确运算即可.【详解】(1)()()()()()22525224544221642742−+−−=−−−+=−−+=−+; (2)①化简步骤中第一化简的依据为a ab b =(a b ≥,0b >), 故答案为:a a b b =(a b ≥,0b >);②第二步开始出现错误,错误的原因为:括号前是负号,去掉括号后第二项没有变号;故答案为:二,括号前是负号,去掉括号后第二项没有变号;③921224323⎛⎫−⨯+ ⎪ ⎪⎝⎭ 921224332⎛⎫=−⨯+ ⎪ ⎪⎝⎭322232623323=−⨯−⨯32122622=−−3322=−. 该运算正确结果应是3322−. 故答案为:3322−. 【点睛】本题考查了二次根式的混合运算和性质,熟练掌握二次根式运算的法则是解题的关键. 20.(2023下·江苏·八年级期末)观察下列各式及其验算过程: 222233+=,验证:3223222223333⨯++===; 333388+=,验证:3338333338888⨯++===. (1)按照上述两个等式及其验证过程的基本思路,猜想4415+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为大于1的整数)表示的等式并给予验证.【答案】(1)481541515+=,验证见解析(2)2211n n n n n n +=−−,验证见解析【分析】(1)根据材料中的方法即可求解.44441515+=,将左右两边按照二次根式的性质计算即可验证;(2)由(1)中的式子可得规律:2211n nn n n n +=−−.【详解】(1)解:∵222233+=,333388+=,∴44281544415151515+==⋅=, 验证:4648154151515+==,正确;(2)解:由(1)中的规律可知2223218311541=−=−=−,,, ∴2211n nn n n n +=−−,验证:3222111n n n n n n n n +==−−−,正确. 【点睛】本题考查二次根式的乘除以及数字的变化类,通过具体数值的计算,发现其规律是解决问题的关键.【经典计算题三 二次根式的加减法】 21.(2023上·四川成都·八年级校考期中)计算: (1)1823122++⨯; (2)()212327|13|2π−⎝−⎛⎫−++−− ⎪⎭.【答案】(1)326+ (2)623+【分析】本题主要考查二次根式的混合运算,实数的混合运算; (1)先进行二次根式的乘法运算,化简,再算加减即可; (2)先算绝对值,零指数幂,负整指数幂,化简,再算加减即可. 掌握相关运算法则,正确的计算,是解题的关键.【详解】(1)解:原式2226=++326=+; (2)解:原式133431=++−+623=+.22.(2024上·湖南株洲·八年级统考期末)化简求值:224(1)244a a a a a −−÷+++,其中5a =. 【答案】22a −,254+【分析】本题考查分式的化简求值,先化简分式,再代入计算即可.【详解】原式()()()222222a a a a a a +−+−=÷++()()()222222a a a a +=⋅++−22a =−,当5a =时,原式()()()252222542525252a +====+−−−+.23.(2024上·广东梅州·八年级统考期末)计算: (1)2(32)(32)(2)+−+−;(2)3231381642−⎛⎫−++−− ⎪⎝⎭.【答案】(1)3 (2)12【分析】(1)先利用完全平方公式和二次根式的性质展开,然后计算即可;(2)根据有理数的乘方,算术平方根,立方根和负整数指数幂的性质化简,然后计算即可. 【详解】(1)解:原式322=−+3=; (2)解:原式()9948=−++−−9948=−+++12=.【点睛】本题考查了完全平方公式,二次根式的性质,有理数的乘方,算术平方根,立方根和负整数指数幂,熟练掌握相关运算法则是解题的关键. 24.(2023上·河北张家口·八年级统考期末)计算: (1)计算:()2221216+−⨯.(2)先化简,再求值:2221111x x x x x −+⎛⎫−÷⎪+−⎝⎭,其中31x =+. 【答案】(1)9 (2)11x −;33【分析】本题考查了二次根式的混合运算、分式的化简求值及分母有理化: (1)利用二次根式的混合运算法则即可求解;(2)先利用分式的混合运算法则进行化简,再将31x =+代入原式即可求解; 熟练掌握其运算法则是解题的关键.【详解】(1)解:原式842142=++−94242=+−9=(2)原式()()()2111111x x x x x x x +−+⎛⎫=−⨯ ⎪++⎝⎭−()()()211111x x x x =+-´+-11x =−, 当31x =+时,原式11333113===+−. 25.(2023上·甘肃兰州·八年级统考期中)阅读与思考 阅读下列材料,并解决相应问题: ()()()()4624624624626262++===+−−+.应用:用上述类似的方法化简下列各式: (1)116576+++; (2)若k 是31−,求28k 的值. 【答案】(1)75− (2)843+【分析】本题考查二次根式的混合运算,分母有理化.(1)先利用分母有理化化简二次根式,再合并同类二次根式即可; (2)先进行乘方运算,再进行分母有理化即可. 掌握分母有理化的方法,是解题的关键.【详解】(1)解:原式()()()()657665657676−−=++−+−6576=−+−75=−;(2)由题意可得:()()()()22842388884342342342331k +====+−−+−.26.