一元一次不等式组 讲义

合集下载

一元一次不等式组 讲义

一元一次不等式组 讲义

一元一次不等式组温故而知新:例题精讲:1、解下列不等式组,并把解集在数轴上表示出来2x-1≥0 (2)4<1-3x<13 3x+1>03x-2<02、已知a=23+x,b=32+x,且a>2>b,那么求x的取值范围。

3、已知方程组 2x+y=5m+6 的解为负数,求m的取值范围。

X-2y=-174、若不等式组 x<a 无解,求a的取值范围。

213-x>15、当x取哪些整数时,不等式 2(x+2)<x+5与不等式3(x-2)+9>2x同时成立?6、某工厂现有A种原料290千克,B种原料220千克,计划利用这两种原料生产甲、乙两种产品共40件,已知生产甲种产品需要A种原料8千克,B种原料4千克,生产乙种产品需要A种原料5千克,B种原料9千克。

问有几种符合题意的生产方案?7、已知有长度为3cm,7cm,xcm的三条线段,问,当x为多长时,这三条线段可以围成一个三角形?8、把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支,那么最后一个小朋友分得的铅笔小于2支,求小朋友人数和铅笔支数。

一元一次不等式组(作业)一、填空1、不等式组()122431223x x x x ⎧--≥⎪⎪⎨-⎪>+⎪⎩的解集为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是3.若不等式组2113x ax <⎧⎪-⎨>⎪⎩无解,则a 的取值范围是 . 4.已知方程组2420x ky x y +=⎧⎨-=⎩有正数解,则k 的取值范围是 .5.若关于x 的不等式组61540x x x m +⎧>+⎪⎨⎪+<⎩的解集为4x <,则m 的取值范围是 . 6.不等式723x x +--<的解集为 .二、选择题:7、若关于x 的不等式组12x x m -≤<⎧⎨>⎩有解,则m 的范围是( )A .2m ≤B .2m <C .1m <-D .12m -≤<8、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是( ).1.0.01.21A x B x C x D x >-><<-<<9、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是( ) A.-4<a<5 B.a>5 C.a<-4 D.无解三、解答题10、解下列不等式组,并在数轴上表示解集。

初中数学知识归纳一元一次不等式组

初中数学知识归纳一元一次不等式组

初中数学知识归纳一元一次不等式组初中数学知识归纳 - 一元一次不等式组一元一次不等式组是初中数学中的一个重要概念,它涉及到不等式的解与图像的表示。

本文将对一元一次不等式组进行归纳,以帮助读者加深对该知识点的理解。

一、一元一次不等式组的基本概念及表示方法一元一次不等式组是由若干个一元一次不等式组成的方程组。

一元一次不等式组一般以下列形式表示:⎧⎨⎩a₁x + b₁y + c₁z ... = d₁a₂x + b₂y + c₂z ... = d₂a₃x + b₃y + c₃z ... = d₃...aₙx + bₙy + cₙz ... = dₙ其中,a₁、b₁、c₁等为常数系数,x、y、z等为变量,d₁、d₂、d₃等为等式右边的常数。

每一个不等式都可以表示为平面上的一条直线,而一元一次不等式组则可以表示为多条直线构成的图形。

二、一元一次不等式组的解集对于一元一次不等式组,可以有以下几种情况:情况一:无解当一元一次不等式组中的不等式互相矛盾时,即不等式组的解空间为空时,我们可以判断该不等式组无解。

情况二:唯一解当一元一次不等式组中的不等式互相兼容且形成一个可行区域时,我们可以通过求解相应的方程组,找到该不等式组的唯一解。

情况三:无数解当一元一次不等式组中的不等式互相兼容且形成一条线时,我们可以判断该不等式组有无数个解。

根据以上情况,我们可以通过解方程组、画图等方法来求解一元一次不等式组,并得到相应的解集。

三、一元一次不等式组的解集表示方法一元一次不等式组的解集可以用多种表示方法,主要有数学符号表示、图像表示和区间表示:1. 数学符号表示当一元一次不等式组存在唯一解时,我们可以用具体的数值来表示解集,例如{x=2, y=3}。

若不等式组有无数解,我们可以用参数的形式表示解集,例如{x=t, y=t+1}。

2. 图像表示我们可以将一元一次不等式组中的不等式转化为直线的形式,然后根据不等式的符号关系来确定线段的可行区域。

第10讲 一元一次不等式组

第10讲 一元一次不等式组

三、解答题 (共 54 分 ) 15 . (1)(4 分 )(2015· 连云港)解不等式组:
2x+ 1>5, x+1>4(x-2).
2x+ 1>5, 解: x+1>4(x-2),
解不等式①,得 x> 2. 解不等式②,得 x< 3.
① ②
∴不等式组的解集是 2<x<3.
2 x- 1≥x+ 1, (2)(4分 )解不等式组: 1 x- 2> 2x- 1. 3 2 x- 1≥x+ 1, 解: 1 x- 2> 2x- 1, 3x+1<0, D. 3-x>0
3x+ 4≥ 0, 3 . 不 等 式 组 1 x-24≤ 1 2 积为 0 .
的所有整数解的
5-2x≥-1, 4.已知关于 x 的不等式组 无解, x-a>0
则 a 的取值范围是 a≥ 3.
解不等式①,得 2x≥- 2,解得 x≥- 1. 解不等式②,得 x< 4. 则不等式组的解集为- 1≤ x< 4.
在数轴上表示如下图所示.
4 x+ 1≤7x+ 10, (4)(5 分 )(2015· 北京 ) 解不等式组: x-8 x-5< , 3 并写出它的所有非负整数解.
∴不等式组的解集是 x> 5. ① ②
解不等式①,得 x≥ 3.解不等式②,得 x> 5.
2x+ 1≥- 1, (3)(5分 )解不等式组: 1+ 2x >x- 1, 3
等式组的解集在数轴上表示出来.
并把不
2x+ 1≥- 1, ① 解:1+ 2x >x- 1, ② 3
m= 2, ∴ n= 1.
∴ x2- 4x+ 2mn= x2- 4x+ 4= (x- 2)2. 答案: (x- 2)2

