期末复习七年级上数学典型例题选
七年级上册数学典型题
七年级上册数学典型题
一、有理数的运算
1. 计算:公式
解析:
根据有理数的加减法法则,减去一个数等于加上这个数的相反数。
所以公式。
先计算公式,再计算公式。
2. 计算:公式
解析:
根据有理数的乘除法法则,两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个数等于乘以这个数的倒数。
先计算公式,再计算公式。
二、整式的加减
1. 化简:公式
解析:
合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
对于公式和公式是同类项,公式和公式是同类项。
合并同类项得:公式。
2. 先化简,再求值:公式,其中公式
解析:
先去括号:
原式公式。
再合并同类项:
得到公式。
当公式时,代入求值:
把公式代入公式得:公式。
三、一元一次方程
1. 解方程:公式
解析:
移项,把含公式的项移到等号左边,常数项移到等号右边,移项要变号。
得到公式。
合并同类项得公式。
2. 某班有学生45人,会下象棋的人数是会下围棋人数的
3.5倍,两种棋都会及两种棋都不会的人数都是5人,求只会下围棋的人数。
设会下围棋的有公式人,则会下象棋的有公式人。
根据全班人数可列方程:公式。
解析:
方程左边公式是会下棋的人数(两种棋都会的人算了两次,所以要减去5),再加上两种棋都不会的5人就是全班人数。
合并同类项得公式,解得公式。
只会下围棋的人数为会下围棋的人数减去两种棋都会下的人数,即公式
人。
初中七年级数学上册期末专项复习4套含答案
A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020
;
② 1 1 1
1
;
13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.
部编数学七年级上册期末真题必刷基础60题(33个考点专练)(解析版)含答案
期末真题必刷基础60题(33个考点专练)一.正数和负数(共3小题)1.(2022秋•昌图县期末)在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+12,﹣8,+9,﹣3,+7,﹣6,+10,﹣5.(1)B地位于A地的什么方向?距离A地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(1)根据正数和负数的实际意义,将所有数据相加计算后根据所得结果进行判断即可;(2)由题意求得所有数据的绝对值,然后结合已知条件计算即可.【解答】解:(1)∵12﹣8+9﹣3+7﹣6+10﹣5=16(千米),∴B地在A地的东边16千米;(2)由题意可得这一天走的总路程为:|+12|+|﹣8|+|+9|+|﹣3|+|+7|+|﹣6|+|+10|+|﹣5|=60千米,那么应耗油60×0.6=36(升),故还需补充的油量为:36﹣30=6(升),即冲锋舟当天救灾过程中至少还需补充6升油.【点评】本题考查正数和负数的实际意义及绝对值,结合已知条件进行正确的计算是解题的关键.2.(2022秋•山亭区期末)某果农把自家果园的柑橘包装后放到了网上销售.原计划每天卖10箱,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某个星期的销售情况(超额记为正,不足记为负,单位:箱).星期一二三四五六日+4﹣3﹣5+7﹣8+21﹣6与计划量的差值(1)根据记录的数据可知前五天共卖出多少箱?(2)本周实际销售总量达到了计划数量没有?(3)若每箱柑橘售价为80元,同时需要支出运费7元/箱,那么该果农本周总共收入多少元?【分析】(1)将前五天的销售量相加即得结论;(2)将表格中记录的数据相加得出结果,结果的符号表示达到或不足,结果的绝对值表示达到或不足的数量;(3)利用本周的总收入减去总运费即得结论.【解答】解:(1)10×5+4﹣3﹣5+7﹣8=45 (箱),答:根据记录的数据可知前五天共卖出45箱;(2)4﹣3﹣5+7﹣8+21﹣6=10>0,答:本周实际销售总量达到了计划数量;(3)(10×7+10)×80﹣(10×7+10)×7=5840(元),答:该果农本周总共收入5840元.【点评】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.3.(2022秋•千山区期末)某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星期一二三四五六日产量+10﹣6﹣8+15﹣12+18﹣9(1)根据记录,求出前三天共生产多少个?(2)请问产量最多的一天比产量最少的一天多生产多少个?(3)该厂实行计件工资制,每生产一个玩具10元,若按周计算,超额完成任务,超出部分每个12元;若未完成任务,生产出的玩具每个只能按8元发工资,那么该厂员工这一周的工资总额是多少?【分析】(1)三天的计划总数加上三天多生产的个数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总个数,然后按照工资标准求解.