解三角形应用题的解题思路分析
直角三角形与斜三角形的应用题解题方法
直角三角形与斜三角形的应用题解题方法直角三角形和斜三角形是在几何学中常见的两种三角形形态。
它们在解决实际问题中有着广泛的应用。
本文将重点介绍直角三角形和斜三角形的应用题解题方法,并给出几个实例来加深理解。
一、直角三角形的应用题解题方法直角三角形是指其中一个角为90度的三角形。
以下是一些常见的直角三角形应用题解题方法:1. 利用正弦、余弦和正切函数三角函数是解决直角三角形问题的关键工具。
可以利用正弦、余弦和正切函数来计算三角形的各边长和角度。
例如,若已知一个直角三角形的两条边长,可以使用正弦函数来计算夹角的度数。
同样地,可以使用余弦函数或正切函数来计算其他未知数。
2. 使用勾股定理勾股定理是解决直角三角形边长关系的基本原理。
根据勾股定理,直角三角形中两个直角边的平方和等于斜边的平方。
在解题时,如果已知两个边长,可以通过勾股定理计算第三边的长度;反之,如果已知斜边和一个直角边的长度,可以通过勾股定理求解未知的直角边长。
3. 利用特殊直角三角形的性质特殊直角三角形如45° - 45° - 90°和30° - 60° - 90°三角形有一些独特的性质,可以方便地解决与它们相关的问题。
例如,在一个45° - 45° - 90°三角形中,两条直角边的长度相等,斜边的长度等于直角边的长度乘以√2。
如果已知一个角度为45°的直角三角形的某条边长,可以轻松地求解其他未知边长。
二、斜三角形的应用题解题方法斜三角形是指没有直角的三角形。
由于缺少直角特性,应用题解题方法与直角三角形有所不同。
以下是一些常见的斜三角形应用题解题方法:1. 使用正弦、余弦和正切函数与直角三角形类似,正弦、余弦和正切函数在解决斜三角形问题中也起到关键作用。
可以使用这些函数计算三角形的边长和角度。
需要注意的是,由于斜三角形没有固定的90°角,所以需要根据已知信息选择合适的三角函数。
解直角三角形的实际应用题的解题步骤
解直角三角形的实际应用题的解题步骤解直角三角形的实际应用题的解题步骤1. 引言直角三角形是高中数学中的重要概念之一,其解题方法和应用广泛存在于实际生活中。
本文将以解直角三角形的实际应用题为主题,通过深度和广度的分析,帮助读者更好地理解和应用直角三角形的知识。
2. 实际应用题的意义和背景实际应用题是数学知识在实际问题中的运用,对于培养学生的问题解决能力和应用能力至关重要。
解直角三角形的实际应用题有助于学生将抽象的数学概念和具体的实际问题进行联系,培养他们的分析和推理能力。
3. 解题步骤的概述解直角三角形的实际应用题可以分为以下几个步骤:求两个已知角度的第三个角度、确定已知角度的对边、确定未知角度的对边、求斜边、求面积等。
4. 具体步骤的详解(1)求两个已知角度的第三个角度:根据直角三角形的性质,在直角三角形中,三个角的和为180度。
通过已知的两个角度,我们可以求得第三个角度,从而建立起直角三角形的坐标系。
(2)确定已知角度的对边:根据已知角度可以确定相应的直角三角形边长比例关系。
通过题目中给出的已知角度和对边的长度比例,我们可以推导出未知角度的对边的长度。
(3)确定未知角度的对边:根据已知角度的对边和比例关系,可以推导出未知角度的对边与已知对边之间的比例关系。
通过这个比例关系,我们可以求得未知角度对应的对边长度。
(4)求斜边:已知两个直角三角形的边长,可以利用勾股定理来求解斜边的长度。
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
(5)求面积:已知直角三角形的两个直角边,可以利用面积公式来求解三角形的面积。
直角三角形的面积等于两个直角边长度的乘积的一半。
5. 个人观点和理解直角三角形的实际应用题在我们的日常生活中具有广泛的应用,例如在建筑、导航、物理等领域。
解题过程中,我们需要根据已知条件进行分析,应用数学知识和技巧来推导出未知的数据,从而解决实际问题。
通过解题过程中的分析和推理,我们还可以培养自己的逻辑思维和问题解决能力。
常见的三角形应用题解法指导
常见的三角形应用题解法指导作者:陶建成来源:《文理导航·教育研究与实践》2013年第07期【摘要】针对三角形的应用在高考中的地位日益凸显,本文对解斜三角形相关的实际问题进行了归纳、小结。
【关键词】三角形;应用;几种常见题解斜三角形在实际中的应用是很广泛的,如测量、航海、几何、物理等方面都要用到解三角形的知识。
解斜三角形有关的实际问题过程,贯穿了数学建模的思想。
这种思想就是从实际出发,经过抽象概括,把它转化为具体问题中的数学建模,然后通过推理演算,得出数学模型的解,再还原成实际问题的解。
一、解题步骤解题的一般步骤是:(1)准确理解题意,弄清应用题中有关名词、术语,如坡度、仰角、俯角、视角、象限角、方位角等,根据题意画出示意图,分清已知和所求;(2)分析与所研究的问题有关的一个或几个三角形,把实际问题转化为解三角形的问题。
(3)通过正确地运用正弦定理和余弦定理来解三角形,一是要会解,二是要选择适当的方法求解。
(4)检验解出的答案是否具有实际意义,对解进行取舍。
二、几种常见题目类型的解法本文就求距离的几个类型进行简单的讨论(一)两点能通视而不能到达求水平距离例1、如图所示,货轮在海上以40km/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时到达C点观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?分析:根据所给图形可以看出,在△ABC中,已知BC是半小时路程,只要根据所给的方位角数据,求出∠ABC、∠A的大小,由正弦定理可以得出AC的长。
(二)两点都不能到达求水平距离例2、如图所示,为了测量河对岸A、B两点间的距离,在这一岸定一基线CD,现已测出CD=a和∠ACD=α,∠BCD=β,∠BDC=γ,∠ADC=δ,试求AB的长。
分析:如图所示,对于AB求解,可以在△ABC中或者是△ABD中求解,若在△ABC 中,由∠ACB=α-β,故需求出AC、BC,再利用余弦定理求解.而AC可在△ACD内利用正弦定理求解,BC可在△BCD内由正弦定理求解。
初一数学角的应用题解题方法
初一数学角的应用题解题方法
一、观察规律
1、首先,熟悉该问题的基本信息,形态,思考和发现它有什么规律,看看角的位置和大小有什么关系。
2、寻找特殊的点,并对它们进行分析,例如,两条对角线的交点的角是相等的,每一边的顶点的角的和就是180°。
3、联想和比较,看看这些角的大小与以往解决的类似问题的角的大小有什么关系,画图去想象它们的特点,甚至能根据面积从结果中进一步得出角的大小。
二、计算公式
1、当得出某条边的长度或倾斜角度时,可以运用直角三角形的公式进行计算,如角平分线,勾股定理,正弦定理等。
2、此外,可以利用等条件三角形的关系计算,例如利用两夹脚同时夹住三角形的等条件来分析这三角形的属性,并利用关联性得出结论,以解决复杂的角度问题。
3、若找不到等条件或直角三角形的公式,可以先将多边形拆分成多个直角三角形,再依次求解角的大小并相加得出结论。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2
第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。
三角函数的应用题解题技巧
