立体几何-线面与面面垂直的证明

合集下载

空间几何线面平行面面平行线面垂直面面垂直的证明方法

空间几何线面平行面面平行线面垂直面面垂直的证明方法

空间几何线面平行面面平行线面垂直面面垂直的证明方法空间几何中,线、面、平行面、面平行线、面垂直面等概念是非常重要的。

在证明这些概念时,我们需要掌握一些基本的证明方法。

下面,我将介绍一些证明方法,帮助大家更好地理解这些概念。

一、线与面的关系1. 线与平面的关系线与平面的关系有两种情况:线在平面内或线与平面相交。

对于线在平面内的情况,我们可以通过以下证明方法来证明:(1)假设线与平面不在同一平面内,那么这条线必然与平面相交,与已知矛盾。

(2)假设线与平面在同一平面内,但不在同一直线上,那么这条线必然与平面相交,与已知矛盾。

(3)假设线与平面在同一直线上,但不在同一点上,那么这条线必然与平面相交,与已知矛盾。

因此,我们可以得出结论:线与平面必然在同一平面内且相交于一点或在平面内。

2. 线与直线的关系线与直线的关系有三种情况:相交、平行、重合。

对于线与直线相交的情况,我们可以通过以下证明方法来证明:(1)假设两条线不相交,那么这两条线必然平行,与已知矛盾。

(2)假设两条线重合,那么这两条线必然相交,与已知矛盾。

因此,我们可以得出结论:两条不同的线必然相交于一点或平行。

二、面与面的关系1. 平行面的关系平行面的关系有两种情况:平行或重合。

对于平行面的情况,我们可以通过以下证明方法来证明:(1)假设两个平面不平行,那么这两个平面必然相交,与已知矛盾。

(2)假设两个平面重合,那么这两个平面必然平行,与已知矛盾。

因此,我们可以得出结论:两个不同的平面必然平行或相交于一条直线。

2. 面垂直面的关系面垂直面的关系有两种情况:相交于一条直线或垂直。

对于面垂直的情况,我们可以通过以下证明方法来证明:(1)假设两个面不垂直,那么这两个面必然相交于一条直线,与已知矛盾。

(2)假设两个面相交于一条直线,那么这两个面必然不垂直,与已知矛盾。

因此,我们可以得出结论:两个不同的面必然相交于一条直线或垂直。

三、面平行线的关系面平行线的关系有两种情况:平行或相交。

高中数学立体几何线面垂直的证明

高中数学立体几何线面垂直的证明

立体几何证明【知识梳理】1. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)2..直线与平面垂直判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。

(线面垂直⇒线线垂直)性质2:如果两条直线同垂直于一个平面,那么这两条直线平行.三。

平面与平面空间两个平面的位置关系:相交、平行.1. 平面与平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)2. 两个平面垂直判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直⇒线面垂直)知识点一 【例题精讲】1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。

(1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V.2.如图所示, 四棱锥P -ABCD 底面是直角梯形,,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V .3、如图所示,在四棱锥P ﹣ABCD 中,PA ⊥底面 ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC=60°,PA=AB=BC ,E 是PC 的中点,证明: (1)AE ⊥CD (2)PD ⊥平面ABE .4、.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;练习1、如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.(Ⅰ)证明:AD⊥PB;(Ⅱ)求三棱锥C﹣PAB的高.2.如图1-4所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC =∠DBC=120°,E,F,G分别为AC,DC,AD的中点.求证:EF⊥平面BCG;3.如图1-1所示,三棱柱ABC -A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;4、如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.5、三棱锥P﹣ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,(1)求证:面PBC⊥面ABC6.已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求证:PA∥平面EDB;(2)求证:平面EDB⊥平面PBC;7、如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;2.求证BE 垂直平面PAC8、将如图一的矩形ABMD沿CD翻折后构成一四棱锥M﹣ABCD(如图二),若在四棱锥M﹣ABCD中有MA=.(1)求证:AC⊥MD;(2)求四棱锥M ﹣ABCD的体积.作业1、如图1,菱形ABCD的边长为12,∠BAD=60°,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M,N分别是棱BC,AD 的中点,且DM=6.(Ⅰ)求证:OD⊥平面ABC;2、如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;3、如图所示,四棱锥P﹣ABCD的侧面PAD是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M为PC的中点,PC=.(Ⅰ)求证:PC⊥AD;4、如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.5、如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=1,SD=.(1)证明:CD⊥SD;6.如图,四棱锥S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.(Ⅰ)求证:SB=SD;(Ⅱ)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.7、如图,在矩形ABCD中,点E为边AD上的点,点F为边CD的中点,2 34A E DB A A===,现将ABE∆沿BE边折至PBE∆位置,且平面PBE⊥平面BCDE.(1)求证:平面PBE ⊥平面PEF ;8、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点.(1) 证明:AD ⊥平面DEF;9、在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF10.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点. (Ⅱ)求证://PB 平面AEC ;AB CDEBCDEFP11.棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,过C、M、D1作正方体的截面,则截面的面积是。