【解答】解:(1)100×3+10﹣6﹣8=296(个),∴前三天共生产296个;(2)18﹣(﹣12)=18+12=30(个),∴产量最多的一天比产量最少的一天多生产30个;(3)这一周多生产的总个数是10﹣6﹣8+15﹣12+18﹣9=8(个),10×700+12×8=7096(元).答:该厂工人这一周的工资是7096元.【点评】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.二.相反数(共3小题)4.(2022秋•二七区校级期末)﹣3的相反数是( )A.﹣B.3C.﹣3D.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.5.(2022秋•宁阳县期末)2023的相反数是( )A.B.C.2023D.﹣2023【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:2023的相反数是﹣2023.故选:D.【点评】本题考查相反数,关键是掌握相反数的定义.6.(2022秋•德州期末)﹣2023的相反数是 2023 .【分析】由相反数的概念即可解答.【解答】解:﹣2023的相反数是﹣(﹣2023)=2023.故答案为:2023.【点评】本题考查相反数的概念,关键是掌握:只有符号不同的两个数叫做互为相反数,求一个数的相反数的方法就是在这个数的前边添加“﹣”.三.绝对值(共1小题)7.(2022秋•福田区校级期末)的相反数( )A.2022B.﹣2022C.D.【分析】根据绝对值、相反数的意义即可得出答案.【解答】解:∵,又∵的相反数是,∴的相反数是,故选:D.【点评】本题考查绝对值、相反数的意义,掌握绝对值、相反数的意义是解题的关键.四.倒数(共1小题)8.(2022秋•新兴县期末)的倒数是 ﹣2 .【分析】直接根据倒数的概念解答即可.【解答】解:的倒数是:,故答案为:﹣2.【点评】本题考查了倒数的概念,即当a≠0时,a与互为倒数.特别要注意的是:负数的倒数还是负数,此题难度较小.五.有理数大小比较(共2小题)9.(2022秋•海门市期末)比较大小:﹣ > ﹣.(用“>”“=”或“<”连接)【分析】先通分,再比较其绝对值的大小,进而可得出结论.【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解题的关键.10.(2022秋•建邺区校级期末)有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b < 0,a+b < 0,a﹣c > 0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.【分析】观察数轴可知:c<a<0<b<﹣a<﹣c.(1)由c<a<0<b<﹣a<﹣c,可得出c﹣b<0、a+b<0、a﹣c>0,此题得解;(2)由c﹣b<0、a+b<0、a﹣c>0,可得出|c﹣b|+|a+b|﹣|a﹣c|=b﹣c+(﹣a﹣b)﹣(a﹣c),去掉括号合并同类项即可得出结论.【解答】解:观察数轴可知:c<a<0<b<﹣a<﹣c.(1)∵c<a<0<b<﹣a<﹣c,∴c﹣b<0,a+b<0,a﹣c>0.故答案为:<;<;>.(2)∵c﹣b<0,a+b<0,a﹣c>0,∴|c﹣b|+|a+b|﹣|a﹣c|=b﹣c+(﹣a﹣b)﹣(a﹣c)=b﹣c﹣a﹣b﹣a+c=﹣2a.【点评】本题考查了有理数的大小比较、数轴以及绝对值,观察数轴找出c<a<0<b<﹣a<﹣c是解题的关键.六.有理数的除法(共1小题)11.(2022秋•垫江县期末)计算(﹣6)÷(﹣)×6的结果是( )A.6B.36C.﹣1D.1【分析】将除法变为乘法,再约分计算即可求解.【解答】解:(﹣6)÷(﹣)×6=(﹣6)×(﹣6)×6=36.故选:B.【点评】本题考查了有理数的乘除法,关键是熟练掌握计算法则正确进行计算.七.有理数的乘方(共1小题)12.(2022秋•秀山县期末)把下列各数填在相应的大括号里.0.245,+7,0,﹣1.07,﹣|﹣3|,,﹣(﹣6),,(﹣2)2正数集合:{ 0.245,+7,,﹣(﹣6),(﹣2)2 …}正分数集合:{ 0.245, …}负整数集合:{ ﹣|﹣3| …}负数集合:{ ﹣1.07,﹣|﹣3|, …}非正整数集合:{ 0,﹣|﹣3| …}【分析】根据有理数的分类进行解答即可.【解答】解:﹣|﹣3|=﹣3,﹣(﹣6)=6,(﹣2)2=4;正数集合:{0.245,+7,,﹣(﹣6),(﹣2)2…},正分数集合:{0.245,…},负整数集合:{﹣|﹣3|…},负数集合:{﹣1.07,﹣|﹣3|,…},非正整数集合:{ 0,﹣|﹣3|…},故答案为:0.245,+7,,﹣(﹣6),(﹣2)2;0.245,;﹣|﹣3|;﹣1.07,﹣|﹣3|,;0,﹣|﹣3|.【点评】本题主要考查了有理数的分类,绝对值的意义,解题的关键是熟练掌握有理数的定义.八.