Reliability Introduction(SCT RD)

合集下载

Introduction to Reliability - 可靠性简介

Introduction to Reliability - 可靠性简介

Quality
“…is concerned with the performance of a product at one point in time” “…usually during the manufacturing process” “…assures conformance to specifications” “…checks that the incoming parts and components meet specifications” “…assures products are inspected and tested correctly” “…is a single, albeit vital, link in the total reliability process”
Introduction to Reliability 9
Scope of Efforts
• Some companies choose to scope their efforts...
• Complex Products - Products that have several layers of complexity and active electrical and mechanical elements • Critical Applications - Products that are used in critical applications with stringent government or industry requirements • Production Systems - Production Systems that are critical to internal performance even if the product made is not a risk

科学的心理测量必备的指标

科学的心理测量必备的指标

科学的心理测量必备的指标
心理测量是心理学领域中的重要工具,它通过对个体心理特征
和行为进行定量化的方式,帮助研究者了解个体的心理状态和特征。

在进行心理测量时,必备的指标是非常重要的,它们能够确保测量
的科学性和准确性。

以下是一些科学的心理测量必备的指标:
1. 信度(Reliability),信度指标用于评估测量工具的稳定
性和一致性。

一个信度良好的测量工具应该在不同的时间、地点和
情境下能够产生相似的结果。

常用的信度指标包括重测信度、内部
一致性和分裂半信度等。

2. 效度(Validity),效度指标用于评估测量工具是否能够准
确地衡量所要测量的心理特征或行为。

一个有效的测量工具应该能
够真实地反映出被测量的心理特征,而不是受到其他因素的干扰。

常用的效度指标包括内容效度、构想效度和准则效度等。

3. 标准化(Standardization),标准化是指确保测量工具的
使用和解释在不同个体之间是一致的。

通过标准化,可以使得不同
测量工具的得分具有可比性,从而方便进行跨个体或跨群体的比较
和分析。

4. 可信度(Credibility),测量工具的可信度是指被测者对测量工具的信任程度。

一个好的测量工具应该能够获得被测者的信任,从而确保被测者提供真实可靠的信息。

在心理测量中,以上的指标是非常重要的,它们能够帮助研究者确保测量工具的科学性和准确性,从而保证心理测量的可靠性和有效性。

只有在具备了这些必备的指标后,心理测量才能够为心理学研究和实践提供有力的支持。

rpd可信度单词 -回复

rpd可信度单词 -回复

rpd可信度单词-回复什么是“可信度”?可信度(reliability)是指某一信息或数据的可信程度或可靠性。

在各个领域中,可信度是一种常见的概念,用于评估特定信息或数据的准确性、可靠性和可信程度。

在研究与调查中,可信度是指研究工具(如问卷或测量工具)测量同一概念的结果在不同场合和时间下的一致性。

可信度的高低可以反映出研究工具的稳定性和一致性,从而对数据的准确性和可靠性进行评估。

可信度也是评价统计数据的重要指标之一。

在统计学中,可信度可以帮助研究者判断样本数据是否足够可靠,并从中得出准确的结论。

在心理学和社会科学研究中,通常使用内部一致性可信度(internal consistency reliability)来评估一个测量工具的可信度。

常见的评估方法包括Cronbach's alpha系数和同质性检验。

可信度在商业领域中也是至关重要的一个概念。

对于消费者来说,他们通常更倾向于信任可靠的品牌和产品,而不会轻易相信不可靠的信息。

因此,企业需要建立可信度,在市场竞争中获得消费者的信任和好评。

可信度涉及到产品质量、客户服务、声誉和口碑等方面。

在新闻和媒体领域,可信度是媒体与公众之间建立信任和传播真实信息的基础。

媒体的可信度对于公众对于新闻报道的接受程度和行为具有重大影响。

新闻媒体应该遵循准确、客观、及时和全面的原则,提供可靠的新闻报道,以获得公众的信任和认可。

然而,在信息时代,可信度受到了前所未有的挑战。

虚假信息、假新闻和谣言的传播使得人们越来越难以判断信息的可信性。

因此,提高公众对于信息的辨别能力和培养媒体素养变得尤为重要。

同时,相关机构也需要采取措施来监管和维护信息的可信度。

总之,可信度在各个领域中都起着重要作用。

无论是在学术研究、商业经营、新闻传媒还是在日常生活中,我们都需要关注和提高可信度,从而获得更加可靠和准确的信息,同时建立起信任和声誉。

可靠性测试介绍

可靠性测试介绍

Test Picture
17
Walton Advanced Engineering , Inc
2.14 FPC side Pull Test
1 名稱: FPC 拉力測試. 2.分類: 2.1 破壞性 FPC side Test 2.2 非破壞性 Machine 3. 條件: 3.1 將FPC拉離PCB. 3.2 0.5kg, 3times, 5s/time 4. 抽樣數: 5個. sketch map 5. 結果判定: 5.1完成相應類別的測試后, 判定 測試結 果是否在規格之內(>1kgf)為判定標准. 5.2完成相應類別的測試后,需進行外觀 及功能測試, 與測試之前進行對比.以是 否發生變化為判定標准.
1
5
20
Walton Advanced Engineering , Inc
16
Walton Advanced Engineering , Inc
2.13 Passive component Shear Test
1 名稱: 無源元件推力測試. 2. 條件: 將無源元件推離 PCB. 3. 抽樣數: 5個. 4. 結果判定:完成相應類別 的測試后, 判定 測試結果 是否在規格之內 (>200grams)為判定標准.
4
Walton Advanced Engineering , Inc
2.1 High Temp Storage Test
1 名稱: 高溫儲存測試. 2 條件: 溫度:80+/-2℃; 時間: 0-48-168-500 hrs. 3. 抽樣數: 5 個. 4. 結果判定: 完成每一時間 段的測試后, 需進行外觀 及功能測試, 與測試之前 進行對比.以是否發生變化 為判定標准.

(安全管理理论)可靠性工程基本理论

(安全管理理论)可靠性工程基本理论

可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。

可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。

可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。

产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。

产品可以是一个零件也可以是一个系统。

规定的条件包括使用条件、应力条件、环境条件和贮存条件。

可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。

可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。

所以,可靠性工程学是一门综合性较强的工作技术。

2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。

可靠度用字母R表示,它的取值范围为0≤R≤1。

因此,常用百分数表示。

若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。

其中F称为失效概率,亦称不可靠度。

设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。

所以可靠度是时间的函数,记成R(t),称为可靠度函数。

图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。

图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。

在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。

失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。

reliable improvement指数

reliable improvement指数

可靠性改进指数是一种用于衡量产品或系统可靠性改进的指标。

在工程领域,可靠性是一个重要的概念,它指的是产品或系统在特定条件下的正常运行时间。

而可靠性改进指数则是用来评估产品或系统在一段时间内的可靠性改进程度,通常用百分比来表示。

一、可靠性改进指数的定义可靠性改进指数(Reliability Improvement Index,RII)是通过对比产品或系统在改进前后的可靠性水平,计算出其改进程度的指标。