(2024上·甘肃兰州·八年级统考期末)计算: (1)148312242÷+⨯−; (2)()()32233223+−. 【答案】(1)46− (2)6【分析】本题考查了二次根式的混合运算,掌握运算法则是解题关键. (1)根据二次根式混合运算的法则进行计算即可. (2)根据二次根式混合运算的法则进行计算即可.【详解】(1)148312242÷+⨯−148312262⨯=÷+−4626=+− 46=−;(2)()()32233223+−()()223223=−1812=− 6=.27.(2024上·宁夏银川·八年级校考期末)计算:(1)635082⨯⨯−(2)()()()21232323−−−+ 【答案】(1)17 (2)1243−【分析】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.(1)先运用二次根式乘除法则进行计算,再进行相减即可; (2)利用平方差公式和完全平方公式计算. 【详解】(1)原式40033=−⨯203=−17= (2)原式()()1431243=−+−−31314=−−1243=−28.(2024上·河北保定·八年级统考期末)计算 (1)11233−+; (2)()()25353(31)+−−−;(3)36427122−−−+;(4)01227( 3.14)3π+−−. 【答案】(1)433;(2)823−+; (3)6; (4)4.【分析】本题考查二次根式的运算和零指数幂的运算,解题关键掌握运算法则. (1)先进行分母有理化,然后合并同类二次根式即可; (2)根据平方差和完全平方公式进行计算即可;(3)先进行算术平方根,立方根和化简绝对值运算,再进行加减即可; (2)先由二次根式的除法和零指数幂的运算法则计算,再进行加减即可;【详解】(1)原式32333=−+433=;(2)原式4423=−−+823=−+; (3)原式()83212=−−−+6=;(4)原式491=+−231=+−4=.29.(2023上·辽宁丹东·八年级校考期中)观察下列一组式子的变形过程,然后回答问题:()()()()2213113131231313131⨯−−−===++−−. 153253−=+,175275−=+.(1)用含n (n 为正整数)的关系式表示上述各式子的变形规律为_______.(2)利用上面的结论,求下列式子的值:()11112023113355720212023⎛⎫+++⋯⋯++ ⎪++++⎝⎭.【答案】(1)1222n nn n +−=++(2)1011【分析】本题主要考查利用平方差公式分母有理化,二次根式的混合运算等知识点, (1)数字找规律,进行计算即可解答; (2)利用前边的规律,进行计算即可解答;注意根据平方差公式的结构找到另一因式是求解的关键. 【详解】(1)总结规律可知:12n n++()()222n n n nn n +−=+++−22n n+−=,故答案为:1222n nn n +−=++;(2)()11112023113355720212023⎛⎫+++⋯⋯++ ⎪++++⎝⎭()31537520232021202312222⎛⎫−−−−=+++⋯⋯++ ⎪ ⎪⎝⎭()()20231202312−=⨯+1011=.30.(2023上·吉林长春·九年级统考期末)【阅读材料】阅读下列材料,然后回答问题:(ⅰ)有理化因式:两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;211a ++的有理化因式是211a −+.(ⅱ)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去,指的是如果二次根式中分母有根号,那么通常在分子、分母上同乘以一个二次根式,达到化去分母中根号的目的. 例如:11333333⋅==⋅;()()()221222212121⋅−==−++−.【知识运用】(1)填空:25的有理化因式是______(写出一个即可);3a +的有理化因式是______. (2)把下列各式的分母有理化: ①6226+−; ②12x +. (3)化简:111213298++++++. 【答案】(1)5;3a −;(2)①23−−;②222x x −−;(3)2 【分析】本题考查了二次根式的混合运算,分母有理化: (1)根据有理化因式定义求解; (2)①②利用分母有理化计算; (3)先分母有理化,然后合并即可.【详解】(1)25的有理化因式是5(答案不唯一);3a +的有理化因式是3a −. 故答案为:5(答案不唯一);3a −;(2)①()()()()2622662(26)2326262626++++===−−−−−+.②()()21222222x x x x x x −−==−++−.(3)111213298++++++()()()()()()213298212132329898−−−=++++−+−+−213298=−+−++−19=−+ 13=−+ 2=.【经典计算题四 已知字母的值化简求值】31.(2024上·湖南长沙·九年级明德华兴中学校联考期末)先化简,后求值:625222x x x x −⎛⎫÷−+ ⎪++⎝⎭,其中4x =−. 【答案】23x +,2−【分析】题考查分式的混合运算,代数式求值等知识,解题的关键是掌握分式的混合运算的顺序和相关运算法则.先计算括号内的部分,化简后代入计算即可;【详解】解:原式()625222x x x x −⎡⎤=÷−−⎢⎥++⎣⎦26254222x x x x x ⎛⎫−−=÷− ⎪+++⎝⎭()2546222x x x x −−−=÷++262922x x x x −−=÷++()()()232233x x x x x −+=⋅+−+23x =+,当4x =−时,原式222431===−−+−.32.