安徽省宿州市2014届高三上学期期末考试试题(数学理)[1]

合集下载

2014届高中新课程高三上学期期末考试数学(理)试题 (含答案)

2014届高中新课程高三上学期期末考试数学(理)试题 (含答案)

2014届高中新课程高三上学期期末考试数学(理)试题 (含答案)注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x+y ∈A},则B 中所含元素的个数为A .8B .9C .10D .112.现有5人站成一排照相,其中甲、乙相邻,且丙、丁不相邻,这样的排法有A .12种B .24种C .36种D .48种3.下面是关于复数的四个命题:ρ3:z 的共轭复数为1+i ;ρ4:z 的虚部为-1.其中的真命题为A .ρ1,ρ2B .ρ2,ρ4C .ρ2,ρ3D .ρ3,ρ 44.已知双曲线中心为坐标原点,焦点在坐标轴上,其图像过点(1,2则该双曲线的实轴长为AB .3C .D .65.设n S 为正项等比数列的前n 项和,已知a 3 = 2S 2 +1,S 3=13,则该数列的公比q= A .34 B .23C .3D .46.执行如图所示的程序框图,则输出的结果为A .B .C .D .7.一个几何体的三视图如图所示,则该几何体的体积为A .103B .10C .30D .8.已知椭圆的焦点为F 1,F 2,P 为C 上一点,若PF 1⊥PF 2,,则C 的离心率为A .3B .23C .3D .39.已知函数的图象的一条对称轴为直线 的最小值为A .2B .4C .6D .8 10.设偶函数上单调递增,则f (a+1)与f (b -2)的大小关系为A .f (a +1)=f (b -2)B .C .f (a +1)>f (b -2)D .f (a+1)<f (b -2)11.已知三棱锥P- ABC 的所有顶点都在球0的球面上,AB =5,AC =3,BC =4,PB 为球O的直径, PB=10.则这个三棱锥的体积为A .B .C .D .12.已知定义在R 上的偶函数f(x ),对任意时时,关于x 的方程恰有三个不同的实数根,则实数a 的取值范围是A .(1,2)B .C .D .(2,+∞)第Ⅱ卷本卷包括必考题和选考题两部分,第13题—第21题为必考题,每个试题考生都必须回答。

安徽省省级示范高中2014届高三大联考数学(理)试题扫描版试题Word版答案

安徽省省级示范高中2014届高三大联考数学(理)试题扫描版试题Word版答案

1B CBD1AA1C 1D 2014安徽省省级示范高中名校高三联考数学(理科)试题参考答案(1)A 解析:2i (2)(2)i 1i 2a a a ---+=+,由题意得222(),22a a-+=-解得 6.a =-(2)C 解析:由线面、面面间的位置关系可知选C.(3)B 解析:由图知PM2.5值小于或等于75微克/立方米的频率为1(0.0004-+0.00080.00160.00240.0048)750.25+++⨯=,所以100天中空气质量达标的天数是1000.2525⨯=.(4)D 解析:228381,0,02,,3,,33949b b k b a k b a k b a a ===→=→===→=→==81,9b a a =→=循环结束,输出结果为89.(5)A 解析:α是第一象限角sin α⇒=反之不一定成立,故选A. (6)D 解析:画出可行域可知,当抛物线2y zx =过点(1,3)时,2max 391z ==. (7)D 解析:由24cos ρρθ=⎧⎨=⎩得π=2,3ρθ=±,故圆12,C C 交点坐标为ππ2,2.33⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,(8)B 解析:选项A 、C 中π6位于递增区间内,π()06f '>,选项B 、D 中π6位于递减区间内,π()0,6f '<结合图像可知选B.(9)C 解析:因为曲线1:111x C y x x ==+--,相当于将函数1()f x x=的图像向右平移一个单位,再向上平移一个单位,即曲线C 的图像关于点()1,1Q 成中心对称,所以Q 是线段MN 的中点,故()224ON OQ MO OQ OQ ON OM OQ ⋅-⋅=⋅+==.(10)C 解析:在正方体一个面的四个顶点中任取三个点,在与这个面平行的面中只有一个顶点与刚才的三个顶点能构成符合条件的三棱锥(如图中三棱锥1D ABC -),所以这一对平行平面的顶点共构成3428C ⨯=个符合条件的三棱锥,正方体中共有三对平行平面,所以可构成符合条件的三棱锥3824⨯=个.另外正四面体11AC BD 和正四面体11ACB D 也符合条件,故符合条件的三棱锥共有24226+=个.(11)15 解析:6622166(1)(1)r r r r rrrr r T C x xC x----+=-=-,令632rr --=,得2r =, 所以3x 的系数为226(1)15.C -=(12解析:画出简图,由三角形中位线定理可知2190PF F ∠=,根据双曲线的定义可2,a c ==,所以离心率e =(13)π2 解析:由已知及正、余弦定理可得a b b a +22242a b c ab +-=⨯,化简得2222b a c +=,将c =代入得a b 3=,所以 222πcos 0,22a cb B B ac +-===.(14)21n a n =+ 解析:第n 个文件刚下载完时,第1n +个文件刚好下完13(速度始终是前面的13,又是同时下载的),此时它上升为第一位,因此剩下的23还需耗时2分钟,所以12,2 1.n n n a a a n +=+=+(15)①②③⑤ 解析:①由题意设3322a a b b ⎧=⎪⎨=⎪⎩,解得当0a b ⎧=⎪⎨=⎪⎩0a b =⎧⎪⎨=⎪⎩或a b ⎧=⎪⎨=⎪⎩,满足条件;②()f x 在(0,)+∞上单调递减,取区间[,](0,)a b ⊆+∞,由题意设1212b aab⎧=⎪⎪⎨⎪=⎪⎩,所以只需12ab =即可,满足条件;③()f x 在[]1,1-上单调递增,取区间[,][1,1]a b ⊆-,由题意设22421421aa ab bb ⎧=⎪⎪+⎨⎪=⎪+⎩,解得当10a b =-⎧⎨=⎩或01a b =⎧⎨=⎩或11a b =-⎧⎨=⎩时,满足条件; ④由题意设e 2e 2ab a b⎧=⎪⎨=⎪⎩,即,a b 是方程e 2xx =的两个根,由于两函数e 2x y y x ⎧=⎨=⎩没有交点,故对应方程无解,所以不满足条件;⑤()f x 在(0,)+∞上单调递增,取区间[,](0,)a b ⊆+∞,由题意设lg 22lg 22a ab b+=⎧⎨+=⎩,即,a b 是方程lg 22x x +=的两个根,由于两函数lg 22y x y x =+⎧⎨=⎩有两个交点,故对应方程有两个根,即存在,a b 满足条件.所以存在“和谐区间”的是①②③⑤.(16)解析:(Ⅰ)由题意得函数π()=2sin()16f x x ω+-,其最小正周期为π, 所以2ππω=,2=ω.……………………………………………………………5分(Ⅱ)由(Ⅰ)可知π()=2sin(2)16f x x =+-, 令0)(=x f 得π1sin(2)62x +=,所以ππ22π66x k +=+或π5π22π,Z 66x k k +=+∈.解得πx k =或ππ,Z 3x k k =+∈.…………………………………………………9分因为[π,0]x ∈-,所以零点有1232ππ,,03x x x =-=-=.所以()f x 在区间[π,0]-上的所有零点之和为5π3-.……………………………………12分(17)解析:(Ⅰ)函数()f x 定义域为(,1)(1,)-∞+∞,22e (23)()(1)x x f x x -'=-,………2分 由22e (23)()0(1)x x f x x -'=>-解得32x >,由'()0f x <解得32x <且1x ≠, 故函数()f x 的单调递增区间是3(,)2+∞,单调递减区间是3(,1),(1,)2-∞.…………6分(Ⅱ)由(Ⅰ)知222e (23)e (1)1x xx a x x -≥⋅--恒成立,即231x a x -≤-,…………………8分 令23()1x g x x -=-,则'21()0(1)g x x =>-, 因此()g x 在[2,)+∞上单调递增,于是()(2)1g x g ≥=,故实数a 的取值范围是(,1]-∞.…………………………………………………………12分 (18)解析:(Ⅰ)∵,,,PA AB AB AD PA AD A ⊥⊥=∴AB ⊥平面,PAD ∴,AB PD ⊥又,,PD AD ABAD A ⊥=∴PD ⊥平面ABCD .…………………4分(Ⅱ)以D 为原点,,,DA DC DP 分别为x 轴,y 轴,z 轴建立空间直角坐标系,D xyz -则(2,0,0),(2,2,0),(0,2,0),(0,0,2),(2,0,0),(2,2,2),(2,2,0),A B C P CB BP CA ==--=-∴(22,2,2)CE CB BE CB BP λλλλ=+=+=--.设1(,,)n x y z =是平面EAC 的一个法向量,则11n CEn CA⎧⊥⎪⎨⊥⎪⎩,即(22)220,220.x y z x y λλλ--+=⎧⎨-=⎩令,x λ=则,21,y z λλ==-∴1(,,21)n λλλ=-. 又2(1,0,0)n =是平面PDC 的一个法向量, ∴1212πcos||,4||||n n n n ⋅=⋅=解得1,2λ=∴存在12λ=使得平面EAC 与平面PDC 所成的锐角的大小是π.4…………………12分 (19)解析:(Ⅰ)由已知可设12(0),n n a q q -=>则221214,n n n n n n a a a q a a a ++++===∴2,q = 2n n a ∴=,2114224,n n n n n a a m ++∴=⋅==⋅∴2m =. ………………………………5分(Ⅱ)由(Ⅰ)可知22,nn==2122222n nna n a ++⋅⋅⋅+=.…7分令212,222n n nS =++⋅⋅⋅+则231112,2222n n n S +=++⋅⋅⋅+两式相减得23111111121,2222222n n n n n n S +++=+++⋅⋅⋅+-=-∴222,2n n nS +=-<∴ 4.< …………………………………………13分(20)解析:(Ⅰ)由题意得2221,224b ac b a c =⎧⎪-=⎨⎪+=+⎩解得12a b c ⎧=⎪=⎨⎪=⎩.∴椭圆C 的方程是2215x y +=.………………………………………………………4分(Ⅱ)假设存在等腰直角三角形MAB ,由题知直角边MA ,MB 不可能平行或垂直x 轴.故设MA 所在直线的方程是1y kx =+(0k >),则MB 所在直线的方程是11y x k=-+, 由22155y kx x y =+⎧⎨+=⎩,得2221010(1)1515k k A k k --+++,,MA ∴==.用1k -替换上式中的k 再取绝对值,得MB =由MA MB =得22(5)15k k k +=+,解得1k =或2k =±.故存在三个内接等腰直角三角形MAB .直角边所在直线的方程是1y x =+、1y x =-+或(21y x =++、(21y x =-++或(21y x =-+、(21y x =-++.……………………………………………………………………………………13分 (21)解析:(Ⅰ)由题意可知第二场比赛后C 为优胜者的情况为()(),C A C B C -→-→故其概率为111236⨯=;……………………………………2分 由题意可知第三场比赛后C 不可能为优胜者,故其概率为0;…………………4分 由题意可知第四场比赛后C 为优胜者的情况为()()()(),C A A B B C C A C -→-→-→-→故其概率为11111.233236⨯⨯⨯=………6分(Ⅱ)第一场A 与C 的比赛结果分两种情况:①A 与C 的比赛中C 胜出,C 如果要成为优胜者,接下来的比赛按如下进行: ()1()()()()(),*,31,n C A C B B A A C C B C n n --→-→-→-→-→∈-N 回共场对*,n ∈N 以上比赛进行的概率为:11221112()(),332669n n --⨯⨯⨯=⋅此时C 在第31n -场比赛后成为优胜者;………………………………………………9分②A 与C 的比赛中A 胜出,C 如果要成为优胜者,接下来的比赛按如下进行:1()()()()()()(),n C A A B B C C A A B B C C A C --→-→-→-→-→-→-→回()*,31,n n ∈+N 共场对*,n ∈N 以上比赛进行的概率为:1111111()(),32336218n n-⨯⨯⨯=⋅ 此时C 在第31n +场比赛后成为优胜者.………………………………………………12分综上所述,C 在第31n -场或者第31n +场比赛后能成为优胜者,在第3n 场比赛后不能成为优胜者,所以11211(),0,()*.69218n n n n n p q r n -=⋅==⋅∈N ,……………13分。

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()代入+i•∴∴==取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被的参数方程是=<=2,5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a 或﹣16.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()(()+sin)+sin+sin)+sin+sin+sin=sin+sin+sin==8+=21+.=66解:,﹣﹣﹣∴﹣≥,+1>﹣,+1或﹣时,﹣10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()不妨令=),=||中.已知向量、,||=||=1•=0不妨令=),=则(+,=cos+|||二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.﹣轴对称可得,)的图象向右平移﹣,﹣﹣,故答案为:.的等比数列列式求出公差,则由得:整理得:q=13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,)的展开式的通项为)的展开式的通项为,,14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E 于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.(﹣,﹣bc,﹣代入椭圆方程可得==++15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.++++•+++=+•++•+=﹣•≥+2|||≥个个S=2+3S=+2•+2S=4•++++,=•+•+,=+•++•++2•+﹣2||≥⊥,则=||∥,则=4•,与||||4||=4|||4||||+>﹣=0||=2||=8|=与的夹角为.区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.A+)的值.a=6a=2cosB=sinB=sinA=sin2B=,A+)则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;,,(+(+×(=,,=,,×+3×+4×+5×=.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x﹣x,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;<<)和(在(19.(13分)(2014•安徽)如图,已知两条抛物线E1:y=2p1x(p1>0)和E2:y=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.的方程,然后分别和两抛物线联立求得交点坐标,得到的联立,解得联立,解得联立,解得联立,解得因此11111且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;,则,== ahd====,ahdahd所分成上、下两部分的体积之比=1,.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.=a+a a,写成相加,上式左边当且仅当,即a a,即>a a c成立,即从数列。

安徽省示范高中2014届高三上学期第一次联考数学(理)试卷(扫描版)

安徽省示范高中2014届高三上学期第一次联考数学(理)试卷(扫描版)

2014届安徽省示范高中高三第一次联考理科数学参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】(1)2f =,f (f (1))=f (2)=4+2a,,由已知4a =4+2a ,解得a =2.故选C .2.B 【解析】由题意可知向量OB 的模是不变的,所以当OB 与OA 同向时OA OB +最大,结合图形可知,max 1OA OB OA +=+=13+=.故选B .3. C 【解析】法一:从0开始逐一验证自然数可知{}1,2,3A =,{}0,1B =,要使,S A S B φ⊆≠,S 中必含有元素1,可以有元素2,3,所以S 只有{}{}{}{}1,1,2,1,3,1,2,3.法二:31A x N x ⎧⎫=∈≥=⎨⎬⎩⎭310x N x ⎧⎫∈-≤⎨⎬⎩⎭30x x N x ⎧-⎫=∈≤⎨⎬⎩⎭{|03}x N x =∈<… {}1,2,3=,()2{|log 11}B x N x =∈+≤{}|012x N x =∈<+…={|11}x N x ∈-<…{}0,1=,所以集合S 中必含元素1,可以是{}{}{}{}1,1,2,1,3,1,2,3,共4个.故选C .4.B 【解析】通过画树形图可知由1、2、3、4四个数构成的没有重复数字的四位数共有24个,四位数为“锯齿数”的有:1324,1423,2143,2314,2413,3142,3241,3412,4132,4231共10个,所以四位数为“锯齿数”的概率为1052412=.故选B . 5.C 【解析】函数4()log 1y f x x =+-与x 轴的交点个数,为方程4()log 10f x x +-=的解的个数,即方程4()log 1f x x =-+解的个数,也即函数4()log 1y f x y x ==-+,交点个数,作出两个函数图像可知,它们有3个交点.故选C .6.B 【解析】sin()sin παα-==,又α∈3,2ππ⎛⎫ ⎪⎝⎭,∴cos α==23=-.由2cos 2cos 12αα=-,3,224αππ⎛⎫∈ ⎪⎝⎭得cos2α===,所以sin cos222παα⎛⎫+==⎪⎝⎭.故选B.7.D【解析】法一:因为3324a S S=-=,所以234b a==,222log log42b==,验证可知A,B,C均不符合,故答案为D.法二:因为3324a S S=-=,所以234b a==,又2314n n nb b b+-=,即2214n nb b+=,∴22124nnbqb+==,2q=.所以数列{b n}的通项公式是222422n n nnb b q--==⨯=,所以22log log2nnb n==.故选D.8.A【解析】圆C的标准方程为()2214x y++=,圆心为(0,-1),半径为2;直线方程l 的斜率为1-,方程为10x y+-=.圆心到直线的距离d==.弦长AB===O到AB,所以△OAB的面积为112⨯=.故选A.9.B【解析】①由系统抽样的原理知抽样的间隔为52÷4=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号、20号、33号、46号,①是假命题;②数据1,2,3,3,4,5的平均数为1(123345)35+++++=,中位数为3,众数为3,都相同,②是真命题;③由题可知样本的平均值为1,所以01235a++++=,解得a=-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,,③是假命题;回归直线方程为2y a x=+过点(),x y,把(1,3)代入回归直线方程为2y a x=+可得1a=.④是真命题;⑤产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n,则36n=0.300,所以n=120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.⑤是真命题.10.C【解析】作出函数()f x的图像,然后作出2()log(0)f x x x=>关于直线y x=对称的图像,与函数2()32(0)f x x x x=++…的图像有2个不同交点,所以函数的“和谐点对”有2对.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在题中横线上。