立体几何线面与面面垂直的证明

立体几何线面与面面垂直的证明

那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线面垂直与面面垂直的判定与性质

线面垂直与面面垂直的判定与性质

立体几何之垂直关系【知识要点】空间中的垂直关系如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.如果一个平面过另一个平面的一条垂线,则两个平面互相垂直. 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.解决空间问题的重要思想方法:等价转化——化空间问题为平面问题.空间平行、垂直关系证明的基本思想方法——转化与联系,如图所示.题型1 平移证明线线垂直 例1 如图,在四棱锥ABCD P -中,N M AD BC AB AD BC BC AB ,.2,1,,===⊥分别为DC PD ,的中点,求证:AC MN ⊥例2 底面ABCD 是正方形,Q G BE PD PD BE ,,2,=‖分别为AP AB ,的中点,求证:CG QE ⊥例3 如图,在正方形1111D C B A ABCD -中,M 为1CC 的中点,F E ,分别为11,D A CD 的中点,AC 交BD 于点O ,求证:OM EF ⊥题型2 线面垂直判定例1 如图,在三棱锥ABC P -中,PAB ∆是等边三角形。

①若ABC ∆是等边三角形,证明:PC AB ⊥②若 90=∠=∠PBC PAC ,证明:PC AB ⊥例 2 已知四棱台1111D C B A ABCD -的上下底面边长分别是2和4的正方形,41=AA 且ABCD AA 底面⊥1,点P 为1DD 的中点,求证:PBC AB 面⊥1例3 如图,在三棱柱111C B A ABC -中,AC AB BAC ==∠,90,1A 在底面ABC 的射影为BC 的中点,D 为11C B 的中点。

证明:⊥D A 1平面BC A 1题型3 线面垂直性质证明线线垂直例1 如图,在三棱柱111C B A ABC -中,侧棱垂直于底面,D AA AC ACB ,21,901==∠ 是棱1AA 的中点,求证:BD DC ⊥1例2 已知正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,M 为AC 上一点,N 为BF 上一点,且FN AM =。

高中数学必修2立体几何专题-线面垂直方法总结

高中数学必修2立体几何专题-线面垂直方法总结
垂直于交线所以无论何时见到已知两个平面垂直都要首先找其交线看是否存在直线垂直于交线来决定是否该作辅助线这样就能目标明确事半功倍1已知四棱锥pabcd的顶点p在底面的射影恰好是底面菱形abcd的两条对角线的交点若ab3pb4则pa长度的取值范围为解析中n可能在内
【 证 明 】(1) 在 四 棱 锥 P—ABCD 中 , 因 为 PA⊥ 底 面 ABCD , CD 平 面 ABCD , 故 PA⊥CD. 又因为AC⊥CD,PA∩AC=A,所以CD⊥平 面PAC. 而AE 平面PAC,所以CD⊥AE. (2) 由 PA = AB = BC , ∠ ABC = 60° , 得 △ABC是等边三角形,故AC=PA.
2. 在 正 方体 ABCD - A1B1C1D1 中 , 棱 长为2,M是AD1上任意一点,M到平 面BCB1的距离是_2______.
3.如图,在正方形SG1G2G3中, E,F分别是G1G2,G2G3的中 点,D是EF的中点,现沿SE,
SF及EF把这个正方形折成
一个几何体,使G1,G2,G3三点重合于点G,这 样,下列五个结论:①SG⊥平面EFG;②SD⊥
所以DC / /EB. 又 因 为 DC 平 面 ABE, EB 平 面 ABE, 所以DC / /平面ABE.
2因为DC 平面ABC,所以DC AF .
又 因 为 BAC= , 且 AB= AC, 所 以 AF BC .
2 而 BC DC= C, 所 以 AF 平 面 BCDE.