(2024上·福建泉州·八年级校考期末)先化简,再求值:()()()()2222328x y x y x y x xy x ⎡⎤+−+−+−÷⎣⎦,其中121x =−,121y =+. 【答案】x y −,2 【分析】本题考查的知识点是整式的混合运算化简求值以及分式的分母有理化,掌握整式的混合运算的运算法则是解此题的关键.先利用完全平方公式,平方差公式,以及单项式乘多项式的运算法则计算化简中括号中的内容,再进行除法运算,最后再代入求值即可. 【详解】解:原式()2222242368x y x xy y x xy x=−+−++−÷()2888x xy x=−÷x y =−.当12121x ==+−,12121y ==−+时,原式()21212=+−−=33.(2024上·湖南岳阳·八年级统考期末)若52,52a b =+=−. (1)求22a b −. (2)求33a b ab +. 【答案】(1)85 (2)18【分析】本题考查的是二次根式的化简求值,掌握二次根式的乘法法则、加法法则是解题的关键. (1)根据平方差公式把原式变形,代入计算即可;(2)先利用平方差公式计算出1ab =,根据提公因式、完全平方公式把原式变形,代入计算即可. 【详解】(1)解:52,52a b =+=−,原式()()a b a b =+−254=⨯85=; (2)解:52,52a b =+=−,(52)(52)25,(52)(52)1a b ab ∴+=++−==+−=,则33a b ab+()22ab a b =+2()2ab a b ab ⎡⎤=+−⎣⎦21(25)2⎡⎤=⨯−⎣⎦18=. 34.(2023上·湖北武汉·八年级期末)设-x =+2121,2121y +=−,求223x xy y −+值. 【答案】31【分析】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.先把2121x −=+,2121y +=−化简,再把223x xy y −+变形为()2x y xy−−代入计算即可.【详解】解:∵()()()22121322212121x −−===−++−,()()()22121322212121y ++===+−−+,∴223x xy y −+222x xy y xy =−+− ()2=−−x y xy()()()()2322322322322⎡⎤=−−+−−+⎣⎦()()24298=−−−=321−31=.35.(2020下·湖北黄冈·八年级校考阶段练习)已知72a =+,72b =−,求下列各式的值. (1)222a ab b −+. (2)22a b −. 【答案】(1)16 (2)87【分析】(1)直接利用已知得出a b +,a b −的值,进而结合完全平方公式计算得出答案; (2)结合平方差公式计算得出答案. 【详解】(1)解:∵72a =+,72b =−, ∴727227a b +=++−=,()()72724a b −=+−−=,∴222a ab b −+()2a b =−24=16=;(2)22a b −()()a b a b =+−274=⨯87=. 【点睛】本题考查二次根式的化简求值,完全平方公式,平方差公式,求代数式的值,运用了整体代入的思想.正确运用乘法公式进行因式分解是解题关键.36.(2023上·四川成都·八年级成都市青羊实验中学校考期中)已知57x =+,57y =−,求下列代数式的值: (1)22x y +; (2)22x xy y −+. 【答案】(1)24 (2)26【分析】本题主要考查了二次根式的化简求值,完全平方公式的变形求值: (1)先求出25x y +=,2xy =−,再根据()2222x y x y xy +=+−进行求解即可;(2)根据(1)所求代值计算即可.【详解】(1)解:∵57x =+,57y =−,∴575725x y +=++−=,()()5757572xy =+−=−=−,∴()()()22222252220424x y x y xy +=+−=−⨯−=+=;(2)解:()2224224226x xy y −+=−−=+=.37.(2024上·湖南常德·八年级统考期末)阅读材料:在解决问题“已知123a =−,求23124a a −+的值”时,小红是这样分析与解答的: ()()12323232323a +===+−−+, 23a ∴−=()223a ∴−=,即2244341a a a a −+=∴−=−.()223124344341a a a a −+=−+=−+=.请你根据小红的分析过程,解决如下问题:(1)化简:2414+(2)若336a =−,求22121a a −+的值.【答案】(1)414− (2)5−【分析】本题考查了分母有理化以及利用整体思想求代数式的值,正确的化简是解题关键. (1)分子、分母同时乘以()414−,可实现分母有理化;(2)分母有理化可得36a =+,根据材料可得263a a −=−;结合()222121261a a a a −+=−+,利用整体思想即可求解.【详解】(1)解:()()()24142414414414−=++−()24142−=414=−;(2)解:()()()()3363363363363636a ++====+−−+,∴36a −=,∴()236a −=,即2696a a −+=,263a a ∴−=−,()222121261615a a a a −+=−+=−+=−38.