它的计算公式如下:RII = (Ri - Rf) / Ri其中,RII表示可靠性改进指数,Ri表示改进前的可靠性水平,Rf表示改进后的可靠性水平。

通常情况下,RII的取值范围为0到100,RII 越高,说明产品或系统的可靠性改进效果越好。

二、可靠性改进指数的意义1. 可靠性改进指数可以帮助工程师和设计师评估他们的工作效果,及时调整和改进产品或系统的设计和制造过程。

通过分析可靠性改进指数,可以找到产品或系统存在的问题,并有针对性地进行改进。

2. 可靠性改进指数也可以帮助企业管理层评估产品或系统的可靠性改进情况,及时采取措施,提高产品的市场竞争力。

3. 对于用户来说,可靠性改进指数可以让他们更清楚地了解产品的可靠性情况,为购物决策提供参考依据。

三、如何有效地提高可靠性改进指数要想有效地提高产品或系统的可靠性改进指数,以下几点是需要注意的:1. 充分了解产品或系统的设计目标和使用环境,做好充分的可靠性分析,找出可能存在的问题和瓶颈。

2. 在产品或系统的设计和制造过程中,采用先进的技术和方法,确保产品或系统在设计阶段就具备较高的可靠性水平。

3. 加强质量管理,严格控制产品或系统的制造过程,确保每一个环节都符合设计要求,避免因制造过程引入的可靠性问题。

4. 强化售后服务,及时对产品或系统进行维护和改进,提高其在使用过程中的可靠性。

四、可靠性改进指数的应用案例某公司生产的一款新产品,在市场上受到了一定程度的争议和负面评价,其中一个主要问题就是产品的可靠性不高。

8reliability

8reliability

CHAPTER 8RELIABILITY1.0 Introduction2.0 Reliability Systems “It's a good thing to follow the first law of holes; if you are in one,stop digging.”Denis HealeyRELIABILITY1.0 INTRODUCTIONThe official definition of reliability is “the probability of a device performing its intended function under given operating conditions and environments for a specified length of time.” Using this definition, the probability of a device working for 100 hours and the reliability of a device designed to work for 100 hours are two ways to make the same statement.The most basic method of achieving product reliability is through mature design. On new products, failure rates are determined under accelerated conditions and used to make reliability predictions. In complex assemblies, there may be hundreds of individual components that affect the reliability of the final product. Ideally, 100% reliability is desirable but that is not always possible to achieve. In products that affect human life, a high degree of reliability is absolutely necessary. These products have high quality components and are tested under extreme conditions. The reliability of a product, whether its an airplane or a computer, is dependent on the quality of its components. The subject of reliability introduces the factor of time in making probability calculations.1.1 L ife Curve for a DeviceThe three phases in the life of a product or device are described by a life cycle curve commonly referred to as the bathtub curve.Phase I Phase IIIPhase II time (t)FailureRateDuring the early life or infant stage of a device, failures occur more frequently than during the operating or useful life phase. During the latter part of the life of a device, the wear out phase, the frequency of failure is again high and rises rapidly. This can be verified by owners of twelve-year-old cars. During the useful life phase, the failure rates for most devices is constant. The length of the useful life is determined by the device or product. Light bulbs usually have a shorter useful life than car radios.QReview120 1.2 Reliability TerminologyReliability calculations can only be made in the useful life phase (phase II) of a product or device. In the infant mortality and wear out phase there is too much variation in the failure rate to make reliability predictions. A product is usually in the customers or userspossession after the initial problems (infant mortality) have been eliminated.The main difference between the quality of a device and the reliability of a device is that reliability involves a time factor. Reliability is the probability of a device working for aspecified interval of time.In a quality problem, the question may be asked: What is the probability of one defective device or one failure in a sample of ten parts? The parts are either good or defective at the time that they are examined. In a reliability problem, the question may be: What is the probability that the device will work for 100 hours without a failure?Failure rates and the subsequent reliability of devices are usually determined by aprocedure called life testing. Life testing is the process of placing a device or unit ofproduct under a specified set of test conditions and measuring the time it takes untilfailure. Life testing sampling plans are used to specify the number of units that are to be tested and for determining acceptability. The procedures for developing and using a life test sampling plan are almost the same as those used for acceptance sampling. The producer's and consumer's risks are specified, and an OC curve may be developed. The exponential distribution is used to find the probability of acceptance.1.3 Failure RateThe constant failure rate during the useful life (phase II) of a device is represented by the symbol lambda (λ). The failure rate is defined as the number of failures per unit time or the proportion of the sampled units that fail before some specified time.Failure rate = Lambda = λ = f/nWhere f = the total failures during a given time interval and n = the number of units or items placed on test.If 500 parts were placed on test and 21 failures were recorded between the sixth and seventh hour, then the failure rate λ = 21/500 = .042 failures per hour.1.4 Mean Time between FailuresThe mean time between failures or MTBF is the average length of life of the devicesbeing tested. It is the reciprocal of the failure rate.Mean time between failure (MTBF) = Theta = θ = 1/λThe mean time between failure for the above example = 1/λ = 1/.042 = 23.8 hours.1.5 Reliability FormulaChapter 8 Reliability 121 The exponential distribution formula is used to compute the reliability of a device or a system of devices in the useful life phase. The exponential formula has its roots in the Poisson formula. Instead of np, the product λt is used. The exponential is the Poisson formula with x = 0. Reliability means the probability of zero failures in the specified time interval.P x e npxnp x()()!=−=!x)t(e xtλλ−, for x = 0, P(0) = e -λt = Reliability Reliability of a single device = R = e -λtWhere t is the mission time and e is a constant value of 2.71828. The letter e represents the base of the natural system of logarithms. Most statistical calculators have an e x key.Enter a one for x and the calculator will return the e value of 2.71828.A sample of 450 devices were tested for 30 hours and 5 failures were recorded. Thedevice is designed to operate for 1000 hours without failure. What is the reliability of the tested device?Failure rate = λ = 5/(450)(30) = 5/13500 = .0003704Reliability = e -λt= e - (.0003704)(1000) = e - .3704 = .6905 The probability of a device operating for 1000 hours without a failure is .69.05%.2.0 RELIABILITY SYSTEMSThere are two basic types of reliability systems. They are series and parallel systems, similar to electrical circuits. In a series system, all devices must work for the system to work. In a simple parallel configuration, the system will work if at least one device works.The reliability calculations for these systems are an extension of basic probability concepts. There are other configurations in addition to the two basic systems such as standby systems, switched systems, and combinations of each.2.1 Series SystemQReview122 2.2 Parallel System2.3 Combination SystemExample 1What is the reliability of the series system shown below?λA = .001, λB = .002, mission time (t) = 50 hoursFor the system to work, both devices must work. If one device fails, the system fails.R A = reliability of device A = probability that device A will work for at least 50 hours −λ = e -(.001)(50) = .9512R A = e A tR B = reliability of device B = probability that device B will work for at least 50 hours −λ = e -(.002)(50) = .9048R B = e B tR S = reliability of system = probability that the system will work for at least 50 hours R S = R A X R BR S = .9512 X .9048 = .8606Chapter 8 Reliability 123 Example 2What is the reliability of the parallel system shown below?λA = .001, λB = .002 t = 50 hrsFor the system to work, one or both devices must work. The system will fail when both devices fail.From example 1, R A = .9512 and R B = .9048RA = 1 - R A = probability that device A fails and RB= 1 - R B = probability that device Bfails.R S = reliability of system = (R A)(RB ) + (RA)(R B) + (R A)(R B)R S = (.9512)(.0952) + (.04888)(.9048) + (.9512)(.9048) R S = .0906 + .0442 + .8606 = .9954Alternate solution: R S = 1 - (RA )(RB) = 1 - (.0488)(.0952) = .9954。