A
B
C
D

A1
B1C
1
D

1



A
A1=
6,
底 面 A B C D 是 菱 形 , A B= 2 , A B C= 6 0 , P为 侧 棱

课件1:线面、面面垂直的判定与性质

课件1:线面、面面垂直的判定与性质
(1)利用定义:两个平面相交,所成的二面角是直二面角;
(2)判定定理:a⊂α,a⊥β⇒α⊥β.
[练一练] 1.(2014·南通期末)已知直线 l⊥平面 α,直线 m⊂平面 β.给出
下列命题: (1)α∥β⇒l⊥m;(2)α⊥β⇒l∥m;(3)l∥m⇒α⊥β;(4)l⊥
m⇒α∥β. 其中正确的命题是________(填序号). 解析:(1)正确;(2)中 l 与 m 还可以是异面或相交的位置
与平面 M 垂直”的________条件(填“充分不必要”, “必要不充分”,“充要”或“既不充分也不必要”). 解析:根据直线与平面垂直的定义知“直线 a 与平面 M 的无数条直线都垂直”不能推出“直线 a 与平面 M 垂直”, 反之可以,所以应该是必要不充分条件.
答案:必要不充分
2.(2014·盐城摸底)设 m,n 是两条不同的直线,α 是一个平面,
[典例] (2014·连云港期末)如图,在直三棱柱
ABC-A1B1C1 中,AB=AC,D 为 BC 的中点,E 为 BD 的中点,F 在 AC1 上,且 AC1=4AF.求证:
(1)平面 ADF⊥平面 BCC1B1; (2)EF∥平面 ABB1A1.
[证明] (1)在直三棱柱 ABC-A1B1C1 中,CC1⊥平 面 ABC,而 AD⊂平面 ABC,所以 CC1⊥AD.
[类题通法] 解决此类问题常用的方法有
(1)依据定理条件才能得出结论的,可结合符合题意的图形
作出判断; (2)否定命题时只需举一个反例; (3)寻找恰当的特殊模型(如构造长方体)进行筛选.
[典例] (2013·重庆高考)如图,四棱锥 P -ABCD 中,PA⊥底面 ABCD,PA=2 3,BC
=CD=2,∠ACB=∠ACD=π3. (1)求证:BD⊥平面 PAC; (2)若侧棱 PC 上的点 F 满足 PF=7FC,求三棱锥 P

【素材】第一章第五节_证明线面垂直的四种方法

【素材】第一章第五节_证明线面垂直的四种方法

证明线面垂直的四种方法直线与平面垂直是空间元素中最重要的关系之一,是建立空间概念的主要支柱,而直线与平面垂直的证明也常有以下四种方法,下面分类举例解析,供参考。

一、运用直线与平面垂直的判定定理若一条直线与平面内的两条相交直线都垂直,则这条直线垂直于这个平面。

例1 如图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1的中点,求证AB1⊥平面A1BD。

证明:由题意知,四边行ABB1A1是正方形,则AB1⊥A1B;取BC中点E,连AE,EB ,则AE⊥BC,在正三棱柱中,侧面BB1C1C⊥底面ABC,故AE⊥面BB1C1C,又BD⊂面BB1C1C,所以AE⊥BD,在正方形BB1C1C中又D为CC1中点,易证△BC D≌△BB1E,得∠EB1B=∠DBC,而∠DBC+∠DBB1=90°,则∠EB1B+∠DBB1=90°,故EB⊥BD,又AE∩EB=E,∴BD⊥平面AEB1,∴BD⊥AB1,又A1B∩BD=B,故AB1⊥平面A1BD。