三角函数的应用题解题技巧三角函数是数学中一个重要的分支,广泛应用于各种实际问题的解决中。
掌握三角函数的应用题解题技巧,对于学习数学和解决实际问题都非常关键。
本文将介绍一些常见的三角函数应用题解题技巧,帮助读者更好地理解和应用三角函数。
一、角度与弧度的转换在解决三角函数应用题时,常常需要在角度和弧度之间进行转换。
角度和弧度是衡量角的两个不同的单位,转换它们能够使问题更简单。
一般而言,角度与弧度的转换关系为:1 π 弧度 = 180°根据这个关系,可以使用简单的比例关系来进行转换。
例如,将角度转换为弧度的公式为:弧度 = 角度× π/180二、正弦函数的应用正弦函数在解决三角应用题时是常用的工具之一。
在解决直角三角形的问题时,可以利用正弦函数求解未知边长或角度。
常见的解题步骤如下:1. 确定给定条件,包括已知边长和角度。
2. 根据问题描述,确定所需求解的未知量,将其表示为 x。
3. 利用正弦函数的定义:sin(θ) = 对边/斜边,建立方程sin(θ) = x/已知边长。
4. 解方程,求得未知量 x 的值。
三、余弦函数的应用余弦函数也是解决三角函数应用题时常用的工具之一。
在解决问题时,可以利用余弦函数求解未知边长或角度。
常见的解题步骤如下:1. 确定给定条件,包括已知边长和角度。
2. 根据问题描述,确定所需求解的未知量,将其表示为 x。
3. 利用余弦函数的定义:cos(θ) = 邻边/斜边,建立方程cos(θ) = x/已知边长。
4. 解方程,求得未知量 x 的值。
四、切函数的应用切函数也是解决三角函数应用题时常用的工具之一。
在解决问题时,可以利用切函数求解未知边长或角度。
常见的解题步骤如下:1. 确定给定条件,包括已知边长和角度。
2. 根据问题描述,确定所需求解的未知量,将其表示为 x。
3. 利用切函数的定义:tan(θ) = 对边/邻边,建立方程tan(θ) = x/已知边长。
锐角三角函数应用题的方法与技巧
锐角三角函数应用题的方法与技巧
x
《锐角三角函数应用题的方法与技巧》
一、总体思路
1、识别出三角形所涉及的三角函数,并确定三角函数的参数:根据题干里面提供的线段、角度等长度或角度来初步判断三角形的形状,并由此来计算出三个角度和三条边。
2、判断题目的性质:根据题目要求,判断出是求边长还是求角度。
3、解答:
(1)求边长:利用相应的三角函数关系(正弦定理、余弦定理、正切定理等),求出答案;
(2)求角度:利用相应的三角函数关系,求出角度的三角函数值,再用反三角函数求出角度。
二、技巧总结
1、画图法:根据题干中提供的信息,画出准确的三角形图形,便于计算和判断。
2、直角三角形快速求角度:根据对边比斜边的特点,找出角度所对应的三角函数值,再用反三角函数计算出角度。
3、正弦定理、余弦定理:正弦定理可用于计算夹角的一边的长度,余弦定理可用于求另一边的长度。
4、正切定理:正切定理可以用于求夹角的角度大小。
5、各种三角函数的关系:在计算三个角度的大小时,可以利用三个角度的和为180°;在计算三条边的长度时,可以利用三条边之和的性质。
高考数学 解三角形应用举例
第23讲 解三角形应用举例1.仰角和俯角在视线和水平线所成的角中,视线在水平线!!! 上方 ###的角叫仰角,在水平线!!! 下方 ###的角叫俯角(如图①).2.方位角从指北方向!!!顺时针 ###转到目标方向线的水平角叫方位角,如B 点的方位角为α(如图②).3.方向角相对于某一正方向的水平角(如图③)(1)北偏东α,即由指北方向!!! 顺时针 ###旋转α到达目标方向. (2)北偏西α,即由指北方向!!! 逆时针 ###旋转α到达目标方向. (3)南偏西等其他方向角类似.4.坡度(比)坡角:坡面与水平面所成的!!! 二面角 ###的度数(如图④,角θ为坡角).坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡度(比)). 5.解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位、近似计算的要求等.1.思维辨析(在括号内打“√”或“×”).(1)公式S =12bc sin A =12ac sin B =12ab sin C 适用于任意三角形.( √ )(2)东北方向就是北偏东45°的方向.( √ ) (3)俯角是铅垂线与视线所成的角.( × )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎡⎭⎫0,π2.( √ ) 解析 (1)正确.三角形的面积公式对任意三角形都成立. (2)正确.数学中的东北方向就是北偏东45°或东偏北45°的方向. (3)错误.俯角是视线与水平线所构成的角.(4)正确.方位角是由正北方向顺时针转到目标方向线的水平角,故大小的范围为[0,2π),而方向角大小的范围由定义可知为⎣⎡⎭⎫0,π2. 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( B )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析 如图所示,∠ACB =90°.又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( A ) A .50 2 m B .50 3 m C .25 2 m D .2522m解析 由正弦定理得 AB =AC ·sin ∠ACB sin B=50×2212=502(m).4.在相距2千米的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C .解析 如图所示,由题意知∠C =45°, 由正弦定理得AC sin 60°=2sin 45°,∴AC =222×32= 6. 5.一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行!!! 8 ###海里.解析 如图,由题意知在△ABC 中, ∠ACB =75°-60°=15°,∠B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8(海里).一 距离问题求解距离问题的一般步骤(1)选取适当基线,画出示意图,将实际问题转化为三角形问题. (2)明确要求的距离所在的三角形有哪几个已知元素. (3)确定使用正弦定理或余弦定理解三角形.【例1】 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的点C ,点D ,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,则点A ,B ###km.解析 如图,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3(km). 在△BCD 中,∠BCD =45°, ∠BDC =75°,∠CBD =60°. ∴BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得 AB 2=(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,∴AB =5(km),即A ,B 之间的距离为 5 km.