Rel Test Introduction

Rel Test Introduction

Reliability Test IntroductionQRA maintains a stringent and comprehensive product reliability program. Included in this program are basic device and package technology characterization, product qualification failure mode modeling, and product monitors. The purpose of this activity is to accurately predict device failure rates as a function of time and assure that each product meets and maintains stated reliability objectives.Reliability objectivesQRA reliability objectives can be discussed with reference to the reliability life curve shown in below figure the significant portions of this curve for normal device operation are the infant mortality, early life, and random failure periods.Reliability Life (Bathtub) CurveReliability Test Condition SummaryNo Test ItemPurposeReferenceSpecTest ConditionSS/Max acc. #H T O L1High TemperatureOperating Life TestTo determine the effects of biasconditions and temperature on solidstate devices over timeJESD22-A108 MIL-STD-883/1005 Ta=125℃(or Tj= 150℃) V=Vccmax , Dynamic stress 1000 Hrs45/0S t a t i c L i f e 2Bias Life Test (BLT)Checks resistance to bias stressand thermal stress MIL-STD-883/1005.8Ta=150°C ,V=Vccmax ,1000 Hrs45/03Precondition of Devices Prior to Reliability Testing ( Level-3 )To determine if any trapped moisture around the device leads will explode the plastic around the leads or caused de-lamination of the plastic from the chip during the soldering process. To determine if the solder reflow will have any long-term effect on reliability.JEDEC J-STD-020BJESD22-A113TC:-65℃/10min~+150℃/10min,5cyclesBake: 24hrs at 125℃Soak: 30℃/60%RH 192hrsIR reflow: +260℃ peak, 3cycles220/04 AutoclavePressure Cook Test(PCT) To evaluate the moisture resistance integrity of non-hermetic packaged solid state devices using moisture condensing or moisture saturated steam environmentsJESD22-A102CT=121℃, 100%RH,2atms(30psia), 96/168hrs45/05 Temperature Cycles Test (TCT)(Air to Air) To determine the resistance of a part to extremes of high and low temperatures, and to the effect of alternate exposures to these extremes MIL-STD-883/1010.7 JESD22-A104BT=-65℃/10min~+150℃/10minAir to Air, 300/500/1000cycles 45/0 6High Temperature Storage Test (HTST)To determine the effect of time and temperature under storage conditions JESD22-A103BT= 150℃, 1000hrs 45/07Highly Accelerated Temperature & Humidity Stress Test (HAST) To evaluate the reliability of non-hermetic packaged solid-state devices in humid environmentsJESD22-A110T= 130℃ , 85% RH 2.3 atms(33.3psia),50/72/96Hrs45/0E n v i r o n m e n t a l8TemperatureHumidity with Bias and Signal Test (THB) To evaluate the reliability of non-hermetic packaged solid-state devices in humid environmentsJESD22-A101BT=85℃ / 85%RH / Vccmax 1000hrs45/09 Thermal Shock Test (TST) (Liquid to Liquid)To determine the resistance of thepart to sudden exposure to extreme changes in temperature and theeffect of alternate exposures to these extremesMIL-STD-883/1011.9 JESD22-A106AT=-65/10min~+150℃/10minLiquid to Liquid 500cycles 45/0M e c h a n i c a l10 Solder ability Test To evaluate the solder ability ofterminations that are normallyjoined by a soldering operationMIL-STD-883/2003.7 JESD22-B102Steam age: 93, 8hrs ℃Dwell: 250 Sn,℃10seconds5/0E S D11Electrostatic DischargeTo establish the procedure for classifying microcircuits according to their susceptibility to damage or degradation by exposure to electrostatic dischargeMIL-STD-883/ 3015.7 JESD22-A114,A115,C101HBM: R=1.5K Ω,C=100pFMM: R=0K Ω, C=200Pf CDM 18L a t c h -U p 12 Latch-Upcheck latch-up immunity for all devicesEIAJ-IC-121-020 MIL-STD-883-1020Vdd = 5.5V, Vss =GND Spec. : Vtr = +/-2V Itr = +/-100ma18Notes:HAST, Autoclave and Temperature Cycle samples received preconditioning. Please see description ofpreconditioning stresses. Each sample had three parts as control parts (not exposed to any stress). For the Autoclave stressed sample, all the parts were stressed including the 3 control parts. Those control parts did not exhibit any failures.Sample sizes were selected to meet the minimum expectations of LTPD=5%, which is a minimum of 45 ea samples, accept on 0 fail. This is a typical industry standard utilized in the JEDEC and MIL standard.Qualification flow:Relationship of Failure Mode and Test ItemsReliability Effecting Failure MechanismFailureMode HTOL BLT PCTTCT/TSTHAST/THBESD L-U Non-uniform resistively Degradation 99Surface abnormalities Open , Short 9WaferProcessingCrack, Scratched Open , Short 99Diffusion Improper doping Degradation 999Passivation Crack and pin hole Short 99999Scratched Open , Short 99999 Metallization Oxide film contaminationOpen 999Dry Etching Over etching Degradation 9999CVD Residual chemicals Degradation 9999Mask Misalignment , Dust Degradation 99999Shrink Crack Degradation999999 Crack Open99999Over solder Short 99999Die BondingPoor bonding Crack , Lifting9999Poor bonding strength Open 9999Insufficient bonding area Open , Short 9999Wire BondingDice cracks Open , Short 99999Incomplete seal Open , Short 99999Sealing Lead bending or breakingOpen 99999Reliability Test Destructive PotentialNo. Procedure Purpose DestructivePotential1 External visual To detect conditions external to the packagethat may contribute to the failure.Maintain ESD controls.---(N/D)2 Radiographicanalysis To detect internal anomalies prior to de-lidor de-capsulation.Will erase EPROM programs. May alternatural quartz crystal frequency. --- (N/D)3 PIND To detect loose particles inside the package. May dislodge shorting particles. Repeat electrical test if original condition was a short. --- (N/D)4 Fine & gross leaktest (hermeticity) To determine if hermetic seal has failed.Test medium can be introduced inside thepackage and mask original condition.Gross leak test fluids can react with externalcontaminants. --- (P/D)5 Stabilization bake Unbiased bake to determine if electricalcondition is thermally sensitive. Some mechanisms such as inter-metallic will be accelerated. Contamination and corrosion can be accelerated. --- (P/D)6 Acceleration(Centrifuge) To evaluate the mechanical integrity of thepackage and internal components.Marginal devices can be damaged. --- (P/D)7 Thermal shock/cycle To evaluate the thermal and expansionsensitive conditions of devices.Marginal devices can be damaged. --- (P/D)8 SLAM (ScanningLaser AcousticMicroscope)To examine subsurface defects.Ultrasonic damage to bond wires has notbeen studied. --- (N/D)9 NeutronRadiography To examine internal defects, especiallyinvolving "soft" materials.Will degrade CMOS devices and certainlinear parameters. --- (P/D)10 Penetrate To induce penetrate into the package foraccess determination. Dye penetrate can be reactive and / or corrosive. --- (P/D)11 External cleaning To remove external contamination to verifyfailure mechanism. Select cleaning medium carefully. Some chemicals can react with package materials. --- (P/D)12 Electrical test To verify the electrical symptoms of failure.To characterize the component.See failure verification. --- (P/D)13 Residual gas analysis To analyze internal gases in hermeticpackages. Test requires a hole to be punched in package. Often the tool will strike delicate internal structures. --- (P/D)14 De-lid/De-capsulation To expose the failure site.Must be considered destructive with thepossible exception of some repairablemodules. --- (D)15 Internal visualexamination To detect and photograph visual anomalies.Illuminating light source will erase EPROMprograms. Watch the lens. Workingdistance must be remembered. --- (P/D)16 Scanning electronmicroscopicexaminationTo detect and photograph anomalies noteasily documented visually.Electron beams can degrade sensitivejunctions. Areas can be negatively chargedand ionic sensitive mechanisms altered.Pump oil can be polymerized on the surface.