一元一次不等式组课件(公开课)

一元一次不等式组课件(公开课)
详细描述
图像法是一种直观的解一元一次不等式组的方法。首先,根据不等式的性质绘制出每个不等式的图像。然后,观 察这些图像的交集,即为原不等式组的解集。需要注意的是,图像法适用于某些特定情况,如不等式的系数较小 或图像较为简单时。
03
CATALOGUE
一元一次不等式组的实际应用
生活中的一元一次不等式组问题
THANKS
感谢观看
含参数的一元一次不等式组
不等式中含有参数,需要根据参数的不同取值进行分类讨论。
一元一次不等式组的扩展形式
二元一次不等式组
包含两个未知数的一元一次不等式,需要考虑两 个未知数之间的关系和不等式的解法。
一元高次不等式组
不等式中含有未知数的高次幂,需要利用高次方 程的解法进行求解。
分式不等式组
包含分式函数的一元一次不等式,需要考虑分式 的性质和不等式的解法。
表示形式
用数轴上的区间表示,或 用文字描述。
解集的求法
分别求出每个不等式的解 集,再取它们的交集。
一元一次不等式组的分类
严格不等式组
每个不等式都有实数解,即解集 非空。
矛盾不等式组
至少有一个不等式的解集为空集。
退化不等式组
所有不等式都变为等式,即无解。
02
CATALOGUE
解一元一次不等式组的方法
练习3
解不等式组$begin{cases}2x - 7(x - 2) geq 4 frac{x - 1}{2} > x + 1 end{cases}$
答案解析
解析1
首先解第一个不等式$5x - 1 > 3(x + 1)$,得到$x > 2$。再解第二个不等式$frac{x 1}{2} > 1$,得到$x > 3$。取两个不等式的交集,得到不等式组的解集为$x > 3$。

一元一次不等式与不等式组经典讲义

一元一次不等式与不等式组经典讲义

一元一次不等式与不等式组经典讲义一、知识总结(一)不等式及其性质1、不等式:(1)定义用“<”( 或“≤”) ,“>”(或“≥”) 等不等号表示大小关系的式子,叫做不等式. 用“≠”表示不等关系的式子也是不等式.(2)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

(3)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围, 是所有解的集合, 而不等式的解是使不等式成立的未知数的值。

二者的关系是:解集包括解, 所有的解组成了解集。

(4)解不等式:求不等式解的过程叫做解不等式。

2、不等式的基本性质性质1:不等式的两边都加上( 或减去) 同一个整式,不等号的方向不变。

即:如果 a b,那么a c b c .性质2:不等式的两边都乘上( 或除以) 同一个正数,不等号的方向不变。

即:如果 a b,并且c 0,那么ac bc;acbc.性质3:不等式的两边都乘上( 或除以) 同一个负数,不等号的方向改变。

即:如果 a b,并且c 0 ,那么ac bc;acbc.性质4:如果a b,那么b a. (对称性)性质5:如果a b, b c, 那么a c . (传递性)(二)一元一次不等式1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式,叫做一元一次不等式。

2. 一元一次不等式的解法:根据是不等式的基本性质;一般步骤为:(1) 去分母;(2) 去括号;(3) 移项;(4) 合并同类项;(5) 系数化为1.解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘( 或除以) 同一个负数时,不等号的方向要改变。

3. 不等式的解集在数轴上表示:(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左(三)一元一次不等式组1 、定义:有几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组2 、(一元一次)不等式组的解集:这几个不等式解集的公共部分,叫做这个(一元一次)不等式组的解集。

(完整版)一元一次不等式复习讲义

(完整版)一元一次不等式复习讲义

一元一次不等式与一元一次不等式组一。

知识梳理1.知识结构图(二)。

知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “〉” 、 “<” 、 “≥”、 “≤". 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c)①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b>,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a—b 〉O ⇔a>b ;②a—b=O ⇔a=b ;③a —b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式:解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘)去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号) 合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解1.常见题型分类(加粗体例题需要作答) 定义类1。

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。

一元一次不等式组⑴(公开课课件)

一元一次不等式组⑴(公开课课件)
2 一元一次不等式组
是两个或两个以上的一元一次不等式构成的一组不等式。
解决一元一次不等式组的方法
1
直接合并法
将同类项合并并移项,得到一个一次不等式。在与另一个一次不等式合并后,解出未知数的 值。
2
消元法
将两个不等式分别乘以适当的系数,使得系数不同且能够把某个未知数消去。
3
代入法
将一个不等式中的未知数用另一个不等式中的未知数表示,代入到另一个不等式中去,解出 未知数。
课后练习及作Βιβλιοθήκη 评定在课后,将会为大家安排相关的练习题和作业,通过作业的量化来评定同学们的成绩。
在解题过程中,需要留意系数是否有等于零的, 此时需要分类讨论,因为零的定义是非负。
一元一次不等式组的拓展知识
异或
在解决同样系数的一元一次不等 式组时,我们可以用异或解法。
线性规划
此知识之外的知识,我们还可以 通过线性规划来发掘反向优化的 问题。
不等式图像
通过图像解法,我们还可以掌握 其他种类的不等式解法方法,各 有不同!
4
图像解法
通过将不等式在坐标轴上画图,并将两个不等式的解集在坐标轴上比较,得到未知数的解。
一元一次不等式组的解的判断
在解决典型问题后,我们需要通过代入检验,判断解是否正确。
实际应用及注意事项
实际应用
广泛应用于经济学、管理学、物理学、人口学 等领域中的一些约束条件下的优化、决策、评 估等问题。
注意事项
一元一次不等式组⑴
本课程将介绍一元一次不等式的概念,以及如何使用直接合并法、消元法、 代入法、和图像解法来解决一元一次不等式组。我们还将更深入地探讨它在 实际应用中的使用和注意事项。让我们一起开始学习吧!
一元一次不等式与一元一次不等式组 的概念

一元一次不等式和一元一次不等式组讲义

一元一次不等式和一元一次不等式组讲义

一元一次不等式和一元一次不等式组知识点一:不等式1、 不等式的基本性质性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。