非负数的性质:偶次方(共1小题)13.(2022秋•泉港区期末)已知|m﹣3|+(n+2)2=0,则m+2n的值为( )A.﹣7B.7C.﹣1D.1【分析】直接利用非负数的性质得出m,n的值,进而代入得出答案.【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0,n+2=0,解得:m=3,n=﹣2,∴m+2n=3﹣4=﹣1.故选:C.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.九.有理数的混合运算(共1小题)14.(2022秋•市中区期末)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)= 7 .【分析】根据新定义把新运算转化为常规运算进行解答便可.【解答】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点评】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.一十.近似数和有效数字(共2小题)15.(2022秋•平谷区期末)用四舍五入法把3.1415926精确到0.01,所得到的近似数为 3.14 .【分析】把千分位上的数字1进行四舍五入即可.【解答】解:3.1415926精确到0.01,所得到的近似数为3.14.故答案为:3.14.【点评】本题考查了近似数:“精确度”是近似数的常用表现形式.16.(2022秋•叙州区期末)用四舍五入法将0.05068精确到千分位的近似值为 0.051 .【分析】把万分位上的数字6进行四舍五入即可.【解答】解:0.05068≈0.051(精确到千分位).故答案为:0.051.【点评】本题考查了近似数:“精确度”是近似数的常用表现形式.一十一.科学记数法—表示较大的数(共2小题)17.(2022秋•西岗区校级期末)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,数据67500用科学记数法表示为( )A.6.75×103B.6.75×104C.67.5×105D.67.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:67500=6.75×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(2022秋•罗湖区期末)从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主,开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问使用北斗卫星导航系统超70000000次.其中70000000用科学记数法表示为( )A.7×103B.7×105C.7×106D.7×107【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:70000000=7×107.故选:D.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.一十二.代数式(共1小题)19.(2022秋•罗湖区期末)下列结论中正确的是( )A.对乘坐高铁的乘客进行安检,适宜采用普查的方式B.单项式的系数是C.a2+b2的意义是表示a,b两数的和的平方D.将弯曲的道路改直的数学道理是“过两点有且只有一条直线”【分析】根据抽样调查,单项式的定义,代数式的意义,线段的性质判断即可.【解答】解:A、对乘坐高铁的乘客进行安检,适宜采用普查方式,故符合题意;B、单项式的系数是π,故不符合题意;C、a2+b2的意义是表示a,b两数平方的和,故不符合题意;D、将弯曲的道路改直的数学道理是“两点之间,线段最短”,故不符合题意;故选:A.【点评】本题考查了抽样调查,单项式的定义,代数式的意义,线段的性质,熟练掌握抽样调查,单项式的定义,代数式的意义,线段的性质是解题的关键.一十三.代数式求值(共3小题)20.(2022秋•伊川县期末)若a+2b=3,则7+4b+2a= 13 .【分析】根据a+2b=3,可知2a+4b的值,进一步求解即可.【解答】解:∵a+2b=3,∴2a+4b=2(a+2b)=2×3=6,∴7+4b+2a=7+6=13,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.21.(2022秋•平江县期末)如图是一个简单的数值运算程序框图,如果输入x的值为﹣1,那么输出的数值是 27 .【分析】根据程序框图计算即可求出答案.【解答】解:﹣1+(﹣2)=﹣3,(﹣3)3=﹣27,﹣27×(﹣1)=27,故答案为:27.【点评】本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.22.(2022秋•连云港期末)根据如图所示的计算程序,若输入的值x=﹣2,则输出的值y= 5 .【分析】根据程序图即可求出y的值.