压磁式传感器原理

合集下载

传感器分类

传感器分类

电阻式传感器:基本原理:是将被测的非电量转化成电阻值的变化,在通过转换电路变成电压或电流输出的一类传感器,通过测量电阻值变化达到测量非电量的目的。

应用:测量力、压力、位移、应变、加速度、温度等非电量参数,还适合动态测量。

应变式传感器:是一种具有较长应用历史的传感器,包括应变式加速度传感器,其工作原理:在应变梁的一段固定惯性质量块,梁的上下粘贴应变片,传感器内腔充满硅油,以产生必要的阻尼。

测量时,将传感器壳体与被测对象刚性连接。

当有加速度作用在壳体上时,由于梁的刚度很大,惯性质量块也以同样的加速度运动,产生的惯性力与加速度成正比。

惯性力的大小由梁上的应变片测出。

限位块使传感器过载时不被破坏。

应用:常用于低频振动测量中,被广泛应用于工程测量和科学实验中。

应变式传感器优点:其具有尺寸小、重度轻、结构简单、使用方便、响应速度快等。

这种传感器一般由弹性元件和电阻应变片构成,工作时利用金属弹性元件的电阻应变效应,将被测物变形转换成电阻变化。

压阻式传感器:包括压阻式加速度传感器,其工作原理:采用单晶硅作悬臂梁,在其近根部扩散四个电阻。

当梁的自由端的质量块收到加速度作用时,在梁上收到弯矩和应力,受电阻值发生变化。

电阻相对变化与加速度成正比。

有四个电阻组成的电桥将产生与加速度成正比例电压输出。

在设计时,恰当地选择传感器尺寸及阻尼系数,则可用来测量低频加速度与直线加速度。

压阻式传感器优点:灵敏系数大,分辨率高,频率响应高,体积小。

缺点:压阻式传感器多由半导体材料构成,由于半导体材料对温度很敏感,因此压阻式传感器的温度误差较大,必须要有温度补偿。

应用:主要用于测量压力、加速度和载荷等参数。

电感式传感器:利用线圈自感或互感的变化,实现测量的一种装置。

其核心部分是可变自感或可变互感,再将被测量转化成线圈自感或线圈互感的变化时,一般要利用磁场作为媒介或利用铁磁体的某些现象。

工作原理:把被测位移转换成线圈的自感或互感的变化,从而实现测量的一类传感器。

成都理工大学《传感器原理与应用》试题5(含答案)

成都理工大学《传感器原理与应用》试题5(含答案)

成都理工大学《传感器原理与应用》试题5一、填空:(20分)1.通常传感器由_______________________________部分组成,是能把外界各种_____________转换成_____________器件和装置。

2.热电偶所产生的热电势是由_____________电势和_____________电势组成的,其表达式为Eab(T,To)=_____________。

在热电偶温度补偿中,补偿导线法(即冷端延长线法)是在_____________和之间,接入它的作用是_____________。

3.光电传感器的工作原理是基于物质的光电效应,目前所利用的光电效应大致有三大类:第一类是利用在光线作用下_____________效应,这类器件有_____________等;第二类是利用在光线作用下效应,这类器件有_____________等;第三类是利用在光线作下效应,这类器件有_____________。

4.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械应力,从而引起_____________,这种现象称为_____________。

相反,某些铁磁物质在外界磁场的作用下会产生_____________,这种现象称为_____________。

5.磁电式传感器是利用_____________产生感应电势的。

而霍尔式传感器为_____________在磁场中有电磁效应(霍尔效应)而输出电势的。

霍尔式传感器可用来测量_____________,_____________,_____________,_____________。

6.测量过程中存在着测量误差。

绝对误差是指_____________其表达式为_____________;相对误差是指其表达式为_____________;引用误差是指_____________其表达式为_____________7.光栅传感器中莫尔条纹的一个重要特性是具有位移放大作用。

《传感器与检测技术》-题库分析

《传感器与检测技术》-题库分析

《传感器与检测技术》题库一、填空:1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。

2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。

3.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为Eab (T ,To )=T B A TT BA 0d )(N N ln )T T (e k 0σ-σ⎰+-。

在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。

4.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。

相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。

(2分)5. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)6. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的7 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变介电常数型)外是线性的。

8、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量(①增大,②减小,③不变)。

9、在平行极板电容传感器的输入被测量与输出电容值之间的关系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。

10、在变压器式传感器中,原方和副方互感M 的大小与原方线圈的匝数成(①正比,②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁阻成(①正比,②反比,③不成比例)。