若a>b ,则a+c>b+c (a-c>b-c )。

性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。

若a>b 且c>0,则ac>bc 。

性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。

若a>b 且c<0,则ac<bc 。

2、同解不等式:如果几个不等式的解集相同,那么这几个不等式称为同解不等式。

知识点二:一元一次不等式1、定义:像276x x -<,39x ≤等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,这样的不等式叫做一元一次不等式。

2、一元一次不等式的标准形式: 0ax b +>(0a ≠)或0ax b +<(0a ≠)。

3、一元一次不等式组的解集确定:若a>b则(1)当⎩⎨⎧>>b x a x 时,则a x >,即“大大取大” (2)当⎩⎨⎧<<bx a x 时,则b x <,即“小小取小”(3)当⎩⎨⎧><b x a x 时,则a x b <<,即“大小小大取中间”(4)当⎩⎨⎧<>b x a x 时,则无解,即“大大小小取不了” 知识点三:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:, 。

要点诠释: 在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点四:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

2015-1-7一元一次不等式(组)基础讲义含答案

2015-1-7一元一次不等式(组)基础讲义含答案

一元一次不等式(组)(讲义)一、知识点睛1. 不等式的概念:用符号>,<,≥,≤,≠连接的式子叫做不等式.“≥”叫大于或等于,也叫不小于;“≤”叫小于或等于,也叫不大于.2.不等式的基本性质:..4.①不等式的两边都加上(或减去)同一个代数式,不等号的方向不变; ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解与不等式的解集:使不等式成立的未知数的值;,叫做不等式的解;含有未知数的不等式的所有解,组成这个不等式的解集,通常用“xa >”或“x a <”的形式表示.不等式的解集可以在数轴上表示,需要注意实心圆点和空心圆圈的区别.4.求不等式解集的过程叫做解不等式.5. 一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.6.一元一次不等式组及其解法.一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.一元一次不等式组中各个不等式的解集的公共部分,叫做这个不等式组的解集.求不等式组解集的过程,叫做解不等式组. 二、精讲精练.1. a 的5倍与3的差不小于10,用不等式表示为____________.2. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.已知小明在这次竞赛中的成绩超过90分,设他答对了n 道题,则根据题意可列不等式_______________.3.判断正误. (1)2≤3;( ) (2)由2x >-6,得3x <-; ( )(3)由ac bc >,且c ≠0,得a b >;( ) (4)如果0a b <<,则1ab<.( ) 4.已知ab >,c ≠0,则下列关系一定成立的是( )A .ac bc >B .a bc c> C .c a c b ->- D .c a c b +>+5. 若x a =是不等式5x +125≤0的解,则a 的取值范围是_________________.6. 不等式10x +<的解集在数轴上表示正确的是( )A .B .C .D .7.若关于x的不等式0x a -≤的解集如图所示,则a =_______.8. 若关于x 的不等式325m x -<的解集是2x >,则m =______.9. 不等式x ≤1的非负整数解是____________;不等式1x >-的最小整数解是___________. 10. 解下列不等式,并把它们的解集分别表示在数轴上.(1)2125x x --<; (2)53432x x ++-≤; (3)69251332x x x +-+-≤; (4)532122x x ++->.11. 在不等式0ax b +>中,a ,b 是常数,且a ≠0,当______时,不等式的解集是bx a>-;当_______时,不等式的解集是b xa<-. 12. 不等式84632x x x+->+的非负整数解为________________.13. 若不等式x a <只有4个正整数解,则a 的取值范围是________________. 14. 若不等式x a ≥只有2个负整数解,则a 的取值范围是________________. 15. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)213821x x x +>-⎧⎨--⎩≤; (2)239253x x x x+<-⎧⎨-<⎩; (3)211132x +-<-<; (4)513(1)2151132x x x x ->+⎧⎪-+⎨-⎪⎩≥;(5)273(1)234425533x x x x x x ⎧⎪-<-⎪+⎪<⎨⎪⎪--+⎪⎩≤.16. 若不等式组420x a x >⎧⎨->⎩的解集是12x -<<,则a =________.17. 如果不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,那么(1)(1)a b +-=_____________.18. 如果一元一次不等式组>2>x x a ⎧⎨⎩的解集是2x >,那么a 的取值范围是( )A .2a >B .2a ≥C .2a ≤D .2a <19. 如果不等式组8>41x x x m+-⎧⎨⎩≤的解集是3x <,那么m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <一元一次不等式(组(随堂测试)1. 解不等式组240312123x x x +⎧⎪+-⎨<⎪⎩≥,并把它的解集表示在数轴上.2. 不等式351222x x -++≤的最小整数解为_________. 3. 如果不等式组2223x a x b ⎧--⎪⎨⎪-⎩≤≤的解集是01x ≤≤,那么a b +的值为____________.一元一次不等式(组)基础(作业)20. 下列说法中,错误的是( )A .不等式2x <的正整数解有一个B .2-是不等式210x -<的一个解C .不等式39x ->的解集是3x >-D .不等式10x <的整数解有无数个 21. 若0a b >>,c ≠0,则下列式子一定成立的是( )A .a c b c -<-B .1a b <C .22a b ->-D .22a bc c>22. 已知点M (12m -,1m -)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B . C, D,23. 若一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组3050x x -⎧⎨->⎩≥的整数,则这组数据的平均数是___________.24. 若不等式22x a -+≥的解集是1x ≤,则a 的值是_________.25. 若不等式20x a -≤只有4个正整数解,则a 的取值范围是________________.26. 若不等式组2>31<1x n x m +⎧⎨+-⎩的解集是12x -<<,则m n -=____.27. 若关于x 的不等式组8236x x x a +>+⎧⎨⎩≤的解集是2x <,则a 的取值范围是_________.28. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2013~2014赛季全部32场比赛中至少得到48分,才有希望进入季后赛.若设这个队在将要举行的比赛中胜x 场,则x 应满足的关系式是_____________.29. 解下列不等式,并把它们的解集分别表示在数轴上.(1)521293x x --≤; (2)3221145x x --+≤; (3)321132x x -+<-;(4)326381236x x x -----≤.30. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)73(1)5213122x x x x -+<-⎧⎪⎨-⎪⎩≥;(2)3(2)412>13x x x x --⎧⎪+⎨-⎪⎩≥;(3)4513777x -<--≤; (4)63315x xxx -⎧⎪-⎨<--⎪⎩≤.一元一次不等式(组)应用(讲义) 一、知识点睛1. 解一元一次不等式组的口诀:大大取大、小小取小、大小小大中间找、大大小小找不着.2.不等式应用题的三种常见类型①关键词型:不超过,至少,不低于,多于等;②不空不满型:不空也不满等;③方案设计型:原材料供应,容器容量. 二、精讲精练1.解下列不等式组.(1)42313(1)x x x x +⎧+⎪⎨⎪+<-⎩≥;(2)3(2)81213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)523132x x x +⎧⎪+⎨>⎪⎩≥;(4)12(1)2235xx x x ⎧+>-⎪⎪⎨+⎪⎪⎩≥.2.