【解答】解:∵x=﹣2<0,∴把x=﹣2代入y=x2+1,得y=(﹣2)2+1=5.故答案为:5.【点评】本题考查代数式求值,解题的关键是正确理解程序图,本题属于基础题型.一十四.同类项(共2小题)23.(2022秋•紫金县期末)下列各组中两项属于同类项的是( )A.﹣x2y和xy2B.x2y和x2zC.﹣m2n3和﹣3n3m2D.﹣ab和abc【分析】根据同类项的定义逐个判断即可.【解答】解:A.﹣x2y和xy2,相同字母的指数分别不相等,不是同类项,故本选项不符合题意;B.x2y和x2z的字母不相同,不是同类项,故本选项不符合题意;C.﹣m2n3和﹣3n3m2的字母相同,相同字母的指数也分别相等,是同类项,故本选项符合题意;D.﹣ab和abc的字母不完全相同,不是同类项,故本选项不符合题意;故选:C.【点评】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项叫同类项,常数项是同类项.24.(2022秋•南海区校级期末)单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是( )A.1B.3C.6D.8【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:m﹣1=1,n=3,解得:m=2,所以m n=23=8.故选:D.【点评】本题主要考查了同类项的定义,根据相同字母的指数相同列出方程是解题的关键.一十五.合并同类项(共1小题)25.(2022秋•建昌县期末)若多项式a3b m﹣2a n b4+3可以进一步合并同类项,则m,n的值分别是( )A.m=4,n=3B.m=3,n=4C.m=3,n=3D.m=4,n=4【分析】据同类项的定义(所含字母相同,相同字母的指数相同),即可求得m、n的值.【解答】解:∵多项式a3b m﹣2a n b4+3可以进一步合并同类项,∴a3b m和﹣2a n b4是同类项,∴m=4,n=3.故选:A.【点评】本题考查了同类项的定义,掌握同类项定义中相同字母的指数相同是关键.一十六.去括号与添括号(共1小题)26.(2022秋•海丰县期末)去括号:﹣(2a﹣3b)= ﹣2a+3b .【分析】根据去括号法则求解即可.【解答】解:﹣(2a﹣3b)=﹣2a+3b.故答案为:﹣2a+3b.【点评】本题主要考查了去括号,熟知去括号法则是解题的关键,如果括号前面是“+”号,去括号时不变号,如果括号前是“﹣”,去括号时要变号.一十七.单项式(共2小题)27.(2022秋•息县期末)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.﹣2xy2B.3x2C.2xy3D.2x3【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,故本选项错误;B、3x2系数是3,故本选项错误;C、2xy3次数是4,故本选项错误;D、2x3符合系数是2,次数是3,故本选项正确;故选:D.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.28.(2022秋•万柏林区期末)单项式的系数是 .【分析】直接利用单项式的系数的确定方法分析得出答案.【解答】解:单项式的系数是:.故答案为:.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.一十八.多项式(共1小题)29.(2022秋•铁锋区期末)多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.【解答】解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.一十九.整式的加减(共1小题)30.(2022秋•甘肃期末)教材中“整式的加减”一章的知识结构如图所示,则A和B分别代表的是( )A.整式,合并同类项B.单项式,合并同类项C.系数,次数D.多项式,合并同类项【分析】根据整式的定义,整式的加减,可得答案.【解答】解:单项式和多项式统称作整式,整式的加减就是去括号,合并同类项,故选:D.【点评】本题考查了整式的相关概念,解题的关键是掌握单项式和多项式统称作整式,整式的加减就是去括号,合并同类项.二十.整式的加减—化简求值(共3小题)31.(2022秋•罗湖区期末)先化简,再求值:2(a2﹣2a)﹣(2a2﹣3a)+1,其中a=﹣3.【分析】直接去括号,进而合并同类项,再把已知数据代入求出答案.【解答】解:原式=2a2﹣4a﹣2a2+3a+1=﹣a+1,当a=﹣3时,原式=﹣a+1=﹣(﹣3)+1=4.【点评】此题主要考查了整式的加减——化简求值,注意括号前是“﹣”时,去括号后括号内各项要变号是解题关键.32.(2022秋•东丽区期末)先化简,再求值:,其中a=﹣3,.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:==﹣3a+b2,当时,原式=.【点评】此题考查了整式的加减——化简求值,熟练掌握运算法则是解本题的关键.33.