11、传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,传感器通常由直接响应于被测量的敏感元件 和产生可用信号输出的转换元件以及相应的信号调节转换电路组成。

传感器的基本工作原理

传感器的基本工作原理

传感器的基本工作原理传感器是一种能够将物理量转换为电信号的装置,通过在感应元件中引入外界物理量,使感应元件的某些特性发生变化,并将这些变化转换为电信号输出。

传感器的基本工作原理可以分为以下几种类型:1. 电阻式传感器:电阻式传感器利用物理量对电阻值的影响进行测量。

当外界物理量作用于感应元件时,感应元件的电阻值发生变化。

常见的例子包括温度传感器和光敏电阻。

2. 压阻式传感器:压阻式传感器通过测量外界物理量对压阻的影响来实现测量。

当外界物理量作用于感应元件时,感应元件的压阻值会发生变化。

例如,压力传感器可以通过测量被测介质对感应元件施加的压力来确定压力的大小。

3. 容抗式传感器:容抗式传感器是利用物理量对感应元件的电容或电感进行测量的。

当外界物理量作用于感应元件时,感应元件的电容或电感值会发生变化。

例如,湿度传感器可以通过测量空气中的水分对感应元件的电容影响来确定湿度的大小。

4. 磁阻式传感器:磁阻式传感器利用磁阻效应来测量外界物理量的变化。

当外界磁场作用于感应元件时,感应元件的电阻值会发生变化。

例如,磁场传感器可以通过测量磁场对感应元件电阻的影响来确定磁场强度的大小。

5. 光电式传感器:光电式传感器是利用光电效应来测量外界物理量的。

当外界物理量作用于感应元件时,感应元件的光电特性会发生变化。

例如,光电传感器可以通过测量光照对感应元件电流或电压的影响来确定光照强度的大小。

以上是传感器的基本工作原理,不同的传感器类型在测量不同的物理量时采用不同的工作原理。

这些工作原理的理论基础和具体实现方式可以根据具体的传感器类型进一步研究和了解。

常见磁传感器及原理和应用

常见磁传感器及原理和应用
H=(B/μo)-M式中B是磁感应强度;M是磁化强度;μo是真空磁导率。在 线性各向同性磁介质中,M与H成正比,即M=xmH,xm是磁介质的磁化 率。于是上式表为B=μo(1+xm)H=μoμrH式中μr=1+xm称为磁介质 的相对磁导率。
磁学量的单位
CGSE,又称静电单位制(electrostatic units)简称ESU 基本量为长度、质量和时间。基本单位为cm、g和s。 通过库仑定律,并令k=1确定电荷单位,库仑。电场强度E、极化强度P和电位 移D量纲都相同。 安培环路定律和法拉第电磁感应定律分别确定磁感应强度B和磁场强度H,量纲 不同,真空中也不相等,真空磁导率μ0=1/c2。
霍尔传感器的测量电路和误差分析
霍尔传感器的测量电路 霍尔元件的基本测量电路如图。控制电流I由电压源E供给,R是调节电阻,用 以根据要求改变I的大小。所施加的外电场B一般与霍尔元件的平面垂直。控 制电流也可以是交流电。
霍尔元件的基本测量电路
霍尔传感器的误差分析 • 霍尔元件对温度的变化很敏感,因此,霍尔元件的输入电阻、输出电阻、
• 图a是在输入回路进行温度补偿; • 图b是在输出回路进行温度补偿。
• 在安装测量电路时,热敏元件最好和霍尔元件封装在一起或尽量靠 近,以使二者的温度变化一致。
(a)在输入回路进行补偿
(b)在输出回路进行补偿
采用热敏元件的温度补偿电路
(3)不等位电势的补偿 • 不等位电势与霍尔电势具有相同的数量级,有时甚至超过霍尔电势。实用
L 0t N2A
l
微型集成磁通门
交叉磁芯结构的2轴磁通门传感器结构示意图
美国的KVH公司
超导量子干涉磁强计
1962年英国约瑟夫逊在理论上预言了约瑟夫逊效应,几年后由 实验证实。该效应是指在两超导体之间插入纳米厚度的绝缘体,超 导电子对能够穿过绝缘体,超导体/绝缘体/超导体称为约瑟夫逊 结,约瑟夫逊结有直流和交流约瑟夫逊效应。在约瑟夫逊效应的超 导状态,磁场也具有重要作用,相耦合的电或磁也将发生电磁效应。 基于超导体的约瑟夫逊效应,利用超导量子干涉器件(SQUIDsuperconducting quantum interferometric device)可以对各种 物理量做超精密测量。