二 高度问题高度问题一般是把它转化成三角形的问题,要注意三角形中的边角关系的应用,若是空间的问题要注意空间图形和平面图形的结合.【例2】 要测量电视塔AB 的高度,在点C 测得塔顶A 的仰角是45°,在点D 测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为!!! 40 ###m.解析 设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x .在Rt △ADB 中,由∠ADB =30°,得BD =3x .在△BDC 中,由余弦定理,得BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40 m.三 角度问题解决角度问题的注意点(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用. 【例3】 在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,红方侦察艇以每小时14 n mile 的速度沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解析 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°. 根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.1.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=( B )A .217B .2114 C .32114D .2128解析 如题图所示,在△ABC 中,AB =40海里,AC =20海里,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,故BC =207(海里).由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217,由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos (∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 第1题图第2题图2.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD =( B )A .30°B .45°C .60°D .75°解析 依题意可得AD =2010 m ,AC =30 5 m ,又CD =50 m ,所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.3.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC =45°,根据以上数据可得cos θ解析 由∠DAC =15°,∠DBC =45°,可得∠BDA =30°,∠DBA =135°,∠BDC =90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB =180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin 30°=DB sin 15°,即DB =100sin 15°=100×sin (45°-30°)=252(3-1),又25sin 45°=252(3-1)sin (90°+θ), 即25sin 45°=252(3-1)cos θ,得到cos θ=3-1. 4.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB .∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB,得600sin 45°=CB sin 30°,有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006,则此山的高度CD =100 6 m.易错点 不注意实际问题中变量的取值范围错因分析:三角形中的最值问题,可利用正弦、余弦定理建立函数模型(或三角函数模型),转化为函数最值问题.求最值时要注意自变量的范围,要考虑问题的实际意义.【例1】 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度 的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解析 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400 =900⎝⎛⎭⎫t -132+300. 故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20. 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.【跟踪训练1】 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解析 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin (A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由AB sin C =AC sin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)设乙出发t 分钟后,甲、乙两游客距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙距离最短.(3)由BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.课时达标 第23讲[解密考纲]本考点考查利用正弦定理、余弦定理求解三角形,解决实际应用问题.题型一般为填空题或解答题,题目难度中等偏难.一、选择题1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( B )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°解析依题意作出图形可知,A在B北偏西10°的地方.2.有一长为1千米的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则斜坡长为(C)A.1千米B.2sin 10°千米C.2cos 10°千米D.cos 20°千米解析由题意知DC=BC=1,∠BCD=160°,∴BD2=DC2+CB2-2DC·CB·cos 160°=1+1-2×1×1×cos(180°-20°)=2+2cos 20°=4cos210°,∴BD=2cos 10°.3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(A)A.10 2 海里B.10 3 海里C.20 3 海里D.20 2 海里解析如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里),故选A.4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔的高度是(D)A.100 2 m B.400 mC.200 3 m D.500 m解析由题意画出示意图,设塔高AB=h m,在Rt△ABC中,由已知得BC=h m,在Rt△ABD中,由已知得BD=3h m,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD cos ∠BCD,得3h2=h2+5002+h·500,解得h=500(m).5.