(2022秋•永定区期末)计算:已知A=b2﹣a2+5ab,B=3ab+2b2﹣a2.(1)化简:2A﹣B;(2)当a=1,b=2时,求2A﹣B的值.【分析】(1)根据整式的加减运算进行化简即可求出答案.(2)将a与b的值代入原式即可求出答案.【解答】解:(1)原式=2(b2﹣a2+5ab)﹣(3ab+2b2﹣a2)=2b2﹣2a2+10ab﹣3ab﹣2b2+a2=﹣a2+7ab,(2)当a=1,b=2时,原式=﹣1+7×1×2=﹣1+14=13.【点评】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,属于基础题型.二十一.方程的解(共2小题)34.(2022秋•罗湖区期末)定义一种新的运算“⊗”,它的运算法则为:当a、b为有理数时,a⊗,比如:6⊗4==1,则方程x⊗2=1⊗x的解为x= .【分析】根据定义直接求解即可.【解答】解:∵x⊗2=1⊗x,∴x﹣,解得x=,故答案为:.【点评】本题考查一元一次方程的解,理解定义,结合新定义,能将所求问题转化为一元一次方程的解是解题的关键.35.(2022秋•思明区校级期末)如果关于m的方程2m+b=m﹣1的解是﹣4,求b的值 3 .【分析】把m=﹣4代入方程,求出b的值即可.【解答】解:∵关于m的方程2m+b=m﹣1的解是﹣4,∴2×(﹣4)+b=﹣4﹣1,∴b=3.故答案为:3.【点评】本题考查方程的解,关键是掌握方程解的定义.二十二.等式的性质(共1小题)36.(2022秋•陵城区期末)下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若x=y,则=,a≠0,故此选项错误,符合题意;C、若x=y,则1﹣3x=1﹣3y,正确,不合题意;D、若a=b,则ac=bc,正确,不合题意.故选:B.【点评】此题主要考查了等式的性质,正确把握相关性质是解题关键.二十三.一元一次方程的定义(共1小题)37.(2022秋•新泰市期末)如果(4﹣m)x|m|﹣3﹣16=0是关于x的一元一次方程,那么m 的值为( )A.±4B.4C.2D.﹣4【分析】依据一元一次方程的定义可知|m|﹣3=1且m﹣4≠0,从而可求得m的值.【解答】解:∵(4﹣m)x|m|﹣3﹣16=0是关于x的一元一次方程,∴|m|﹣3=1且m﹣4≠0,解得m=﹣4.故选:D.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到|m|﹣3=1且m﹣4≠0是解题的关键.二十四.一元一次方程的解(共6小题)38.(2022秋•黄埔区校级期末)若x=1是关于x的方程2x+a=0的解,则a的值为( )A.﹣1B.﹣2C.1D.2【分析】根据一元一次方程的解的定义解决此题.【解答】解:由题意得:当x=1时,2+a=0.∴a=﹣2.故选:B.【点评】本题主要考查一元一次方程的解,熟练掌握一元一次方程的解的定义是解决本题的关键.39.(2022秋•兴隆县期末)方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个( )A.2个B.3个C.4个D.5个【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.40.(2022秋•沙依巴克区校级期末)如果x=3是关于x的方程3m﹣2x=6的解,则m的值是( )A.0B.C.﹣4D.4【分析】把x的值代入方程计算即可求出m的值.【解答】解:把x=3代入方程得:3m﹣6=6,解得:m=4,故选:D.【点评】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.41.(2022秋•孝南区期末)关于x的一元一次方程mx+1=2的解为x=﹣1,则m= ﹣1 .【分析】将x=﹣1代入方程mx+1=2,得到关于m的一元一次方程,解方程即可求出m 的值.【解答】解:∵关于x的一元一次方程mx+1=2的解为x=﹣1,∴﹣m+1=2,解得m=﹣1.故答案为:﹣1.【点评】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.42.(2022秋•兴化市校级期末)小王同学在解方程3x﹣2=☆x﹣5时,发现“☆”处的数字模糊不清,但察看答案可知该方程的解为x=3,则“☆”处的数字为 4 .【分析】根据方程的解满足方程,设☆=a,可得关于a的方程,根据解方程,可得a的值.【解答】解:设☆=a,由x=3是3x﹣2=ax﹣5的解,得3×3﹣2=3a﹣5,解得a=4.故答案为:4.【点评】本题考查解一元一次方程的解和解方程,解题的关键是掌握解一元一次方程.43.(2022秋•沅江市期末)若x=3是关于x的方程ax+4=1的解,则a= ﹣1 .【分析】根据方程解的定义,把x=3代入方程即可得出a的值.【解答】解:∵x=3是关于x的方程ax+4=1的解,∴3a+4=1,∴a=﹣1,故答案为:﹣1.【点评】本题考查了一元一次方程的解,掌握方程解的定义,以及一元一次方程的解法是解题的关键.