--- (P/D)17ESCA To analyze surface contaminants, especially Sample size restrictions will usually require cutting of the sample. High intensity X-ray beams can induce electrical degradation. --- (P/D)18 Auger analysis To analyze surface material. Requires ION etching of the surface--- (D).19 SIMS (SecondaryIon MassSpectrometer)To analyze materials with massspectrographic. Extremely sensitive.Requires Ion etching of the surface. --- (D)20 Liquid crystal To determine thermal flow characteristics tocharacterize electrical function of devices. Generally non-destructive. Must however, consider electrical test procedure. --- (N/D)21 IR mapping To characterize thermal characteristics ofdevice. Generally non-destructive. Must however, consider electrical test procedure--- (N/D).22 Tensile test ofinternal wiresTo determine joint integrity. Depends on requirements. --- (N/D or D)23 Overlay removal To remove surface glassivation for furtheranalysis. Plasma etching can react with and deposit gold from package. Chemical etching can deposit metal from package. Ionic failure mechanisms can be lost. Excessive etching can undercut metal. --- (D)24 Electrical probing To test individual components of ICs. Toisolate metal stripes. Careful probing can be somewhat non-destructive. Metal isolation by cutting cannot be reconnected. Oxide damage is always a possibility. --- (P/D or D)25 Cross section To examine defects or structure in crosssection. Require that the component be cut and polished. --- (D)26 Die shear(Semiconductors)To test the die attaches quality. The die is usually shattered. --- (D) Note: 1. DÆ Destructive; P/DÆ Potentially Destructive; N/DÆ Non- DestructiveFailure Analysis introduction:Failure analysis is a systematic examination of failed devices to determine the root cause of failure and to use such information to eventually improve product reliability.Failure analysis is designed to identify:(1)The failure modes (the way the product failed)(2)The failure site (where in the product failure occurred)(3)The failure mechanism (the physical phenomena involved in the failure)(4)The root cause (the design, defect, or loads which led to failure)(5)Recommend failure prevention methodsThe process begins with the most non-destructive techniques and then proceeds to the more destructive techniques, allowing the gathering of unique data from each technique throughout the process. This data when properly analyzed leads to a viable mechanism for the failure. The use of destructive techniques early in the process is discouraged as it can result in the loss of valuable information that might be required later.The recommended sequence of procedures is:(1) Visual Inspection(2) Electrical Testing(3) Non-Destructive Evaluation (using relevant techniques)(4) Destructive Evaluation (using relevant techniques)To increase the reliability, however, this information must be coupled with the results of failure mechanism modeling. The information provided by these physics-of-failure (PoF) models allows designers to select materials and package design attributes, which minimize the susceptibility of future designs to failure by the mechanisms identified in the degradation assessment. In addition, it allows the user to select environmental and operational loads that minimize the susceptibility of the current design to failure during storage or use.The identification of the important failure mechanisms and failure sites in fielded assemblies also permits the development of a focused accelerated test program. The benefits of a focused accelerated test program are that it allows the proper test stresses (e.g., temperature, relative humidity, temperature cycling) and the levels of those stresses to be selected so as to cause wear out failure in the shortest time without changing the failure mechanism. This is a vast improvement over the old method of choosing a random set of test loads and levels, or subjecting the assemblies to a set of "one size fits all" standard tests prescribed by decades-old military and commercial standards. In addition, the failure distribution in the accelerated tests can be converted to a failure distribution in the intended use environment using the acceleration factors calculated by the PoF models.This combination of systematic failure analysis and degradation assessment, failure mechanism modeling, and accelerated qualification and life testing can be used to qualify new designs, determine expected lifetimes, or determine the remaining life of an assembly which has been stored or used. This unique process was described as a reliability growth methodology, it consists of three steps:1.Conducting an experimental degradation analysis of assemblies which have been stored and/oroperated for several years to identify the potential failure mechanisms and to characterize the extent to which degradation has progressed during this period;2.Calculating acceleration factors relating the failure distribution under accelerated test conditions tothe failure distribution under actual use/storage conditions. These acceleration factors aredetermined using fundamental stress and damage models (physics- of-failure models) for the failure mechanisms identified in the degradation analysis; and3.Determining failure distributions for the elements of the assemblies under accelerated testconditions consisting of appropriate loads and levels to produce maximum test time compression without altering the dominant failure mechanismsElectrical Testingz IC Functional and Parametric Testingz Impedance / Material Analyzerz Continuity Measurementsz Surface Resistance Measurementsz Contact Resistance Measurementsz Resistance Monitoring during Accelerated Testingz Capacitance Measurementsz OscilloscopeElectrical Testing is the measurement of all relevant electrical parameters and is a critical part of systematic failure analysis. Correct electrical testing not only provides the failure mode (catastrophic, functional, parametric, programming or timing), but it can also help identify the failure site.Electrical Testing consists of detecting shorts, opens, parametric shifts, changes in resistance, or other abnormal electrical behavior on the die, between the die and the interconnects, between the interconnects and the circuit card, within the circuit card, and among the various connections between circuit cards. Non-Destructive Evaluationz Visual Inspectionz Optical Microscopyz Scanning Electron Microscopy (SEM)z Energy Dispersive Spectroscopy (EDS)z X-ray Microscopyz Scanning Acoustic Microscopy (SAM)z Scanning Magnetic Microscopy (SMM)z Infrared Inspection Systemz Fourier Transform Infrared Spectroscopy (FTIR)z Contact Resistance Measurementsz Atomic Force Microscopy (AFM)Non-Destructive Evaluation (NDE) is designed to provide as much information on the failure site, failure mechanism, and root cause of failure without causing any damage to the product or obscuring or removing valuable information. The latter part of this sentence can be very important when the electronic part is still functioning.A significant amount of failure information is available through visual inspection and the more traditional NDE methods, such as X-ray Microscopy, Scanning Acoustic Microscopy (SAM), Environmental Scanning Electron Microscopy (E-SEM), and Energy Dispersive Spectrometry (EDS). However, breakthroughs in failure analysis technology over the last few years have opened up the number of avenues available in non-destructive evaluation. These avenues include state-of-the-art methods, such as Scanning Magnetic Microscopy (SMM) and Infrared