安徽省宿州市2014-2015学年高中二年级上学期期末考试数学(理)试卷

安徽省宿州市2014-2015学年高中二年级上学期期末考试数学(理)试卷

2014-2015学年省市高二(上)期末数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.将无盖正方体纸盒展开如图,则直线AB、CD在原正方体中的位置关系是()A.平行 B.相交且垂直 C.相交成60° D.异面2.“a=1”是“函数f(x)=cos2ax的最小正周期为π”的()A.充分条件 B.充分不必要条件C.必要不充分条件 D.充要条件3.若||=||=||=1,且<,>=,则(+﹣)•(++)=()A. 0 B. 1 C. 2 D. 34.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是()A. x+y+1=0 B. x+y﹣1=0 C. x﹣y﹣1=0 D. x﹣y+1=05.若双曲线的标准方程为﹣y2=1,则其渐近线方程是()A. y=±4x B. y=±x C. y=±2x D. y=±x6.已知点A(2,1),抛物线y2=4x的焦点F,P是抛物线上的一动点则|PA|+|PF|的最小值为()A. 1 B. 2 C. 3 D. 47.过椭圆+=1(a>b>0)的左焦点F1,作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为()A. B. C. D.8.体积为V的正方体,过不相邻四顶点连成一个正四面体,则该正四面体的体积是() A. B. C. D.9.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其主视图是边长为2的正方形,则此三棱柱左视图的面积为()A. 2 B. 2 C. D. 410.如图过椭圆+=1(a>b>0)的左焦点F任作一条与两坐标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条角平分线,则称点M为该椭圆的“左特征点”,则椭圆+=1的“左特征点”M的坐标为()A.(﹣2,0) B.(﹣3,0) C.(﹣4,0) D.(﹣5,0)二、填空题(共5小题,每小题5分,满分25分)11.命题“存在实数x,使x2+2x+2≤0”的否定是.12.已知向量=(1,1,0),=(﹣1,0,2),且k+与2互相垂直,则k值是.13.直线l与椭圆+y2=1相交于A,B两点,若弦AB中点为(﹣1,),则直线l的方程为.14.抛物线y2=12x被直线x﹣y﹣3=0截得弦长为.15.如图所示正方体ABCD﹣A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A﹣BEF的体积为定值其中正确的结论有:(写出所有正确结论的编号)三、解答题(共6小题,满分75分)16.已知p:对任意x∈R,不等式x2+ax+a>0恒成立,q:方程x2+ay2=a表示的是焦点在x 轴上的椭圆,如果命题“p且q”为假命题,命题“p或q”为真命题,数a的取值围.17.如图,在四棱柱P﹣ABCD中,底面是边长为2的正方形,侧棱PA⊥底面ABCD,PA=2,M,N分别为AD,BC的中点.(1)求证:平面PMN⊥平面PAD(2)求PM与平面PCD所成角的正弦值.18.已知圆x2+y2﹣6x﹣7=0与抛物线C:y2=2px(p>0)的准线相切(Ⅰ)求抛物线C的方程(Ⅱ)过抛物线C的焦点F的直线交抛物线于A,B两点,若|AB|=7,求线段AB的中点M到y轴的距离.19.已知圆心为C(﹣2,6)的圆经过点M(0,6﹣2)(1)求圆C的标准方程;(2)若直线l过点P(0,5)且被圆C截得的线段长为4,求直线l的方程.20.如图,已知四边形ABCD,EADM,MDCF都是边长为2的正方形,点P,Q分别是ED,AC 的中点.(1)求几何体EMF﹣ABCD的表面积;(2)证明:PQ∥平面BEF;(3)求平面BEF与平面ABCD夹角的余弦值.21.已知圆M:(x+)2+y2=24,定点N(,0),点P为圆M上的动点,点Q在NP上;点G在MP上,且满足=﹣2,•=0(1)求点G的轨迹C的方程(2)过点(2,0)作直线l与轴线C交于A,B两点;O是坐标原点,设=+;是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,请说明理由.2014-2015学年省市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.将无盖正方体纸盒展开如图,则直线AB、CD在原正方体中的位置关系是()A.平行 B.相交且垂直 C.相交成60° D.异面考点:空间中直线与直线之间的位置关系;棱柱的结构特征.专题:空间位置关系与距离.分析:将正方体的展开图还原为正方体,得到对应的A,B,C,D,判断AB,CD的位置关系.解答:解:将正方体还原得到A,B,C,D的位置如图因为几何体是正方体,所以连接AC,得到三角形ABC是等边三角形,所以∠ABC=60°;故选:C.点评:本题考查了学生的空间想象能力以及正方体的性质.关键是将平面图形还原为几何体.2.“a=1”是“函数f(x)=cos2ax的最小正周期为π”的()A.充分条件 B.充分不必要条件C.必要不充分条件 D.充要条件考点:必要条件、充分条件与充要条件的判断;三角函数的周期性及其求法.专题:三角函数的图像与性质;简易逻辑.分析:根据充分条件和必要条件的定义结合三角函数的周期公式进行判断即可.解答:解:当a=1,则f(x)=cos2x,则函数的周期T=,若函数f(x)=cos2ax的最小正周期为π,则,解得a=±1,则“a=1”是“函数f(x)=cos2ax的最小正周期为π”的充分条件和必要条件,故选:B点评:本题主要考查充分条件和必要条件的判断,以及三角函数周期的计算,比较基础.3.若||=||=||=1,且<,>=,则(+﹣)•(++)=()A. 0 B. 1 C. 2 D. 3考点:平面向量数量积的运算.专题:平面向量及应用.分析:运用向量垂直的条件:数量积为0,以及向量的平方即为模的平方,计算即可得到所求.解答:解:若||=||=||=1,且<,>=,则=0,则(+﹣)•(++)=(+)2﹣2=++2﹣2=1+1﹣2=0,故选A.点评:本题考查向量的数量积的性质,向量垂直的条件:数量积为0,向量的平方即为模的平方,考查运算能力,属于基础题.4.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是()A. x+y+1=0 B. x+y﹣1=0 C. x﹣y﹣1=0 D. x﹣y+1=0考点:直线的一般式方程与直线的垂直关系;圆的一般方程.专题:直线与圆.分析:设与直线x+y=0垂直的直线方程为x﹣y+c=0,把圆心C(﹣1,0)代入,能求出所求直线方程.解答:解:设与直线x+y=0垂直的直线方程为x﹣y+c=0,把圆x2+2x+y2=0的圆心C(﹣1,0)代入,得c=1,∴所求直线方程为x﹣y+1=0.故选:D.点评:本题考查直线方程的求法,是基础题,解题时要注意直线与直线垂直的性质和圆的简单性质的合理运用.5.若双曲线的标准方程为﹣y2=1,则其渐近线方程是()A. y=±4x B. y=±x C. y=±2x D. y=±x考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由双曲线﹣=1的渐近线方程为y=x,求出a,b即可得到渐近线方程.解答:解:双曲线﹣y2=1的a=2,b=1,由于渐近线方程为y=x,即为y=±x.故选D.点评:本题考查双曲线的方程和性质,考查渐近线方程的求法,考查运算能力,属于基础题.6.已知点A(2,1),抛物线y2=4x的焦点F,P是抛物线上的一动点则|PA|+|PF|的最小值为()A. 1 B. 2 C. 3 D. 4考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用抛物线的定义,将点P到其焦点的距离转化为它到其准线的距离即可.解答:解:根据题意,作图如右.设点P在其准线x=﹣1上的射影为M,有抛物线的定义得:|PF|=|PM|∴欲使|PA|+|PF|取得最小值,就是使|PA|+|PM|最小,∵|PA|+|PM|≥|AM|(当且仅当M,P,A三点共线时取“=”),∴|PA|+|PF|取得最小值时(M,P,A三点共线时),点P的纵坐标y0=1,设其横坐标为x0,∵P(x0,1)为抛物线y2=4x上的点,∴x0=,则有当P为(,1)时,|PA|+|PF|取得最小值,为3.故选C.点评:本题考查抛物线的定义和简单性质,将点P到其焦点的距离转化为它到其准线的距离是关键,考查转化思想的灵活应用,属于中档题.7.过椭圆+=1(a>b>0)的左焦点F1,作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:把x=﹣c代入椭圆方程求得P的坐标,进而根据∠F1PF2=60°推断出=整理得e2+2e﹣=0,进而求得椭圆的离心率e.解答:解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).∴e2+2e﹣=0,∴e=或e=﹣(舍去).故选:D.点评:本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属中档题.8.体积为V的正方体,过不相邻四顶点连成一个正四面体,则该正四面体的体积是() A. B. C. D.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:如图所示,设正方体的棱长为a,则=﹣,即可得出.解答:解:如图所示,设正方体的棱长为a,则=﹣===.点评:本题考查了正方体与三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.9.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其主视图是边长为2的正方形,则此三棱柱左视图的面积为()A. 2 B. 2 C. D. 4考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图和题意可知三棱柱是正三棱柱,结合正视图,俯视图,不难得到侧视图,然后求出面积.解答:解:由三视图和题意可知三棱柱是正三棱柱,底面边长为2,侧棱长2,结合正视图,俯视图,得到侧视图是矩形,长为2,宽为面积为:2×=2故选:A.点评:本题考查由三视图求侧视图的面积,是基础题.10.如图过椭圆+=1(a>b>0)的左焦点F任作一条与两坐标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条角平分线,则称点M为该椭圆的“左特征点”,则椭圆+=1的“左特征点”M的坐标为()A.(﹣2,0) B.(﹣3,0) C.(﹣4,0) D.(﹣5,0)考点:椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:设M(m,0)为椭圆的左特征点,根据椭圆左焦点,设直线AB方程代入椭圆方程,由∠AMB被x轴平分,k AM+k BM=0,利用韦达定理,即可求得结论.解答:解:设M(m,0)为椭圆+=1的左特征点,椭圆的左焦点F(﹣1,0),可设直线AB的方程为x=ky﹣1(k≠0)代入+=1得:3(ky﹣1)2+4y2=12,即(3k2+4)y2﹣6ky﹣9=0,设A(x1,y1),B(x2,y2)得y1+y2=,y1y2=﹣∵∠AMB被x轴平分,k AM+k BM=0,即,即y1(ky2﹣1)+y2(ky1﹣1)﹣(y1+y2)m=0∴2ky1y2﹣(y1+y2)(m+1)=0于是,2k×(﹣)﹣×(m+1)=0∵k≠0,∴﹣18﹣6(m+1)=0,即m=﹣4,∴M(﹣4,0).故选:C.点评:本题以新定义为载体主要考查了椭圆性质的应用,直线与椭圆相交关系的处理,要注意解题中直线AB得方程设为x=ky﹣2(k≠0)的好处在于避免讨论直线的斜率是否存在.二、填空题(共5小题,每小题5分,满分25分)11.命题“存在实数x,使x2+2x+2≤0”的否定是对任意实数x,使x2+2x+2>0..考点:特称命题;命题的否定.专题:规律型.分析:根据特称命题与全称命题是互为否定命题求解即可.解答:解:命题为特称命题,其否定为求出命题,其否定命题是:对任意实数x,使x2+2x+2>0.故答案是对任意实数x,使x2+2x+2>0.点评:本题考查特称命题的否定.12.已知向量=(1,1,0),=(﹣1,0,2),且k+与2互相垂直,则k值是.考点:向量语言表述线线的垂直、平行关系.专题:计算题.分析:由已知中向量=(1,1,0),=(﹣1,0,2),我们可以求出向量k+与2的坐标,根据k+与2互相垂直,两个向量的数量积为0,构造关于k的方程,解方程即可求出a值.解答:解:∵向量=(1,1,0),=(﹣1,0,2),∴k+=(k﹣1,k,2),2=(3,2,﹣2)∵k+与2互相垂直,则(k+)•(2)=3(k﹣1)+2k﹣4=5k﹣7=0解得k=故答案为:点评:本题考查的知识点是向量语言表述线线的垂直关系,其中根据k+与2互相垂直,两个向量的数量积为0,构造关于k的方程,是解答本题的关键.13.直线l与椭圆+y2=1相交于A,B两点,若弦AB中点为(﹣1,),则直线l的方程为x﹣2y+2=0 .考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设A(x1,y1),B(x2,y2),则+=1,,两式相减,再利用中点坐标公式、斜率计算公式即可得出.解答:解:设A(x1,y1),B(x2,y2),则+=1,,两式相减可得:+(y1+y2)(y1﹣y2)=0,∵弦AB中点为(﹣1,),∴=0,∴k AB=.∴直线l的方程为y﹣=(x+1),解得x﹣2y+2=0.故答案为:x﹣2y+2=0.点评:本题考查了椭圆的标准方程及其性质、“点差法”、中点坐标公式、斜率计算公式,考查了推理能力与计算能力,属于中档题.14.抛物线y2=12x被直线x﹣y﹣3=0截得弦长为24 .考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:直接把直线方程和抛物线方程联立,消去一个未知数,利用韦达定理和弦长公式求解.解答:解:假设直线和哦抛物线的两个交点分别为(x1,y1)、(x2,y2),由,得x2﹣18x+9=0,∴x1+x2=18,x1•x2=9,∴弦长为•=×=24.故答案为:24.点评:本题考查了直线与抛物线的关系,考查了韦达定理和弦长公式的应用,是中档题.15.如图所示正方体ABCD﹣A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A﹣BEF的体积为定值其中正确的结论有:①②④⑤(写出所有正确结论的编号)考点:棱柱的结构特征.专题:综合题;空间位置关系与距离.分析:①AC⊥BE,可由线面垂直证两线垂直;②EF∥平面ABCD,可由线面平行的定义请线面平行;③由两个极端位置说明两异面直线所成的角不是定值;④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值;⑤三棱锥A﹣BEF的体积为定值,可证明棱锥的高与底面积都是定值得出体积为定值.解答:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD﹣A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A﹣BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A 点到面DD1B1B距离是定值,故可得三棱锥A﹣BEF的体积为定值,此命题正确.故答案为:①②④⑤.点评:本题考查棱柱的结构特征,解答本题关键是正确理解正方体的几何性质,且能根据这些几何特征,对其中的点线面和位置关系作出正确判断.熟练掌握线面平行的判断方法,异面直线所成角的定义以及线面垂直的证明是解答本题的知识保证.三、解答题(共6小题,满分75分)16.已知p:对任意x∈R,不等式x2+ax+a>0恒成立,q:方程x2+ay2=a表示的是焦点在x 轴上的椭圆,如果命题“p且q”为假命题,命题“p或q”为真命题,数a的取值围.考点:复合命题的真假.专题:简易逻辑.分析:由p:对任意x∈R,不等式x2+ax+a>0恒成立,可得△<0,解得a的取值围.由q:方程x2+ay2=a表示的是焦点在x轴上的椭圆,得=1,a>1.由于命题“p且q”为假命题,命题“p或q”为真命题,故p、q一真一假,解出即可.解答:解:p:对任意x∈R,不等式x2+ax+a>0恒成立,∴△=a2﹣4a<0,解得0<a<4,得a的取值围是0<a<4.q:方程x2+ay2=a表示的是焦点在x轴上的椭圆,得=1,故a>1.∵命题“p且q”为假命题,命题“p或q”为真命题,故p、q一真一假,∴或,解得0<a≤1或a≥4.综上实数a的取值围是:0<a≤1或a≥4.点评:本题考查了一元二次不等式的解集与判别式的关系、椭圆的标准方程、复合命题的判定,考查了推理能力,属于基础题.17.如图,在四棱柱P﹣ABCD中,底面是边长为2的正方形,侧棱PA⊥底面ABCD,PA=2,M,N分别为AD,BC的中点.(1)求证:平面PMN⊥平面PAD(2)求PM与平面PCD所成角的正弦值.考点:直线与平面所成的角;平面与平面垂直的判定.专题:综合题;空间位置关系与距离;空间角.分析:(1)证明MN⊥平面PAD,即可证明平面PMN⊥平面PAD(2)过M作MO⊥平面PCD,连接PO,则∠MPO即为所求,利用V M﹣PCD=V P﹣MCD,求出OM,即可求PM与平面PCD所成角的正弦值.解答:(1)证明:∵PA⊥面ABCD,∴PA⊥MN,PA⊥AB,∵M、N分别为AD、BC中点,∴AB∥MN,∵AB⊥AD,AD∩MN=M,∴AB⊥平面PAD,∵AB∥MN,∴MN⊥平面PAD,∵MN⊂平面PMN,∴平面PMN⊥平面PAD﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)解:过M作MO⊥平面PCD,连接PO,则∠MPO即为所求.∵V M﹣PCD=V P﹣MCD,∴=,∴OM=,∴sin∠MPO==﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题考查平面与平面、直线与平面垂直的判定,考查线面角,考查学生分析解决问题的能力,属于中档题.18.已知圆x2+y2﹣6x﹣7=0与抛物线C:y2=2px(p>0)的准线相切(Ⅰ)求抛物线C的方程(Ⅱ)过抛物线C的焦点F的直线交抛物线于A,B两点,若|AB|=7,求线段AB的中点M 到y轴的距离.考点:圆与圆锥曲线的综合;抛物线的标准方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出圆的圆心与半径,利用y2=2px(p>0)的准线相切,求出p,得到抛物线方程.(Ⅱ)求出抛物线C的焦点坐标为(1,0),准线方程为x=﹣1,求出抛物线定义知线段AB 的中点M到准线的距离,然后求解线段AB的中点M到y轴的距离.解答:解:(Ⅰ)圆x2+y2﹣6x﹣7=0,即(x﹣3)2+y2=16,所以圆心(3,0),半径为4,抛物线的准线方程为x=,依题意,有3﹣(﹣)=4,得p=2,故抛物线方程为y2=4x;﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)由(Ⅰ)知,抛物线C的焦点坐标为(1,0),准线方程为x=﹣1,由抛物线定义知线段AB的中点M到准线的距离为,故线段AB的中点M到y轴的距离d=.﹣﹣﹣﹣﹣﹣(12分)点评:本题考查圆的方程与抛物线方程的综合应用,点到直线的距离,考查分析问题解决问题的能力.19.已知圆心为C(﹣2,6)的圆经过点M(0,6﹣2)(1)求圆C的标准方程;(2)若直线l过点P(0,5)且被圆C截得的线段长为4,求直线l的方程.考点:直线和圆的方程的应用;圆的标准方程.专题:直线与圆.分析:(1)根据题意求得圆的半径,则圆的方程可得.(2)先看当斜率不存在时,设出直线的方程,与圆的方程联立,消去y,得到关于x的一元二次方程,利用韦达定理和弦长公式建立等式求得k.则直线的方程可得.最后看斜率不存在时,进而验证.解答:解:(1)圆C的半径为|CM|=,∴圆C的标准方程为(x+2)2+(y﹣6)2=16.(2)当所求直线l的斜率存在时,设所求直线的方程为y=kx+5,即kx﹣y+5=0.联立直线与圆C的方程:,消去y得(1+k2)x2+(4﹣2k)x﹣11=0 ①设方程①的两根为x1,x2,由根与系数的关系得②由弦长公式得|x1﹣x2|==4③将②式代入③,并解得k=,此时直线l的方程为3x﹣4y+20=0.当直线l的斜率不存在时,直线l的方程为x=0,验算得方程为x=0的直线也满足题意.∴所求直线l的方程为3x﹣4y+20=0或x=0.点评:本题主要考查了直线与圆的方程问题.解题过程中对直线斜率不存在的情况一定不要疏漏.20.如图,已知四边形ABCD,EADM,MDCF都是边长为2的正方形,点P,Q分别是ED,AC 的中点.(1)求几何体EMF﹣ABCD的表面积;(2)证明:PQ∥平面BEF;(3)求平面BEF与平面ABCD夹角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离.分析:(1)设EMF﹣ABCD的表面积为S,利用S=S正方形ABCD+S正方形MDCF+S正方形EADM+S△EAB+S△FBC+S +S正△BEF,即可得出;△MEF(2)P是AM的中点,Q是AC的中点,由三角形中位线定理可得PQ∥BE,再利用线面平行的判定定理即可得出;(3)利用即可得出.解答:(1)解:设EMF﹣ABCD的表面积为S,则S=S正方形ABCD+S正方形MDCF+S正方形EADM+S△EAB+S△FBC+S△MEF+S正△BEF=22×3+3×+=18+2.(2)证明:∵P是AM的中点,Q是AC的中点,由三角形中位线定理可得:PQ∥BE,PQ⊄平面BEF,BE⊂平面BEF,∴PQ∥平面BEF.(3)解:设平面BEF与平面ABCD夹角为θ.由于△BEF在平面ABCD的射影是△ABC,∴==.点评:本题考查了三角形中位线定理、线面平行的判定定理、正方形与正三角形的面积计算公式、二面角的计算公式,考查了推理能力与计算能力,属于中档题.21.已知圆M:(x+)2+y2=24,定点N(,0),点P为圆M上的动点,点Q在NP上;点G在MP上,且满足=﹣2,•=0(1)求点G的轨迹C的方程(2)过点(2,0)作直线l与轴线C交于A,B两点;O是坐标原点,设=+;是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;轨迹方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)据题意,G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=,半焦距c=,即可得到椭圆方程;(2)据题意,四边形OASB为矩形即•=0,即x1x2+y1y2=0.设出直线方程,将直线方程与椭圆方程联立,据韦达定理表示出则x1x2+y1y2=0,解方程求出参数,即得到直线方程.解答:解:(1)由=﹣2,•=0,可得Q为PN的中点且GQ⊥PN,∴GQ为PN的中垂线,∴|PG|=|GN|∴|GN|+|GM|=|MP|=2,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=,半焦距c=,∴短半轴长b=,∴点G的轨迹方程是﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为=+,所以四边形OASB为平行四边形若存在l使得||=||,则四边形OASB为矩形,∴•=0若l的斜率不存在,直线l的方程为x=2,则A(2,1),B(2,﹣1)∴•=3与•=0矛盾,故l的斜率存在.设l的方程为y=k(x﹣2),A(x1,y1),B(x2,y2),代入椭圆方程可得(2k2+1)x2﹣8k2x+8k2﹣6=0,∴x1+x2=,x1x2=,∴y1y2=k(x1﹣2)•k(x2﹣2)=﹣∴x1x2+y1y2=﹣=0,∴k=±1∴存在直线x﹣y﹣2=0或x+y﹣2=0使得四边形OASB的对角线相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题考查椭圆方程的求法;考查直线与椭圆的位置关系,解决的关键是将已知转化为x1x2+y1y2=0,属于一道中档题.。