点评:在本题的证明中,多次证明了直线与平面垂直,其中直线与平面垂直的判定定理是常用判定方法,必须深刻理解这个定理的内涵与实质。

二、运用直线与平面垂直的第二判定定理若两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面。

例2 已知α⊥γ,β⊥γ,α∩β=l,求证:l⊥γ。

证明:如图,要证l⊥γ,则由线面垂直第二判定定理知,只需证l平行于γ的一条垂线即可。

设α∩γ=c,β∩γ=d,在α内任取一点A,作AQ⊥c于Q,则AQ⊥γ。

同理,在β内任取一点B,作BR⊥d于R,则BR⊥γ,且AQ∥BR。

又AQ⊄β,BR⊂β,故AQ∥β,由α∩β=l,得AQ∥l,而AQ⊥γ,故l⊥γ。

点评:此证法可能不是此题的最简证法,但说明了一个道理,每一条路都可能是成功之路,只是对问题的理解角度不同罢了。

三、运用课本中的已证命题:如果一条直线垂直于两个平行平面的一个平面,那么它也垂直于另一个平面。

立体几何垂直的证明方法【线线垂直+线面垂直+面面垂直】【20210210】

立体几何垂直的证明方法【线线垂直+线面垂直+面面垂直】【20210210】

空间点、线、面的位置关系:垂直【背一背基础知识】1.判定两直线垂直,可供选用的定理有:①若a ∥b ,b ⊥c ,则a ⊥c .②若a ⊥α,b ⊂α,则a ⊥b .2.线面垂直的定义:一直线与一平面垂直⇔这条直线与平面内任意直线都垂直;3.线面垂直的判定定理,可选用的定理有:①若a ⊥b ,a ⊥c ,b ,c ⊂α,且b 与c 相交,则a ⊥α.②若a ∥b ,b ⊥α,则a ⊥α.③若α⊥β,α∩β=b ,a ⊂α,a ⊥b ,则a ⊥β.4.判定两平面垂直,可供选用的定理有:若a ⊥α,a ⊂β,则α⊥β.线面垂直1.如图,在三棱台ABC-DEF 中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=F C=1,BC=2,AC=3.(I)求证:BF⊥平面ACFD;2.如图,在四棱锥P ABCD -中,底面ABCD 是︒=∠60DAB 且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD ⊥底面ABCD ,G 为AD 的中点.求证:BG ⊥平面PAD .线线垂直1、如图,在三棱锥P ABC -中,90PAC BAC ∠=∠=︒,PA PB =,点D ,F 分别为BC ,AB 的中点.(1)求证:PF ⊥AD .2、如图,在三棱柱111ABC A B C -中,面11ABB A 为矩形,11,2,AB BC AA D ===为1AA 的中点,BD与1AB 交于点1,O BC AB ⊥.(Ⅰ)证明:1CD AB ⊥3、下图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且22PD AD EC ===,N 为线段PB 的中点.(Ⅰ)证明:NE PD ⊥;4、如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C Ð=°,平面11AA B B ^平面11BB C C 。

立体几何线面垂直的证明

立体几何线面垂直的证明

立体几何证明【知识梳理】1.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)2..直线与平面垂直判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。

(线面垂直⇒线线垂直)性质2:如果两条直线同垂直于一个平面,那么这两条直线平行.三。

平面与平面空间两个平面的位置关系:相交、平行.1.平面与平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)2. 两个平面垂直判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直⇒线面垂直)知识点一 【例题精讲】1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。

(1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V.2.如图所示, 四棱锥P -ABCD 底面是直角梯形,,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V .3、如图所示,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,证明:(1)AE⊥CD(2)PD⊥平面ABE.4、.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;练习1、如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.(Ⅰ)证明:AD⊥PB;(Ⅱ)求三棱锥C﹣PAB的高.2.如图1­4所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.求证:EF⊥平面BCG;3.如图1­1所示,三棱柱ABC­A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;4、如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.5、三棱锥P﹣ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,(1)求证:面PBC⊥面ABC6.已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求证:PA∥平面EDB;(2)求证:平面EDB⊥平面PBC;7、如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;2.求证BE 垂直平面PAC8、将如图一的矩形ABMD沿CD翻折后构成一四棱锥M﹣ABCD(如图二),若在四棱锥M﹣ABCD中有MA=.(1)求证:AC⊥MD;(2)求四棱锥M﹣ABCD的体积.作业1、如图1,菱形ABCD的边长为12,∠BAD=60°,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M,N分别是棱BC,AD 的中点,且DM=6.(Ⅰ)求证:OD⊥平面ABC;2、如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;3、如图所示,四棱锥P﹣ABCD的侧面PAD是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M为PC的中点,PC=.(Ⅰ)求证:PC⊥AD;AD,E,4、如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.5、如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=1,SD=.(1)证明:CD⊥SD;6.如图,四棱锥S ﹣ABCD 中,△ABD 是正三角形,CB=CD ,SC ⊥BD .(Ⅰ)求证:SB=SD ;(Ⅱ)若∠BCD=120°,M 为棱SA 的中点,求证:DM ∥平面SBC .7、如图,在矩形ABCD 中,点E 为边AD 上的点,点F 为边CD 的中点,234A E D B A A ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .(1)求证:平面PBE ⊥平面PEF ;8、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点.(1) 证明:AD ⊥平面DEF;AB CDEBCDEFP9、在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF10.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点. (Ⅱ)求证://PB 平面AEC ;11.棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,过C、M、D1作正方体的截面,则截面的面积是。