传感器的的工作原理及应用

传感器的的工作原理及应用

传感器的的工作原理及应用
传感器是指能够感知外界环境物理量并将其转化为可用信号的装置。

传感器的工作原理主要包括以下几种:
1. 电阻式:通过测量电阻的变化来感知环境物理量,如温度、湿度等。

2. 电容式:通过测量电容的变化来感知环境物理量,如接近距离、压力等。

3. 磁敏式:通过感应电磁场的变化来感知环境物理量,如磁场强度、位置等。

4. 压力式:通过测量压力的变化来感知环境物理量,如液体压力、气体压力等。

5. 光敏式:通过感应光的变化来感知环境物理量,如光强、光频等。

传感器的应用非常广泛,主要包括以下几个方面:
1. 工业自动化:用于测量和控制生产过程中的温度、压力、流量等物理量。

2. 环境监测:用于测量大气污染物、环境温湿度、声音等参数。

3. 汽车工业:用于汽车发动机和车辆控制系统的监测和控制。

4. 医疗领域:用于医疗设备的监测和控制,如血压、心率等参数。

5. 家庭和消费电子:用于智能家居、智能手机等电子产品中的各种传感应用,如距离传感、姿态传感等。

传感器的工作原理和应用因具体类型和用途而有所不同,但总体上都是通过感知环境物理量并将其转化为可用信号,用于实现监测、控制和自动化等功能。

传感器与测试技术_平时作业及讲评(电大四次平时作业)

传感器与测试技术_平时作业及讲评(电大四次平时作业)
若金属丝沿长度方向受力而伸长 ,通常将 称为纵向应变,标为 。因为它的数值在
通常的测量中甚小,故常用10-6作为单位来表示,称为微应变,标以 。例如ε=0.001
就可以表示为 ,称为具有1000微应变。金属丝沿其轴向拉长使其径向缩小,二者之间的关系为
所以
令 (3-4)
称为金属丝的灵敏系数,它表示金属丝发生单位轴向应变时所引起的电阻值的相对变化。
4.简述压磁式传感器的工作原理。
答:压磁式测力传感器的压磁元件由具有正磁致伸缩特性的硅钢片粘叠而成。如下图所示,硅钢片上冲有四个对称的孔,孔1、2的连线与孔3、4相互垂〔图(a)〕。孔1、2间绕有激磁绕组W12,孔3、4间绕有测量绕组W34,外力F与绕组W12、W34所在平面成45°角。当激磁绕组W12通过一定的交变电流时,铁心中就产生磁场H,方向如图(b)所示。设将孔间区域分成A、B、C、D四部分。在无外力作用时,A、B、C、D四部分的磁导率相同,磁力线呈轴对称分布,合成磁场强度H平行于测量绕组W34的平面。在磁场作用下,导磁体沿H方向磁化,磁通密度B与H取向相同。由于测量绕组无磁通通过,故不产生感应电势。
5.磁电式传感器可分为几类?各有什么性能特点?
答:磁电式传感器分类。
1〕变磁通式磁电传感器
这种类型的传感器线圈和磁铁固定不同,利用铁磁性物质制成一个齿轮(或凸轮)与被测物体相连而连动,在运动中齿轮(或凸轮)不断改变磁路的磁阻,从而改变了线圈的磁通,在线圈中感应出电动势。这种类型的传感器在结构上有开磁路和闭磁路两种,一般都用来测量旋转物体的角速度,产生感应电势的频率作为输出,感应电动势的频率等于磁通变化的频率。
压磁式测力传感器的工作原理
若对压磁元件施加压力F,如图(c)所示,A、B区域将产生很大的压应力σ,而C、D区域基本上仍处于自由状态。对于正磁致伸缩材料,压应力σ使其磁化方向转向垂直于压力的方向。因此,A、B区的磁导率μ下降,磁阻增大,而与应力垂直方向的μ上升,磁阻减小。磁通密度B偏向水平方向,与测量绕组W34交链,W34中将产生感应电势e。F值越大,W34交链的磁通越多,e值就越大。经变换处理后,即能用电流或电压来表示被测力F的大小。

压力传感器原理及应用

压力传感器原理及应用

压力传感器原理及应用压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电信号作输出,给显示仪表显示压力值,或供控制和报警使用。