安徽省示范高中2014届高三上学期第一次联考数学(理)Word版含解析

安徽省示范高中2014届高三上学期第一次联考数学(理)Word版含解析

理科数学第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数21,1()2,1x x x f x ax x ⎧+≤=⎨+>⎩,若((1))4f f a =,则实数a 等于( )A .12 B .43C .2D .42.在平面直角坐标系中,A ,B 点是以原点O 为圆心的单位圆上的动点,则||OA OB +的最大值是( ) A .4 B .3 C .2 D .13.集合3{|1}A x N x=∈≥,3{|log (1)1}B x N x =∈+≤,S A ⊆,S B φ≠,则集合S 的个数为( )A .0B .2C .4D .84.我们把形如“1234”和“3241”形式的数称为“锯齿数”(即大小间隔的数),由1,2,3,4四个数组成一个没有重复数字的四位数,则该四位数恰好是“锯齿数”的概率为( ) A .12 B .512 C .13 D .145.函数()|tan |f x x =,则函数4()log 1y f x x =+-与x 轴的交点个数是( ) A .1 B .2 C .3 D .46.若sin()3πα-=-且3(,)2παπ∈,则sin()22πα+=( )A .3-B .6-C .6.37.已知数列{}n a 的前n 项和2n S n n =-,正项等比数列{}n b 中,23b a =, 2314(2,)n n n b b b n n N +-+=≥∈,则2log n b =( )A .1n -B .21n -C .2n -D .n8.已知在平面直角坐标系xoy 中,圆C 的方程为2223x y y +=-+,直线l 过点(1,0)且与直线10x y -+=垂直.若直线l 与圆C 交于A B 、两点,则OAB ∆的面积为( )A .1BC .2D .9.给出下列五个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23; ②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③一组数据为a ,0,1,2,3,若该组数据的平均值为1,则样本标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,2,1,3,b x y ===则1a =;⑤如图是根据抽样检测后得出的产品样本净重(单位:克)数据绘制的频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是90.其中真命题为( )A .①②④B .②④⑤C .②③④D .③④⑤10.在平面直角坐标系中,若两点P Q 、满足条件: ①P Q 、都在函数()y f x =的图像上;②P Q 、两点关于直线y x =对称,则称点对{,}P Q 是函数()y f x =的一对“和谐点对”. (注:点对{,}P Q 于{,}Q P 看作同一对“和谐点对”)已知函数2232(0)()log (0)x x x f x x x ⎧++≤=⎨>⎩,则此函数的“和谐点对”有( )A.0对 B.1对 C.2对 D.3对考点:函数图像.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.执行如图所示的程序框图,则输出的结果S是 .12.已知一几何体的三视图如图所示,则该几何体的体积为.【答案】4 3π13.设,x y满足约束条件360200,0x yx yx y--≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b=+>>的最大值为4,则23a b+的最小值为 .14.已知偶函数()f x 对任意x R ∈均满足(2)(2)f x f x +=-,且当20x -≤≤时,3()log (1)f x x =-,则(2014)f 的值是 .∴(4)()f x f x +=,∴3(2014)(45032)(2)(2)log 31f f f f =⨯+==-==. 考点:1.函数奇偶性;2.周期;3.函数值.15.如图,边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,已知'A DE ∆('A ∉平面ABC )是ADE ∆绕DE 旋转过程中的一个图形,有下列命题: ①平面'A FG ⊥平面ABC ; ②BC //平面'A DE ;③三棱锥'A DEF -的体积最大值为3164a ;④动点'A 在平面ABC 上的射影在线段AF 上; ⑤二面角'A DE F --大小的范围是[0,]2π.其中正确的命题是 (写出所有正确命题的编号).三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16. (本小题满分12分)已知函数2()cos cos ()f x x x x m m R =-+∈的图像过点(,0)12M π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图像各点纵坐标不变,横坐标伸长为原来的2倍,然后向左平移3π个单位,得函数()g x 的图像.若,,a b c 分别是ABC ∆三个内角,,A B C 的对边,4a c +=,且当x B =时,()g x 取得最大值,求b 的取值范围.∴2b …,又4b a c <+=. ∴b 的取值范围是[)2,4.考点:1.二倍角公式;2.两角和与差的正弦公式;3.图像平移伸缩变换;4.余弦定理;5.基本不等式.17. (本小题满分12分)某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取的20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到频率分布表如下:(1)求表中,a b的值及分数在[90,100)范围内的学生数,并估计这次考试全校学生数学成绩及格率(分数在[90,150]范围为及格);(2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.18. (本小题满分12分)如图,四棱锥A BCDE -中,侧面ADE ∆是等边三角形,在底面等腰梯形BCDE 中,//CD BE ,2DE =,4CD =,060CDE ∠=,M 为DE 的中点,F 为AC 的中点,4AC =.(1)求证:平面ADE ⊥平面BCD ; (2)求证://FB 平面ADE .19. (本小题满分13分)定义在R 上的函数()f x 对任意,a b R ∈都有()()()f a b f a f b k +=++(k 为常数).(1)判断k 为何值时()f x 为奇函数,并证明;(2)设1k =-,()f x 是R 上的增函数,且(4)5f =,若不等式2(23)3f mx mx -+>对任意x R ∈恒成立,求实数m 的取值范围.20. (本小题满分13分)已知点(2,0),(2,0)E F -,曲线C 上的动点M 满足3ME MF ∙=-,定点(2,1)A ,由曲线C 外一点(,)P a b 向曲线C 引切线PQ ,切点为Q ,且满足||||PQ PA =. (1)求线段PQ 长的最小值;(2)若以P 为圆心所作的圆P 与曲线C 有公共点,试求半径取最小值时圆P 的标准方程.21. (本小题满分13分)已知数列{}n a 中,12a =,2*12()n n n a a a n N +=+∈.(1)证明数列{lg(1)}n a +是等比数列,并求数列{}n a 的通项公式; (2)记112n n n b a a =++,求数列{}n b 的前n 项和n S .。

2014年安徽高考数学理科试卷(带详解)

2014年安徽高考数学理科试卷(带详解)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)第I 卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 是虚数单位,z 表示复数z 的共轭复数.若1i z =+则i izz +⋅=( ) A .2- B .2i - C .2 D .2i 【测量目标】复数的基本运算.【考查方式】复数和共轭复数的综合运算. 【难易程度】容易 【参考答案】C【试题分析】1i i i (1i)(i 1)(i 1)2i iz z ++⋅=+⋅-=--++=,故选C. 2.“0x <”是“ln(1)0x +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】充分必要条件与对数函数相结合. 【难易程度】容易 【参考答案】B【试题分析】ln(1)001110x x x +<⇔<+<⇔-<<,所以“0x <”是“ln(1)0x +<” 的必要而不充分条件,故选B3.如图所示,程序框图(算法流程图)的输出结果是( )第3题图 A .34 B .55 C .78 D .89 【测量目标】程序框图得出程序运算. 【考查方式】利用程序框图计算结果. 【难易程度】容易 【参考答案】B 【试题分析】5550>,故运算7次后输出的结果为55,故选B.4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩,(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )A .14B .142C .2D .22【测量目标】极坐标,参数方程,直线与圆相交.【考查方式】通过将极坐标方程和参数方程转化为普通方程后求直线被圆截得的弦长. 【难易程度】中等 【参考答案】D【试题分析】将直线l 方程化为一般式为:40x y --=,圆C 的标准方程为:22(2)4x y -+=,圆C 到直线l 的距离为:|24|22d -==,所以弦长22222L R d =-=,故选D. 5.y x ,满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-=≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( ) A .121-或B .212或C .2或1D .12-或 【测量目标】线性规划中最大值的求解. 【考查方式】线性规划中取得最值时的条件. 【难易程度】中等 【参考答案】D【试题分析】画出约束条件表示的平面区域如图,第5题图z y ax =-取得最大值表示直线z y ax =-向上平移移动最大,a 表示直线斜率,有两种情况:1a =-或2a =,故选D.6.设函数()()f x x R ∈满足(π)()sin f x f x x +=+,当0πx ≤<时,0)(=x f ,则23π()6f =( ) A .12 B .32C .0D .12-【测量目标】三角函数的基本运算.【考查方式】通过简单的递推求三角函数的值. 【难易程度】容易 【参考答案】Ax1 123 5 8 13 21 y1 2 3 5 8 13 21 34 z235813213455【试题分析】23π17π17π()()sin 66611π11π17π()sin sin6665π5π11π17π()sin sin sin6666111102222f f f f =+=++=+++=+-+=故选A.7.一个多面体的三视图如图所示,则该多面体的表面积为( )第7题图1A .213+B .183+C .21D .18 【测量目标】多面体的表面积.【考查方式】被截去一部分后正方体的表面积的计算. 【难易程度】容易 【参考答案】A 【试题分析】第7题图2如图,将边长为2的正方体截去两个角, ∴11622611622213222S =⨯⨯-⨯⨯⨯+⨯⨯⨯=+表,故选A.8.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60的共有( ) A .24对 B .30对 C .48对 D .60对【测量目标】排列组合及简单的计数问题,异面直线及其所成的角. 【考查方式】利用正方体中异面直线的夹角问题考查排列组合的知识. 【难易程度】中等 【参考答案】C 【试题分析】第8题图解析:正方体的面对角线共有12条,两条作为一对,共有212C 66=对,同一面上的对角线不满足题意,对面的对角线也不满足题意,一组平行平面共有6对不满足题意;共有3618⨯=对,故满足题意的共有66-18=48对. 故选C.9.若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( ) A .5或8 B .1-或5 C .1-或4- D .4-或8 【测量目标】求分段函数的最值.【考查方式】利用分类讨论求分段函数有最值时的条件. 【难易程度】中等 【参考答案】D 【试题分析】(1)当2a <时,12a-<-,此时,31,11,1()2312x a x a x a x f x ax a x ---<-⎧⎪⎪--+-≤≤-=⎨⎪⎪++>-⎩(2)当2a >时,12a->-,此时31,2()1,12311a x a x f x ax a x x a x ⎧---<-⎪⎪=⎨+--≤≤-⎪⎪++>-⎩ 在两种情况下,min ()()|1|322a af x f =-=-+=,解得4a =-或8a =,故选D. 注:此题也可以由绝对值的几何意义得min ()|1|32af x =-+=,从而得4a =-或8a =.10.在平面直角坐标系xOy 中,已知向量,,1,0,==⋅=a b a b a b 点Q 满2()OQ =a +b .曲线{|cos sin ,C P OP θθ==+ a b 0≤θ≤2π},区域{|0P Ω=<r ≤||PQ≤,}R r R <. 若C Ω 为两段分离的曲线,则( )A .13r R <<<B .13r <<≤RC .r ≤13R <<D .13r R <<<【测量目标】向量的坐标运算,圆与圆环的位置关系.【考查方式】通过计算曲线的普通方程,找出两曲线相离时满足的条件. 【难易程度】中等 【参考答案】A 【试题分析】第10题图设(1,0),(0,1)==a b 则(cos ,sin )OP θθ= ,(2,2)OQ =所以曲线C 是单位元,区域Ω为圆环(如图)∵||2OQ =,∴13r R <<<,故选A.第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二.选择题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。