如果一元一次不等式组213(1)x x x m->-⎧⎨⎩≤的解集是2x <,那么m 的取值范围是( )A .2m =B .2m >C .2m <D .2m ≥3.若关于x 的一元一次不等式组712x ax x >⎧⎨+<-⎩有解,则a 的取值范围是( )A .2a -≤B .2a >-C .12a<-D .12a -≤ 4.若关于x 的一元一次不等式组122x ax x <⎧⎨-<-⎩无解,则a 的取值范围是( )A .1a -≥B .1a >-C .1a ≤D .1a <5.若关于x 的一元一次不等式组721x mx <⎧⎨-<⎩的整数解共有3个,则m 的取值范围是( )A .67m <<B .67m <≤C .67m ≤≤D .67m <≤6.为鼓励学生参加体育锻炼,学校计划购买一批篮球和排球,已知篮球的单价为96元,排球的单价为64元,若用不超过 3 200元去购买篮球和排球共36个,且要求购买的篮球多于25个,则至少购买排球_______________个.7. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.那么汽车共有___________辆.8.“亚洲足球俱乐部冠军联赛”期间,河南球迷一行56人从旅馆乘车到天河球场为广州恒大加油.现有A ,B 两个车队,A 队比B 队少3辆车.若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未坐满.则A 队有车___________辆.9.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A ,B 两种产品共50件.已知生产一件A ,B 产品所需原料如下表所示.(1)设生产x 件A 种产品,写出x 应满足的不等式组; (2)有哪几种符合题意的生产方案?请你帮助设计.10. 某工厂现有甲种布料70米,乙种布料52米,计划利用这两种布料生产A ,B 两种型号的时装共80套..利用现有布料,工厂能否完成任务?若能,请设计出所有可能的生产方案;若不能,请说明理由.11. 某仓库有甲种货物360吨,乙种货物290吨,计划用A ,B 两种货车共50辆将这批货物运往外地.若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B 种货车能装载甲种货物6吨和乙种货物8吨.则有哪几种运输方案?请设计出来.12. 在家电下乡活动中,某厂家计划将100台冰箱和54台电视机送到乡下.现租用甲、乙两种货车共8辆将这批家电全部运走,已知一辆甲种货车可同时装冰箱20台,电视机6台,一辆乙种货车可同时装冰箱8台,电视机8台.则将这批家电一次性运到目的地,有几种租用货车的方案?一元一次不等式(组)应用(随堂测试)4. 若关于x 的不等式组3352x x x a++⎧>⎪⎨⎪⎩≤的解集为3x <-,则a 的取值范围是( )A .3a =-B .3a >-C .3a <-D .3a -≥5. 某工厂现有甲种原料280kg ,乙种原料190kg ,计划利用这两种原料生产A ,B 两种产品50件.已知生产一件A 产品需甲种原料7kg ,乙种原料3kg ;生产一件B 产品需甲种原料3kg ,乙种原料5kg .则该工厂有哪几种生产方案?请你设计出来.一元一次不等式(组)应用(作业)31. 小美将某服饰店的促销活动内容告诉小明后,小明假设某件商品的定价为x元,并列出关系式0.3(2100) 1 000x -<,则下列哪个选项可能是小美告诉小明的内容?( )A 买两件相同价格的商品可减100元,再打3折,最后不到1 000元!B 买两件相同价格的商品可减100元,再打7折,最后不到1 000元!C 买两件相同价格的商品可打3折,再减100元,最后不到1 000元!D 买两件相同价格的商品可打7折,再减100元,最后不到1 000元!32. 把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生( ) A .4人B .5人C .6人D .5人或6人33. 若一元一次不等式组9551x x x m +<+⎧⎨>+⎩的解集是1x >,则m 的取值范围是_______________.34. 若关于x 的一元一次不等式组4132x xx m+⎧>+⎪⎨⎪>⎩有解,则m 的取值范围是_______________.35. 若关于x 的一元一次不等式组2113x x a -⎧>⎪⎨⎪<⎩无解,则化简32a a -+-的结果为_________________.36. 若关于x 的一元一次等式组0321x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是___________.37. “3·12”植树节,市团委组织部分中学的团员去郊区植树.某校八年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,最后一人有树植,但不足3棵.则这批树苗共有___________棵.38. 解下列不等式组:(1)201211233x x x -⎧⎪--⎨-<⎪⎩≤;(2)3(2)41213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩≥; (4)311224(1)x x x +⎧-⎪⎨⎪->+⎩≥.39. 某工厂现有甲种原料400千克,乙种原料450千克,计划利用这两种原料生产A ,B 两种产品共60件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料5千克;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克.则有哪几种生产方案?请你设计出来.40. 某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李,学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.则如何安排甲、乙两种汽车,可一次性地将学生和行李全部运走?请你设计方案.1、【参考答案】 知识点睛1.>,<,≥,≤,≠.大于或等于,不小于;小于或等于,不大于. 2.①代数式,不变;②正数,不变;③负数,改变.3.使不等式成立的未知数的值;含有未知数的不等式的所有解.实心圆点和空心圆圈.4.求不等式解集的过程. 5.整式,未知数.6.关于同一未知数的几个一元一次不等式合在一起.一元一次不等式组中各个不等式的解集的公共部分.求不等式组解集的过程. 精讲精练1.5310a -≥ 2.105(20)90n n --> 3.(1)√;(2)×;(3)×;(4)×. 4.D5.25a -≤6.A7.1- 8.3 9.0,1;0. 10.(1)2x <; (2)2x -≤; (3)1x -≥; (4)12x <.解集在数轴上的表示略. 11.0a>;0a <.12.0,1,2,3. 13.45a <≤ 14.32a -<-≤ 15.(1)3x ≥; (2)52x -<<;(3)514x -<<; (4)无解; (5)46x -<<. 解集在数轴上的表示略. 16.1- 17.6-18.C 19.A2、【参考答案】1.21x -<-≤,解集在数轴上的表示略.2.2- 3.3-3、【参考答案1.C2.D3.A 4.55.46.810a <≤7.1-8.2a ≥9.23248x x +-≥10.(1)13x ≥; (2)2x -≤; (3)34x >-;(4)15x -≥. 解集在数轴上的表示略.11.(1)4x ≥;(2)1x ≤;(3)2255x <≤;(4)无解.解集在数轴上的表示略. 4、【参考答案知识点睛1.大大取大、小小取小、大小小大中间找、大大小小找不着. 2.①关键词型;②不空不满型;③方案设计型. 精讲精练1.(1)2x >;(2)1x -≤;(3)12x -<≤;(4)无解. 2.D 3.C 4.C 5.D 6.8 7.6 8.109.(1)94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤;(2)共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 10.工厂能完成任务,共有5种生产方案.方案一,生产A 型号时装36套,B 型号时装44套;方案二,生产A 型号时装37套,B 型号时装43套;方案三,生产A 型号时装38套,B 型号时装42套; 方案四,生产A 型号时装39套,B 型号时装41套;方案五,生产A 型号时装40套,B 型号时装40套. 11.共有3种运输方案.方案一,A 种货车20辆,B 种货车30辆;方案二,A 种货车21辆,B 种货车29辆;方案三,A 种货车22辆,B 种货车28辆.12.共有3种租车方案.方案一,租用甲种货车3辆,乙种货车5辆;方案二,租用甲种货车4辆,乙种货车4辆;方案三,租用甲种货车5辆,乙种货车3辆. 5、【参考答案】1.D 2.共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 6、【参考答案】1.A 2.C 3.0m ≤ 4.2m < 5.25a -+ 6.43a -<-≤7.1218.(1)2x ≥;(2)1x ≤;(3)21x -<≤;(4)无解.9.共有3种生产方案.方案一,生产A 种产品30件,B 种产品30件;方案二,生产A 种产品31件,B 种产品29件;方案三,生产A 种产品32件,B 种产品28件.10.共有3种方案.方案一,安排甲型汽车8辆,乙型汽车12辆;方案二,安排甲型汽车9辆,乙型汽车11辆; 方案三,安排甲型汽车10辆,乙型汽车10辆.。