立体几何垂直证明

立体几何垂直证明

立体几何垂直证明方法技巧类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:掌握几种模型①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形⑤利用相似或全等证明直角。

例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面(2) 异面垂直(利用线面垂直来证明)例1 在正四面体ABCD 中, 求证:AC BD ⊥变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知ο60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿,DE DF折起,使,A C两点重合于'A.求证:'A D EF⊥;变式3如图,在三棱锥P ABC-中,⊿PAB是等边三角形,∠P AC=∠PBC=90 º证明:AB⊥PC类型二:直线与平面垂直证明BE'ADFG方法○1利用线面垂直的判断定理例:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的P中点,2,CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ;变式3 如图,在底面为直角梯形的四棱锥P ABCD -中,(1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ;例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,FADPEE是PC的中点.⊥;(2)证明PD⊥平面ABE;(1)证明CD AE变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,∠60ABC,E、F分别是棱CC′与BB′上的点,=︒且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;类型三:平面与平面垂直证明1.AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,点N为垂足,求证:平面PAM⊥平面PBM2.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别为CD,DA和对角线AC的中点。

立体几何篇(线面平行、面面平行,线面垂直、面面垂直)

立体几何篇(线面平行、面面平行,线面垂直、面面垂直)

点线面的位置关系一(线面平行和面面平行)线面平行:1、判定定理:(1)平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行(线线平行,则线面平行);方法:平行四边形法则+中位线法则(2)直线所在的一个平面与此平面平行,则该直线与此平面平行(面面平行,则线面平行);2、性质定理一条直线与一个平面平行,则过这条直线的任一平面和此平面的交线与该直线平行(线面平行,则线线平行);面面平行:1、判定定理:一个平面内的两条相交直线都与另一个平面平行,则这两个平面平行(线面平行,则面面平行);2、性质定理(1)两个平面平行,其中一个平面内的任何一条直线都与另一个平面平行;(2)两个平面平行,同时与第三个平面相交,则交线平行。

例题选讲:1、如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,∠BCF=∠CEF=90°(1)求证:AE∥平面DCF;3、(全国卷)如图,直三棱柱111C B A ABC 中,E D ,分别是1,BB AB 的中点。

(1)证明:1BC //平面CD A 13.如图,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:①EF ∥A 1D 1;线面垂直:3、判定定理:(3)一条直线与一个平面内的两条直交直线垂直,则这条直线垂直于这个面(线线垂直,则线面垂直);(4)两平面垂直,在其中一个平面内,垂直于交线的直线,则垂直于另一个平面(面面垂直,则线面垂直);方法:主动垂直+被动垂直4、性质定理(1)直线垂直于平面,则垂直于平面内的任意一条直线;(2)垂直于同一平面的两条直线平行;面面垂直:4、判定定理:如果一个平面过另一个平面的垂线,则这两个平面垂直(线面垂直,则面面垂直);5、性质定理若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。

例题选讲:1、如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥平面ABCD,P A⊥AD.E 和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.2、(全国卷)如图,三棱柱111C B A ABC -中,侧棱垂直底面ο90=∠ACB ,121AA BC AC ==,D 是侧棱1AA 的中点。