长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C1.4 m的地面上,另一端B在离堤足C处的2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=(A)A.2315B.516C.23116D.115解析由题意,可得在△ABC中,AB=3.5 m,AC=1.4 m,BC=2.8 m,且∠α+∠ACB=π.由余弦定理,可得AB2=AC2+BC2-2×AC×BC×cos∠ACB,即 3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cos α=516,所以sin α=23116,所以tan α=sin αcos α=2315.6.(2018·四川成都模拟)如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60 m,则该建筑物的高度为(A)A.(30+303) m B.(30+153) mC.(15+303) m D.(15+153) m解析设建筑物高度为h,则htan 30°-htan 45°=60,即(3-1)h=60,所以建筑物的高度为h=(30+303)m.二、填空题7.一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 2 n mile,此船的航速是!!!32###n mile/h.解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =8 2 n mile ,∠BSA =45°,由正弦定理,得82sin 30°=12v sin 45°,∴v =32 n mile/h.8.某人在地上画了一个角∠BDA =60°,他从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为!!! 16米 ###.解析 如图,设DN =x 米,则142=102+x 2-2×10×x cos 60°,∴x 2-10x -96=0. ∴(x -16)(x +6)=0.∴x =16. ∴N 与D 之间的距离为16米.9.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°.从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =!!! 150 ###m.解析 在△ABC 中,AC =1002,在△MAC 中,MA sin 60°=ACsin 45°,解得MA =1003,在△MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m.三、解答题10.已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇,岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°=5314,sin 22°=3314解析 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5海里,依题意,∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos 120°,所以BC 2=49,BC =0.5x =7,解得x =14.又由正弦定理得 sin ∠ABC =AC ·sin ∠BACBC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.11.(2018·广东广州模拟)如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:∠ACD =90°,∠ADC =60°,∠ACB =15°,∠BCE =105°,∠CEB =45°,DC =CE =1(百米).(1)求△CDE 的面积; (2)求A ,B 之间的距离.解析 (1)连接DE ,在△CDE 中,∠DCE =360°-90°-15°-105°=150°,S △ECD =12DC ·CE ·sin 150°=12×sin 30°=12×12=14(平方百米).(2)依题意知,在Rt △ACD 中,AC =DC ·tan ∠ADC =1×tan 60°= 3. 在△BCE 中,∠CBE =180°-∠BCE -∠CEB =180°-105°-45°=30°. 由正弦定理,得BC =CE sin ∠CBE·sin ∠CEB =1sin 30°×sin 45°= 2.因为cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45° =12×22+32×22=6+24. 连接AB ,在△ABC 中,由余弦定理得, AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB = (3)2+(2)2-23×2×6+24=2-3, 所以AB =2-3=6-22(百米). 12.(2018·河北石家庄重点高中摸底)某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值. 解析(1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310 km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中,BE =BD 2+DE 2=⎝⎛⎭⎫33102+⎝⎛⎭⎫9102=335(km).故道路BE 的长度为335km.(2)设∠ABE =α,∴∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE=335sinπ3=65,∴AB =65sin ⎝⎛⎭⎫2π3-α,AE =65sin α. ∴S △ABE =12AB ·AE sin π3=9325sin ⎝⎛⎭⎫2π3-α·sin α= 9325⎣⎡⎦⎤12sin ⎝⎛⎭⎫2α-π6+14≤9325⎝⎛⎭⎫12+14=273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE 面积的最大值为273100km 2.。
苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b =【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 60b a B ==⨯=° 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c ==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【课程名称:解直角三角形及其应用 395952 :例1(1)-(3)】【变式】(1)已知∠C=90°,,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ;【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【课程名称:解直角三角形及其应用395952:例2】【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=55FB =+,解得5 3.66(m)FB ==. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。
解三角形题型的解法
解三角形题型的解法一、直角三角形中各元素间的关系:在ABC ∆中,090,,,.C AB c AC b BC a ==== (1)三边之间的关系:222a b c +=(勾股定理) (2)锐角之间的关系:090A B +=; (3)边角之间的关系:(锐角三角函数定义)sin cos a A B c ==,cos sin b A B c ==,tan aA b=. 二、斜三角形中各元素间的关系:在ABC ∆中,A B C 、、为其内角,a b c 、、分别表示A B C 、、的对边. (1)三角形内角和:A B C π=++.(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两 倍.2222cos a b c bc A =+-; 2222cos b a c ac B =+-; 2222cos c a b ab C =+-.222222222cosA cosBcosC222b c a a c b a b c bcacab2222cos a b c ab C 2222cosA c b a bc 2222cosB a c b ac三、三角形的面积公式:(1)111222a b c S ah bh ch ∆===(a b c h h h 、、分别表示a b c 、、的高); (2)111sin bcsinA acsin 222S ab C B ∆====21四、解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.解三角形如果出现多解,要利用三角形内角和定理或三角形边角不等关系来检验. 五、三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点. (1)角的变换因为在ABC ∆中,A B C π=++,所以sin()sin A B C +=;cos()cos A B C +=-;tan()tan A B C +=-;2sin 2cos ,2cos 2sinCB AC B A =+=+. (2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 六、求解三角形应用题的一般步骤: (1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图; (3)求解:正确运用正、余弦定理求解; (4)检验:检验上述所求是否符合实际意义. 七、解应用题中的几个角的概念 (1)仰角、俯角的概念:在测量时,视线与水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫做俯角.如图:(2)方向角:相对于某正方向的水平角.如南偏西045等.(3)方位角:指从正北方向顺时针转到目标方向线的夹角.【方法讲评】题型一 求三角形的角和边使用情景 解三角形解题步骤一般利用正弦定理、余弦定理和三角恒等变形来解答.【例1】在ABC ∆中,已知22=a ,32=b ,045=A ,求c B C 、、.【点评】(1)利用正弦定理和余弦定理时,注意使用的数学情景,知道两边和其中一边的对角一般利用正弦定理解答;(2)已知两边和其中一边的对角,一般要讨论,利用三角形内角和定理或三角形边角不等关系定理检验. 学科@网【反馈检测1】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin C sin cos sin cos a b -B B=B A. (1)求角A 的大小;(2)若3a =,sinC 2sin =B ,求b ,c 的值.题型二 求三角形的面积使用情景解三角形解题步骤利用公式11sin 22a S ah ab C ==解答. 【例2】 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且23cos cos 3b c CA a-=. (1)求角A 的值; (2)若角6B π=,BC 边上的中线7AM =,求ABC ∆的面积.【点评】求三角形的面积一般利用公式11sin 22a S ah ab C ==解答,注意灵活选用公式. 【反馈检测2】在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △的面积等于3a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.题型三 判断三角形的形状使用情景解三角形解题步骤 一般利用正弦定理或余弦定理边化角或角化边.【例3】在ABC △中,若22tan tan b a B A =,则ABC △的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形【点评】(1)判断三角形的形状,一般利用正弦定理或余弦定理边化角或角化边.(2)in 2sin 2A B =得到22A B =或022180A B +=,不要漏了022180A B +=.【反馈检测3】已知,,a b c 分别是ABC ∆ 中角,,A B C 的对边sin 4sin 4sin ac A C c A +=. (1)求a 的值;(2)圆O 为ABC ∆的外接圆(O 在ABC ∆内部), ABC ∆34b c +=,判断ABC ∆的形状, 并说明理由.题型四 解三角形的应用 使用情景 解三角形的应用解题步骤先画图,把条件标记到图形中,然后转化成解三角形的数学问题来解.【例4】已知甲船正在大海上航行,当它位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30︒,相距10海里C 处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达.(供参考使用:2341tan =︒). (1)试问乙船航行速度的大小;(2)试问乙船航行的方向(试用方位角表示,如北偏东…度). 【解析】依题意画出A B C 、、的方位图,如下【点评】(1)解三角形的应用题,一般先画图,把条件标记到图形中,然后转化成解三角形的数学问题来解.(2)解三角形的一般规律:必须知道三个几何元素,至少一个为边,对于不知道的边或角可以放到其它三角形中去解.【反馈检测4】在海岸A 处,发现北偏西75°的方向,与A 距离2海里的B 处有一艘走私船,在A 处北偏东45°方向,与A 距离(3-1)海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.