一元一次不等式组(公开课课件)

一元一次不等式组(公开课课件)

形式
一元一次不等式组通常表 示为“{①,②,③...}”, 其中①,②,③...是一元 一次不等式。
特点
一元一次不等式组中至少 包含两个不等式,且每个 不等式只含有一个未知数 。
一元一次不等式组的解集
定义
满足一元一次不等式组中 所有不等式的未知数的取 值范围称为该不等式组的 解集。
性质
解集具有封闭性,即满足 所有不等式的解都在解集 中。
求法
通过解每个不等式,找出 满足所有不等式的解,再 确定解集。
一元一次不等式组的分类
分类标准
简单型
根据一元一次不等式组中不等式的个数和 形式,可以将一元一次不等式组分为简单 型、线性型、多项式型等。
由两个一元一次不等式组成的不等式组, 如“{2x > 3, x < 5}”。
线性型
多项式型
由两个或多个线性一元一次不等式组成的 不等式组,如“{3x + 2 > 0, 4x - 1 < 5}” 。
VS
解集关系
一元一次不等式组的解集与相应的一元一 次方程组的解集存在一定的包含关系,可 以根据方程组的解来推断不等式组的解。
一元一次不等式组在实际问题中的应用
资源分配问题
例如,在有限资源下如何分配任 务以达到最优效果。
最优化问题
例如,在一定条件下如何选择方案 以达到最优目标。
经济问题
例如,在预算限制下如何选择商品 或服务以实现最大效益。
生产问题
总结词
企业生产过程中的资源配置问题
详细描述
生产问题涉及到企业生产过程中的资源配置,如原材料、设备和人力资源的分配。一元 一次不等式组可以用来解决生产中的成本和效率问题,例如优化生产流程以降低成本和

一元一次不等式讲义

一元一次不等式讲义

一元一次不等式讲义【精讲】一、知识点回顾一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。

注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。

⑵常用的不等号有:<、≤、>、≥、≠。

例:判断下列哪些式子是不等式,哪些不是不等式。

①32>-;②21x ≤;③21x -;④s vt =;⑤283m x <-;⑥124x x->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。

⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。

⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

例:规定一种新的运算:1a b a b a b Θ=⨯--+,比如:2323231Θ=⨯--+,请你比较:34Θ 43Θ,()34-Θ ()43Θ-。

(填不等号) 练习:1、用不等式表示:⑴a 是正数: ;⑵x 的平方是非负数: ;⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。