Imaging Systems with the latest filtering algorithmic, as well as non-traditional techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), Contact Resistance Measurements, and Atomic Force Microscopy (AFM).Destructive Evaluationz Micro sectioningz De-capsulation/Deliddingz Micro testingz*Optical Microscopyz*Scanning Electron Microscopy (SEM)z*Energy Dispersive Microscopy (EDS)z Focused Ion Beam (FIB) Imagingz*Scanning Magnetic Microscopy (SMM)z Transmission Electron Microscopy (TEM)z*Fourier Transform Infrared Spectroscopy (FTIR)z*Contact Resistance Measurementsz Assessment of Pop-corning in PEMsHaving completed the non-destructive analysis, the next step is to use destructive sample preparation techniques to reveal the internal structure of the sample. As much information as non-destructive evaluation (NDE) provides, destructive evaluation is often necessary to verify the failure mechanism and root cause.Two initial techniques in destructive evaluation or electronic products are de-capsulation/delidding and micro sectioning. Chemical de-capsulation consists of dissolving the plastic encapsulates using fuming nitric or sulfuric acid and delidding involves mechanically removing the lid from a hermetic package. Both de-capsulation and delidding allow for internal examination of the die and interconnects by optical, electron, magnetic, or emission microscopy. Additional destructive evaluation can also be performed; using either focused ion beam imaging or transmission electron microscopy. These techniques permit detection of bond pad corrosion, passivation cracking, ball bond lifting, and stress driven diffusive voiding, electro migration, metallization corrosion, and other failure mechanisms at the die level.Micro sectioning, also known as cross-sectioning, is performed to reach a surface which reveals an important feature of the sample, such as intermetallic formation in wire bonds or de-lamination at thefiber/epoxy interface in printed circuit boards. The cross-sectioned surface is often examined using optical microscopy, electron microscopy, and energy dispersive spectroscopy.Mechanical testing, FTIR, contact resistance, and popcorn assessment.Failure AnalysisThe reliability monitor program would be value limited without the essential ingredient: failureanalysis. Failures that occur at any part of the production cycle are identified, and the failure mechanism isdetermined using various types of analytical techniques. Included techniques are EDX/SEM, visible light.Alternately, many electrical tests are preformed using bench testers, logic analyzers, oscilloscopes, etc.Failure mechanism, once identified, lead to corrective actions and elimination of the problem. Belowtable shows the activation energies of several commonly encountered failure modes.Major Failure Mechanism in MOS DevicesFailure Mode Type Activation Energy (eV)Oxide defects infant / random 0.3Silicon defects infant / random 0.5Mask defects random 0.5Refresh random 0.5Charge loss/gain infant / random 0.6Surface charge wear out 0.5 - 1Metal electro migration wear out 0.5Polarization wear out 1.0Slow trapping wear out 1.0Contamination wear out / infant 1.0Micro cracks random 1.0 - 1.4Contact electro migration wear out 0.5 - 0.9Hot electron injection wear out 0.06The QRA reliability groups establish the performance monitors and the appropriate control limits. Thecurrent values for burn-in / life test failures and for package failures are given as fellow:Mode %DefectiveBurn-in / life test 125°c,168hr. Cum-failures package-related (all stresses) 0.2 0.5When failure rates exceed these limits, these corrective actions may include testing additional samples to confirm the failure modes and extent of the problem, subjecting the new samples to more stringent tests, stopping the product flow, and adding test screens to remove defective products before shipping. Screens are kept in place until the problem has been resolved and reliability is re-established.Failure mechanisms of discrete semiconductor device and integrated circuit Process EffectingReliabilityFailure mechanism Failure mode Failure detection methodNon-Uniform resistively Unpredictable characteristic values Initial electrical testSurface abnormalities Improper electrical characteristicsShorts and opensElectrical testOperation life testWaferprocessing Cracks, chips, scratches(usually caused during handling) Opens and shortsElectrical test,Visual inspection (pre-cap)Temperature cyclingPassivation Cracks and pin holes Shorts, insufficient withstanding voltage Temperature cycling,High temperature storage, High-voltage test, Operational life test,Visual inspection(before seal)Diffusion Improper control ofdopingProfilePerformance degradationcaused by instability and faultHigh temperatures storageTemperature cycling,Operational life test,Electrical testScratched and smearedMetallization(caused during handing)Opens and shortsVisual inspection(before sealing)Temperature cyclingOperational life testMetallizationOxide film contamination Open metallization causedby poor adhesionHigh temperature storage,Temperature cycling,Operational life testDie separation Cracks and chips causedby improper dicing OpensVisual inspection (before sealing),Temperature cycling,Thermal shockVibration, ShockOver spreading of solder Shorts, intermittent shorts Visual inspection (before sealing), X-rays vibration (monitored), Shock(monitored)Die bondingPoor bonding of dice-to-header Dice cracks and liftingVisual inspection(before sealing),Constant acceleration,Shock, VibrationPoor bonding strength Open wires, opens lifting ofbonding (opens)Constant acceleration,Vibration, ShockInsufficient bonding area Or Spacing OpensBonding shortsOperations life test,Constant acceleration,Vibration, Shock,Visual inspection(pre-cap)Dices cracks or chips Opens and shorts Visual inspection (pre-cap) High temperature storage, Temperature cycling, Constant acceleration Vibration, ShockWire bondingExcessive loop or sag in wire Shorts of the case, substrate,or other parts to the leadsVisual inspection (pre-cap)Radiography,Constant acceleration,Vibration, shockIncomplete hermetic seal Performance degradation, shortsand opens caused by chemicalcorrosion and moistureLeak testSealingBonding or breaking of the external lead Circuit opensVisual inspectionLead fatigue testFailure Rate Calculation:Using Chi-Square Distribution to calculate the failure rate (λ):χ2 (D.F., C.L.)λ (125)℃ = (unit : Fit or 1/109 Device-Hours) 2 (N x T)Where C.L.: Confidence Level (60% is often used to calculate Failure Rate) D.F.: Degree of Freedom = [(Failure number + 1) x 2] N x T: Total Device-Hours (N: Sample size, T: Time)Note: One Fit is equal to one failure per billion device hours of operation. It can also be expressed in thecommon notation of 0.0001 percent failures per 1000 hours. Failure rate of λ(70)℃ as follows :(PS. It is the same method to compute 50 acceleration factor ℃) λ(125)℃λ(70)℃ = A FUse Arrhenius equation to determine the acceleration factor. (Which changing temperature from 70 ℃(T L ) to 125 (T ℃H ))A F = T(H) / T (L) = EXP [(Ea / K) x (1/ T L –1/T H )] Where A F : Acceleration Factor.T (H): Time to % fail, High Temperature T (L): Time to % fail, Low TemperatureK: Boltzmann's Constant, 8.61423 x 10-5(eV/ o K) T: Absolute Temperature. Ea: Thermal Activation Energy.Note: Ea=1.42eV is chosen to be Thermal Activation Energy which make reference from ActivationEnergies for “Thermally Accelerated Mechanisms' Table”.Example:1. 總加速因子 AF=AF T *AF V2038.05 2. 溫度加速因子 AF T =26.30 3. 電壓加速因子 AF V = 77.48 4. B/I TEMP T1= 125 ℃ 5. OP TEMP T2= 70 ℃ 6. B/I Voltage V1= 6.5 V 7. OP Voltage V2= 5 V 8. 波滋曼常數 K = 8.63E-05 eV/K. 9. 活化能Ea=0.7eV.10.電壓活化能C= 290 A。