【解析板】安徽省宿州市2014届高三上学期期末考试试题(数学 理)

【解析板】安徽省宿州市2014届高三上学期期末考试试题(数学 理)

第Ⅰ卷 选择题(满分50分)一、 选择题(本大题共10小题,每小题5分,共50分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1. “1m =”是“直线0x y -=和直线0x my +=互相垂直”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件3. 设向量(sin a α= ,则cos 2α=( )A.B. 12C. 12-D. 14- 【答案】B 【解析】4. 阅读程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为 ( ) A.-1 B.1 C.3 D.95. 已知圆222:()()C x a y b r -+-=的圆心为抛物线24x y =-的焦点,直线1x y +=与 圆C 相切,则该圆的方程为 ( )A. 221(1)2x y ++=B. 22(1)2x y ++= C. 221(2)2x y -+= D. 221(2)2x y +-=7. 已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 前n 项和,*n N ∈则10S 的值为( ) A.-110 B. -90 C.90 D.110 【答案】D 【解析】试题分析:因为7a 是3a 与9a 的等比中项,所以可得7239a a a =.又因为数列{}n a 为等差数列,其公差为-2.所以可得2111(12)(4)(16)a a a -=--.解得120a =.又因为10111010(101)(2)1102S a =⨯+⨯⨯-⨯-=.故选D.考点:1.等差数列的知识.2.等比数列的知识.3.数列的性质. 8. 函数tan()(04)42x y x ππ=-<<的图像如图所示,A 为图像与x 轴的交点,过点A 的直线与函数的图像交于C 、B 两点.则()OB OC OA +⋅=( )A.-8B.-4C.4D.8CAoxyB9. 四棱锥P-ABCD 中,底面ABCD 是平行四边形, ,,3E PC F PB PE EC ∈∈= ,PF FB λ=,若AF 平面BDE,则λ的值为 ( )A.1B.3C.2D.4D【答案】C考点:1.函数的导数.2.函数的乘除的导数公式.3.函数的单调性.4.函数的最值.第Ⅱ非 卷选择题(满分100分)二、 填空题(本道题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上)11. 如果函数()(1)(1)f x x x =+-的图像恒在x 轴上方,则x 的取值集合为___________.考点:1.转化的思想.2.不等式组的解法.3.绝对值不等式的解法.12. 已知实数,x y 满足0200,0y x x y x y -≥⎧⎪++≥⎨⎪≤≤⎩则11()()42x y z =的最大值为_________.x【答案】1613. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.(13题图)侧视图俯视图正视图h6515. 如图,在半径为1的扇形AOB 中,060,AOB C ∠=为弧上的动点,AB 与OC 交于点P ,则OP BP ⋅最小值是________________.【答案】116- 【解析】试题分析:因为OP OB BP =+,所以OP BP ⋅ =2()()OP BP OB BP BP OB BP BP ⋅=+⋅=⋅+ .又因为060,,60A B OA OB OBA ∠==∴∠=.OB=1.所以01cos1202OB BP BP BP ⋅==- .所以212OP BP BP BP ⋅=-+ 2111()41616BP =--≥- .当且仅当14BP = 时成立.故填116-.向量所成的与三角形的内角的区别是本题的关键. 考点:1.向量的加减法的运算.2.向量的数量积.三、解答题(本大题6小题,共75分.解答过程有必要文字说明、演算步骤及推理过程)16. (本小题满分12分)在ABC ∆中,,,a b c 分别为角,,A B C 的对边,ABC ∆的面积S满足cos S A =(Ⅰ)求角A 的值;(Ⅱ)若a =设角B 的大小为x,用x 表示c,并求c 的取值范围. 【答案】(Ⅰ) 3A π= ;(Ⅱ) 22sin(),(0,2]3c x c π=-∈. 【解析】试题分析:(Ⅰ) 因为已知cos S A =,又因为三角形的面积的可表示为11sin ,sin cos 22S bc A bc A A =∴=.解得tan A =.所以3A π= .本题掌握三角形的面积公式1sin 2S bc A =的形式是关键.(Ⅱ)由于3A π=,B x ∠=.所以23C x π∠=-.又因为已知a =.所以利用正弦定理可求出边c 关于x 的表达式.再根据角的范围求出正弦值的范围即为边长c 的范围,最后面是易错点.17. (本小题满分13分)已知函数()f x 满足(2)()f x f x +=,当10x -<≤时()xf x e -=;当01x <≤时2()441f x x x =-+. (Ⅰ)求函数()f x 在(-1,1)上的单调区间;(Ⅱ)若()()(0)g x f x kx k =->,求函数()g x 在[0,3]上的零点个数. 【答案】(Ⅰ) 单调递减区间为]21,1(-,递增区间为]1,21[; (Ⅱ)参考解析 【解析】试题分析:(Ⅰ)因为10x -<≤时,函数()xf x e -=是单调递减的,01x <≤时,函数2()441f x x x =-+的图像的对称轴是12x =,开口向上.所以1(0,)2递减,1[,1)2的递增.又因为当02(0)140401f e -===⨯-⨯+.所以综上可得函数的单调递减区间为]21,1(-,递增区间为]1,21[.18. (本小题满分12分)如图,四边形PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面ABCD, ∠BAD=∠ADC=90°,AB=AD=1,2CD a PD ==. (Ⅰ)若M 为PA 中点,求证:AC ∥平面MDE; (Ⅱ)求平面PAD 与PBC 所成锐二面角的大小.NEDAB CPM【答案】(Ⅰ) 参考解析;(Ⅱ) 60°【解析】试题分析:(Ⅰ)直线与平面平行的判定定理是在平面内找一条直线与该直线平行,由于点M 是PA的中点,联想到连结PC与ED它们的交点也是ED的中点,所以可得MN∥AC.从而可得结论.本小题通过已知的中点利用三角形的中位线定理得到平行是解题的突破口.(Ⅱ)因为求平面PAD与PBC所成锐二面角的大小,如果做出二面角的平面角有一定的困难,可以延长CB与直线DA相交,从而取求解可以.本小题通过建立空间直角坐标系来求解,求出两个平面的法向量,再通过求出法向量的夹角从而得到二面角的大小.试题解析:(1)证明:连接PC,交DE与N,连接MN,在△PAC中,∵M,N分别为两腰PA,PC的中点∴MN∥AC,…(2分)又AC 面MDE,MN⊂面MDE,所以AC∥平面MDE.…………………………………(4分)(2)以D为空间坐标系的原点,分别以DA,DC,DP所在直线为x,y ,z轴建立空间直角坐标系,则P(0,0,a),B(a,a,0),C (0,2a,0),所以,,…(6分)设平面PAD的单位法向量为,则可取……………………(7分)设面PBC的法向量,则有∴………………………………………………………(11分) ∴θ=60°,所以平面PAD 与平面PBC 所成锐二面角的大小为60°…(12分)考点:1.直线与平面的平行关系.2平面与平面的关系.3.三角形的中位线的知识.4.空间直角坐标系的公式.19. (本小题满分12分)如图,已知椭圆E 的中心是原点O ,其右焦点为F(2,0),过x 轴上一点A(3,0)作直线与椭圆E 相交于P,Q 两点,且PQ的最大值为.(Ⅰ)求椭圆E 的方程;(Ⅱ)设(1)AP AQ λλ=> ,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M,试问M,F,Q 是否共线,若共线请证明;反之说明理由. QF O xyPA(2)解:,,M F Q 三点共线. 证明:),3(11y x AP -=,),3(22y x AQ -=由已知得方程组()12122211222233162162x x y y x y x y λλ⎧-=-⎪=⎪⎪⎨+=⎪⎪⎪+=⎩注意到1λ>,解得2512x λλ-=,因为()()112,0,,F M x y -,所以 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--=-+-=--=211211,21,21),1)3((),2(y y y x y x FM λλλλλ, 又),2(22y x FQ -=21,2y λλ-⎛⎫= ⎪⎝⎭,所以FQ FM λ-=,从而三点共线。

2014年安徽省高考理科数学试卷及参考标准答案(word版)

2014年安徽省高考理科数学试卷及参考标准答案(word版)

2014年普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z iz1( )A .-2 B.-2i C.2 D.2i(2)“0<x ”是“0)1ln(<+x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 (3)如图所示,程序框图(算法流程图)的输出结果是( ) A .34 B .55 C .78 D .89(4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧-=+=31y y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A .14B .142C .2D .22(5)x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( )A .21或-1 B .2或21C .2或1D .2或-1 (6)设函数)(x f (R x ∈)满足x x f x f sin )()(+=+π.当π≤≤x 0时,0)(=x f ,则=)623(πf ( ) A .21 B .23 C .0 D .21-(7)一个多面体的三视图如图所示,则该多面体的表面积为( ). A .21+3 B .18+3 C .21 D .18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )对.A .24B .30C .48D .60(9)若函数a x x x f +++=21)(的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8(10)在平面直角坐标系xoy 中,已知向量,,1==,0=⋅,点Q 满足)(2+=.曲线πθθθ20,sin cos ≤≤+==b a P C丨,区域R r R r P <≤≤<=Ω,丨0.若Ω⋂C 为两段分离的曲第(13)题图第II 卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分. (11)若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是 . (12)数列{}n a 是等差数列,若11+a ,33+a ,55+a 构成公比为q 的等比数列,则q = . (13)设0≠a ,n 是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为nn x a x a x a a ++++ 22210.点),(i i a i A (2,1,0=i )的位置如图所示,则a = .(14)设21,F F 分别是椭圆E :1222=+by x (10<<b )的左、右焦点,过点1F 的直线交椭圆E 与A,B 两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为 .(15)已知两个不相等的非零向量a ,b ,两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列正确的命题的是(写出所有正确命题的编号).①S 有5个不同的值; ②若⊥,则min S 与a无关; ③若∥,则min S 与b 无关; ④若b >a 4,则min S >0; ⑤若b =a 4,min S =28a ,则与的夹角为4π三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. (16)(本小题满分12分) 设△ABC 的内角C B A ,,对边的长分别是a ,b ,c ,且3=b ,1=c ,B A 2=. (I )求a 的值: (II )求)4sin(π+A 的值.(17)(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为32,乙获胜的概率为31,各局比赛结果互相独立. (I )求甲在4局以内(含4局)赢得比赛的概率;(II )记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).第(20)题图D A D 1(18)(本小题满分12分)设函数32)1(1)(x x x a x f --++=,其中0>a . (I )讨论)(x f 在其定义域上的单调性;(II )当][1,0∈x 时,求)(x f 取得最大值和最小值时的x 的值.(19)(本小题满分13分)如图,已知两条抛物线1E :x p y 122=(01>p )和2E :x p y 222=1l 与1E ,2E 分别交于1A ,2A 两点,2l 与1E ,2E 分别交于1B ,2B 两点.(I )证明:2211B A B A ∥;(II )过O 作直线l (异于1l ,2l )与1E ,2E 分别交于1C ,2C 两点,记111C B A △,与222C B A △的面积分别为1S 与2S ,求21S S的值.(20)(本小题满分13分)如图,四棱柱1111D C B A ABCD -中,⊥A A 1底面ABCD .四边形为梯形,∥,且.过D C A ,,1三点的平面记为α,1BB 与α的交点为Q .(I )证明:Q 为1BB 的中点;(II )求此四棱柱被平面α所分成上下两部分的体积之比;(III )若41=AA ,2=CD ,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小.(21)(本小题满分13分)设实数0>c ,整数1>p ,*N n ∈.(I )证明:当1->x 且0≠x 时,()px x p+>+11;(II )数列{}n a 满足p n n n pa pc a p p a c a -++-=>11111,,证明:p n n c a a 11>>+.数学(理科)试题参考答案一.选择题:本题考查基本知识和基本运算.每小题5分,满分50分.(1)C (2)B (3)B (4)D (5)D (6)A (7)A (8)C (9)D (10)A二.填空题:本题考查基本知识和基本运算.每小题5分,满分25分. (11)83π (12)1 (13)3 (14)12322=+y x (15)②④三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. (16)(本小题满分12分) 解:(I )∵B A 2=,∴B B B A cos sin 22sin sin ==.由正、余弦定理得:acb c a b a 22222-+⋅=.∵1,3==c b ,∴32,122==a a .(II ) 由余弦定理得:31612192cos 222-=-+=-+=bc a c b A .∵π<<A 0,∴322911cos 1sin 2=-=-=A A . ∴62422)31(223224sincos 4cossin )4sin(-=⨯-+⨯=+=+πππA A A .(17)(本小题满分12分)解:用A 表示“甲在4局以内(含4局)赢得比赛”,k A 表示“第k 局甲获胜”,k B 表示“第k 局乙获胜”, 则32)(=k A P ,31)(=k B P ,5,4,3,2,1=k . (I ))()()()(432132121A A B A P A A B P A A P A P ++==)()()()()()()()()(432132121A P A P B P A p A P A P B P A P A P ++=8156323132323132222=⎪⎭⎫ ⎝⎛⨯⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫⎝⎛ ( )X 的可能取值为2,3,4,5.95)()()()()()()2(21212121=+=+==B P B P A P A P B B P A A P X P , 92)()()()()()()()()3(321321321321=+=+==B P B P A P A P A P B P B B A P A A B P X P ,8110)()()()()()()()()()()4(4321432143214321=+=+==B P B P A P B P A P A P B P A P B B A B P A A B A P X P 818)4()3()2(1)5(==-=-=-==X P X P X P X P ∴X 的分布列为8181581493952=⨯+⨯+⨯+⨯=EX .(18)(本小题满分12分)解:(I ))(x f 的定义域为()+∞∞-,,2321)(x x a x f --+='.令0)(='x f ,得2121,3341,3341x x ax a x <++-=+--=.∴))((3)(21x x x x x f ---='.当1x x <或2x x >时,0)(<'x f ;当21x x x <<时,0)(>'x f . ∴)(x f 在()1,x ∞-和()+∞,2x 内单调递减,在()21,x x 内单调递增. (II )∵0>a ,∴0,021><x x .① 当4≥a 时,12≥x .由(I )知,)(x f 在][1,0上单调递增.∴)(x f 在0=x 和1=x 处分别取得最小值和最大值. ② 当40<<a 时,12<x .由(I )知,)(x f 在][2,0x 上单调递增,在][1,2x 上单调递减. ∴)(x f 在33412ax x ++-==处取得最大值.又1)0(=f ,a f =)1(,∴当10<<a 时,)(x f 在1=x 处取得最小值;当1=a 时,)(x f 在0=x 处和1=x 处同时取得最小值;(19)(本小题满分13分)(I )证:设直线21,l l 的方程分别为x k y x k y 21,==(0,21≠k k ),则 由⎩⎨⎧==x p y xk y 1212,得⎪⎪⎭⎫ ⎝⎛1121112,2k p k p A ,由⎩⎨⎧==x p y xk y 2212,得⎪⎪⎭⎫ ⎝⎛1221222,2k p k p A .同理可得⎪⎪⎭⎫⎝⎛2122112,2k p k p B ,⎪⎪⎭⎫ ⎝⎛2222222,2kp k p B . ∴⎪⎪⎭⎫- ⎝⎛-=⎪⎪⎭⎫- ⎝⎛-=122122111212112211111,11222,22k k k k P k p k p k p k p B A , ⎪⎪⎭⎫- ⎝⎛-=⎪⎪⎭⎫- ⎝⎛-=122122212222122222211,11222,22k k k k P k p k p k p k p B A . 故222111B A p p B A =,∴2211B A B A ∥. (II )解:由(I )知2211B A B A ∥,同理可得2211C B C B ∥,2211A C A C ∥. ∴222111C B A C B A ∽△△.∴221=S S .又由(I )中的222111B A p p B A =21P P =. ∴222121P PS S =.(20)(本小题满分13分)(I )证:∵1AA BQ ∥,AD BC ∥,B BQ BC =⋂,A AA AD =⋂1. ∴平面QBC ∥平面AD A 1.从而平面CD A 1与这两个平面的交线互相平行,即D A QC 1∥. ∴△QBC 与△AD A 1的对应边相互平行,于是△∽QBC △AD A 1.第(20)题图1αEQ D AB A 1D 1C 1B 1C(II )解:如第(20)题图1,连接QA ,QD .设h AA =1,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为上V 和下V ,a BC =,则a AD 2=.ahd d h a V AD A Q 31221311=⋅⋅⋅⋅=-, a h dh d a a V A B C D Q 41)21(2231=⋅⋅+⋅=-, ∴ahd V V V ABCD Q AD A Q 1271=+=--下.又ahd V ABCD D C B A 231111=-,∴ahd ahd ahd V V V ABCD D C B A 121112723-1111=-==-下上,故711=下上V V . (III )解法1如第(20)题图1,在ADC △中,作DC AE ⊥,垂足为E ,连接E A 1. 又1AA DE ⊥,且A AA DE =⋂1. ∴1AEA DE 平面⊥,于是E A DE 1⊥.∴∠1AEA 为平面α与底面ABCD 所成二面角的平面角. ∵AD BC ∥,BC AD 2=,∴BCA ADC S S △△2=.又∵梯形ABCD 的面积为6,2=DC ,∴4=ADC S △,4=AE . ∴1tan 11==∠AE AA AEA ,41π=∠AEA . 故平面α与底面ABCD 所成二面角的大小为4π. 解法2如第(20)题图2,以D 为原点,1,DD DA 分别为x 轴和z 轴正方向建立空间直角坐标系. 设θ=∠CDA∵6sin 222=⋅+=θaa S ABCD ,∴θsin 2=a .从而)(0,sin 2,cos 2θθC ,⎪⎭⎫⎝⎛4,0,sin 41θA , ∴()0,sin 2,cos 2θθ=DC ,⎪⎭⎫⎝⎛=4,0,sin 41θDA .由⎪⎩⎪⎨⎧=+=⋅=+=⋅0sin 2cos 204sin 41θθθy x n DA ,得θsin -=x ,θcos =y ,∴)1,cos ,sin (θθ-=n .又∵平面ABCD 的法向量)1,0,0(=,∴22,cos =>=<m n , ∴平面α与底面ABCD 所成二面角的大小为4π.(21)(本小题满分13分) (I )证:用数学归纳法证明① 当2=p 时,x x x x 2121)1(22+>++=+,原不等式成立. ② 假设),2(*N k k k p ∈≥=时,不等式kx x k+>+1)1( 成立. 当1+=k p 时,x k kx x k kx x x x x k k )1(1)1(1)1)(1()1)(1()1(21++>+++=++>++=++.∴1+=k p 时,原不等式也成立.综合①②可知,当0,1≠->x x 时,对一切整数1>p ,不等式px x p+>+1)1(均成立.(II )证法1:先用数学归纳法证明pn c a 1>.① 当1=n 时,由题设p c a 11>知,pn c a 1>成立. ② 假设)(*,1N k k k n ∈≥=时,不等式pk c a 1>成立. 由pn n n a pc a p p a -++-=111易知*,0N n a n ∈>. 当1+=k n 时,)1(1111-+=+-=-+p kp k k k a cp a p c p p a a . 由01>>pk ca 得0)1(111<-<-<-p ka cp p . 由(I )中的结论得p k p k pp k pk k a c a c p p a c p a a =-⋅+>⎥⎥⎦⎤⎢⎢⎣⎡-+=⎪⎪⎭⎫ ⎝⎛+)1(11)1(111. 因此c a pk >+1,即pk c a 11>+.1综合①②可得,对一切正整数n ,不等式pk c a 1>均成立. 再由)1(111-+=+p nn n a cp a a 可得11<+n n a a ,即n n a a <+1.综上所述,*11,N n c a a pn n ∈>>+.证法2:设p p c x x p cx p p x f 111)(≥+-=-,,则c x p ≥,并且p p p c x xcp p x p p c p p x f 10)1(1)1(1)(>>--=-+-='-,.由此可得,)(x f 在),[1+∞pc 上单调递增.因而,当p c x 1>时,pp c c f x f 11)()(=>.① 当1=n 时,由011>>p ca ,即c a p>1可知1111112)1(111a a c p a a p c a p p a p p <⎥⎦⎤⎢⎣⎡-+=+-=-,并且pc a f a 112)(>=,从而p c a a 121>>.故当1=n 时,不等式pn n ca a 11>>+成立.②假设),(*1N k k k n ∈≥=时,不等式pk k c a a 11>>+成立,则 当1+=k n 时,)()()(11pk k c f a f a f >>+,即有pk k c a a 121>>++.∴1+=k n 时,原不等式也成立.综合①②可得,对一切正整数n ,不等式pk k c a a 11>>+均成立.。