(2023上·陕西咸阳·八年级统考期末)阅读理解:已知32x =−,求代数式245x x +−的值.佳佳的做法是:根据32x =−得2(2)3x +=,2443x x ∴++=,得241x x +=−.把24x x +作为整体代入,得245156x x +−=−−=−.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下列问题:(1)已知61x =+,求代数式223x x −+的值; (2)已知512x −=,求代数式321x x ++的值. 【答案】(1)8 (2)512+【分析】本题考查代数式求值,二次根式的运算.理解并掌握题干中的解题方法,利用整体代入法求解,是解题的关键.(1)根据61x =+,得到()216x −=,进而得到225x x −=,整体代入求值即可;(2)根据512x −=,推出21x x +=,利用整体代入求值即可.【详解】(1)解:∵61x =+,∴()216x −=,∴2216x x −+=,∴225x x −=,∴223538x x −+=+=;(2)∵512x −=,∴251x =−, ∴215x +=,∴()2215x +=,∴24415x x ++=,∴2444x x +=,∴21x x +=,∴321x x ++()21x x x =++1x =+512+=.39.(2023上·江西南昌·八年级校考期末)请阅读下列材料: 问题:已知53x =−,求代数式269x x +−的值. 小敏的做法是:根据53x =−得()235x +=, ∴2695x x ++=,得:264x x +=−.把26x x +作为整体代入:得26913x x =−+−即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题: (1)己知x 53=+,求代数式2612x x −+的值; (2)已知 512x −=,求代数式3221x x x +++的值. 【答案】(1)8(2)532+【分析】本题主要考查了完全平方公式的应用、二次根式的乘法、整体思想等知识点,解题的关键是熟练掌握运算法则,准确计算.(1)根据完全平方公式求出264x x −=−,然后代入计算即可;掌握整体思想是解题的关键;(2)根据完全平方公式计算可得21x x +=,然后利用()()3222211x x x x x x x x +++=++++整体代入计算即可.【详解】(1)解:∵x 53=+,∴()235x −=,∴2695x x −+=,∴264x x −=−,∴212612x x +=−4+−=8.(2)解:∵512x −=,∴2215115=2224x ⎛⎫−⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,即21544++=x x , ∴21x x +=,∴3221x x x +++()()221x x x x x =++++11x =++5122−=+ 532+=.40.(2023上·陕西榆林·八年级校联考期末)我们知道()()32321+−=,因此将132+分子、分母同时乘“32−”,分母就变成了1,原式可以化简为 32−,所以有13232=−+.请仿照上面的方法,解决下列各题.(1)化简:152=+ ,165=− ;(2)若1322x =+,1322y =−,求()2x y xy −−的值;(3)根据以上规律计算下列式子的值:111121324320222021++++++++.【答案】(1)52−,65+ (2)31 (3)20221−【分析】本题考查二次根式的混合运算、分母有理化、数字类规律探究,熟练掌握分母有理化是解答的关键.(1)利用分母有理化的计算方法求解即可;(2)先利用分母有理化化简x 、y ,再代值求解即可;(3)利用分母有理化得出的结论化简各项,进而求解即可.【详解】(1)解:()()15252525252−==−++−,()()16565656565+==+−−+,故答案为:52−,65+;(2)解:∵()()1322322322322322x −===−++−,()()1322322322322322y +===+−−+,∴()32232242x y −=−−+=−,()()3223221xy =+−=,∴()2x y xy −−()2421=−−=321−31=;(3)解:∵()()111111n n n nn nn nn n+−==+−+++++−∴111121324320222021++++++++21324320222021=−+−+−++−20221=−.【经典计算题五 分母有理化】41.(2023上·上海松江·八年级统考期末)计算:1123233322−+++.【答案】62【分析】本题考查了二次根式加减运算,先分母有理化,化简二次根式,再加减计算即可. 【详解】解:原式()423232=−−++423232=−+++62=.42.(2024上·上海闵行·八年级统考期末)计算:2041(23)9(32)332−++−−+.【答案】1453−.【分析】此题考查了二次根式的化简和分母有理化,根据二次根式的化简法则依次化简后再计算加减法,掌握二次根式的性质是解题的关键.【详解】解:原式()()()()224321243339133232−=−+++⨯−+−,4433438331=−+−++−, 1453=−.43.(2024上·上海普陀·八年级统考期末)计算:261822623⨯+−−. 【答案】4−【分析】本题考查了二次根式的混合运算、分母有理化,根据二次根式的混合运算法则进行计算即可得出答案,熟练掌握二次根式的混合运算法则是解此题的关键. 