此时,走私船正以10海里/小时的速度从B 向北偏西30°方向逃窜,问缉私船沿什么方向能最快追上走私船?题型五 取值范围或最值问题 使用情景 求变量的取值范围或最值.解题步骤 一般先建立三角函数模型,再利用三角函数的图像和性质求函数的取值范围或最值.【例5】在锐角ABC ∆中,内角A ,B ,C 的对边c b a ,,,已知2=c ,3π=C .(1)若ABC ∆的面积等于3,求b a ,; (2)求b a +的取值范围.【点评】本题第2问,利用正弦定理建立三角函数模型后,要注意角A 的范围,不能简单地根据“锐 角ABC ∆”,把角A 的范围定为02A π<<,锐角三角形指的是每一个内角都是锐角,所以要考虑,,(0,)2A B C,才能得到角A 的准确范围.【反馈检测5】在ABC ∆中,三个内角A,B,C 的对边分别为a ,b ,c ,其中2c =,且cos 3cos 1A bB a == (1)求证:ABC ∆是直角三角形;(2)设圆O 过,,A B C 三点,点P 位于劣弧AC 上,PAB θ∠=,用θ的三角函数表示三角形PAC ∆的面积,并求PAC ∆面积最大值.参考答案【反馈检测1答案】(1)3πA =;(2)3b =,23c =.【反馈检测2答案】(1)2a =,2b =; (2)33S =【反馈检测2详细解析】(Ⅰ)由余弦定理及已知条件得,224a b ab +-=,又因为ABC △31sin 32ab C =4ab =. 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =.(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=, 即sin cos 2sin cos B A A A =, 当cos 0A =时,2A π=,6B π=,433a =,233b =,当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得233a =,433b =.所以ABC △的面积123sin 23S ab C ==. 【反馈检测3答案】(1)2a =;(2)等边三角形. 学科@网【反馈检测4答案】缉私船沿北偏西60的方向能最快追上走私船【反馈检测4详细解析】由已知条件得,2,31,120AB AC BAC ==∠=, ∴BC =22244232326AB AC AB AC cos BAC ⋅⋅∠+-=+-+-=.在ABC ∆中,AB BCsin ACB sin BAC∠∠=,解得2sin 2ACB ∠=,∴45ACB ∠=, ∴BC 为水平线,设经过时间t 小时后,缉私船追上走私船,则在BCD ∆中,10,3,120BD t CD t DBC ==∠=,sin BCD ∠=310122103t BDsin CBD CD t⨯∠==, ∴30BCD ∠=,∴缉私船沿北偏西60的方向能最快追上走私船.【反馈检测5答案】(1)证明略;(2)3πθ=时, PAC S ∆最大值等于34.【反馈检测5详细解析】(1)证明:由正弦定理得cos sin cos sin A BB A=,整理为sin cos sin cos A A B B =,即sin2A =sin2B ∴2A =2B 或2A +2B =π,即A =B 或A +B =2π∵31b a =,∴A =B 舍去.由A +B =2π可知c =2π,∴ΔABC 是直角三角形。
数学平行线与三角形关系应用题解析
数学平行线与三角形关系应用题解析在解析数学平行线与三角形关系应用题之前,我们先来了解一下什么是平行线和三角形。
平行线是指在同一个平面内始终保持相同的距离且永不相交的两条直线。
而三角形是由三条线段连接而成的一种多边形。
在数学中,平行线与三角形之间存在一些重要的关系。
下面我们将通过应用题来解析这些关系。
假设有一条直线l,平行于边AB的直线为m。
另外,在直线m的上方有一点C,下方有一点D。
我们需要找到与线段CD平行的边。
解题思路:我们可以通过以下步骤来解决这个问题:步骤一:确定平行线与三角形的关系。
步骤二:分析已知条件。
步骤三:应用平行线与三角形的关系,解出答案。
解题步骤:步骤一:确定平行线与三角形的关系根据平行线与三角形的关系,我们知道如果两条直线l和m平行,那么它们与一条横截线所构成的三角形内的两个对顶角是相等的。
即∠ACD = ∠BAE,其中∠ACD和∠BAE分别是三角形ACD与三角形BAE内的对应角。
步骤二:分析已知条件我们已知直线l平行于边AB,即l || AB。
同时,线段CD与直线l平行。
步骤三:应用平行线与三角形的关系,解出答案由已知条件可得,∠ACD = ∠BAE。
根据该等角关系,我们可以得出结论:∠ACD = ∠BAE。
而又因为三角形ACD内角之和为180度,所以∠ACD + ∠CAD + ∠ADC = 180度。
根据这个等式,我们可以得出∠CAD + ∠ADC = 180度- ∠ACD,即∠CAD + ∠ADC = 180度 - ∠BAE。
由此可见,在三角形ACD内,与线段CD平行的两条边分别是边AC和边AD。
综上所述,与线段CD平行的边是边AC和边AD。
结论:根据我们的分析和推理,与线段CD平行的边是边AC和边AD。
通过这个应用题的解析,我们可以看到数学中平行线与三角形的关系是相当重要的。
在解决这类问题时,我们需要运用平行线与三角形的性质和定理,合理推理和分析已知条件,并灵活运用相关等角关系和三角形内角之和等等知识,从而得出准确的结论。
例谈初中数学有关三角函数应用题的四个模型
例谈初中数学有关三角函数应用题的四个模型
1.求正弦定理:利用正弦定理可以解决三角形对边求角的问题,同
时也常用来求三角形内角与外角之和的问题,如:已知ABC三角形,
A = 105°,
B = 30°,求C角的度数。
解:由正弦定理:
A:B:C=sinA:sinB:sinC,可得:C = 45°。
2.求余弦定理:余弦定理可以用来求三角形的面积,如果知道三条边的长度,则可以求出三角形的面积。
如:已知ABC三角形的两条边的长
度分别为a = 8cm、b = 9cm,夹角C的度数为30°,求ABC三角形的
面积。
解:利用余弦定理,即a² = b² + c²– 2bc⁺cosC,得出:c = 8.11cm,三角形ABC的面积S = ab/2 sinC = 63.07cm²。
3.求正切定理:正切定理常用于求夹角的正切值。
如:已知ABC三角形,A = 30°,∠B = 60°,求tanB的值,解:由正切定理:
tanA:tanB:tanC = a:b:c,可以得出tanB = 1/√3∶1.
4.求正割定理应用:正割定理常用于夹角的正割值的求解,如:已知ABC三角形,A = 45°,B = 60°,求cosA的值,解:由正割定理:cosA:cosB:cosC = a:b:c,可以得出cosA = √3∶2.。
解直角三角形的实际应用题的解题步骤
解直角三角形的实际应用题的解题步骤一、引言在数学中,直角三角形是研究的重要对象之一,其特殊的性质和广泛的应用使其成为数学学习中的重要内容。
解直角三角形的实际应用题,是数学知识与实际问题相结合的体现,也是数学运用能力的考验。
在本文中,我们将探讨解直角三角形的实际应用题的解题步骤,希望能帮助读者更深入地理解这一内容。
二、实际应用题的解题步骤1. 理解问题解题的第一步是要充分理解问题。