2014年安徽高考理科数学试题及参考答案

2014年安徽高考理科数学试题及参考答案

2014年安徽高考理科数学试题第I 卷 (选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【2014年安徽卷(理01)】设i 是虚数单位,_z 表示复数z 的共轭复数,若i z +=1,则=⋅+z i iz(A )2- (B )i 2- (C )2(D )i 2【答案】C 【解析】2)2()(=-=-=⋅+⋅-=⋅+i i z z i z i z i z i iz【2014年安徽卷(理02)】“0<x ”是“0)1ln(<+x ”的(A ) 充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】B【解析】}01|{0)1ln(<<-⇒<+x x x 是}0|{<x x 的真子集【2014年安徽卷(理03)】如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55(C )78(D )89【答案】B【解析】本程序涉及“斐波拉切数列”即:2、3、5、8、13、21、34、55、89…,并输出第一个大于50的数 第(3)题图【2014年安徽卷(理04)】以平面直角坐标系的原点为极点,x 轴的正半轴为极轴, 建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎨⎧-=+=31t y t x ,(t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )142 (C ) 2 (D )22【答案】D【解析】直线与圆都化成普通方程,直线04:=--y x l ,圆4)2(:22=+-y x C 。

圆心C 到直线l 的距离为2=d ,弦长为22222=-d r【2014年安徽卷(理05)】y x ,满足约束条件⎪⎩⎪⎨⎧+-≤--≤-+202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数 a 的值为(A )21或1-(B )2或21(C )2或1(D )2或1-【答案】D【解析】可行域如右图所示,ax y z -=可化为z ax y +=,由题意知2=a 或1-【2014年安徽卷(理06)】设函数))((R x x f ∈满足x x f x f sin )()(+=+π,当π<≤x 0时,0)(=x f ,则=)623(πf (A )21(B )23(C )0 (D )21-2=02=-【解析】法一:2165sin )65(21611sin )611(617sin )617()623(=+=++=+=πππππππf f f f 法二:x x f x x x f x x f x f sin )()2sin()sin()()2sin()2()3(+=+++++=+++=+ππππππ2165sin )65()623(=+=πππf f【2014年安徽卷(理07)】一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+(C )21(D )18【答案】A【解析】此多面体的直观图如下图所示表面积为61121622⨯⨯⨯-⨯⨯ 3212)2(432+=⨯⨯+第(7)题图【2014年安徽卷(理08)】从正方体六个面的对角线中任取两条作为一对,其中所成的角为︒60的共有(A )24对 (B )30对 (C )48对 (D )60对【答案】A【解析】正方体每一条面对角线都与其它8条面对角线成︒60角,故共有482812=⨯对【2014年安徽卷(理09)】若函数a x x x f +++=21)(的最小值为3,则实数a 的值为(A )5或8 (B )1-或5 (C )1-或4- (D )4-或8正(主)视图侧(左)视图【解析】若2≥a ,则当12-≤≤-x a时,由312121)(=-≥-+=+++=a a x a x x x f 可得8=a 符合要求;若2<a ,则当21ax -≤≤-时,由321121)(=-≥--=+++=a x a a x x x f 可得4-=a 符合要求;综上所述,4-=a 或8。

2014年安徽省宿州市三模考试数学理试题及答案

2014年安徽省宿州市三模考试数学理试题及答案

2014届高三第三次教学质量检测数学(理)答案一.选择题1----5 ADAAB, 6----10 CDBBC 二.填空题 11.34π12. 10 13. (2,5) 14. 4 15.③⑤ 三.解答题16. 解析:(Ⅰ)21cos 2sin 2cos22=-=+-=⋅A A A ∴21cos -=A ∴π32=A ………6分 (Ⅱ)bc bc bc a bc c b bc a c b 22422)(232cos 22222-=--+=-+=π 解得4=bc∴3sin 21==A bc s ………12分17.解析:连AC 、BD 交于O 点,连OG ,∵四边形ABCD 是正方形,∴O 为AC 的中点又G 为EC 的中点,∴GO ∥AE ,GO=2,∴GO ∥FD ,∴G 、O 、D 、F 共面,且面GODF ∩面ABCD=OD由GF ∥面ABCD 得GF ∥OD ,∴四边形GODF 为平行四边形,∴DF=GO=2,以A 为原点,AB 、AD 、AE 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则B (2,0,0),C (2,2,0),E (0,0,4),F (0,2,2) (1)=(-2,0,2),=(0,2, -2), 设面EFC 的一个法向量为1n =(x 1,y 1,z 1),则⎪⎩⎪⎨⎧=-=⋅=+-=⋅022102211111z y EF n z x CF n , 取1n =(1,1,1) 1n 方向上的单位向量是0n =(33, 33,33), =(0,2,0)∴点B 到面EFC 之距为d =⋅=332 ………6分 (2)=(-2, 0 ,4) =(0,2,0)设面BEC 的一个法向量为2n =(x 2,y 2,z 2), 则⎪⎩⎪⎨⎧==⋅=+-=⋅0204222222y BC n z x n 取2n =(-2,0,-1)设二面角B-EC-F 的大小为α 则cos =α=353⨯-=515-………12分 18.解析:(1)当2=X 时,即表明n 名学生中恰有两名学生未对号入座,有2n C 种坐法, 于是62=n C ,即62)1(=-n n ,解得 4=n ………3分(2)记 “2号学生未坐2号座位且4号学生对号入座”为事件A .4名学生随机入座4个座位共有2444=A 种等可能性结果,而事件A 包含其中42212=A C 种结果,故61244)(==A P ………7分(3)X 的所有可能取值为:,4,3,2,0且2411)0(44===A X P , 2461)2(4424=⨯==A C X P , 2482)3(4434=⨯==A C X P , 249)4(==X P故32494248324622410=⨯+⨯+⨯+⨯=EX . ………12分19.解析:(1)不妨设过左焦点1F 且垂直于x 轴的直线交椭圆E 于M 、N ,则1=MN ,所以211=MF ,又+1MF a MF 22=,则2122-=a MF ,在21F MF Rt ∆中,由勾股定理得:222)2()21()212(c a +=-,而23==a c e ,联立解得:2=a ,1=b ,故椭圆E 的方程为1422=+y x . ………5分 (2)设),(11y x D ,则1112-=x y k ,又PB PA ⊥,211+==x y K k DA PA , 所以1112y x k +-= 所以==21k k λ112y x +-111y x -⨯,将412121x y -=代入得=λ)211(4214111-+=--⨯x x x 由)2,2(1-∈x 得3<λ且0≠λ, 故λ的取值范围是)3,0()0,(⋃-∞. ………12分20. 解析:(1)由2112a a b +=,可得122112=-=a b a . 由2122b b a =,可得181222==b ab .……………2分(2)因为1,,+n n n a b a 成等差数列,所以12++=n n n a a b …①.因为11,,++n n n b a b 成等比数列,所以211n n n a b b ++=,因为数列{}{}n n b a ,的每一项都是正数,所以11++=n n n b b a …②.于是当2n ≥时,n n n b b a 1-=…③.将②、③代入①式,可得112+-+=n n n b b b ,因此数列{}nb 是首项为22,公差为2的等差数列,所以)1(2)1(1+=-+=n d n b b n ,于是2)1(2+=n b n由③式,可得当2n ≥时,)1(21+==-n n b b a n n n .当1n =时,,41=a ,满足该式子,所以对一切正整数n ,都有)1(2+=n n a n . …………………………7分(3)由(2)可知,所证明的不等式为321221231111312<-+++++n n 方法一:首先证明)111(3212212+-<-+n n n n )2(≥n 因为)111(3212212+-<-+n n n n ⇔)1(3212212+<-+n n n n ⇔022>-+n n ⇔0)2)(1(>+-n n所以当2n ≥时,)1121(3231)11141313121(323111111121+-+=+-++-+-+<-++-+-n n n a a a n 32213231=⋅+<. 当1=n 时,3231<.综上所述,对一切正整数n ,有3211111121<-++-+-n a a a …………………13分 方法二:<-+=-+=-+43)21(121211211221222n n n n n )23)(21(1211)21(1212+-=-+n n n )231211(41+--=n n∴)231211291251271231251211(4111111121---++-+-+-<-++-+-n n a a a n32)322(41=+<. ∴对一切正整数n ,有3211111121<-++-+-n a a a ……………………13分方法三:)2111(61)2)(1(1212121211211221222+--=+-=-+<-+=-+n n n n n n n n n n )2(≥n ∴当2≥n 时,)2111613151214111(613111111121+--++-+-+-+<-++-+-n n a a a n 323623)31211(6131<=+++<. 当1=n 时,3231<.综上所述,对一切正整数n ,有3211111121<-++-+-n a a a ………………13分 21.解析:(1)由32()f x x x b =-++,得2()32(32)f x x x x x '=-+=--,令()0f x '=,得0x =或23. 当x 变化时,()f x '及()f x 的变化如下表:所以()f x 的极大值为()327f b =+=27, 0b ∴=.…………………………………………………………………………………4分(2)由2()(2)g x x a x ≥-++,得2(ln )2x x a x x -≤-.[1,],ln 1x e x x ∈∴≤≤,且等号不能同时取, ln x x ∴<,即ln 0x x ->22ln x x a x x -∴≤-恒成立,即2min 2()ln x x a x x-≤- 令22(),([1,])ln x x t x x e x x -=∈-,求导得,2(1)(22ln )()(ln )x x x t x x x -+-'=-,当[1,]x e ∈时,10,0ln 1,22ln 0x x x x -≥≤≤+->,从而()0t x '≥,()t x ∴在[1,]e 上为增函数, min ()(1)1t x t ∴==-,1a ∴≤-.………………………………………………………………………………8分(3)由条件,32,()ln ,x x F x a x ⎧-+=⎨⎩11x x <≥,假设曲线()y F x =上存在两点P ,Q 满足题意,则P ,Q 只能在y 轴两侧,不妨设(,())(0)P t F t t >,则32(,)Q t t t -+,且1t ≠.POQ ∆是以O 为直角顶点的直角三角形,0OP OQ ∴⋅=,232()()0t F t t t ∴-++= (*),是否存在P ,Q 等价于方程()*在0t >且1t ≠时是否有解.①若01t <<时,方程()*为()()232320t t t t t -+-++=,化简得4210t t -+=,此方程无解; ②若1t >时,方程()*为()232ln 0t a t t t -+⋅+=,即()11ln t t a=+,设()()()1ln 1h t t t t =+>,则()1ln 1h t t t'=++, 显然,当1t >时,()0h t '>, 即()h t 在()1,+∞上为增函数,()h t ∴的值域为()()1,h +∞,即()0,+∞,∴当0a >时,方程(*)总有解.∴对任意给定的正实数a ,曲线()y F x = 上总存在两点P ,Q ,使得POQ ∆是以O (O 为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y 轴上.……………13分。