Reliability

Reliability

可靠度分析一、可靠性定义产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。

从定义本身来说,它是产品的一种能力,这是一个很抽象的概念;我们可以用个例子(100个学生即将参加考试)来理解这个定义,可靠性就是指:100个学生的考分的平均是多少?对这个平均分的准确性有多大把握?分数越高、把握越大,可靠性就越高。

我国的可靠性工作起步较晚,20世纪70年代才开始在电子工业和航空工业中初步形成可靠性研究体系,并将其应用于军工产品。

其他行业可靠性工作起步更晚,差距更大,与先进国家差距20~30年,虽然国家已制订可靠性标准,但尚未引起所有企业的足够重视。

对产品而言,可靠性越高就越好。

可靠性高的产品,可以长时间正常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可靠性越高,产品可以无故障工作的时间就越长。

二、可靠性的重要性调查结果显示(如某公司市场部2001年调查记录):“对可靠性的重视度,与地区的经济发达程度成正比”。

例如,英国电讯(BT)关于可靠性管理/指标要求有产品寿命、MTBF报告、可靠性框图、失效树分析(FTA)、可靠性测试计划和测试报告等;泰国只有MTBF和MTTF的要求;而厄瓜多尔则未提到,只是提出环境适应性和安全性的要求。

产品的可靠性很重要,它不仅影响生产公司的前途,而且影响到使用者的安全(前苏联的“联盟11号”宇宙飞船返回时,因压力阀门提前打开而造成三名宇航员全部死亡)。

可靠性好的产品,不但可以减少公司的维修费用,而且可以很快就打出品牌,大幅度提升公司形象,增加公司收入。

随着市场经济的发展,竞争日趋激烈,人们不仅要求产品物美价廉,而且十分重视产品的可靠性和安全性。

日本的汽车、家用电器等产品,虽然在性能、价格方面与我国彼此相仿,却能占领美国以及国际市场。

主要的原因就是日本的产品可靠性胜过我国一筹。

美国的康明斯、卡勃彼特柴油机,大修期为12000小时,而我国柴油机不过1000小时,有的甚至几十小时、几百小时就出现故障。

reliability introduction

reliability introduction

Test equipment: Regular thermal chamber
Test equipments - Thermal shock machine
Test equipments – vibration machine
Test equipments – shock machine
Test equipments – drop machine
- eg: Af(TH) in MTBF perdition in RDT test
50 samples running reliability demonstrate test (RDT), after running 200 days at 40̊C , 90%RH condition, 2 samples failed, please predict the MTBF by the failure data at 90% confidential level and 95% confidential level at 25̊C , 60%RH.
Stress
• • • • • Thermal
– High / low temperature / thermal cyclic / thermal shock
Humidity
– Low humidity / High humidity
Voltage
– Voltage fluctuation and drifting
Effects impact reliability
• • • • • • Temperature Humidity Electrical stress Quality factor Shock and vibration Software robustness

信度检验 英语

信度检验 英语

信度检验英语全文共四篇示例,供读者参考第一篇示例:信度检验(Reliability Test)是评估某个测试工具或问卷的稳定性和可靠性的一种统计分析方法。

在心理学、教育学、医学等领域,信度检验被广泛应用于评估各种测量工具的信度,以确保其能够稳定地反映被研究对象的特征或状态。

在进行信度检验时,常用的统计方法包括Cronbach's Alpha系数、Kuder-Richardson系数等。

这些系数可以帮助研究者评估测试工具的内部一致性,即所测量的各项指标之间的关联程度。

Cronbach's Alpha系数通常用于评估一个问卷中各项问题之间的内部一致性,其取值范围在0到1之间,数值越接近1说明问卷的信度越高。

除了内部一致性外,信度检验还可以评估测试工具的重测信度。

重测信度是指在多次测试中,同一个被测量对象在不同时间或环境条件下的得分变化。

通过重复测量同一对象,研究者可以评估测试工具在不同情况下的信度表现,以进一步确认其可靠性。

在进行信度检验时,研究者需要注意以下几点:要确保测量工具具有良好的设计和结构,以确保其测量项目之间有较高的相关性;要选择适当的统计方法进行信度检验,以确保结果的可信度和准确性;要对信度检验结果进行解释和分析,以确定测试工具的信度是否符合研究需求。

信度检验是评估测试工具可靠性的重要手段,可以帮助研究者确保测量工具的稳定性和准确性,提高研究结果的可信度和科学性。

在实际研究中,研究者应充分重视信度检验的重要性,以确保其研究结论的有效性和可靠性。

第二篇示例:信度检验(英语:reliability test)是指对某种测量或评估工具的一种统计分析方法,用来评估该工具的稳定性和一致性。

信度检验是研究者在进行研究时非常重要的一项工作,因为一个具有高信度的测量工具可以提高研究结果的可靠性和准确性。

在研究设计阶段,研究者需要对所使用的测量工具进行信度检验,以确保所得到的研究结果能够反映出研究对象的真实情况。

补充可靠度Reliability

补充可靠度Reliability

第四章附錄:可靠度Reliability學習目標在讀完本篇補充後,各位應該能夠:1.定義可靠度2.進行簡單的可靠度計算3.解釋系統中使用備用件的目的章節大綱4.1 導論4.2 量化可靠度4.3 可用性4.4 關鍵詞4.5問題解答4.6問題討論與複習4.7問題4.1 導論Introduction可靠度是指零件、產品、服務或系統在預定的情況之下能發揮預期功能的能力。

在效果上,可靠度是一種機率的概念。

假設一個項目有0.90的可靠度,這意謂著它有90%的機率能執行預期的功能,而其失效的機率為1-0.90=0.10或10%,因此,可以預期平均每10個這樣的項目就有一個會失效,相同地,也可以說每10次的試驗中,平均就會有一次失效,同樣地,0.985的可靠度隱含著每1,000個零件或試驗就有15個會失效。

4.2量化可靠度Quantifying Reliability工程師與設計者有許多的方法可以評估可靠度,關於那些方法的討論不在這本書的範圍,相反的,讓我們來討論量化產品或系統整體可靠度的議題,機率使用在兩種方法上:1.產品或系統能夠正常運作的機率。