线、面平行和垂直关系的证明

线、面平行和垂直关系的证明
3.利用面面垂直的判定定理证明面面垂直是常用方法, 而其需要证明线面垂直.在证明线线垂直时,要注意特殊图 形中的隐含垂直关系,如直棱柱和正棱柱的条件,菱形对角 线相互垂直平分,圆中直径所对的圆周角为 90°等.
【针对训练】 1.如图,平面 ABB1A1 为圆柱的轴截面,点 C 为底面 圆周上异于 A,B 的任意一点.
热点2 向量法证明平行和垂直
【方法结论】
设空间两条直线 l1,l2 的方向向量分别为 e1,e2,两个
平面 α1,α2 的法向量分别为 n1,n2,则有如下结论:
直线、平面
平行
垂直
l1 与 l2 l1 与 α1 α1 与 α2
e1=λe2 el11⊄·nα11=0
n1=λn2
e1·e2=0 e1=λn1 n1·n2=0
解答题 规范踩点 多得分
立体几何
线、面平行和垂直关系的 证明
[考情分析] 立体几何的解答题着重考查线线、线面与 面面平行和垂直的判定与性质,且多以棱柱、棱锥、棱台或 其简单组合体为载体进行考查,难度中等.
热点题型分析
热点1 综合法证明平行和垂直 【方法结论】 1.线、面平行问题解题策略 (1)证明线面平行:利用线面平行的定义、判定定理,面 面平行的性质定理、性质等; (2)证明面面平行:利用面面平行的定义、判定定理、垂 直于同一直线的两个平面平行、平行于同一平面的两个平面 平行; (3)利用线线、线面、面面平行的相互转化.
解 (1)证明:如图所示,连接 BC1.因为 BB1C1C 为菱形, 所以 BC1⊥B1C.又因为 AA1B1B 为正方形,所以 AB⊥BB1, 因为平面 AA1B1B⊥平面 BB1C1C,平面 AA1B1B∩平面 BB1C1C =BB1,AB⊂平面 AA1B1B,所以 AB⊥平面 BB1C1C.又 B1C ⊂平面 BB1C1C,于是 AB⊥B1C.又因为 AB∩BC1=B,所以 B1C⊥平面 ABC1.因为 AC1⊂平面 ABC1,所以 B1C⊥AC1.

立体几何垂直证明题常见模型及方法

立体几何垂直证明题常见模型及方法

垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

垂直转化:线线垂直 线面垂直 面面垂直;类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线 ○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例1:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图)例2、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式1、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º证明:AB ⊥PC变式2、三棱柱ABC ­A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C .证明:B 1C ⊥AB ;类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式2::已知二面角α­MN ­β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD =60°,E 是AB 的中点,DO ⊥面α,垂足为O .(1)证明:AB ⊥平面ODE ;DACOBE○2 利用面面垂直的性质定理 (方法点拨:此种情形,条件中含有面面垂直。

证明线面垂直过程详解

证明线面垂直过程详解

证明线面垂直过程详解证明线面垂直过程详解在立体几何的线面关系中,线面垂直处于核心地位,它是证明线线垂直和面面垂直的纽带,也是计算角度、距离、面积、体积的重要环节,如何证明线面垂直呢?本文是店铺整理如何证明线面垂直的资料,仅供参考。

证明线面垂直过程∵PA⊥平面α,直线L∈平面α∴PA⊥L========================①∵PB⊥平面β,直线L∈平面β∴PB⊥L========================②综合①②得:直线L⊥平面PAB(垂直于平面两条相交直线的直线垂直于这个平面)∴L⊥AB(垂直于平面的直线垂直于平面内的任一直线)线面垂直的判定定理证明,我一直觉得证明过程太过复杂。

前年曾经这样证明,今天写在这里。

m和n为平面中两条相交直线,通过平移或者说原本就在,使得l经过m、n的交点O,我们只需证明l垂直与平面中的任意一条直线g 即可!在m、n上分别以O点为中点截取AC、BD,则得到平行四边形ABCD。

此时不难由三角形全等的知识得到l⊥g。

答案补充证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行) 在L3上取E、F令OE=OF,分别过E、F作ED、FB交L2于D、B (令OD=OB)则⊿OED ≌⊿ OFB (SAS) 延长DE、BF 分别交L1于A、C 则⊿OEA≌⊿OFC(ASA)(注意角AEO与角CFO的补角相等所以它们相等)。

所以OA=OC,所以⊿OAD≌⊿OBC(SAS)所以AD=CB 因为L3垂直于L1 L2所以MA=MC,MD=MB 所以⊿MAD≌⊿MCD(SSS)所以角MAE= 角MCF 所以⊿MAE≌⊿MCF(SAS) 所以ME=MF,所以⊿MOE≌⊿MOF(SSS),所以角MOE=角MOF 又因为角MOE与角MOF互补,所以角MOE=角MOF=90度,即L⊥L31利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90° ,即直角三角形的两个锐角互余。