压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。

一、压阻式压力传感器固体受力后电阻率发生变化的现象称为压阻效应。

压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片受压时,膜片的变形将使扩散电阻的阻值发生变化。

压阻式具有极低的价格和较高的精度以及较好的线性特性。

1、压阻式压力传感器基本介绍压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。

半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。

半导体应变片与金属应变片相比,最突出的优点是它的体积小而灵敏高。

它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大即可直接进行测量记录。

此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽,从静态应变至高频动态应变都能测量。

由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。

但是半导体应变片也存在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变—电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。

磁电感应式传感器工作原理

磁电感应式传感器工作原理
1.
图 7 - 5 是动圈式振动速度传感器结构示意图。 其结构主 要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外 壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端 架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳 相连。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
(7 - 13)
EH=
IB bdae
(7 -14)
第7章 磁电式传感器将上源自代入式(7 - 10)得UH =
IB ned
(7 -15)
式中令RH =1/(ne), 称之为霍尔常数, 其大小取决于导
体载流子密度,则
UH =RH
IB d
K
HIB
(7 - 16)
式中KH=RH/d称为霍尔片的灵敏度。由式(7 - 16)可见, 霍尔
第7章 磁电式传感器
第7章 磁电式传感器
7.1
磁电感应式传感器又称磁电式传感器, 是利用电磁感应 原理将被测量(如振动、位移、转速等)转换成电信号的 一种传感器。 它不需要辅助电源就能把被测对象的机械量 转换成易于测量的电信号, 是有源传感器。由于它输出功率 大且性能稳定, 具有一定的工作带宽(10~1000 Hz), 所以 得到普遍应用。
但在室温时其霍尔系数较大。砷化铟的霍尔系数较小, 温 度系数也较小, 输出特性线性度好。 表 7 - 1 为常用国产霍尔 元件的技术参数。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
2. 霍尔元件基本结构
霍尔元件的结构很简单, 它由霍尔片、 引线和壳体组成, 如图 7 - 9(a)所示。 霍尔片是一块矩形半导体单晶薄片, 引出四个引线。1、1′两根引线加激励电压或电流,称为激 励电极;2、2′引线为霍尔输出引线,称为霍尔电极。 霍尔 元件壳体由非导磁金属、陶瓷或环氧树脂封装而成。 在电 路中霍尔元件可用两种符号表示,如图7- 9(b)所示。

压力传感器的工作原理

压力传感器的工作原理

压力传感器的工作原理1.压电效应:压电效应是指一些晶体在受到机械压力时,会产生电荷分布不均,从而产生电势差。

压电效应广泛存在于一些晶体材料中,如石英晶体、压电陶瓷等。

压电传感器通常是由压电晶体材料制成的,当力被施加于该晶体时,晶体会发生形变,从而导致电荷分布不均,产生电势差。

这个电势差可以用来测量受力的大小,从而输出一个与压力成比例的电信号。

2.电阻效应:电阻效应是指电阻材料的电阻值会随着外力的改变而改变。

压力传感器中常使用的电阻材料是屏蔽材料或薄膜材料。

在电阻式压力传感器中,压力作用在电阻材料上时,电阻的形状或尺寸会发生变化,从而改变电阻的阻值。

通过测量电阻的变化,可以得到相应的压力值。

3.电容效应:电容效应是指当两个电极之间存在绝缘介质时,施加的压力会使电容值发生变化。

电容式压力传感器的基本结构是由两个平行的电极间通过绝缘层隔开。

施加压力时,绝缘层会发生变形,使电极之间的距离减小,从而改变了电容值。

通过测量电容的变化,可以计算出受力的大小。

4.磁敏效应:磁敏效应是指一些材料在受到外界压力时,会改变其磁性质。

磁敏传感器通常由磁敏材料制成。

在磁敏式压力传感器中,当外力施加在传感器上时,磁敏材料的磁性发生改变,从而改变输出信号。

通过测量磁敏材料磁性的变化,可以获得受力的大小。

总结起来,压力传感器的工作原理可以归纳为材料的压电效应、电阻效应、电容效应和磁敏效应等。

通过将这些效应与电子技术相结合,压力传感器能够将受力转化为电信号输出,实现对压力的测量和监测。

在实际应用中,根据具体的需求,可以选择不同的传感原理来设计并制造压力传感器。

压力传感器工作原理图解

压力传感器工作原理图解

压⼒传感器⼯作原理图解随着⾃动化技术的进步,在⼯业设备中,除了液柱式压⼒计、弹性式压⼒表外,⽬前更多的是采⽤可将压⼒转换成电信号的压⼒变送器和传感器。

那么这些压⼒变送器和传感器是如何将压⼒信号转换为电信号的呢?不同的转换⽅式⼜有什么特点呢?今天电⼯学习⽹⼩编为⼤家汇总了⽬前常见的⼏种压的测量原理,希望能对⼤家有所帮助。