2.產品或系統在給定的時間長度內,能夠運作的機率。

首先聚焦於時間上的某一點,通常是在系統必須使用一次或相對很少次數時使用,再來則是聚焦於服務時間的長度,當這兩個方法描述的更詳細後,其之間的區隔是更容易分辨的。

系統或產品能於計畫中順利運轉的可靠度,是系統或產品設計時很重要的一個觀念,當產品或系統包含一些獨立的元件時,要決定其可靠度需要使用獨立項目的機率準則。

獨立項目(Independent events)是指彼此之間不管如何,並不會互相影響,以下的三個案例在描述使用決定一個系統能否成功運轉的機率準則。

準則一:如果兩個或兩個以上的項目是獨立的,當“成功”定義為所有項目都必須發生的機率時,其成功的機率等於產品內所有項目機率的乘積。

範例:假設一個房間有兩盞燈,但是要兩盞燈都能順利打開(成功)才能夠亮,一盞燈會亮的機率為0.90,而另外一盞燈會亮的機率為0.80,則兩盞燈可一起亮的機率為0.90×0.80=0.72,注意0.90×0.80=0.72這樣的乘法運算式子並不是重要的,也要注意的是,如果房間有三盞燈,則必須三個機率相乘。

阿波茨德因子

阿波茨德因子

阿波茨德因子
阿波茨德因子(Abcde Factor)是由美国质量管理专家约瑟夫·阿波茨德(Joseph Abcde)提出的,是一种衡量事物质量的综合指标。

它由五个方面组成,分别是:
1. 可靠性(Reliability):指事物能够持续正常运行的能力。

2. 可维护性(Maintainability):指事物在运行过程中,能够被维护和修复的能力。

3. 可用性(Availability):指事物在特定情况下,能够被有效利用或使用的程度。

4. 可测试性(Testability):指事物在实验或测试环境中,能够被准确评估和验证的能力。

5. 可适应性(Adaptability):指事物在面对变化或挑战时,能够适应和调整的能力。

阿波茨德因子可以应用于各个领域,包括生产、服务、教育等,用以评估和改进事物的质量。

在人力资源管理中,企业可以借助阿波茨德因子评估员工的综合能力,为其提供合适的培训和晋升机会。

在个人职业发展规划中,个体可以通过了解自身在每个因素上的表现来制定目标,并不断提升自己。

在选拔过程中,招聘者可以根据阿波茨德因子评估候选人的综合能力。

总的来说,阿波茨德因子是一种全面衡量事物质量的指标,可以帮助我们更好地理解和评估事物的整体性能。

半导体信赖性

半导体信赖性

质量(Quality)和可靠性(Reliability)在一定程度上可以说是IC产品的生命,好的品质,长久的耐力往往就是一颗优秀IC产品的竞争力所在。

在做产品验证时我们往往会遇到三个问题,验证什么,如何去验证,哪里去验证,这就是what, how , where 的问题了。

解决了这三个问题,质量和可靠性就有了保证,制造商才可以大量地将产品推向市场,客户才可以放心地使用产品。

本文将目前较为流行的测试方法加以简单归类和阐述,力求达到抛砖引玉的作用。

Quality 就是产品性能的测量,它回答了一个产品是否合乎SPEC的要求,是否符合各项性能指标的问题;Reliability则是对产品耐久力的测量,它回答了一个产品生命周期有多长,简单说,它能用多久的问题。

所以说Quality解决的是现阶段的问题,Reliability解决的是一段时间以后的问题。

知道了两者的区别,我们发现,Quality的问题解决方法往往比较直接,设计和制造单位在产品生产出来后,通过简单的测试,就可以知道产品的性能是否达到SPEC 的要求,这种测试在IC的设计和制造单位就可以进行。

相对而言,Reliability的问题似乎就变的十分棘手,这个产品能用多久,who knows? 谁会能保证今天产品能用,明天就一定能用?为了解决这个问题,人们制定了各种各样的标准,如MIT-STD-883E Method 1005.8JESD22-A108-AEIAJED- 4701-D101等等,这些标准林林总总,方方面面,都是建立在长久以来IC设计,制造和使用的经验的基础上,规定了IC测试的条件,如温度,湿度,电压,偏压,测试方法等,获得标准的测试结果。

这些标准的制定使得IC测试变得不再盲目,变得有章可循,有法可依,从而很好的解决的what,how的问题。

而Where的问题,由于Reliability的测试需要专业的设备,专业的器材和较长的时间,这就需要专业的测试单位。

Reliability 可靠性基本理论

Reliability 可靠性基本理论

可靠性与质量 (4)可靠性阶段: 由于产品复杂程度的提高,产品的可靠 性问题十分突出,因此,美国国防部坚决支持可靠性与质 量管理并行,以可靠性为重点进行管理。 (5)质量保证阶段:20世纪70年代后,国外把可靠性与质 量管理结合在一起,建立质量保证体系。所谓质量保证, 主要有法律、行政、经济和技术四个方面的保证。 (6)产品责任阶段:所谓产品责任,即生产产品的厂家应 对产品的质量负法律责任。国外都颁布有产品责任法。 上述6个阶段是相互交叠的,只不过在特定的阶段,某一 个方面变得突出而已。
其组成在无故障、无退化或对保障系统无要求的情况 下执行其任务的能力
可靠性与质量
从国外情况看,产品的质量发展大致经历了以下六个阶段:
(1)早期阶段:20世纪30年代以前,电子产品处于早期阶 段,品种少、结构简单,可靠性与质量管理尚未进行。 (2)标准化阶段:30年代后,无线电产品有了较大发展, 为统一规格、型号及实验方法,有必要使产品标准化,因 此开展了标准化管理工作。 (3)质量管理阶段:第二次世界大战期间,出现了雷达等 复杂的装备,且由于制造期短,新工人多,军工产品出现 了无法控制的局面。为了对产品质量进行控制,国外颁布 了质量管理指南,质量管理图进行控制,实验中采用了抽 样方法。
可靠性与质量 传统的质量观主要是指系统的性能特性,这导致了传统 质量管理基本职能是在制造阶段,保证工艺技术条件可 以达到;并进行工序检验、供应检验、最后检验和产品 检验。 现代质量观念认为,质量包含了系统的性能特性、专门 特性、经济性、时间性、适应性等方面,是系统满足使 用要求的特性总和 。
可靠性与质量
谁更保守?
可靠性分类(2)
固有可靠性 产品在设计、制造过程中赋予的固有属性。 产品的开发者可以控制。 使用可靠性 产品在实际使用过程中表现出的可靠性。 除固有可靠性的影响因素外,还要考虑安装、操作使用、 维修保障等方面因素的影响。

r中的reliability函数

r中的reliability函数

r中的reliability函数在R语言中,reliability()函数是用于可靠性分析的,特别是用于计算信度系数和测试可靠性。

这个函数是psych包的一部分,因此在使用之前,你需要确保已经安装并加载了psych包。

函数的基本形式如下:reliability(x, model, type, alpha = FALSE)其中:x 是要分析的数据集,通常是一个数值向量或矩阵。

model 指定了可靠性模型。

常用的模型包括"fixed"(固定系数模型)和"mixed"(混合模型)。

type 指定了要计算的可靠性类型。

常见的类型包括"cronbach"(Cronbach's Alpha)和"guttman"(Guttman's Lambda 6)。

alpha 是一个逻辑值,用于指示是否计算Cronbach's Alpha。

如果为TRUE,则计算Cronbach's Alpha;如果为FALSE,则不计算。

下面是一个简单的示例,演示如何使用reliability()函数计算Cronbach's Alpha:安装并加载psych包install.packages("psych")library(psych)创建一个数据集data <- matrix(c(2, 3, 4, 5, 6, 7), nrow = 2)计算Cronbach's Alphaalpha <- reliability(data, "fixed", "cronbach")打印结果print(alpha)在这个示例中,我们创建了一个2x3的数据集,并使用reliability()函数计算了Cronbach's Alpha。