面面垂直的性质

面面垂直的性质

面面垂直的性质
面面垂直性质定理如下:
性质:若两平面垂直,则在一个平面内与交线垂直的直线垂直于另一平面;若两平面垂直,则与一个平面垂直的直线平行于另一平面或在另一平面内。

其判定定理是:一个面如果过另外一个面的垂线,那么这两个面相互垂直。

即一个平面过另一平面的垂线,则这两个平面相互垂直。

定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。

面面垂直的判定定理如下:一个平面过另一平面的垂线,则这两个平面相互垂直。

垂直的性质是如下:在同一平面内,过一点有且只有一条直线与已知直线垂直。

垂直一定会出现90°。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

垂直是指一条线与另一条线相交并成直角,这两条直线互相垂直。

通常用符号“⊥”表示。

对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的问题,其难点是线面垂直的定义及其对判定定理成立的条件的理解;两平面垂直的判定定理及其运用和对二面角有关概念的理解。

高中数学证明垂直的方法

高中数学证明垂直的方法

高中数学知识点:证明线面垂直的方法
直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。

是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。

一、证明线面垂直的方法
1、线面垂直的判定定理
直线与平面内的两相交直线垂直
2、面面垂直的性质
若两平面垂直则在一面内垂直于交线的直线必垂直于另一平面
3、线面垂直的性质
两平行线中有一条与平面垂直,则另一条也与平面垂直
4、面面平行的性质
一线垂直于二平行平面之一,则必垂直于另一平面
5、定义法
直线与平面内任一直线垂直
二、线面垂直证法
由性质定理2可知,过空间内一点(无论是否在已知平面上),有且只有一条直线与平面垂直。

下面就讨论如何作出这条唯一的直线。

点在平面外
设点P是平面α外的任意一点,求作一条直线PQ使PQ⊥α。

作法:
①在α内任意作一条直线l,并过P作PA⊥l,垂足为A。

此时,若PA⊥α,则所需PQ已作出;若不是这样,
②在α内过A作m⊥l。

③过P作PQ⊥m,垂足为Q,则PQ是所求直线。

证明:
由作法可知,l⊥PA,l⊥QA
∵PA∩QA=A
∴l⊥平面PQA
∴PQ⊥l
又∵PQ⊥m,且m∩l=A,m?α,l?α
∴PQ⊥α
点在平面内
设点P是平面α内的任意一点,求作一条直线PQ使PQ⊥α。