⼀、压电压⼒传感器压电式压⼒传感器主要基于压电效应(Piezoelectric effect),利⽤电⽓元件和其他机械把待测的压⼒转换成为电量,再进⾏相关测量⼯作的测量精密仪器,⽐如很多压⼒变送器和压⼒传感器。

压电传感器不可以应⽤在静态的测量当中,原因是受到外⼒作⽤后的电荷,当回路有⽆限⼤的输⼊抗阻的时候,才可以得以保存下来。

但是实际上并不是这样的。

因此压电传感器只可以应⽤在动态的测量当中。

它主要的压电材料是:磷酸⼆氢胺、酒⽯酸钾钠和⽯英。

压电效应就是在⽯英上发现的。

当应⼒发⽣变化的时候,电场的变化很⼩很⼩,其他的⼀些压电晶体就会替代⽯英。

酒⽯酸钾钠,它是具有很⼤的压电系数和压电灵敏度的,但是,它只可以使⽤在室内的湿度和温度都⽐较低的地⽅。

磷酸⼆氢胺是⼀种⼈造晶体,它可以在很⾼的湿度和很⾼的温度的环境中使⽤,所以,它的应⽤是⾮常⼴泛的。

随着技术的发展,压电效应也已经在多晶体上得到应⽤了。

例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。

以压电效应为⼯作原理的传感器,是机电转换式和⾃发电式传感器。

它的敏感元件是⽤压电的材料制作⽽成的,⽽当压电材料受到外⼒作⽤的时候,它的表⾯会形成电荷,电荷会通过电荷放⼤器、测量电路的放⼤以及变换阻抗以后,就会被转换成为与所受到的外⼒成正⽐关系的电量输出。

它是⽤来测量⼒以及可以转换成为⼒的⾮电物理量,例如:加速度和压⼒。

它有很多优点:重量较轻、⼯作可靠、结构很简单、信噪⽐很⾼、灵敏度很⾼以及信频宽等等。

但是它也存在着某些缺点:有部分电压材料忌潮湿,因此需要采取⼀系列的防潮措施,⽽输出电流的响应⼜⽐较差,那就要使⽤电荷放⼤器或者⾼输⼊阻抗电路来弥补这个缺点,让仪器更好地⼯作。

磁电式传感器(霍尔)原理及工程应用

磁电式传感器(霍尔)原理及工程应用

会产生感应电动势,这种现
象称霍尔效应。
7.2 霍尔式传感器
7.2.1 霍尔效应及霍尔元件
1.霍尔效应
工作原理:假设在N型半导体薄片上通以电流I,
则半导体中的自由电荷沿着和电流相反的方向运
动,由于在垂直于半导体薄片平面的方向施加磁
场B,所以电子受到洛仑兹力
FL的作用向一边偏转,并使该 边形成电子积累,而另一边则
的大,且μn>μp,所以霍尔元件一般采用N型半导体材料。 2) 霍尔电压UH与元件的尺寸有关。 根据公式d 愈小,霍尔灵敏度愈高,所以霍尔元件的厚
度都比较薄。
3)霍尔电压UH与控制电流及磁场强度有关。根据公式 UH正比于I及B。当控制电流I恒定时B愈大UH愈大。当磁 场改变方向时, UH也改变方向。同样,当霍尔灵敏度及 磁感应强度B恒定时,增加控制电流I,也可以提高霍尔电
7.2 霍尔式传感器 7.2.1 霍尔效应及霍尔元件 3.不等位电势补偿
磁电式传感器
传感器原理及工程应用
7.2 霍尔式传感器 7.2.1 霍尔效应及霍尔元件 4.霍尔元件温度补偿 温度误差产生原因:
➢ 霍尔元件的基片是半导体材料,因而对温度的变化
很敏感。其载流子浓度和载流子迁移率、电阻率和霍尔
系数都是温度的函数。
压UH的输出。
7.2 霍尔式传感器 7.2.2 霍尔传感器基本电路
2.霍尔元件基本结构Fra bibliotek➢ 霍尔晶体外形矩形薄片有 四根引线,两端加激励两端为 输出;电源E产生控制电流I; 负载RL,R可调,调节控制电流, B磁场与元件面垂直(向里)。 ➢ .实测中可把I*B作输入, 也可把I或B单独做输入。 而霍尔电势输出测量信号U0 与I或B成正比关系。
向时,霍尔电动势极性不变。