【详解】解:261822623⨯+−− ()()()2231218262323+=+−+−()33223=+−+23423=−−4=−.44.(2023上·四川成都·八年级成都市青羊实验中学校考期中)已知121m =−,n 是m 的小数部分. (1)求1n n+的值; (2)求322213m m m n n −−++. 【答案】(1)22 (2)7【分析】本题主要考查了二次根式的估算,二次根式的混合运算,求代数式的值, (1),先求出m ,n 的值,再代入计算;(2),先求出m ,整理22211()2n n n n +=+−,再代入计算即可.【详解】(1)121==−m ()()212121+−+21=+.∵122<<, ∴2213<+<, 则21221=+−=−n ,112121212221+=−+=−++=−n n ; (2)322213m m m n n −−++221=(3)()2−−++−m m m n n221(21)[(21)(21)3](21)221=+⋅+−+−+−+−−2(21)(2122213)(2121)2=+⋅++−−−+−++−2(21)(21)(22)2=+⋅−+−2182=−+−7=.45.(2024上·重庆北碚·八年级西南大学附中校考期末)计算:(1)0111883⎛⎫−+− ⎪ ⎪⎝⎭; (2)12633221⨯+−−−; (3)a b a b b a a −⎛⎫−÷ ⎪⎝⎭;(4)2344111a a a a a −+⎛⎫−+÷ ⎪++⎝⎭.【答案】(1)11214+(2)5231−+(3)a b b +(4)22a a +−−【分析】(1)先根据二次根式的性质和零指数幂进行计算,再根据二次根式的加减法法则进行计算即可; (2)先根据二次根式的乘法法则,绝对值进行计算,同时进行分母有理化,再根据二次根式的加减法法则进行计算即可;(3)先根据分式的减法法则进行计算,同时把除法变成乘法,再根据分式的乘法法则进行计算即可; (4)先根据分式的加减法法则进行计算,同时把除法变成乘法,再根据分式的乘法法则进行计算即可.【详解】(1)解:(1)0111883⎛⎫−+− ⎪ ⎪⎝⎭ 132214=−+11214=+;(2)1263|32|21⨯+−−−216223(21)(21)+=+−−−⨯+622321=+−−− 5231=−+;(3)a b a bb a a −⎛⎫−÷⎪⎝⎭22a b aab a b −=⋅− ()()a b a b a ab a b +−=⋅− a b b +=;(4)2344111a a a a a −+⎛⎫−+÷⎪++⎝⎭ 23(1)(1)11(2)a a a a a −−++=⋅+− 22411(2)a a a a −++=⋅+−2(2)(2)11(2)a a a a a −+−+=⋅+−22a a +=−−.【点睛】本题考查了分式的混合运算,零指数幂,分母有理化和二次根式的混合运算等知识点,能正确根据分式的运算法则和二次根式的运算法则进行计算是解此题的关键,注意运算顺序. 46.(2024上·湖南岳阳·八年级统考期末)阅读下列材料,然后回答问题.学习数学,最重要的是学习数学思想,其心一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知23a b ab +==−,,求22a b +我们可以把a b +和ab 看成是一个整体,令x a b y ab =+=,,则()2222224610a b a b ab x y +=+−=−=+=这样,我们不用求出a ,b ,就可以得到最后的结果. (1)计算:32323232________32323232+−+−⋅=+=−+−+, (2)m 是正整数,11,,11m m m ma b m m m m+−++==+++−且222195522023a ab b ++=,求m .(3)已知2215192x x +−−=,求221519x x ++−的值. 【答案】(1)1;10 (2)1 (3)8【分析】本题考查了二次根式的化简求值,分母有理化,数学常识,准确熟练地进行计算是解题的关键. (1)先把每一个二次根式进行分母有理化,然后再进行计算即可解答;(2)先利用分母有理化化简,a b ,从而求出a b +=42,1m ab +=,然后根据已知可得()2219512023a b ab ++=,再利用完全平方公式进行计算即可解答; (3)利用完全平方公式,进行计算即可解答. 【详解】(1)解:32323232+−⋅−+22(32)(32)(32)(32)(32)(32)+−=⋅+−+− ()()223232=+⋅−。

专题1二次根式-重难点题型(学生版)

专题1二次根式-重难点题型(学生版)

专题1.1 二次根式-重难点题型【题型1 判断二次根式的个数】【例1】(2021春•林州市月考)在式子√π,√a 2+b 2,√a +5,√−3y (y ≤0),√m 2−1和√ab (a <0,b <0)中,是二次根式的有( )A .3个B .4个C .5个D .6个【变式1-1】(2020秋•遂宁期末)下列式子中二次根式的个数有( )(1)√13;(2)√−3;(3)−√x 2+1;(4)√83;(5)√(−13)2;(6)√1−x (x >1);(7)√7.A .2个B .3个C .4个D .5个 【变式1-2】(2020秋•沈丘县期末)在式子√x 2(x >0),√2,√y +1(y =−2),√−2x(x <0),√33,√x 2+1,x +y中,二次根式有( )A .2个B .3个C .4个D .5个 【变式1-3】(2020春•文登区期中)在式子,√x 2(x >0),√2,√y +1(y =﹣2),√−2x (x >0),√33,√x 2+1,x +y 中,二次根式有( )A .2个B .3个C .4个D .5个【题型2 根据二次根式的定义求字母的值】【例2】(2021春•河西区期中)已知√96n 是整数,正整数n 的最小值为( )A .96B .6C .24D .2【变式2-1】(2020秋•偃师市期中)已知n 是正整数,√5n −1是整数,则n 的值可以是( )A .5B .7C .9D .10【变式2-2】(2020春•青山区期中)已知n 是正整数,√117n 是整数,则n 的最小值为 .