2014年安徽省高考数学试卷(理科)附送答案

2014年安徽省高考数学试卷(理科)附送答案

2014年安徽省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2 B.﹣2i C.2 D.2i2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.894.(5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A. B.2C.D.25.(5分)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣16.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B.C.0 D.﹣7.(5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21 D.188.(5分)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8 B.﹣1或5 C.﹣1或﹣4 D.﹣4或810.(5分)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.12.(5分)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=.13.(5分)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a=.14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.15.(5分)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.17.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).18.(12分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.19.(13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.20.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD 为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.21.(13分)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2 B.﹣2i C.2 D.2i【分析】把z及代入+i•,然后直接利用复数代数形式的乘除运算化简求值.【解答】解:∵z=1+i,∴,∴+i•==.故选:C.2.(5分)(2014•安徽)“x<0”是“ln(x+1)<0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解答】解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.3.(5分)(2014•安徽)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选B4.(5分)(2014•安徽)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A. B.2C.D.2【分析】先求出直线和圆的直角坐标方程,求出半径和弦心距,再利用弦长公式求得弦长.【解答】解:直线l的参数方程是(t为参数),化为普通方程为x﹣y﹣4=0;圆C的极坐标方程是ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心、半径r等于2的圆.弦心距d==<r,∴弦长为2=2=2,故选:D.5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D6.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B.C.0 D.﹣【分析】利用已知条件,逐步求解表达式的值即可.【解答】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,∴f()=f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=sin+sin+sin==.故选:A.7.(5分)(2014•安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21 D.18【分析】判断几何体的形状,结合三视图的数据,求出几何体的表面积.【解答】解:由三视图可知,几何体是正方体的棱长为2,截去两个正三棱锥,侧棱互相垂直,侧棱长为1,几何体的表面积为:S正方体﹣2S棱锥侧+2S棱锥底==21+.故选:A.8.(5分)(2014•安徽)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对【分析】利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果.【解答】解:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:3×6=18.从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有:66﹣18=48.故选:C.9.(5分)(2014•安徽)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8 B.﹣1或5 C.﹣1或﹣4 D.﹣4或8【分析】分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a的值.【解答】解:<﹣1时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;﹣≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥﹣1;x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,∴﹣1=3或a﹣2=3,∴a=8或a=5,a=5时,﹣1<a﹣2,故舍去;≥﹣1时,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;﹣1≤x≤﹣,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣+1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣a=3或﹣+1=3,∴a=﹣1或a=﹣4,a=﹣1时,﹣+1<2﹣a,故舍去;综上,a=﹣4或8.故选:D.10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R【分析】不妨令=(1,0),=(0,1),则P点的轨迹为单位圆,Ω={P|(0<r ≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,进而根据圆圆相交的充要条件得到答案.【解答】解:∵平面直角坐标系xOy中.已知向量、,||=||=1,•=0,不妨令=(1,0),=(0,1),则=(+)=(,),=cosθ+sinθ=(cosθ,sinθ),故P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,故|OQ|﹣1<r<R<|OQ|+1,∵|OQ|=2,故1<r<R<3,故选:A二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式为y=sin(2x+﹣2φ),再根据所得图象关于y轴对称可得﹣2φ=kπ+,k∈z,由此求得φ的最小正值.【解答】解:将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象对应的函数解析式为y=sin[2(x﹣φ)+]=sin(2x+﹣2φ)关于y 轴对称,则﹣2φ=kπ+,k∈z,即φ=﹣﹣,故φ的最小正值为,故答案为:.12.(5分)(2014•安徽)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=1.【分析】设出等差数列的公差,由a1+1,a3+3,a5+5构成公比为q的等比数列列式求出公差,则由化简得答案.【解答】解:设等差数列{a n}的公差为d,由a1+1,a3+3,a5+5构成等比数列,得:,整理得:,即+5a1+a1+4d.化简得:(d+1)2=0,即d=﹣1.∴q==.故答案为:1.13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a=3.【分析】求出(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,列出方程组,求出a的值.【解答】解:(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,∴,,,,a2﹣3a=0,解得a=3,故答案为:3.14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.【分析】求出B(﹣c,﹣b2),代入椭圆方程,结合1=b2+c2,即可求出椭圆的方程.【解答】解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2,∴A点坐标为(c,b2),设B(x,y),则∵|AF1|=3|F1B|,∴(﹣c﹣c,﹣b2)=3(x+c,y)∴B(﹣c,﹣b2),代入椭圆方程可得,∵1=b2+c2,∴b2=,c2=,∴x2+=1.故答案为:x2+=1.15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.【分析】依题意,可求得S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,可判断①错误;进一步分析有S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,即S中最小为S3;再对②③④⑤逐一分析即可得答案.【解答】解:∵x i,y i(i=1,2,3,4,5)均由2个和3个排列而成,∴S=x i y i可能情况有三种:①S=2+3;②S=+2•+2;③S=4•+.S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,故①错误;∵S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,∴S中最小为S3;若⊥,则S min=S3=,与||无关,故②正确;③若∥,则S min=S3=4•+,与||有关,故③错误;④若||>4||,则S min=S3=4||•||cosθ+>﹣4||•||+>﹣+=0,故④正确;⑤若||=2||,S min=S3=8||2cosθ+4=8,∴2cosθ=1,∴θ=,即与的夹角为.综上所述,命题正确的是②④,故答案为:②④.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.【分析】(Ⅰ)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(Ⅱ)求出sinA,cosA,即可求sin(A+)的值.【解答】解:(Ⅰ)∵A=2B,,b=3,∴a=6cosB,∴a=6,∴a=2;(Ⅱ)∵a=6cosB,∴cosB=,∴sinB=,∴sinA=sin2B=,cosA=cos2B=2cos2B﹣1=﹣,∴sin(A+)=(sinA+cosA)=.17.(12分)(2014•安徽)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).【分析】(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列;以及均值.【解答】解:用A表示甲在4局以内(含4局)赢得比赛的是事件,A k表示第k 局甲获胜,B k表示第k局乙获胜,则P(A k)=,P(B k)=,k=1,2,3,4,5(Ⅰ)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=()2+×()2+××()2=.(Ⅱ)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=,P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)==,或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)=,故分布列为:X2345PE(X)=2×+3×+4×+5×=.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.【分析】(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈[0,1],当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.19.(13分)(2014•安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.【分析】(Ⅰ)由题意设出直线l1和l2的方程,然后分别和两抛物线联立求得交点坐标,得到的坐标,然后由向量共线得答案;(Ⅱ)结合(Ⅰ)可知△A1B1C1与△A2B2C2的三边平行,进一步得到两三角形相似,由相似三角形的面积比等于相似比的平方得答案.【解答】(Ⅰ)证明:由题意可知,l1和l2的斜率存在且不为0,设l1:y=k1x,l2:y=k2x.联立,解得.联立,解得.联立,解得.联立,解得.∴,.,∴A1B1∥A2B2;(Ⅱ)解:由(Ⅰ)知A1B1∥A2B2,同(Ⅰ)可证B1C1∥B2C2,A1C1∥A2C2.∴△A1B1C1∽△A2B2C2,因此,又,∴.故.20.(13分)(2014•安徽)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.【分析】(Ⅰ)证明平面QBC∥平面A1D1DA,可得△QBC∽△A1AD,即可证明Q 为BB1的中点;(Ⅱ)设BC=a,则AD=2a,则==,V Q﹣ABCD==ahd,利用V棱柱=ahd,即可求出此四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,DE⊥A1E,可得∠AEA1为平面α与底面ABCD所成二面角,求出S△ADC=4,AE=4,可得tan ∠AEA1==1,即可求平面α与底面ABCD所成二面角的大小.【解答】(Ⅰ)证明:∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面QBC∥平面A1D1DA,∴平面A1CD与面QBC、平面A1D1DA的交线平行,∴QC∥A1D∴△QBC∽△A1AD,∴=,∴Q为BB1的中点;(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2,设BC=a,则AD=2a,∴==,V Q﹣ABCD==ahd,∴V2=,∵V棱柱=ahd,∴V1=ahd,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,∴∠AEA1为平面α与底面ABCD所成二面角的平面角,∵BC∥AD,AD=2BC,∴S△ADC =2S△ABC,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α与底面ABCD所成二面角的大小为.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.【分析】第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从a n+1着手,由a n+1=a n+a n1﹣p,将求证式进行等价转化后即可解决,用相同的方式将a n>a n+1进行转换,设法利用已证结论证明.【解答】证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证a n>.+1=a n+a n1﹣p,∴只需证a n+a n1﹣p>,∵a n+1将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴a n+a n1﹣p>,即a n+1>.再证a n>a n+1.只需证a n>a n+a n1﹣p,化简、整理得a n p>c,只需证a n>c.由前知a n>成立,即从数列{a n}的第2项开始成立,+1又n=1时,由题设知成立,∴对n∈N*成立,∴a n>a n+1.综上知,a n>a n+1>,原不等式得证.。

安徽省宿州市高三上学期期末数学试卷(理科)

安徽省宿州市高三上学期期末数学试卷(理科)

安徽省宿州市高三上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知集合,,则()A .B .C . A=BD .2. (2分) (2018高二下·大名期末) 设复数,则()A .B .C .D .3. (2分)(2017·东城模拟) 将函数的图象向左平移m(m>0)个单位长度,得到函数y=f (x)图象在区间上单调递减,则m的最小值为()A .B .C .D .4. (2分)下列四个命题正确的是()A . 两个单位向量一定相等B . 若与不共线,则与都是非零向量C . 共线的单位向量必相等D . 两个相等的向量起点、方向、长度必须都相同5. (2分)随机抽取某中学甲,乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图,则下列关于甲,乙两班这10名同学身高的结论正确的是()A . 甲班同学身高的方差较大B . 甲班同学身高的平均值较大C . 甲班同学身高的中位数较大D . 甲班同学身高在175以上的人数较多6. (2分) (2019高一下·宁波期末) 已知等差数列中,,则公差d=()A . -2B . -1C . 1D . 27. (2分) (2016高二下·九江期末) 如图所示,正方形ABCD的边长为2,E,F分别为AB,AD的中点,G为线段CE上的一个动点,设 =x,S△GDF=y,则函数y=f(x)的图象大致是()A .B .C .D .8. (2分) (2020高二下·栖霞月考) 一道竞赛题,,,三人可解出的概率依次为,,,若三人独立解答,则仅有1人解出的概率为()A .B .C .D . 19. (2分) (2016高一下·黔东南期末) 已知实数x,y满足,则z=2x+y的最大值为()A . 2B .C . ﹣3D . 310. (2分) (2019高二下·湖北期中) 如下图,一个多面体的正视图和侧视图是两个全等的等腰直角三角形且直角边长为2,俯视图是边长为2的正方形,则该多面体的体积是()A .B .C .D .11. (2分) (2016高二上·宁县期中) 已知数列,则是这个数列的()A . 第六项B . 第七项C . 第八项D . 第九项12. (2分)若函数f(x)=ax﹣lnx在x= 处取得极值,则实数a的值为()A .B .C . 2D .二、填空题 (共4题;共4分)13. (1分)(2018·茂名模拟) 已知则 ________.14. (1分)(2018·南充模拟) 的展开式中的系数为________.15. (1分) (2019高三上·吉林期中) 底面半径为1cm的圆柱形容器里放有四个半径为 cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水________.16. (1分) (2017高一下·泰州期末) 若△ABC的面积为,BC=2,则的取值范围是________.三、解答题 (共7题;共70分)17. (10分) (2018高一下·雅安期中) 已知a,b,c分别为三个内角A,B,C所对的边长,且.(1)求角C的值;(2)若c=4,a+b=7,求. .的值.18. (10分) (2017高一下·武汉期中) 已知{an}是递增的等差数列,它的前三项的和为﹣3,前三项的积为8.(1)求数列{an}的通项公式;(2)求数列{|an|}的前n项和Sn .19. (10分) (2019高一下·广东期末) 如图,三棱柱中,四边形是菱形,四边形是矩形,,,, .(1)求证:平面平面;(2)求直线与平面所成角的正切值.20. (5分)(2019·延安模拟) 某水产品经销商销售某种鲜鱼,售价为每千克元,成本为每千克元,销售宗旨是当天进货当天销售,如果当天卖不完,那么未售出的部分全部处理,平均每千克损失元.根据以往的市场调查,将市场日需求量(单位:千克)按,,,,进行分组,得到如图的频率分布直方图.(Ⅰ)未来连续三天内,连续两天该种鲜钱的日需求量不低于千克,而另一天的日需求量低于千克的概率;(Ⅱ)在频率分布直方图的日需求量分组中,以各组区间的中点值代表该组的各个值,并以日需求量落入该区间的频率作为日需求量取该区间中点值的概率.若经销商每日进货千克,记经销商每日利润为(单位:元),求的分布列和数学期望.21. (15分) (2016高二下·宝坻期末) 已知函数f(x)=lnx﹣ax,(a∈R)(1)若函数f(x)在点(1,f(1))处切线方程为y=3x+b,求a,b的值;(2)当a>0时,求函数f(x)在[1,2]上的最小值;(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.22. (10分) (2019高三上·沈阳月考) 在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为 .(1)求曲线C的普通方程;(2)已知,直线与曲线C交于P,Q两点,求的最大值.23. (10分) (2017高三上·会宁期末) 已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共70分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。

安徽宿州市数学高三上期末习题(含答案解析)

安徽宿州市数学高三上期末习题(含答案解析)