传感器与检测技术考题及答案

传感器与检测技术考题及答案

传感器与检测技术考试试题一、填空:(20分)1,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。

(2分) 2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。

4.热电偶所产生的热电势是两种导体的接触电势和单一导体的温差电势组成的,其表达式为Eab (T ,To )=T B A TT BA 0d )(N N ln )T T (e k0σ-σ⎰+-。

在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。

5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。

相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。

(2分)6. 变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量(①增加②减小③不变)(2分)7. 仪表的精度等级是用仪表的(① 相对误差 ② 绝对误差 ③ 引用误差)来表示的(2分)8. 电容传感器的输入被测量与输出被测量间的关系,除(① 变面积型 ② 变极距型 ③ 变介电常数型)外是线性的。

(2分)1、变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量(①增大,②减小,③不变)。

2、在平行极板电容传感器的输入被测量与输出电容值之间的关系中,(①变面积型,②变极距型,③变介电常数型)是线性的关系。

3、在变压器式传感器中,原方和副方互感M 的大小与原方线圈的匝数成(①正比,②反比,③不成比例),与副方线圈的匝数成(①正比,②反比,③不成比例),与回路中磁阻成(①正比,②反比,③不成比例)。

4、传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的信号调节转换电路组成。

压磁式传感器概述

压磁式传感器概述

由压磁元件1、弹性支架2、传力钢球3组成。
图3.34
五.压磁式传感器的优缺点
优点:输出功率大、信号强、结构简单、 牢固可靠、抗干扰性好、过载能力强、价 格便宜。 缺点:缺点是测量精度不很高、频响较低。
六.参数选取的基本原则
铁芯尺寸主要由选用材料允许应力的限制。 铁芯尺寸主要由选用材料允许应力的限制。 而磁场强度主要是影响传感器的灵敏度。 而磁场强度主要是影响传感器的灵敏度。
0.15
有磁场强度H之后,可由下式求绕组参数 绕组匝数
H l W= I
2 2
供电电压可用下式决定:
u = I ( 2πfL ) + R
0.4π SW 3 10 L= l
2
式中,S——磁通路的截面积() ——所选H处的磁导率()。
七.压磁式传感器应用
压磁式传感器常用于冶金、矿山、运输等 工业部门作为测力和称重传感器。例如, 用于起重运输的过载保护系统、轧钢压力 及钢板厚度的控制系统、铁路货车连续称 量系统(即铁道衡) 量系统(即铁道衡)。构件内应力的无损测量 采用压磁式传感器比用 X射线方法、开槽法、 钻孔法和电阻应变法优越。还可用于实现 转轴扭矩的非接触测量。压磁式传感器不 仅用于自动控制和机械力的无损测量,而 且还用于骨科和运动医学测试。
二.压磁式传感器工作原理
1:压磁效应:磁性材料受到机械力的作用
时,它的内部产生应变,导致导磁率发生 变化,产生压磁效应。 1) 在作用力方向磁导率减小,而在作用力 垂直方向磁导率略有增大;作用力是拉力 时,其效果相反。 2)作用力取消后,磁导率复原。 3)铁磁材料的压磁效应还与外磁场有关。 为了使磁感应强度与应力之间有单值的函 数关系,必须使外磁场强度的数值一定
若对压磁元件施加压力F,如图(c)所示,A 若对压磁元件施加压力F,如图(c)所示,A、 B区域将产生很大的压应力σ,而C、D区 区域将产生很大的压应力σ,而C 域基本上仍处于自由状态。对于正磁致伸 缩材料,压应力σ 缩材料,压应力σ使其磁化方向转向垂直于 压力的方向。因此,A、B区的磁导率下降, 压力的方向。因此,A 区的磁导率 磁阻增大,而与应力垂直方向的 磁阻增大,而与应力垂直方向的上升,磁 阻减小。磁通密度B 阻减小。磁通密度B偏向水平方向,与测量 绕组W34交链,W34中将产生感应电势e 绕组W34交链,W34中将产生感应电势e。F 值越大,W34交链的磁通越多,e 值越大,W34交链的磁通越多,e值就越大。 经变换处理后,即能用电流或电压来表示 被测力F 被测力F的大小。

压电式传感器原理

压电式传感器原理

压电式传感器原理
一、什么是压电式传感器
压电式传感器是一种由电容式传感器演变而来的电磁式传感器,它利用晶体管在物理变化时所产生的电容效应,来对外界环境作出反应。