【变式2-3】(2020春•南昌期中)若√12−x 是正整数,则x 的最大值是 .【题型3 根据二次根式有意义条件求范围】【例3】(2021•宁波模拟)使代数式√2x−13−x 有意义的x 的取值范围是( ) A .x ≠3 B .x ≥12 C .x ≥12且x ≠3D .x ≠12 【变式3-1】(2020春•历城区校级月考)若式子1x 2−4+√x +2有意义,则实数x 的取值范围是( ) A .x >﹣2 B .x ≥﹣2,且x ≠2 C .x ≥﹣2D .x >﹣2,且x ≠2 【变式3-2】(2021•怀化模拟)使√x+1x 2−1有意义的x 的取值范围为 . 【变式3-3】(2021春•海淀区校级月考)求√a +4+1|a|−2√3−a 有意义的a 的整数值: .【题型4 根据二次根式有意义条件求值】【例4】(2021春•蜀山区校级期中)已知y=√x−2+√2−x−√3,则(x+y)2000(x﹣y)2001的值为()A.2−√3B.2+√3C.﹣1D.1【变式4-1】(2021春•淮北月考)已知|2020﹣a|+√a−2021=a,则4a﹣40402的值为()A.8084B.6063C.4042D.2021【变式4-2】(2021•石家庄模拟)若a、b为实数,且b=√a2−1+√1−a2a+7,则a+b=.【变式4-3】(2021春•雨花区校级月考)已知实数x、y为实数,是否存在实数m满足关系式√3x+5y−2−m+√2x+3y−m=√x−100+y⋅√100−x−y?如果存在,求出m的值;如果不存在,说明理由.【题型5 利用二次根式的性质化简】【例5】(2021春•柯桥区月考)已知在数轴上的位置如图所示,化简:√n2+√(m−n)2+√(m+1)2=.【变式5-1】(2021春•江油市月考)已知0<a<1,化简得√(a+1a)2−4+√(a−1a)2+4=.【变式5-2】(2021春•合肥期中)已知三角形的两边长分别为3和5,第三边长为c,化简√c2+4−4c−√14c2−4c+16.【变式5-3】(2021春•龙口市期中)阅读下列解题过程例:若代数式√(a−1)2+√(a−3)2的值是2,求a的取值范围.解:原式=|a﹣1|+|a﹣3|,当a<1时,原式=(1﹣a)+(3﹣a)=4﹣2a=2,解得a=1(舍去);当1≤a≤3时,原式=(a﹣1)+(3﹣a)=2=2,符合条件;当a>3时,原式=(a﹣1)+(a﹣3)=2a﹣4=2,解得a=3(舍去)所以,a的取值范围是1≤a≤3上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题(1)当2≤a≤5时,化简:√(a−2)2+√(a−5)2=;(2)若等式√(3−a)2+√(a−7)2=4成立,则a的取值范围是;(3)若√(a+1)2+√(a−5)2=8,求a的取值.【题型6 化简复合二次根式】【例6】(2020秋•雨城区校级期中)有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a且mn=√b,则a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.例如,因为5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2,所以√5+2√6=√(√3+√2)2=√3+√2.请仿照上面的例子化简下列根式:(1)√4+2√3;(2)√9−4√5.【变式6-1】(2020秋•武侯区校级期中)阅读材料:把根式√x±2√y进行化简,若能找到两个数m,n,使m2+n2=x且mn=√y,则把x±2√y变成m2+n2±2mn=(m±n)2开方,从而使得√x±2√y化简.例如:化简√3+2√2.解:∵3+2√2=1+2+2√2=12+(√2)2+2×1×√2=(1+√2)2,∴√3+2√2=√(1+√2)2=1+√2.请你仿照上面的方法,化简下列各式:(1)√7+4√3;(2)√5−2√6.【变式6-2】(2020秋•济南期中)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,形如√a±2√b,如果你能找到两个数m、n,使m2+n2=a,且mn=√b,则√a±2√b可变形为√m2+n2±2mn=√(m±n)2=|m±n|,从而达到化去一层根号的目的.例如:√3−2√2=√1+2−2√2=√12+(√2)2−2×1×√2=√(1−√2)2=|1−√2|=√2−1仿照上例完成下面各题:①填上适当的数:√13−2√42=√6+7−2×√6×√7=√()2=||=;②试将√8+2√15化简.【变式6-3】(2020秋•漳浦县期中)阅读下面例题:化简√7+2√10解:∵(√2)2+(√5)2=2+5=7,2√2×√5=2√10;7+2√10=2+2√10+5=(√2)2+2×√2×√5+(√5)2=(√2+√5)2∴√7+2√10=√(√2+√5)2=√2+√5由上述例题的方法化简:(1)√5−2√6;(2)√2+√3;(3)√4−√10+2√5√4+√10+2√5.。