2、试判断237a a -+与32a -+的大小。

3、如果0a b +<,0b >,则, , , a b a b --的从打到小的排序是: 。

基础知识讲解:一元一次不等式组

基础知识讲解:一元一次不等式组

一元一次不等式组(知识讲解)【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如,等都是一元一次不等式组.点拨(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.特别说明:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.特别说明:2562010x x ->⎧⎨-<⎩7021163159x x x ->⎧⎪+>⎨⎪+<⎩(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式.【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得: 【点拨】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)的解集是______; (2)的解集是______; (3)的解集是_______;(4)的解集是_______. 【答案】(1);(2);(3);(4)空集.类型二、解一元一次不等式组2. 解下列不等式组 8482(8)34.x x >⎧⎨+<⎩2,3x x >⎧⎨>-⎩2,3x x <⎧⎨<-⎩2,3x x <⎧⎨>-⎩2,3x x >⎧⎨<-⎩2x >3x <-32x -<<(1) (2).【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x≥-5故原不等式组的解集为-5≤x <-2.其解集在数轴上表示如图所示.(2) 原不等式可变为: 解①得:解②得: 故原不等式组的解集为.【点拨】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②213(1)4x x x +>-≥-213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②4x <12x ≥-142x -≤<举一反三:【变式】解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x -1)名学生中共植6(x -1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x -1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x -1)名学生植树的数量要比树木总数少,即(4x +37)>6(x -1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x -1)]<3,或者理解为:[(3x +8)- 5(x -1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:,4376114376132x x x x +>-⎧⎨+--<⎩()()()()()不等式(1)的解集是:x <;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【点拨】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得的利润;若按原价的九折销售,可获得不足的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为元,根据题意可得: 解得:答:此商品的原价在元(包括元)至40元范围内.4.“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,2121212110%20%x 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩37.540x ≤<37.537.5解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【点拨】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车辆,则租乙种货车()辆,依题意得: ,解得, 又为整数,所以或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:x 10x -42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩57x ≤≤x 5x =方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

一元一次不等式和一元一次不等式组讲义

一元一次不等式和一元一次不等式组讲义

3.某学校准备添置一些“中国结”挂在教室.若到商店去批量购买,每个“中国结”需要 10 元;若组织一些 同学自己制作,每个“中国结”的成本是 4 元,无论制作多少,另外还需共付场地租金 200 元.亲爱的同学,请你 帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?
4. (2008 年益阳市)乘坐益阳市某种出租汽车, 当行驶 路程小于 2 千米时, 乘车费用都是 4 元(即起步价 4 元); 当行驶路程大于或等于 2 千米时, 超过 2 千米部分每千米收费 1.5 元. 按常规, 乘车付费时按计费器上显示的金额 进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于 9.5 而小于 10.5 时,应付车费 10 元),小红一次 乘车后付了车费 8 元,请你确定小红这次乘车路程的范围.
3
(1)求出(2)班与(3)班的捐款金额各是多少元; (2)求出(1)班的学生人数.
课堂练习与课后作业
1. (2008 年永州)某物流公司,要将 300 吨物资运往某地,现有 A、B 两种型号的车可供调用,已知 A 型车每 辆可装 20 吨,B 型车每辆可装 15 吨,在每辆车不超载的条件下,把 300 吨物资装运完,问:在已确定调用 5 辆 A 型车的前提下至少还需调用 B 型车多少辆?
图1
例 11、乘坐益阳市某种出租汽车.当行驶 路程小于 2 千米时,乘车费用都是 4 元(即起步价 4 元);当行驶路 程大于或等于 2 千米时,超过 2 千米部分每千米收费 1.5 元. (1)当 x≥2 时,用含 x 乘车费用为 ;
(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于 9.5 而小于 10.5 时,应付车费 10 元),小红一次乘车后付了车费 8 元,请你确定小红这次乘车路程 x 的范围.

一元一次不等式组讲义

一元一次不等式组讲义

学科教师辅导讲义年 级: 预初 学员姓名: 张可荟 辅导科目: 数学学科教师: 何琼授课内容一元一次不等式组及其解法授课日期及时段 2018.4.教学内容【教学目标】知识与技能:1. 了解一元一次不等式组及起相关概念 .2. 会解简单的一元一次不等式组并会用数轴确定解集 .过程与方法:1. 通过类比二元一次方程组的解法,探索一元一次不等式组的解法,再次体验类比的思想方法 .2. 经历利用数轴确定解集的过程,体会数形结合的研究方法 .情感态度与价值观: 通过研究解决问题的方法,培养学生合作交流意识与探究精神 .【教学重点】 不等式组的解法 .【教学难点】 含参不等式组的 .【知识链接】 理解并掌握基本一元一次不等式组的解法 .一、一元一次不等式组及其解集1. 一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组,叫一元一次不等式组 .不等式组中所有不等式的解集的公共部分叫这个不等式组的解集 .求不等式组的解集的过程叫做这个不等式组的解集. 2. 解不等式组:求不等式组的解集的过程.1二、解一元一次不等式组的一般步骤: 1. 求出不等式组中各个不等式的解集.2. 在数轴上表示各个不等式的解集 .3. 确定各个不等式解集的公共部分,就得到这个不等式组的解集 . 例 1 下列各式中是一元一次不等式组的是( )x 3 2A. 1B. 2 5xx 4 3C. D. 6 12x y 4 x y 6x 6 2 x 1 8例 2 解下列不等式组并在数轴上表示解集 .5x 7x 2 x 5 x 2(2) 15 5( 1)1 x 3 x 8x 13x 51 32 2x m 例 3 已知不等式组 3x 1的解集是 x 2 ,求 m 的取值范围 .152x a x 3,则 a 的取值范围是__________. 【巩固】若不等式组 的解集是x 3例4 2x a 1 1 x 1,那么 a 1 b 1 的值等于 ________.若不等式组 2b 的解集为 x 35 2x 1【巩固 1】已知关于 x 的不等式组 a 无解,则 a 的取值范围是 ___________.x 0x b 2a x 8 ,求 a 和 b 的值 . 【巩固 2】已知不等式组3a 的解集是3 x 2bx 2y 4m ,且 0 y x 1 ,则 m 的取值范围是多少?【巩固 3】已知y 2m 2x 131. 下不等式组中,解集是 2 x 3 的不等式组是()x 3B. x 3 x 3 x 3A.2x 2 C.2D.2x x x2.在数轴上从左至右的三个数为a、1a、 a ,则 a 的取值范围是()1B. a 0C. a 0D. a1 A. a2 2x 1,3.不等式组2x 3的解集在数轴上表示为()54.不等式组3x 1 0的整数解的个数是()2x 5A. 1 个B. 2个C. 3个 D. 4 个5.在平面直角坐标系内,P 2x 6, x 5在第四象限,则x 的取值范围为()A. 3 x 5 B. 3 x 5C. 5 x 3 D. 5 x 36.已知不等式:①x 1,② x 4 ,③ x 2 ,④ 2 x1 ,从这四个不等式中取两个,构成正整数解是2 的不等式组是()A. ①与②B. ②与③C. ③与④D. ①与④7.方程组4x 3m 2的解 x、 y 满足 xy ,则 m 的取值范围是()8x 3y mA. m 9B. m 10 C.m 19 D. m 1010 9 10198.若 y 同时满足 y 1 0 与 y 2 0 ,则 y 的取值范围是______________.9.x 30不等式组x 1的解集是 ______________.42x 0.5的解集是 ______________.10. 不等式组 2.5x 3x2x m 1 11. 若不等式组 无解,则 m 的取值范围是 ______________.x 2m 1x 112. 不等式组 x 2 的解集是 _________________.x 52x a 1 1 x 1,那么 a 1 b 1 的值等于 ________.13. 若不等式组 2b的解集为 x 314. 4a x若不等式组a无解,则 a 的取值范围是 _______________.x 5 0x x 1 2 15. 解不等式组并在数轴上表示解集:2x 6 3x 2 2 3 x 1 x 1 8 1 4516.解不等式组并在数轴上表示解集: 1 x 1 317. 学校总务处为预定参加“教研活动”的出席者,每人准备了 15 个果子.所以购买了19 箱,每箱装20 个.按照这样准备的果子数,分完后应该余下几个,但如果每位出席都多分 1 个,就不够了,后来比预定出席的多来了 6 个,为了保证每位出席者能分到15 个果子,总务处又购进了4 箱果子,那么,实际参加活动的有多少人?18. 某工厂现有甲种原料360 千克,乙种原料290 千克,计划利用这两种原料生产 A 、B 两种产品共50 件 .已知生产一件 A 种产品,需用甲种原料9 千克,乙种原料 3 千克;生产一件 B 种产品,需用甲种原料 4 千克,乙种原料 10 千克 .问:按要求安排 A 、 B 两种产品的生产件数,有哪几种方案?请你设计出来.6。