压电式传感器可以改变电容大小、变换电压幅度、改变电流流向、改变极性、改变电容量等,可以检测出外界压力、温度、拉力、拨动力等的变化。

二、压电式传感器的工作原理
压电式传感器的工作原理是,当一个外力施加在晶体片上时,由于晶体与晶体之间电子的运动受到外力的影响,在晶体的正线上的电容变化,把外力的变化转化成电容变化。

由于电容变化会改变电路中的电流,因此可以检测到外力的变化。

三、压电式传感器的特点
1、结构紧凑:压电式传感器具有小尺寸、低成本和机械结构紧凑的特点,使它成为其他传感器技术所不可取代的传感器。

2、高灵敏度:由于电容改变量可达几微安的级别,使得压电式传感器具有极高的灵敏度,可以自动感知微小外界变化。

3、快速响应:压电式传感器的信号响应速度很快,具有良好的动态特性,并且能够保持较高的精度和准确度。

4、广泛的应用:压电式传感器可广泛应用于航空航天、汽车、电子仪表、运动控制、重力检测和高精度测量等领域。

- 1 -。

简述磁电式传感器的工作原理

简述磁电式传感器的工作原理

简述磁电式传感器的工作原理磁电式传感器是一种将磁场信息转化为电信号的传感器,广泛应用在仪器仪表、自动控制、计算机信息处理、航空航天等领域。

其主要工作原理是基于磁电效应和霍尔效应。

磁电效应是指当磁性材料受到外界磁场的作用时,其中的自由电子将受到力的作用,从而在材料内部形成电势差。

这个电势差可以用来测量外部磁场的大小和方向。

磁电效应可以用来将机械运动转换为电信号,从而实现物理量的测量和控制。

霍尔效应是指电流通过横跨磁场的导体时,将在导体的两侧出现电势差。

这个现象的原理是基于洛伦兹力,即受到磁场作用的电荷将受到力的作用而被分离。

霍尔效应与磁电效应相似,也是将磁场信息转换为电信号的一种机制。

磁电式传感器通常通过霍尔效应测量磁场的强度和方向。

磁电式传感器一般由磁性材料、霍尔元件和信号处理电路组成。

在测量时,磁性材料将接收到外界的磁场,从而在其内部产生电势差。

电势差随后被传递给霍尔元件,经过元件内部的放大、滤波等信号处理,最终转换为可用的电信号。

这个电信号的大小和方向分别对应着外界磁场的强度和方向。

磁电式传感器有多种类型,包括线性磁电效应传感器、非线性磁电效应传感器、霍尔电流传感器、霍尔电压传感器等。

线性磁电效应传感器是一种用于测量弱磁场的传感器,可用于检测磁场的方向、大小和分布情况。

而非线性磁电效应传感器则适用于测量强磁场,如磁体在加热过程中的磁场分布。

霍尔电流传感器和霍尔电压传感器是基于霍尔效应进行测量的传感器,分别适用于测量电流和电压。

霍尔电流传感器将电流通过磁场,并测量电势差来计算电流大小,而霍尔电压传感器则通过测量霍尔元件两侧的电势差来计算电压大小。

这些传感器广泛应用在电力系统中,用于测量电流和电压,从而保障设备的安全运行。

磁电式传感器是一种重要的测量和控制元件,广泛应用于工业控制、科学研究、医疗设备等领域。

其工作原理基于磁电效应和霍尔效应,能够将磁场信息转化为电信号,实现对物理量的测量和控制。

磁电式传感器的优点在于具有高度的灵敏度和精度,且不会对被测物体产生影响。

压磁式传感器工作原理

压磁式传感器工作原理

压磁式传感器工作原理
压磁式传感器是一种常见的接近开关传感器,它基于磁场的原理工作。

压磁式传感器通常由一个线圈和一个铁芯组成。

线圈通电后会产生一个磁场,铁芯则会在磁场的作用下变为磁导体。

当外部物体靠近传感器时,铁芯与物体之间的距离减小,磁场的力线会通过物体流过,导致感应到的磁阻减小。

传感器会通过检测线圈上的电流变化来判断物体的接近程度。

当物体靠近时,感应到的磁阻的变化会导致线圈上的电流变化。

传感器会根据这一电流变化来判断物体是否接近并作出相应的响应。

压磁式传感器的工作原理主要基于磁场和磁导体的相互作用,通过测量磁阻变化来判断物体的接近程度。

这种传感器在接近开关、位置检测等应用中广泛使用。

磁感应传感器接线方法和图解【干货合集】

磁感应传感器接线方法和图解【干货合集】