作法:
①过平面外一点A作AB⊥α,作法见上。

②过P作PQ∥AB,PQ是所求直线。

证明:
由性质定理3可知,若作出了AB⊥α,PQ∥AB,那么PQ⊥α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理科数学复习专题 立体几何
线面垂直与面面垂直专题复习
【知识点】
一.线面垂直
(1)直线与平面垂直的定义:
如果直线l 和平面α内的__________一条直线都垂直,我们就说直线l 与平面α垂直,记作__________.
重要性质:__________________________________________________________ (2)直线与平面垂直的判定方法: ①判定定理:一条直线与一个平面内的两条__________都垂直,那么这条直线就垂直于这个平面.用符号表示为:
②常用结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.用符号可表示为:
(3)直线与平面垂直的性质: ①由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面内的_______直线. ②性质定理:垂直于同一平面的两条直线平行.用符号可表示为:
二、面面垂直
(1)平面与平面垂直的定义:
两平面相交,如果它们所成的二面角是__________,就说这两个平面互相垂直. (2)平面与平面垂直的判定定理:
如果一个平面经过另一个平面的一条__________,那么这两个平面互相垂直.简述为“线面垂直,则面面垂直”, 用符号可表示为:
(3)平面与平面垂直的性质:
如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.用符号可表示为:
【题型总结】
题型一 小题:判断正误
1.“直线l 垂直于平面α内的无数条直线”是“l ⊥α”的( ).
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
2.已知如图,六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC .则下列结论不正确的是( ).
A.CD ∥平面PAF
B.DF ⊥平面PAF
C.CF ∥平面PAB D .CF ⊥平面PAD
2. 设m ,n, l 是三条不同的直线,,,αβγ是三个不同的平面,判断命题正误:
α
αααααββααβαβα//n ,,m //,,n ,//,,//,//,,则⑤则④则③则②则①n m n m n m n m m m m m m ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
γ
αβγβαγαγββααα⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥则,⑩则⑨则,⑧则⑦则⑥,//m ,//,m //,//m ,,m n ,//,n m l l n n l l n n m
题型二 证明线面垂直 1.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,
∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .
(1)证明:BD ⊥面PAD (2)证明:P A ⊥BD ;
归纳:①证明异面直线垂直的常用方法:_____________________________________ ②找垂线(线线垂直)的方法一:_________________________________
2.四棱锥P ABCD -中,底面ABCD 的边长为4的菱形,
04,60PD PB BAD ==∠=,E 为PA 中点.
求证:BD ⊥平面PAC ;
归纳:找垂线(线线垂直)的方法二:_________________________________
找垂线(线线垂直)的方法三:_________________________________
3、如图,AB 是圆O 的直径,C 是圆O 上不同于A ,B 的一点,
PA ⊥平面ABC ,E 是PC 的中点,3AB ,1PA AC ==.求
证:AE PB ⊥
归纳:找垂线(线线垂直)的方法四:_________________________________
C
A
B
D
E
F
4.如图,在三棱锥P ABC -中,PA ⊥底面ABC,090=∠BCA , AP=AC, 点D ,E 分别为棱PB 、PC 的中点,且BC//平面ADE 求证:D E ⊥平面PAC ;
归纳:_________________________________________________________________
题型三 面面垂直的证明(关键:找线面垂直)
1、如图所示,四边形ABCD 是菱形,O 是AC 与BD 的交点,SA ABCD ⊥平面.
求证:SAC SBD ⊥平面平面;
2.(2016理数)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中, 面ABEF 为正方形,AF =2FD , 90AFD ∠=o
, 证明:平面ABEF ⊥平面EFDC ;
题型四 面面垂直的性质(注意:交线)
1、如图所示,平面EAD ⊥平面ABCD ,ADE ∆是等边三角形,ABCD 是矩形,F 是AB 的中点,G 是AD 的中点, 求证:EG ⊥平面ABCD ;
2、如图,平行四边形ABCD 中,
01,60,CD BCD BD CD =∠=⊥,正方形ADEF ,
且面ADEF ⊥面ABCD .求证:BD ⊥平面ECD ;
综合运用
如图所示,P A ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面P AD . (2)求证:MN ⊥CD . (3)若∠PDA =45°,求证:面B MN ⊥平面PCD .
【练习】
1.设M 表示平面,a 、b 表示直线,给出下列四个命题:

M b M a b a ⊥⇒⎭


⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )
A.①②
B.①②③
C.②③④
D.①②④ 2. 给出以下四个命题:

1如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。


2如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。


3如果两条直线都平行于一个平面,那么这两条直线互相平行。


4如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

其中正确的个数是( ) A.4 B.3 C.2 D.1 3.如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,
2PD DC BC ===,2AB DC =,AB ∥DC ,90BCD ∠=︒.
(1)求证:PC BC ⊥;(2)求多面体A PBC -的体积.
4.如图所示,ABCD 是正方形,PA ABCD ⊥平面,
E F 、是AC PC 、的中点
(1)求证:AC DF ⊥;
(2)若2,1PA AB ==,求三棱锥C PED -的体积.
D E F
C
B
E
F
P
A
B
C
D
5、在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,
AD ∥BC ,90BAD ︒
∠=,12PA AB BC AD ====,,
E 为PD 的中点.
(Ⅰ)求证:PAB CE 面//;(Ⅱ)证:面PAC ⊥面PDC ;
6、已知四棱锥BCDE A -,其中1====BE AC BC AB ,
2=CD ,ABC CD 面⊥,BE ∥CD ,F 为AD 的中点.
(Ⅰ)求证:EF ∥面ABC ;(Ⅱ)求证:面ACD ADE 面⊥;
7.如图,在直三棱柱
111
ABC A B C -中,平面
1A BC ⊥
侧面
11
A AB
B ,且
12
AA AB == 求证:AB BC ⊥;
A
B
C
B
A1
C
A。

相关文档
最新文档