一元一次不等式讲义(一)

一元一次不等式讲义(一)

一元一次不等式单元讲义(一)[知识点梳理]:一.不等式中的关键词与不等号要明确“大于”、“小于"、“不大于”、“不小于”、“不超过"、“至多”、“至少"、“非负数”、“正数"、“负数”、“负整数”……这些描述不等关系的语言所对应的不等号各是什么。

大于——不大于、小于等于、至多、不超过()> ()≤小于--不小于、大于等于、至少、不低于()< ()≥正数——非正数 负数--非负数()0> ()0≤ ()0< ()0≥二.不等式的性质:1. 传递性:a b b c a c >>>若,,则2. 不等式两边加上(或减去)同一个数,不等式仍成立a b a c b c >+>+若,则3. 不等式两边乘以(或除以)同一个正数,不等式仍成立0a b a b c ac bc c c>>>>若,,则, 不等式两边乘以(或除以)同一个负数,不等式改变方向后仍成立0a b a b c ac bc c c><<<若,,则,三.一元一次不等式解法:(与一元一次方程解法类比)注:乘数或除数是负数时,解不等式时要改变不等号的方向。

四.用数轴表示不等式的解集小于向左画,大于向右画;有等画实心,无等画空心。

五.解一元一次不等式的简便方法与技巧(一)、凑整法例1.解不等式10.50.257.52x x +--> 分析:根据不等式性质,两边同乘以适当的数,将小数转化为整系数。

解:两边同乘以4-,得302x x +<--16x ∴<-(二)、化分母为整数例2.解不等式4 1.550.8 1.50.50.20.1x x x ----> 分析:根据分数基本性质,将两边分母化成整数。

解:原不等式变形,得 ()832541510x x x --->-714x ∴-> 即2x <-(三)、裂项法例3.解不等式2141411364x x x -++->- 分析:本题若采用去分母法,步骤较多,由除法意义,裂项相合并,过程简洁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙文个性化辅导讲义(2011学年、第 2 学期)任教科目:数学授课题目:一元一次不等式组的解法年级: 七年级任课教师:龙文师资培训部编制主管签名:__________ 教务长签名:__________日期:__________ 日期:__________龙文个性化辅导教案教学过程I 、回顾上节课内容学生交流: 1、 说一说不等式的解集有哪几种情况? 2、 假设a b <,你能很快说出下列不等式组的解集吗?(1)(2)(3)(4)x a x a x a x ax b x b x b x b><><⎧⎧⎧⎧⎨⎨⎨⎨><<>⎩⎩⎩⎩ 两个一元一次不等式所组成的不等式组的解集有以下四种情形。

若a b <那么:1.不等式组⎩⎨⎧>>b x ax 的解集是x b >; 2. 不等式组⎩⎨⎧<<b x a x 的解集是x a <;3.不等式组⎩⎨⎧<>bx ax 的解集是a x b <<, 4. 不等式组⎩⎨⎧><b x a x 的解集是无解。

例题讲解.例3、喷灌是一种先进的田间灌溉技术,雾化指数标h 是它的技术要素之一,当喷嘴的直径为d mm ,喷头的工作压强为P kPa 时,雾化指标100Ph d=,对果树喷灌时要求30004000h ≤≤,若4d mm =,求P 的范围。

解:由题意得30004000h ≤≤即100300040004P≤≤ 解不等式组,得120160p ≤≤答:喷头的工作压强为120kPa 到160kPa 之间。

练习:一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住6人,有一间宿舍住不满。

(1)设有x 间宿舍,请写出x 应满足的不等式组; (2)可能有多少间宿舍、多少名学生?解一元一次不等式组的应用题,实际上和列方程解应用题的步骤相似,因此我们有必要先回忆一下列方程解应用题的步骤,有审题,设未知数;找相等关系;列方程;解方程;写出答案.解不等式组应用题的步骤,有审题,设未知数;找不等关系;列不等式组;解不等式组;写出答案.解:(1)设有x 间宿舍,则有(4x +19)名女生,根据题意,得⎩⎨⎧+<-+>194)1(61946x x x x (2)解不等式组,得9.5<x <12.5因为x 是整数,所以x =10,11,12.因此有三种可能,第一种,有10间宿舍,59名学生;第二种,有11间宿舍,63名学生;第三种,有12间宿舍,67名学生.运用不等式组解决实际问题的基本过程.认真观察刚才的例题,请大家总结一下用不等式组解决实际问题的基本过程. 基本过程大致为: 1.审题、设未知数; 2.找不等关系; 3.列不等式组; 4.解不等式组;5.根据实际情况,写出答案.课堂练习1、某公司经过市场调研,决定对明年起对甲、乙两种产品实行“限产压库”,要求着两种产品全年共新增产量20件,这20件的产值p (万元)满足:1100<p <1200.已知有关数据如下表所示:例4、某村种植杂交水稻82hm (公顷),去年的总产量是94800kg ,今年改进了耕作技术,估计总产量可比去年增产2%~4%(包括2%和4%),那么今年的水稻平均产量将会在什么范围内?分析:“总产量可比去年增产2%~4%(包括2%和4%)”包含有不等关系,可以根据这一句话列出不等式组。