一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞3.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-4.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .115.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A .乙丑年B .丙寅年C .丁卯年D .戊辰年6.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形7.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .38.已知等比数列{}n a 的各项都是正数,且13213,,22a a a 成等差数列,则8967a a a a +=+ A .6B .7C .8D .99.“0x >”是“12x x+≥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为( ) A .15B .25C .35D .4511.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( ) A .243-B .242-C .162-D .24312.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016B .2017C .2018D .201913.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC ∆的面积为( ) AB .3CD14.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 15.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S二、填空题16.已知函数1()f x x x=-,数列{}n a 是公比大于0的等比数列,且61a =,1239101()()()()()f a f a f a f a f a a +++⋅⋅⋅++=-,则1a =_______.17.已知向量()()1,,,2a x b x y ==-,其中0x >,若a 与b 共线,则yx的最小值为__________.18.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________19.已知变量,x y 满足约束条件2{41y x y x y ≤+≥-≤,则3z x y =+的最大值为____________.20.已知x y 、满足约束条件1{1,22x y x y x y +≥-≥--≤若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_______. 21.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .22.若正项数列{}n a 满足11n n a a +-<,则称数列{}n a 为D 型数列,以下4个正项数列{}n a 满足的递推关系分别为:①2211n n a a +-= ②1111n na a ③121nn n a a a +=+ ④2121n n a a +-=,则D 型数列{}n a 的序号为_______.23.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式n a =_______.24.已知数列{}n a (*n ∈N ),若11a =,112nn n a a +⎛⎫+= ⎪⎝⎭,则2lim n n a →∞= . 25.设x ,y 满足则220,220,20,x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩则3z x y =-的最小值是______.三、解答题26.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值.27.设 ΔABC 的内角 A, B, C 的对边分别为 a, b, c, 已知 b =a(cos C −sin C) . (1)求角 A ;(2)若 a =√10 , sin B =√2sin C ,求 ΔABC 的面积. 28.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S .29.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的外接圆半径为R ,且sin sin cos 0A B b A --=.(1)求A ∠;(2)若tan 2tan A B =,求sin 2sin 2sin b Ca b B c C+-的值.30.ABC 的内角,,A B C 所对的边分别为,,a b c .已知ABC 的面积21tan 6S b A = (1)证明: 3 b ccos A =;(2)若1,c a ==求S .【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.B 3.C 4.C 5.C 6.C 7.B 8.D 9.C 10.A 11.B 12.A13.D14.B15.C二、填空题16.【解析】【分析】由于是等比数列所以也是等比数列根据题目所给条件列方程解方程求得的值【详解】设数列的公比为则是首项为公比为的等比数列由得即①由得②联立①②解得【点睛】本小题主要考查等比数列的性质考查等17.【解析】【分析】根据两个向量平行的充要条件写出向量的坐标之间的关系之后得出利用基本不等式求得其最小值得到结果【详解】∵其中且与共线∴即∴当且仅当即时取等号∴的最小值为【点睛】该题考查的是有关向量共线18.1【解析】【分析】由已知数列递推式可得数列是以为首项以为公比的等比数列然后利用等比数列的通项公式求解【详解】由得则数列是以为首项以为公比的等比数列故答案为:1【点睛】本题考查数列的递推关系等比数列通19.11【解析】试题分析:由题意得作出不等式组所表示的可行域如图所示由得平移直线则由图象可知当直线经过点时直线的截距最大此时有最大值由解得此时考点:简单的线性规划20.7【解析】试题分析:作出不等式表示的平面区域得到及其内部其中把目标函数转化为表示的斜率为截距为由于当截距最大时最大由图知当过时截距最大最大因此由于当且仅当时取等号考点:1线性规划的应用;2利21.【解析】试题分析:约束条件的可行域如图△ABC所示当目标函数过点A(11)时z取最大值最大值为1+4×1=5【考点】线性规划及其最优解22.①②③④【解析】【分析】根据D型数列的定义逐个判断正项数列是否满足即可【详解】对①因为且正项数列故故所以成立对②故成立对③成立对④故成立综上①②③④均正确故答案为:①②③④【点睛】本题主要考查了新定23.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项24.【解析】【分析】由已知推导出=(=1+()从而-=-由此能求出【详解】∵数列满足:∴()+()+……+()=++……+==(∴=(;又+……+()=1+++……+=1+=1+()即=1+()∴-=-25.-4【解析】【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:作出可行域如图所示当直线经过点时故答案为:【点睛】本题考查简单的线性三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.B解析:B 【解析】 【分析】 【详解】 先作可行域,而46y x ++表示两点P (x,y )与A (-6,-4)连线的斜率,所以46y x ++的取值范围是[,][3,1]AD AC k k =-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.3.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t q f t q t t t++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减.可得t=12处,此时q=62,f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.4.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 5.C解析:C 【解析】记公元1984年为第一年,公元2047年为第64年,即天干循环了十次,第四个为“丁”,地支循环了五次,第四个为“卯”,所以公元2047年农历为丁卯年. 故选C.6.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =,设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.7.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示,由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.8.D解析:D 【解析】 【分析】设各项都是正数的等比数列{a n }的公比为q ,(q >0),由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得. 【详解】设各项都是正数的等比数列{a n }的公比为q ,(q >0)由题意可得31212322a a a ⨯=+, 即q 2-2q-3=0, 解得q=-1(舍去),或q=3,故()26728967679a a qa a q a a a a .++===++ 故选:D . 【点睛】本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.9.C解析:C 【解析】先考虑充分性,当x>0时,12x x +≥=,当且仅当x=1时取等.所以充分条件成立. 再考虑必要性,当12x x+≥时,如果x>0时,22210(1)0x x x -+≥∴-≥成立,当x=1时取等.当x<0时,不等式不成立. 所以x>0. 故选C.10.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩, 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.11.B解析:B 【解析】【详解】因为2,,3n n S a 成等差数列,所以223n n S a =+,当1n =时,111223,2S a a =+∴=-;当2n ≥时,1113333112222n n n n n n n a S S a a a a ---=-=+--=-,即11322n n a a -=,即()132nn a n a -=≥,∴数列{}n a 是首项12a =-,公比3q =的等比数列,()()55151213242113a q S q---∴===---,故选B.12.A解析:A 【解析】 【分析】由2n S n n =-得到22n a n =-,即n b =2(1)cos2n n π-,利用分组求和法即可得到结果. 【详解】由数列{}n a 的前n 项和为2n S n n =-,当1n =时,11110a S ==-=;当2n 时,1n n n a S S -=-22(1)(1)22n n n n n ⎡⎤=-----=-⎣⎦,上式对1n =时也成立, ∴22n a n =-, ∴cos2n n n b a π==2(1)cos 2n n π-, ∵函数cos 2n y π=的周期242T ππ==,∴()2017152013T b b b =++++(26b b +)2014b ++()()3720154820162017b b b b b b b +++++++++02(152013)0=-+++++2(3+72015)045042016+++=⨯=,故选:A. 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,利用分组法求数列的和,主要考查学生的运算能力和转化能力,属于中档题.13.D解析:D 【解析】三角形的面积公式为1sin 2ABC S bc A ∆=,故需要求出边b 与c ,由余弦定理可以解得b 与c . 【详解】解:在ABC ∆中,2227cos 28b c a A bc +-==将2b c =,a =22246748c c c +-=, 解得:2c =由7cos 8A =得sin A ==所以,11sin 242282ABC S bc A ∆==⨯⨯⨯=故选D. 【点睛】三角形的面积公式常见形式有两种:一是12(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.14.B解析:B 【解析】 【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.15.C解析:C【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0∵87a a -<1<0 ∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.二、填空题16.【解析】【分析】由于是等比数列所以也是等比数列根据题目所给条件列方程解方程求得的值【详解】设数列的公比为则是首项为公比为的等比数列由得即①由得②联立①②解得【点睛】本小题主要考查等比数列的性质考查等【解析】 【分析】由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭也是等比数列.根据题目所给条件列方程,解方程求得1a 的值. 【详解】设数列{}n a 的公比为0q >,则1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,由()()()()()1239101f a f a f a f a f a a +++⋅⋅⋅++=-得121011210111a a a a a a a ⎛⎫+++-+++=- ⎪⎝⎭,即()10101111111111a q a q a q q⎛⎫-⎪-⎝⎭-=---①,由61a =,得511a q =②,联立①②解得12a =.【点睛】本小题主要考查等比数列的性质,考查等比数列的前n 项和公式,考查运算求解能力,属于中档题.17.【解析】【分析】根据两个向量平行的充要条件写出向量的坐标之间的关系之后得出利用基本不等式求得其最小值得到结果【详解】∵其中且与共线∴即∴当且仅当即时取等号∴的最小值为【点睛】该题考查的是有关向量共线 解析:【解析】 【分析】根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出2y x x x=+,利用基本不等式求得其最小值,得到结果. 【详解】∵()1,a x =, (),2b x y =-,其中0x >,且a 与b 共线 ∴()12y x x ⨯-=⋅,即22y x =+∴222y x x x x x+==+≥,当且仅当2x x =即x =时取等号∴yx的最小值为 【点睛】该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.18.1【解析】【分析】由已知数列递推式可得数列是以为首项以为公比的等比数列然后利用等比数列的通项公式求解【详解】由得则数列是以为首项以为公比的等比数列故答案为:1【点睛】本题考查数列的递推关系等比数列通解析:1 【解析】 【分析】由已知数列递推式可得数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,然后利用等比数列的通项公式求解.【详解】由11()an n a a -=,得991991log log n n a a a -=,∴199991991l 9og log 9nn a a a -==,则数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列, ∴19999991001log (99)199a =⋅=. 故答案为:1. 【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.19.11【解析】试题分析:由题意得作出不等式组所表示的可行域如图所示由得平移直线则由图象可知当直线经过点时直线的截距最大此时有最大值由解得此时考点:简单的线性规划解析:11 【解析】试题分析:由题意得,作出不等式组所表示的可行域,如图所示,由3z x y =+,得3y x z =-+,平移直线3y x z =-+,则由图象可知当直线3y x z =-+经过点A 时,直线3y x z =-+的截距最大,此时z 有最大值,由2{1y x y =-=,解得(3,2)A ,此时33211z =⨯+=.考点:简单的线性规划.20.7【解析】试题分析:作出不等式表示的平面区域得到及其内部其中把目标函数转化为表示的斜率为截距为由于当截距最大时最大由图知当过时截距最大最大因此由于当且仅当时取等号考点:1线性规划的应用;2利解析:7 【解析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.考点:1、线性规划的应用;2、利用基本不等式求最值.21.【解析】试题分析:约束条件的可行域如图△ABC所示当目标函数过点A(11)时z取最大值最大值为1+4×1=5【考点】线性规划及其最优解解析:【解析】.试题分析:约束条件的可行域如图△ABC所示.当目标函数过点A(1,1)时,z取最大值,最大值为1+4×1=5.【考点】线性规划及其最优解.22.①②③④【解析】【分析】根据D 型数列的定义逐个判断正项数列是否满足即可【详解】对①因为且正项数列故故所以成立对②故成立对③成立对④故成立综上①②③④均正确故答案为:①②③④【点睛】本题主要考查了新定解析:①②③④ 【解析】 【分析】根据D 型数列的定义,逐个判断正项数列{}n a 是否满足11n n a a +-<即可. 【详解】对①,因为2211n n a a +-=,且正项数列{}n a .故()222211211n n n n n a a a a a +=+<++=+,故11n n a a +<+.所以11n n a a +-<成立. 对②,1111111111n n n nn nn a a a a a a a ,故22101111n n n n nn n n n n n a a a a a a a a a a a +--=---++==<<+成立. 对③, 112221101111n nn n n n n n n n a a a a a a a a a a ++⎛⎫=⇒-=-=-<< ⎪+++⎝⎭成立 对④, ()2222112121211n n n n n n n a a a a a a a ++-=⇒=+<++=+.故11n n a a +<+,11n n a a +-<成立. 综上, ①②③④均正确. 故答案为:①②③④ 【点睛】本题主要考查了新定义的问题,需要根据递推公式证明11n n a a +-<.属于中等题型.23.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项 解析:2221n n --【解析】 【分析】 构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-. 【详解】 设11n nb a =-,则12n nb b ,11111b a ==- 数列n b 是首项为1公差为2的等差数列1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】本题考查了数列的通项公式的求法,构造数列11n nb a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.24.【解析】【分析】由已知推导出=(=1+()从而-=-由此能求出【详解】∵数列满足:∴()+()+……+()=++……+==(∴=(;又+……+()=1+++……+=1+=1+()即=1+()∴-=-解析:23- 【解析】 【分析】 由已知推导出2n S =23(11)4n -,21n S -=1+13(1114n --),从而22n n a S =-21n S -=21132n --23,由此能求出2lim n n a →∞【详解】 ∵数列{}n a 满足:1 1a =,112nn n a a +⎛⎫+= ⎪⎝⎭, ∴(12a a +)+(34 a a +)+……+(212 n n a a -+)=12+312⎛⎫ ⎪⎝⎭+……+2112n -⎛⎫ ⎪⎝⎭=11124114n ⎛⎫-⎪⎝⎭-=23(11)4n-,∴2n S =23(11)4n -; 又12345a a a a a +++++……+(2221 n n a a --+)=1+212⎛⎫ ⎪⎝⎭+412⎛⎫ ⎪⎝⎭+……+2212n -⎛⎫ ⎪⎝⎭=1+2111124114n -⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=1+13(1114n --),即21n S -=1+13(1114n --) ∴22n n a S =-21n S -=21132n --23∴2211lim lim(32n n n n a -→∞→∞=-2)3=-23, 故答案为:-2 3【点睛】本题考查数列的通项公式的求法,数列的极限的求法,考查逻辑思维能力及计算能力,属于中档题.25.-4【解析】【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:作出可行域如图所示当直线经过点时故答案为:【点睛】本题考查简单的线性解析:-4 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:作出可行域如图所示,当直线3z x y =-经过点()2,2时,min 2324z =-⨯=-. 故答案为:4- 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.三、解答题 26. (1)3π;(23【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >, 则31sin cos cos sin 622B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin 3B B =,tan 3B ∴=.又()0,B π∈,因此,3B π=; (2)如下图,由13sin 24ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+,等式两边平方得22242BD BC BC BA BA =+⋅+,所以2222423a c BA BC a c ac ac =++⋅=++≥,则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆3433=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题.27.(1)A =3π4(2)S ΔABC =12bc sin A =1 【解析】【分析】(1)直接利用正弦定理和三角函数关系式的恒等变换求出结果.(2)利用(1)的结论,余弦定理及三角形的面积公式求出结果.【详解】(1)∵b=a (cosC ﹣sinC ),∴由正弦定理得sinB=sinAcosC ﹣sinAsinC ,可得sin (A+C )=sinAcosC+cosAsinC=sinAcosC ﹣sinAsinC ,∴cosAsinC=﹣sinAsinC ,由sinC≠0,得sinA+cosA=0,∴tanA=﹣1,由A 为三角形内角,可得A =3π4.(2)因为sin B =√2sin C ,所以由正弦定理可得b=√2c ,因为a 2=b 2+c 2﹣2bccosA ,A =3π4,可得c=√2,所以b=2,所以S ΔABC =12bc sin A =1. 【点睛】 本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用,三角形面积公式的应用.28.(1)32n a n =-+;(2)见解析【解析】试题分析:(1)设等差数列{}n a 的公差为d .利用通项公式即可得出.(Ⅱ)由数列{}n n a b +是首项为1,公比为q 的等比数列,可得n b .再利用等差数列与等比数列的通项公式与求和公式即可得出.试题解析:(1)设等差数列{}n a 的公差为d ,∵27382329a a a a +=-⎧⎨+=-⎩,∴1127232929a d a d +=-⎧⎨+=-⎩,解得113a d =-⎧⎨=-⎩, ∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为q 的等比数列得1n n n a b q -+=,即132n n n b q --++=,∴132n n b n q -=-+,∴()()21147321n n S n q q q -⎡⎤=++++-+++++⎣⎦ ()()213112n n n q q q --=+++++.∴当1q =时,()231322n n n n n S n -+=+=; 当1q ≠时,()31121nn n n q S q--=+-. 29.(1)6π;(2). 【解析】【分析】(1)由正弦定理化简已知三角等式,根据sin 0B ≠可得tan A =,即可求出角A ;(2)由(1)可得tan B =,利用2sin 1A =及正弦定理将分式化简,再利用余弦定理化简分式得()1tan 2A B -+,最后利用正切和角公式代入tan A ,tan B ,可求出结果. 【详解】(1)∵sin sin cos 0A B b A -=,由正弦定理得:sin sin 2sin cos 0A B R B A -=,即)sin cos 0B A A -=, ∵()0,B π∈,∴sin 0B ≠,cos A A =,tan A =, ∵()0,A π∈,∴6A π∠=.(2)由(1)知:tan 3A =,tan 6B =,1sin 2A =, ∴2sin 1A =, ∴sin 2sin sin 2sin 2sin 2sin 2sin 2sin b C Ab C a b B c C Aa b B c C=+-+- 222sin ab C a b c =+- 由余弦定理得:()sin sin 11tan tan 2sin 2sin 2cos 22b C C C A B a b Bc C C ===-++-1tan tan 21tan tan A B A B +=-⨯=- 【点睛】本题考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查学生数形结合、转化与化归以及运算求解能力,解决此类问题的关键是灵活运用正、余弦定理进行边角的互化,属于中等题.30.(1)证明解析,(2)2 【解析】【分析】(1)由正弦定理面积公式得:211sin tan 26S bc A b A ==,再将sin tan cos A A A =代入即可.(2)因为1c =,a =3b cosA =.代入余弦定理2222cos a b c bc A =+-得22cos 3A =,cos 3A =tan 2A ⇒=,b =⇒16622S =⨯⨯=. 【详解】 (1)由211sin tan 26S bc A b A ==,得3sin tan c A b A = 因为sin tan cos A A A =,所以sin 3sin cos b A c A A=, 又0A π<<,所以sin 0A ≠,因此3cos b c A =.(2)由(1)得3b ccosA =.因为1c =,a =3b cosA =.由余弦定理2222cos a b c bc A =+-得:2229cos 16cos A A =+-,解得:22cos 3A =.因为3b cosA =,所以cos 0A >,cos 3A =.tan 2A ⇒=,b .211tan 666S b A ==⨯= 【点睛】本题第一问主要考查正弦定理中的面积公式和边角互化,第二问考查了余弦定理的公式应用,属于中档题.。