在解直角三角形的实际应用题时,我们需要明确问题的背景和要求,理解其中涉及的相关知识点。
如果题目是要求求解某个角的值或某条边的长度,我们需要明确所给信息和要求,以便有针对性地进行求解。
2. 标注已知量和未知量解题的第二步是要标注已知量和未知量。
在直角三角形中,我们通常会遇到三边、三角或边角关系的已知量和未知量,标注清楚有助于我们更清晰地把握问题的本质。
通过标注已知量和未知量,我们可以更好地运用三角函数关系进行求解。
3. 应用三角函数关系接下来,我们需要应用三角函数关系进行求解。
根据已知量和未知量的不同组合,我们可以选择使用正弦、余弦或正切等三角函数来建立方程,然后通过解方程来求解未知量。
这一步需要我们熟练掌握三角函数的性质和运用技巧,以便准确地进行计算和推导。
4. 检验和解答问题我们需要检验和解答问题。
在求解过程中,我们得到的答案可能是角的大小或边的长度,需要通过检验来验证我们的答案是否符合题意。
在解答问题时,我们也需要根据问题的要求给出完整的答案和解释,以便清晰地呈现解题过程和结果。
三、个人观点和总结解直角三角形的实际应用题需要我们熟练掌握三角函数的运用和技巧,也需要我们对实际问题有较强的理解和分析能力。
在解题过程中,我们要善于应用已知信息,创造性地建立方程,以及正确地运用三角函数关系,才能得到准确的答案。
通过解直角三角形的实际应用题,我们不仅能够巩固数学知识,还能培养解决实际问题的能力,这对我们的学习和生活都具有重要意义。
解直角三角形应用题
解直角三角形应用题直角三角形是日常生活中常见的一种三角形,因为其特定的角度关系,使得对其进行一系列数学运算以及技术应用都显得方便和便捷。
在学习和应用直角三角形的过程中,解决一些应用题也是非常有必要的。
本文将详细介绍一些解直角三角形应用题的重要方法与技巧。
一、三边比例与角度多少在某些情况下,通过已知直角三角形的三边比例,可以推算出其内部的角度关系。
如下所示,已知直角三角形的三边比例,求其内部所有角度的大小。
根据直角三角形的定义,可以知道斜边上对应的角度是直角,那么只需要求出其余两个角度就可以了。
设三边长度分别为a,b,c,设两个内角为A,B,那么根据三角函数的定义可以得到下列方程组:sin A = a / ccos A = b / ctan A = a / b通过这些公式,可以得到角A和角B的大小。
当然,如果只有两个角度是已知的,也可以借助三角函数式子求得第三个角度。
二、三角形上一点对角度的影响已知直角三角形ABC中,C为直角,AB=c,已知点D在斜边AC上,且满足AD=BC,求角度B和角度C的大小。
这就是典型的直角三角形应用题。
首先,因为AD和BC长度相等,那么可知三角形ACD和三角形BCD的面积相等,根据三角形面积公式得到:AD×CD/2 = BC×CD/2AD = BC×CD/AC将已知数据代入,化简得到:CD=2AC/(1+√5)接着,根据对应角的两点组合定理可得到如下关系式:tan B = BD/AB = AD/ABsin C = BD/BC = AD/AC代入已知的数据,得到:tan B = (2AC / (1+√5)) / csin C = (2AC / (1+√5)) / √(AC^2 + c^2)通过这些方程,可以计算出角B和角C的大小。
三、海伦公式海伦公式(Heron's formula)是解任意形状三角形面积的重要公式之一。
对于任意形状的三角形,海伦公式的表述如下所示:S = √(p(p-a)(p-b)(p-c))其中,S表示三角形的面积,a,b,c表示三角形的三边长度,p则表示三角形半周长,即:p = (a+b+c)/2在求解直角三角形的面积时,可以运用海伦公式。
解三角形知识点汇总和典型例题
因为 < < ,所以 ,或
①当 时, ,
②当 时,
,
点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器
题型2:三角形面积
例2.在 中, , , ,求 的值和 的面积。
解法一:先解三角方程,求出角A的值。
(1)两类正弦定理解三角形的问题:
第1、已知两角和任意一边,求其他的两边及一角.
第2、已知两角和其中一边的对角,求其他边角.
(2)两类余弦定理解三角形的问题:
第1、已知三边求三角.
第2、已知两边和他们的夹角,求第三边和其他两角.
5.三角形中的三角变换
三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
解:在△ABC中,∠DAC=30°, ∠ADC=60°-∠DAC=30,
所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°,
(2) = absinC= bcsinA= acsinB= =2R2sinAsinBsinC
4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:
当sin = ,即A= 时, cosA+2cos 取得最大值为 。
点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。
题型6:正余弦定理的实际应用
例6.(2009辽宁卷文,理)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为 , ,于水面C处测得B点和D点的仰角均为 ,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01km, 1.414, 2.449)
解三角形的知识总结和题型归纳
解三角形的知识总结和题型归纳一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
初二数学三角形经典题型
三角形的中线、高、角平分线性质
利用三角形的中线、高、角平分线的性质解决问题
识别并应用相关性质,如中线长度公式、高与面积的关系等
8
三角形的相似与全等
证明三角形相似或全等,并求解相关问题
应用相似或全等的判定定理,如SSS、SAS、ASA、AAS等
9
三角形的外接圆与内切圆
利用外接圆与内切圆的性质解决问题
识别并应用外接圆半径、内切圆半径与三角形边长的关系
10
综合应用题
结合多种三角形性质解决实际问题
综合运用上述知识点,分析题意,逐步求解
通过周长公式反推第三边长
4
直角三角形的性质应用
利用勾股定理解决直角三角形问题
验证是否为直角三角形,应用勾股定理
5
等腰三角形的性质应用
利用等腰三角形的性质(如两腰相等、两底角相等)解决问题
识别等腰三角形,应用其性质
6
三角形的内角和与外角和
已知三角形两内角求第三角,或验证三角形内角和为180°
应用三角形内角和定理,或外角和为360°的性质
初二数学三角形经典题型
序号
题型分类
题目描述/示例
解题思路/方法
1
三角形的边与角关系
已知三角形理求解
2
三角形的面积计算
已知三角形三边或两边及夹角,求面积
使用海伦公式或面积公式(如底乘高、两边及夹角公式)
3
三角形的周长与边长关系
已知三角形周长及其中两边长,求第三边长
解三角形的实际应用问题