磁传感器是把磁场、电流、应力应变、温度、光等外界因素引起敏感元件磁性能变化转换成电信号,以这种方式来检测相应物理量的器件。
磁感应传感器这一名词有两层意思。第一,是检测具有磁性信号的磁感应传感器。第二,把非磁性的信息变换为磁性信号用的磁感应传感器。
另外,从构造上来分类磁感应传感器也有两种类型:第一是功能性的传感器,它是利用特殊磁感应传感器材料做成的。第二是结构性传感器,它是用一般磁性材料制成的、其机械结构设计十分巧妙的传感器。
则:上式中,Q表示磁性量(Bm、Hc、μ或R),并表示输入量(热、光、力…),t为时间。
表示输入量x作用在磁性材料上时,材料的磁量(Bm、Hc、μ或R)所发生的变化速率,亦就是材料所具有的对敏感输入量的固有特性,表示磁性材料对输入量响应的快慢。为了提高器件的性能,要求和都高。
现举例说明上式意义,设(敏感)输入量x为热量,用温度T表示,Q为磁感应强度Bm,p为e(感应电动势),所以:式中,为饱和磁感应强度随温度的变化,为磁性材料对温度的响应速率。根据式,要提高p值,必须使和都高,其中为输入量的变化速率,为磁性量对输入量的反应速度,主要决定于磁性材料的特性,必须进一步讨论。
一、磁感应传感器是什么
磁性材料在感受到外界的热、光、压力、放射线等之后,其磁特性会改变。利用这种物质可以做成各种可靠性好,灵敏度高的传感器,这类传感器是利用磁性材料作为其敏感元件,故称磁感应传感器。
磁感应传感器的探测器为磁性探头。磁性探头工作时在周围形成一个静磁场,当铁磁金属制成的物体,如步枪、车辆等进入这个静磁场时,就会感应产生一个新的磁场,干扰了原来的静磁场,由于目标的运动变化所产生的干扰使磁场发生变化,引起磁力计指针的偏转及摆动,产生一个电信号,进而实现对携带武器的人和车辆的探测。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、压磁式传感器原理
与应变式和差动变压器式的区别
二、压磁式传感器特性
坚固,耐用,抗冲击能力强,激励和输出信号均为交流信号,频率为80Hz,则抗干扰能力强、避免了公频干扰。

电阻片的拉伸改变电路的阻抗引起信号的变化
铁芯的位移引起信号的变化 – 依赖于物理位移 – 拉伸,压缩或弯曲运动为信号生成所必需 – 需要经常性的定期标定 – 应用直流激励,易受干扰 – 输出信号弱(典型值0.3 µW ),易受干扰
– 无物理位移 – 信号的生成来自于磁场变化 – 不需要重新标定 – 压头激励:80 H z , 1.83 A – 输出信号强,抗干扰
三、系统构成
MC400、MO400、接线盒、绳重补偿器、传感器、无线通讯子站、主站组成系统。

四、工作原理
MC400向传感器提供交流恒流信号,频率80Hz,1.83A。

传感器反馈回交流电压信号,经MC400的A/D转换成数字量,并经过系统软件的计算补偿,得到成线性的称重值。

四只传感器分别串联,以补偿重量分配不均而带来的误差。

MC400与操作器通过以太网相连,网络协议为TCP/IP,MC400和MO400各自拥有全球唯一的IP地址。

MC400将称量值经D/A转换成模拟信号,以4-20mA或0-10V的方式向PLC输出。

MC400通过RS232,以无协议的方式,实时将重量值输出至大屏幕显示器。

MC400将绳重补偿器的信号转换成重量值,累加到称量值上,以补偿钢丝绳对重量的影响。

绳重补偿器为一个旋转电位计,与主卷相连,随主卷的转动而改变电阻值,从而改变输入到MC400的直流电压值。

MC400可设定阈值输出,当重量值达到设定的阈值后,向PLC发出开关量信号。

MC400通过RS232以无协议的方式,与无线通讯子站相连。

将重量值发送至子站。

五、无线通讯工作原理
无线通讯主站以轮询的方式与各子站通讯,周期为100ms。

如子站有重量值要发送,则在该周期内完成。

主站在接收到重量值之后,通过RS232以串口协议3964R发送至工控机。

工控机将该信息处理后,写入网络服务器的ORACLE 数据库。

相关文档
最新文档