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围;(2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式. (3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是: a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =.二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A .该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简. (3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0;该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A B A ⋅=22,其中B ≥0. 该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =.解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________.习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________.习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a ∵1-a ≥0,()22-b ≥0 ∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________.分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法: 解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0 ∴()23-x ≥m -9 ∵()23-x ≥0 ∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0 解之得:m ≥9.例5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a ∵6-a ≥0,8-b ≥0,()210-c ≥0 ∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+∴△ABC 为直角三角形.习题6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】(A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________. 习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=; (2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-;(3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3∴()()22125x x x -+-++23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<图(1)∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a∴()()222b a c c a a --++-bac 图(2)ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】(A )()332= (B )()332-=- (C )333= (D )()332-=-习题16. 下列各式成立的是 【 】(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________. 习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b aa b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________.习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为【 】(A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】(A )a - (B )a - (C )a (D )a -- 分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:abc 图(3)10ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0);(4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则【 】(A )x ≥6 (B )0≤x ≤6(C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0) 解:由题意可得:⎩⎨⎧≥-≥060x x 解之得:x ≥6.选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x 解之得:x ≥1.例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0).习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫ ⎝⎛-=m ,则有 【 】(A )65<<m (B )54<<m(C )45-<<-m (D )56-<<-m习题26. 化简12的结果是_________.四、二次根式的除法一般地,有:ba b a=(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件;(2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b );(4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变.五、最简二次根式符合以下条件的二次根式为最简二次根式:(1)被开方数中不含有完全平方数或完全平方式;(2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化.如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+-注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ).解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯= (2)原式228324182712===⨯=. 习题27. 下列计算正确的是【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x y x +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【 】(A )32 (B )3 (C )9 (D )12 例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211-=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+;(2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-=习题37. 化简:891231121++++++ .七、同类二次根式如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是. 同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式. 二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=. 注意:不是同类二次根式不能合并. 例25. 计算:1832225-+. 解:原式232425-+=2272225=+= 例26. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223; (2)()()()23225775-++-. 解:(1)原式223223⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛= 36199243=-=(2)原式364875+-+-= 649-=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的应用
1/二次根式的加减
•[ 初三数学]
•题型:解答题
已知根号下5整数部分是x,小数部分是y,则x减y等于?问题症结:完全没思绪啊
考查知识点:
•二次根式的实际应用
难度:中
已知根号下5整数部分是x,小数部分是y,则x减y等于?解析过程:
规律方法:
表示出x,y可解。

2、求代数式的值
•[ 初三数学]
•题型:解答题
考查知识点:

•二次根式的实际应用
难度:中
解析过程:
解:∵1-8x≥0且8x-1≥0
∴解得:x≤1/8且x≥1/8
∴ x=1/8
∴y=1/2
∴原式=(5/2)-(3/2)=1
如有疑问请递交讨论,祝学习进步!
规律方法:
利用二次根式的非负性先求x的值,再求出y值;最后带入解答
本题知识点:
概述
所属知识点:
[二次根式]
包含次级知识点:
二次根式的实际应用
相关课程:
初三上学期数学课程| 二次根式
知识点总结
二次根式的应用主要体现在两个方面:1.利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;2.利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。

这个过程需要用到二次根式的计算,其实就是化简求值。

常见考法
(1)设计一些规律探索问题提高学生的想象力和创造力;(2)联系生活实际设计一些方案探究题。

误区提醒
(1)不能通过观察,归纳、猜想寻找出共同的规律,并运用这种规律解决问题;
(2)不会应用数学的知识解决实际生活中的问题。

【典型例题】小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长、宽比为3:2,不知道能否裁出来,正在发愁你能帮他解决吗?。

相关文档
最新文档