高二数学导学案设计者:张乐乐审核者:薛红霞设计时间:2016-10-17 使用时间2016-10-21 解三角形的实际应用问题学习目标1能在实际问题中抽象或构造出三角形,能根据各量之间关系,确定解三角形的方法.2会街与测量距离高度角度有关的应用题和实际问题,提高分析问题理解问题的能力.解三角形应用题的一般步骤考点一测量距离1.如图,隔河看两目标A与B,但不能到达,在岸边先选取相距3千米的C,D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.2.如图所示,要测量一水塘两侧A,B两点间的距离,其方法为:先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离,即AB=a2+b2-2ab cos α.若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.考点二测量高度1.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A 点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.2.(2015·吉安模拟)要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________m.考点三测量角度在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile的水面上,有蓝方一艘小艇正以每小时10 n mile的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n ile的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.课堂小结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形应用题的解题思路分析
正弦、余弦定理在实际生活中有着极其广泛的应用,对经过抽象、概括最终转化为三角形中的边角问题的实际问题的求解十分有效,本文略谈一下解三角形问题的解题思路,以供参考。
思路一:解三角函数应用题要通过审题领会其中的数的本质,将问题中的边角关系与三角形联系起来,确定以什么样的三角形为模型,需要哪些定理或边角关系列出等量或不等量关系的解题思路,然后寻求变量之间的关系,也即抽象出数学问题。
例1 如图,为了计算北江岸边两景点B 与C 的距离,由于地形的限,
制需要在岸上选取A 和D 两个测量点,现测得AD CD ⊥,10AD km =,
14AB km =,60BDA ︒∠= ,135BCD ︒∠=,求两景点B 与C 的距离
(假设,,,A B C D 在同一平面内,测量结果保留整数;参考数据:
2 1.414,
3 1.732,5 2.236===)
分析:把“两景点B 与C 的距离”确定为以三角形BCD 为模型即在三角形BCD 内求解。
解:在△ABD 中,设BD=x ,则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222, 即 60cos 1021014222⋅⋅-+=x x 整理得:096102=--x x
解之:161=x ,62-=x (舍去),由正弦定理,得:BCD
BD CDB BC ∠=∠sin sin , ∴2830sin 135
sin 16=⋅= BC ≈11(km). 答:两景点B 与C 的距离约为11.km.
思路二:解三角函数应用题要要充分运用数形结合的思想、图形语言和符号语言等方式来思考解决问题;再次,讨论对数学模型的性质对照讨论变量的性质,从而得到的是数学参数值;最后,按题目要求作出相应的部分问题的结论.
例2 用同样高度的两个测角仪AB 和CD 同时望见气球E 在它们的正西方向的上空,分别测得气球的仰角是α和β,已知B 、D 间的距离为a ,测角仪的高度是b ,求气球的高度.
分析:在Rt△EGA 中求解EG ,只有角α一个条件,需要再有一边长被确定,而△EAC 中有较多已知条件,故可在△EAC 中考虑EA 边长的求解,而在△EAC 中有角β,∠EAC =180°-α两角与BD =a 一边,故可以利用正弦定理求解EA.
解:在△ACE 中,AC =BD =a ,∠ACE =β,∠AEC =α-β,
根据正弦定理,得AE = a sin βsin (α-β)
在Rt△AEG 中,EG =AEsin α=a sin αsin βsin (α-β)
∴EF =EG +b =a sin αsin βsin (α-β)
+b 。
答:气球的高度是a sin αsin βsin (α-β)
+b. 思路三:解三角形时,通常会遇到两种情况:①已知量与未知量全部集中在一个三角形
中,此时应直接利用正弦定理或余弦定理;②已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.
(1)已知量与未知量全部集中在一个三角形中的情况
例3 在奥运会垒球比赛前,C 国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°的方向把球击出,根据经验及测速仪的显示,通常情况下球速为游击手最大跑速的4倍,问按这样的布置,游击手能不能接着球?(如图所示)
分析:在三角形△AOB 中运用正弦定理求解问题。
解:设游击手能接着球,接球点为B ,而游击手从点A 跑出,本垒为O 点(如图所示).设从击出球到接着球的时间为t ,球速为v ,则∠AOB=15°,OB =vt ,4v AB t ≤
⋅。
在△AOB 中,由正弦定理得sin sin15
OB AB OAB =∠, 62sin sin1562/44
OB vt OAB AB vt -∠=≥⋅=- 而2(62)84384 1.741-=->-⨯>,即sin∠OAB>1,
∴这样的∠OAB 不存在,因此游击手不能接着球.
(2)已知量与未知量涉及两个或几个三角形的情况
例4 在海岛A 上有一座海拔1千米的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北30°东,俯角为30°的B 处,到11时10分又测得该船在岛北60°西、俯角为60°的C 处。
(1)求船的航行速度是每小时多少千米; (2)又经过一段时间后,船到达海岛的正西方向的D 处,问此时船距岛A 有多远? 分析:解答该题要涉及三角形Rt △P AC 、△ACB 、△ACD 。
解析 (1)在Rt △P AB 中,∠APB =60° P A =1,∴AB =3 (千米) 在Rt △P AC 中,∠APC =30°,∴AC =3
3 (千米)。
西
D C B 北A
P 东
在△ACB 中,∠CAB =30°+60°=90° ∴()3
303332222=+
⎪⎪⎭⎫ ⎝⎛=+=AB AC BC ,30261330=÷(千米/时)。
(2)∠DAC =90°-60°=30°
sin DCA =sin(180°-∠ACB )=sin ACB =1010
3330
3==BC AB sin CDA =sin(∠ACB -30°)=sin ACB ·cos30°-cos ACB ·sin30°10103= 20
10)133()10103(121232-=-⋅- 在△ACD 中,据正弦定理得CDA
AC DCA AD sin sin =, ∴133920
10
)133(1010333sin sin +=-⋅=⋅=CDA DCA AC AD 答 此时船距岛A 为1339+千米。