安徽省宿州市数学高三上学期理数期末考试试卷

安徽省宿州市数学高三上学期理数期末考试试卷

安徽省宿州市数学高三上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高一下·老河口期中) 若集合则集合=()A .B .C .D .2. (2分)已知直线平面,直线,则“”是“”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件3. (2分) (2016高一下·连江期中) 如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.此人停留期间空气质量优良的天数只有1天的概率()A .B .C .D .4. (2分)设向量且,则等于()A .B .C .D .5. (2分)若,则下列结论正确的是()A .B .C .D .6. (2分) (2015高二上·福建期末) 三棱锥A﹣BCD中,AB=AC=AD=2,∠BAD=90°,∠BAC=60°,∠CAD=60°,则 =()A . ﹣2B . 2C .D .7. (2分)(2017·成都模拟) 已知α为第二象限角.且sin2α=﹣,则cosα﹣sinα的值为()A .B . ﹣C .D . ﹣8. (2分)已知双曲线的左右焦点分别为,为双曲线的中心,是双曲线右支上的点,的内切圆的圆心为,且圆与轴相切于点,过作直线的垂线,垂足为,若为双曲线的离心率,则()A .B .C .D . 与关系不确定9. (2分)某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是()A . 8年B . 10年C . 12年D . 15年10. (2分)若函数的图象在上恰有一个极大值和一个极小值,则的取值范围是()A .B .C .D .11. (2分)(2020·海南模拟) 已知是定义在上的奇函数,对任意的,,则函数的值域为()A .B .C .D .12. (2分)(2019·赣州模拟) 已知、是椭圆:上的两点,且、关于坐标原点对称,是椭圆的一个焦点,若面积的最大值恰为2,则椭圆的长轴长的最小值为()A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)13. (1分) (2017高一下·张家口期末) 甲、乙两位打字员在两台电脑上各自输入A,B两种类型的文件的部分文字才能使这两类文件成为成品.已知A文件需要甲输入0.5小时,乙输入0.2小时;B文件需要甲输入0.3小时,乙输入0.6小时.在一个工作日中,甲至多只能输入6小时,乙至多只能输入8小时,A文件每份的利润为60元,B文件每份的利润为80元,则甲、乙两位打字员在一个工作日内获得的最大利润是________元.14. (1分)在(2x﹣1)7的二项展开式中,第四项的系数为________15. (1分)(2019高一下·佛山月考) 内角的对边分别为,若,则的面积 ________.16. (1分) (2018高二上·浙江月考) 定长为3的线段的端点、在抛物线上移动,则的中点到轴的距离的最小值为________,此时中点的坐标为________.三、解答题 (共7题;共70分)17. (10分)(2014·重庆理) 一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2) X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)18. (10分)(2017·武汉模拟) 如图,在四棱柱ABCD﹣A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD为直角梯形,其中B C∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:A1O∥平面AB1C;(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.19. (10分) (2017高一下·台州期末) 已知数列{an}的前n项和为Sn ,且满足a1=3,Sn+1=3(Sn+1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)在数列{bn}中,b1=9,bn+1﹣bn=2(an+1﹣an)(n∈N*),若不等式λbn>an+36(n﹣4)+3λ对一切n∈N*恒成立,求实数λ的取值范围;(Ⅲ)令Tn= + + +…+ (n∈N*),证明:对于任意的n∈N* , Tn<.20. (10分)已知椭圆的左、右焦点分别为,上、下顶点分别是,点是的中点,若,且 .(1)求椭圆的标准方程;(2)过的直线与椭圆交于不同的两点,求的面积的最大值.21. (10分)(2018·广东模拟) 已知函数,(其中为常数),.(1)求的最大值;(2)若在区间上的最大值为,求的值;22. (10分) (2019高二下·吉林月考) 已知直线:(为参数)圆:(为参数)(1)求直线与圆相交两点的极坐标;(2)求圆心的直线的距离23. (10分)(2018·河北模拟) 已知函数 f(x)=|2x−1|-|x+2| .(1)求不等式的解集;(2)若对任意的,都有成立,求实数的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。

安徽省宿州市高三上学期期末数学试卷(理科)

安徽省宿州市高三上学期期末数学试卷(理科)

安徽省宿州市高三上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018高二上·浙江月考) 若集合,,那么A .B .C .D .2. (2分)复数等于()A . 2B .C .D .3. (2分)已知角a的终边经过点P(﹣4,m),且,则m等于()A . 3B .C . ﹣3D .4. (2分)双曲线方程为,则它的右焦点坐标为()A .B .C .D .5. (2分) (2017高二下·河北期中) 已知点P(x,y)在不等式组表示的平面区域上运动,则z=x﹣y的取值范围是()A . [﹣1,2]B . [﹣2,1]C . [﹣2,﹣1]D . [1,2]6. (2分)(2016·大连模拟) 2016年某高校艺术类考试中,共有6位选手参加,其中3位女生,3位男生,现这六名考试依次出场进行才艺展出,如果3位男生中任何两人都不能连续出场,且女生甲不能排第一个,那么这六名考生出场顺序的排法种数为()A . 108B . 120C . 132D . 1447. (2分)如图,已知k为如图所示的程序框图输出的结果,二项式的展开式中含有非零常数项,则正整数n的最小值为()A . 4B . 5C . 6D . 78. (2分)(2017·枣庄模拟) 某几何体的三视图如图所示,则该几何体的体积为()A . 2B . 1C .D .9. (2分) (2019高二下·昭通月考) 已知函数,把函数的图象向右平移个单位,再把图象的横坐标缩小到原来的一半,得到函数的图象,当时,方程有两个不同的实根,则实数的取值范围为()B .C .D .10. (2分) (2018高一上·漳平月考) 已知函数(其中a>b)的图象如图所示,则函数g(x)=ax+b的图象大致是()A .B . .C .D .11. (2分)已知分别是椭圆的左右焦点,过与轴垂直的直线交椭圆于两点,若是锐角三角形,则椭圆离心率的范围是()A .B .D .12. (2分)若函数f(x)=lnx+ 在区间[1,e]上最小值为,则实数a的值为()A .B .C .D . 非上述答案二、填空题 (共4题;共4分)13. (1分)(2017·包头模拟) 在(1+x)(2+x)5的展开式中,x3的系数为________(用数字作答).14. (1分) (2016高三上·泰州期中) 在△ABC中,(﹣3 )⊥ ,则角A的最大值为________.15. (1分)(2017·淮安模拟) 已知圆锥的母线长为5,高为,则此圆锥的底面积和侧面积之比为________.16. (1分) (2017高二上·日喀则期中) △ABC的三个内角A,B,C所对的边分别为a,b,c,若A=45°,B=75°,c=3 ,则a=________.三、解答题 (共8题;共85分)17. (10分) (2017高二下·株洲期中) 设f(n)=(1+ )n﹣n,其中n为正整数.(1)求f(1),f(2),f(3)的值;(2)猜想满足不等式f(n)<0的正整数n的范围,并用数学归纳法证明你的猜想.18. (10分) (2015高三上·太原期末) 某校高一年级开设A,B,C,D,E五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C课程且乙同学未选中C课程的概率;(2)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.19. (15分) (2017高二下·黄陵开学考) 在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.(1)求证:AB∥平面DEG;(2)求证:BD⊥EG;(3)求二面角C﹣DF﹣E的正弦值.20. (10分)已知抛物线,焦点为,准线为,抛物线上一点的横坐标为,且点到准线的距离为.(1)求抛物线的方程;(2)若为抛物线上的动点,求线段的中点的轨迹方程.21. (10分) (2019高三上·瓦房店月考) 已知 .(1)若恒成立,求的取值范围.(2)证明:当时, .22. (10分)(2017·泰州模拟) 在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分别与圆O:x2+y2=4交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.(1)若,求CD的长;(2)若CD中点为E,求△ABE面积的取值范围.23. (10分)(2017·张掖模拟) 在直角坐标系xOy中,已知曲线(α为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线,曲线C3:ρ=2sinθ.(1)求曲线C1与C2的交点M的直角坐标;(2)设点A,B分别为曲线C2,C3上的动点,求|AB|的最小值.24. (10分) (2017高三上·沈阳开学考) 设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则 + > + ;(2) + > + 是|a﹣b|<|c﹣d|的充要条件.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共85分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第Ⅰ卷 选择题(满分50分)一、 选择题(本大题共10小题,每小题5分,共50分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1. “1m =”是“直线0x y -=和直线0x my +=互相垂直”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件3. 设向量(sin a α= ,则cos 2α=( )A.B. 12C. 12-D. 14- 【答案】B 【解析】4. 阅读程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为 ( ) A.-1 B.1 C.3 D.95. 已知圆222:()()C x a y b r -+-=的圆心为抛物线24x y =-的焦点,直线1x y +=与 圆C 相切,则该圆的方程为 ( )A. 221(1)2x y ++=B. 22(1)2x y ++=C. 221(2)2x y -+=D. 221(2)2x y +-=7. 已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 前n 项和,*n N ∈则10S 的值为 ( ) A.-110 B. -90 C.90 D.110 【答案】D 【解析】试题分析:因为7a 是3a 与9a 的等比中项,所以可得7239a a a =.又因为数列{}n a 为等差数列,其公差为-2.所以可得2111(12)(4)(16)a a a -=--.解得120a =.又因为10111010(101)(2)1102S a =⨯+⨯⨯-⨯-=.故选D.考点:1.等差数列的知识.2.等比数列的知识.3.数列的性质. 8. 函数tan()(04)42x y x ππ=-<<的图像如图所示,A 为图像与x 轴的交点,过点A 的直线与函数的图像交于C 、B 两点.则()OB OC OA +⋅=( ) A.-8 B.-4 C.4 D.8CA oxyB9. 四棱锥P-ABCD 中,底面ABCD 是平行四边形, ,,3E PC F PB PE EC ∈∈= ,PF FB λ=,若AF 平面BDE,则λ的值为 ( )A.1B.3C.2D.4D【答案】C考点:1.函数的导数.2.函数的乘除的导数公式.3.函数的单调性.4.函数的最值.第Ⅱ非 卷选择题(满分100分)二、 填空题(本道题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上) 11. 如果函数()(1)(1)f x x x =+-的图像恒在x 轴上方,则x 的取值集合为___________.考点:1.转化的思想.2.不等式组的解法.3.绝对值不等式的解法.12. 已知实数,x y 满足0200,0y x x y x y -≥⎧⎪++≥⎨⎪≤≤⎩则11()()42x y z =的最大值为_________.x【答案】1613. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.(13题图)侧视图俯视图正视图h6515. 如图,在半径为1的扇形AOB 中,060,AOB C ∠=为弧上的动点,AB 与OC 交于点P ,则OP BP⋅最小值是________________.【答案】116- 【解析】试题分析:因为OP OB BP =+ ,所以OP BP ⋅ =2()()OP BP OB BP BP OB BP BP ⋅=+⋅=⋅+ .又因为060,,60A B OA OB OBA ∠==∴∠=.OB=1.所以01cos1202OB BP BP BP ⋅==- .所以212OP BP BP BP ⋅=-+ 2111()41616BP =--≥- .当且仅当14BP = 时成立.故填116-.向量所成的与三角形的内角的区别是本题的关键.考点:1.向量的加减法的运算.2.向量的数量积.三、解答题(本大题6小题,共75分.解答过程有必要文字说明、演算步骤及推理过程)16. (本小题满分12分)在ABC ∆中,,,a b c 分别为角,,A B C 的对边,ABC ∆的面积S 满足cos S A = (Ⅰ)求角A 的值;(Ⅱ)若a =设角B 的大小为x,用x 表示c,并求c 的取值范围. 【答案】(Ⅰ) 3A π= ;(Ⅱ) 22sin(),(0,2]3c x c π=-∈. 【解析】试题分析:(Ⅰ) 因为已知cos S A =,又因为三角形的面积的可表示为11sin ,sin cos 22S bc A bc A A =∴=.解得tan A =.所以3A π= .本题掌握三角形的面积公式1sin 2S bc A =的形式是关键.(Ⅱ)由于3A π=,B x ∠=.所以23C x π∠=-.又因为已知a =所以利用正弦定理可求出边c 关于x 的表达式.再根据角的范围求出正弦值的范围即为边长c 的范围,最后面是易错点.17. (本小题满分13分)已知函数()f x 满足(2)()f x f x +=,当10x -<≤时()xf x e -=;当01x <≤时2()441f x x x =-+.(Ⅰ)求函数()f x 在(-1,1)上的单调区间;(Ⅱ)若()()(0)g x f x kx k =->,求函数()g x 在[0,3]上的零点个数. 【答案】(Ⅰ) 单调递减区间为]21,1(-,递增区间为]1,21[; (Ⅱ)参考解析 【解析】试题分析:(Ⅰ)因为10x -<≤时,函数()x f x e -=是单调递减的,01x <≤时,函数2()441f x x x =-+的图像的对称轴是12x =,开口向上.所以1(0,)2递减,1[,1)2的递增.又因为当02(0)140401f e -===⨯-⨯+.所以综上可得函数的单调递减区间为]21,1(-,递增区间为]1,21[.18.(本小题满分12分)如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD, ∠BAD=∠ADC=90°,AB=AD=1,2CD a PD==.(Ⅰ)若M为PA中点,求证:AC∥平面MDE;(Ⅱ)求平面PAD与PBC所成锐二面角的大小.NEDAB CPM【答案】(Ⅰ) 参考解析;(Ⅱ) 60°【解析】试题分析:(Ⅰ)直线与平面平行的判定定理是在平面内找一条直线与该直线平行,由于点M是PA的中点,联想到连结PC与ED它们的交点也是ED的中点,所以可得MN∥AC.从而可得结论.本小题通过已知的中点利用三角形的中位线定理得到平行是解题的突破口.(Ⅱ)因为求平面PAD与PBC所成锐二面角的大小,如果做出二面角的平面角有一定的困难,可以延长CB 与直线DA相交,从而取求解可以.本小题通过建立空间直角坐标系来求解,求出两个平面的法向量,再通过求出法向量的夹角从而得到二面角的大小.∴………………………………………………………(11分)∴θ=60°,所以平面PAD与平面PBC所成锐二面角的大小为60°…(12分)考点:1.直线与平面的平行关系.2平面与平面的关系.3.三角形的中位线的知识.4.空间直角坐标系的公式.19. (本小题满分12分)如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且PQ的最大值为.试题解析:(1)证明:连接PC,交DE与N,连接MN,在△PAC中,∵M,N分别为两腰PA,PC的中点∴MN∥AC,…(2分)又AC 面MDE,MN⊂面MDE,所以AC∥平面MDE.…………………………………(4分)(2)以D为空间坐标系的原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则P(0,0,a),B(a,a,0),C(0,2a,0),所以,,…(6分)设平面PAD 的单位法向量为,则可取……………………(7分)设面PBC的法向量,则有即:,取z=1,(Ⅰ)求椭圆E 的方程;(Ⅱ)设(1)AP AQ λλ=> ,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M,试问M,F,Q 是否共线,若共线请证明;反之说明理由. QF O xy PA(2)解:,,M F Q 三点共线.证明:),3(11y x -=,),3(22y x -=由已知得方程组()12122211222233162162x x y y x y x y λλ⎧-=-⎪=⎪⎪⎨+=⎪⎪⎪+=⎩注意到1λ>,解得2512x λλ-=,因为()()112,0,,F M x y -,所以 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--=-+-=--=211211,21,21),1)3((),2(y y y x y x λλλλλ, 又),2(22y x FQ -=21,2y λλ-⎛⎫= ⎪⎝⎭,所以FQ FM λ-=,从而三点共线。

………………………………12分 考点:1.椭圆的基本性质.2.向量的共线问题.3.椭圆的标准方程.20. (本小题满分12分)设函数()sin ,()2xf x e xg x x =+=-;(Ⅰ)求证:函数()y f x =在[0,)+∞上单调递增;(Ⅱ)设112212(,()),(,())(0,0)P x f x Q x g x x x ≥>,若直线PQ ∥x 轴,求P,Q 两点间的最短距离.【答案】(Ⅰ) 参考解析;(Ⅱ) 3【解析】试题分析:(Ⅰ)因为要证函数()y f x =在[0,)+∞上单调递增,对函数()f x 求导可得'()0f x ≥.所以函数在[0,)+∞上是增函数.本小题要注意指数函数和三角函数的导数运算. (2)因为)()(21x g x f =,所以2sin 211-=+x x e x ………………………………5分所以Q P ,两点间的距离等于=-12x x 2sin 111+-+x x e x ,……………7分设)0(2sin )(≥+-+=x x x e x h x ,则)0(1cos )(≥-+='x x e x h x,记)0(1cos )()(≥-+='=x x e x h x l x ,则0sin 1sin )(≥-≥-='x x e x l x , 所以01)0()(>='≥'h x h ,……………………………………………………10分 所以)(x h 在),0[+∞上单调递增,所以3)0()(=≥h x h …………………11分 所以312≥-x x ,即Q P ,两点间的最短距离等于3.……………………12分 考点:1.利用导数证明函数的单调性.2.函数的最值问题.3.转化的思想.试题解析:(1)由条件,得1m n S ++= ①(2)在①中,令2,2m n ==,得41S +=,则4412S a +=,所以341S a +=;在①中,令1,2m n ==,得31S +=则31S +=所以4a =,则244a a =, 2q =;代入()*式,得()3212,(3,)n n a S n n N -*=+≥∈………………………………………………………12分由条件),1(2124++=a a a a 得,4121=++a a 又因121a a +=,所以2,121==a a。

相关文档
最新文档