解:设今年的水稻平均每公顷产量为xkg ,则今年水稻的总产量是8x kg ,根据题意可得:894800(12%)894800(14%)x x ≥⨯+⎧⎨≤⨯+⎩(1)(2) 解不等式(1)得12087x ≥ 解不等式(2)得12324x ≤ 所以这个不等式组的解集是 1208712324x ≤≤所以,今年水稻的平均公顷产量在12087kg 到12324kg (包括12087kg 和12324kg )之间。

课堂练习2、一堆玩具分给若干个小朋友,若每人分2件,则剩余3件;若前面每人分3件,则最后一个人得到的玩具数不足2件。

求小朋友的人数与玩具数。

解:设小朋友的人数为x ,则玩具数为(2x +3)件,根据题意,得⎩⎨⎧+-<++≤-2)1(33232)1(3x x x x 解不等式组,得4<x ≤6因为x 是整数,所以x =5,6,则2x +3为13,15因此,当有5个小朋友时,玩具数为13个;当有 6个小朋友时,玩具数为15个。

III 、课时小结两个一元一次不等式所组成的不等式组的解集有以下四种情形。

若a b <那么: (1)不等式组⎩⎨⎧>>b x ax 的解集是x b >; (2)不等式组⎩⎨⎧<<bx ax 的解集是x a <;(3)不等式组⎩⎨⎧<>bx ax 的解集是a x b <<,运用不等式组解决实际问题的基本过程:(1)审题,设未知数; (2)找不等关系; (3)列不等式组; (4)解不等式组;(5)根据实际情况,写出答案。

(4)不等式组⎩⎨⎧><bx ax 的解集是无解。

活动与探究火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A 、B 两种型号的车厢将这批货物运至北京,已知每节A 型货厢的运费是0.5万元,每节B 节货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,共有哪几种方案?请你设计出来;并说明哪种方案的运费最少?解:设A 型货厢用x 节,则B 型货厢用(50-x )节,根据题意,得⎩⎨⎧≥-+≥-+1150)50(35151530)50(2535x x x x 解不等式组,得 28≤x ≤30因为x 为整数,所以x 取28,29,30。

因此运送方案有三种。

(1)A 型货厢28节,B 型货厢22节; (2)A 型货厢29节,B 型货厢21节; (3)A 型货厢30节,B 型货厢20节;设运费为y 万元,则y =0.5x +0.8(50-x )=40-0.3x 当x =28时,y =31.6 当x =29时,y =31.3 当x =30时,y =31因此,选第三种方案,即A 型货厢30节,B 型货厢20节时运费最省。

【基础知识】 1、若方程组⎩⎨⎧=++=+3313y x k y x 的解为x 、y ,且2<k <4,则x -y 的取值范围是A.0<x -y <21B.0<x -y <1C.-3<x -y <-1D.-1<x -y <12、恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生3、乘某城市的一种出租车起价是10元(即行驶路程在5 km 以内都需付费10元),达到或超过5 km 后,每增加1 km 加价1.2元(不足1 km 部分按1 km 计),现在某人乘这种出租车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?4、使代数式213-m 的值在-1和2之间,m 可以取的整数有( ) (A)1个 (B)2个 (C) 3个 (D) 4个【主干知识】认真预习教材,尝试完成下列各题:1.我们把两个(或两个以上)的______,就组成了一个一元一次不等式组.2.不等式组的几个一元一次不等式的_________,叫做由它们所组成的一元一次不等式组的解集.3.求不等式组的__________的过程叫做解不等式组.4.借助数轴,求出下列不等式组的解集,然后看能总结出什么规律:(1)3313(2)(3)(4)1131 x x x xx x x x><>>⎧⎧⎧⎧⎨⎨⎨⎨><<<⎩⎩⎩⎩5.解一元一次不等式组,可分以下两个步骤:(1)求出该不等式组中_________;(2)利用数轴求出________,就求出了这个不等式组的解集. 6.自编一个解集为x≥2的一元一次不等式组____________.7.一元一次不等式组213233xx x-<⎧⎨->⎩的解集是()A.-2<x<3 B.-3<x<2 C.x<-3 D.x<2 【点击思维】1.你认为怎样找两个不等式解集的公共部分?2.一个一元一次不等式组一定有解吗?并举例说明.3.若不等式组x ax b<⎧⎨>⎩的解集是空集,则a、b的大小关系是______.4.解集为-2<x<3的不等式组为()A.2202873215...3302385214 x x x x xB C Dx x x x x>-+>-<--<⎧⎧⎧⎧⎨⎨⎨⎨>-<->-<+⎩⎩⎩⎩作业1.解不等式组并把解集在数轴上表示出来:x-2(x-1)≥-1(3x+1)/2>(2x-1)/32.解不等式组并把解集在数轴上表示出来:-x/2≤03x+5 >03. 解下列不等式组并把解集在数轴上表示出来:⑴5x+12>3(x+2)8x-5<3x+10⑵5(2x-3)>4(3x-2)(x-1)/4<(1-2x)/5.一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就读完了,李永平均每天比张力多读3页,张力平均每天读多少页?(答案取整数)a取什么值时,15-7a的值满足下列条件?(1)大于1;(2)小于1;(3)等于1.。

相关文档
最新文档