函数返回一个数值,表示测试的可靠性系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2-
Reliability test flow All package guarantee MSL3, except BCC, P-DIP, PTCP. BCC guarantee MSL1. P-DIP, TCP don’t need perform Precon. PCT is only for reference for BGA series SAT Inspection Precondition Level 1/2/2aA/3 Open / Short or F/T
(1) Sample size are base d upon the Pois son e xpone ntial binomial limit.
樣本數依怕松指數二項式極限
(2) The minimum quality ( approximate AQL ) re quire d to acce pt ( on the ave rage ) 19 or 20 lots is s hown in pare nthe sis for in formarion only.
Precondition Level 3 30'C/60%RH 192 hrs
Simulate soak of floor life
Reflow 3x 220/235 or 245/260'C-Pb free
Simulate SMT
Open / Short or F/T SAT Inspection
Apply Package
P-DIP,TCP BCC All package expect P-DIP,TCP P& BCC
Qty.
-
Acc/ Rej
-
Criteria
-
MSL1 85'C/85%RH/168 hrs MSL3 30'C/60%RH/192 hrs 2 HighlyHighlyAccelerated Stress Test High Temp.Storage Test Pressure Cooker Test Temperature Cycling Test 130'C/85%RH/33.5 sia 48/96 hrs ( unbias ) 150'C 500/1000 hrs 121'C/100%RH/15psig 96/168 hrs -65~150'C/Soak mode 1 500/1000 cyc. -55~125'C /Soak mode 1 300 cyc. -55~125'C /Soak mode 1 500/1000 cyc. 6 Temperature Humidity Test 85'C/85%RH 500/1000 hrs ( unbias )
Minimum S ample S izes 最小樣本大小 ( For device-hours required for life tes t. Multiply by 1000 ) 針對元件-針對生命期測試以小時為單位 - 乘以 1000 5 (1.03) 8 (4.4) 11 (7.4) 13 (10.5) 16 (12.3) 19 (13.8) 21 (15.6) 24 (16.6) 26 (18.1) 28 (19.4) 31 (19.9) 8 (0.64) 13 (2.7) 18 (4.5) 22 (6.2) 27 (7.3) 31 (8.4) 35 (9.4) 39 (10.2) 43 (10.9) 47 (11.5) 51 (12.1) 11 (0.54) 18 (2.0) 25 (3.4) 32 (4.4) 38 (5.3) 45 (6.0) 51 (6.6) 57 (7.2) 63 (7.7) 69 (8.1) 75 (8.4) 15 (0.34) 25 (1.4) 34 (2.24) 43 (3.2) 52 (3.9) 60 (4.4) 68 (4.9) 77 (5.3) 85 (5.6) 93 (6.0) 100 (6.3) 22 (0.23) 38 (0.94) 52 (1.6) 65 (2.1) 78 (2.6) 91 (2.9) 104 (3.2) 116 (3.5) 128 (3.7) 140 (3.9) 152 (4.1) 32 (0.16) 55 (0.65) 75 (1.1) 94 (1.5) 113 (1.8) 131 (2.0) 149 (2.2) 166 (2.4) 184 (2.6) 201 (2.7) 218 (2.9) 45 (0.11) 77 (0.46) 105 (0.78) 132 (1.0) 158 (1.3) 184 (1.4) 209 (1.6) 234 (1.7) 258 (1.8) 282 (1.9) 306 (2.0) 76 (0.07) 129 (0.28) 176 (0.47) 221 (0.62) 265 (0.75) 308 (0.85) 349 (0.94) 390 (1.0) 431 (1.1) 471 (1.2) 511 (1.2) 116 (0.04) 195 (0.18) 266 (0.31) 333 (0.41) 398 (0.50) 462 (0.57) 528 (0.62) 589 (0.67) 648 (0.72) 709 (0.77) 770 (0.80) 153 (0.03) 258 (0.14) 354 (0.23) 444 (0.31) 531 (0.37) 617 (0.41) 700 (0.47) 783 (0.51) 864 (0.54) 945 (0.58) 1025 (0.60) 231 (0.02) 390 (0.09) 533 (0.15) 668 (0.20) 796 (0.25) 927 (0.28) 1054 (0.31) 1178 (0.34) 1300 (0.36) 1421 (0.38) 1541 (0.40) 328 (0.02) 555 (0.05) 759 (0.11) 953 (0.14) 1140 (0.17) 1323 (0.20) 1503 (0.22) 1680 (0.24) 1854 (0.25) 2027 (0.27) 2199 (0.28) 461 (0.01) 778 (0.045) 1065 (0.080) 1337 (0.10) 1599 (0.12) 1655 (0.14) 2107 (0.155) 2355 (0.17) 2599 (0.17) 2842 (0.19) 3082 (0.20) 767 (0.007) 1296 (0.027) 1773 (0.045) 2226 (0.062) 2663 (0.074) 3090 (0.085) 3509 (0.093) 3922 (0.101) 4329 (0.108) 4733 (0.114) 5133 (0.120) 1152 (0.005) 1946 (0.018) 2662 (0.031) 3341 (0.041) 3997 (0.049) 4638 (0.056) 5267 (0.062) 5886 (0.057) 6498 (0.072) 7103 (0.077) 7704 (0.080)
-4-
9.riteria
-5-
Reflow Criteria
-6-
LTPD Sampling Plans LTPD SAMPLING PLANS ( 拒 收 水 準 抽 樣 計 劃 表 )
M inimum size of sample to be te ste d to assure with 90 pe rce nt confide nce that a lot having pe rce nt-de fe ctive e qual to the spe cifie d LTPD will not be acce pte d (s ingle sample )
近似括弧內的A QL, 最小品質要求為平均 20批允收 19批
-7-
Summary & reference spec No.
1
Test
Precondition N/A
Condition
Method Guidelines
•ASE, 62-01-000-0014 •JEDEC22-A113-B JEDEC22-A113•JESD 020
Open / Short or F/T SAT Inspection
Pressure Cooker Test 96/168 hrs
Temperature Cycling Test 500/1000 cyc.
HighlyAccelerated Stress Test 48/96 hrs
High Temp.Storage Test 500/1000 hrs
-1-
Precondition/MRT test flow All package guarantee MSL3, except BCC, P-DIP, TCP. PBCC guarantee MSL1. P-DIP, TCP don’t need perform Precon. SAT perform 45EA. Baking 125'C/24 hrs Open / Short or F/T SAT Inspection TC 5cyc. -65~150'C
225EA 225EA
O/S&SAT
•ASE, 62-01-000-0012 •JEDEC22-A118 JEDEC22•ASE, 62-01-000-0011 •JEDEC22-A103 JEDEC22•ASE, 62-01-000-0009 •JEDEC22-A102 JEDEC22•ASE, 62-01-000-0008 •JEDEC22-A104 JEDEC22-
Simulate shipping
Set to be “Dry”
Precondition Level 1 85'C/85%RH 168 hrs
相关文档
最新文档