二十五.解一元一次方程(共5小题)44.(2022秋•交口县期末)下列方程的变形中,正确的是( )A.由﹣2x=9,得x=﹣B.由x=0,得x=3C.由7=﹣2x﹣5,得2x=5﹣7D.由3=x﹣2,得x=3+2【分析】应用等式的性质进行计算即可得出答案.【解答】解:A.由﹣2x=9,得x=﹣,所以A变形不正确,故A选项不符合题意;B.由x=0,得x=0,所以A变形不正确,故A选项不符合题意;C.由7=﹣2x﹣5,得2x=﹣5﹣7,所以C变形不正确,故C选项不符合题意;D.由3=x﹣2,得x=3+2所以D变形正确,故D选项不符合题意.故选:D.【点评】本题主要考查了等式的性质,熟练掌握等式的性质是解决本题的关键.45.(2022秋•南开区校级期末)定义运算法则:a⊕b=a2+ab,例如3⊕2=32+3×2=15.若2⊕x=10,则x的值为 3 .【分析】根据题意列出关于x的一元一次方程,求出x的值即可.【解答】解:∵2⊕x=10,∴22+2x=10,即4+2x=10,解得x=3.故答案为:3.【点评】本题考查的是解一元一次方程,根据题意得出关于x的一元一次方程是解题的关键.46.(2022秋•平桥区期末)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项、合并同类项,系数化为1,从而得到方程的解.【解答】解:去分母得:2(x+3)=12﹣3(3﹣2x)去括号得:2x+6=12﹣9+6x移项得:2x﹣6x=12﹣9﹣6合并同类项得:﹣4x=﹣3系数化为1得:x=.【点评】注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.47.(2022秋•新泰市期末)解方程(1)4x﹣6=2(3x﹣1);(2)y﹣=3﹣【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣6=6x﹣2,移项合并得:﹣2x=4,解得:x=﹣2;(2)去分母得:10y﹣5(y﹣1)=30﹣2(y+2),去括号得:10y﹣5y+5=30﹣2y﹣4,移项合并得:7y=21,解得:y=3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.48.(2022秋•望城区期末)解下列方程:(1)4x﹣3=2﹣5x;(2).【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号、移项、合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,4x+5x=2+3,合并同类项得,9x=5,x的系数化为1得,x=;(2)去分母得,2(2x﹣1)﹣(10x+1)=12,去括号得,4x﹣2﹣10x﹣1=12,移项得,4x﹣10x=12+2+1,合并同类项得,﹣6x=15,x的系数化为1得,x=﹣.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.二十六.由实际问题抽象出一元一次方程(共1小题)49.(2022秋•罗湖区期末)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x【分析】题目已经设出分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),故B答案正确,故选:B.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.二十七.认识立体图形(共1小题)50.(2022秋•泗阳县期末)在一个六棱柱中,共 18 有条棱.【分析】根据六棱柱的特点可得答案.【解答】解:在一个六棱柱中,共有3×6=18条棱,故答案为:18.【点评】此题主要考查了认识立体图形,关键是认识常见的立体图形,掌握棱柱、棱锥、圆柱、圆锥的特点.二十八.点、线、面、体(共1小题)51.(2022秋•市南区期末)下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【点评】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.二十九.专题:正方体相对两个面上的文字(共1小题)52.(2022秋•新都区期末)一个正方体的平面展开图如图所示,将它折成正方体后“时”字对面的字是 分 .【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“时”字相对的面上的字是“分”.故答案为:分.。
人教版七年级上期末总复习典题难题练习(收藏版)
七上期末复习一.选择题(共20小题)1.已知如图,A、O、B是同一直线上的三点,OC、OD、OE是从O点引出的三条射线,且∠1:∠2:∠3:∠4=1:2:3:4,则∠5=()A.30°B.40°C.50°D.60°2.下列说法中正确的有()①延长直线AB②延长线段AB③延长射线AB④画直线AB=5cm⑤在射线AB上截取线段AC,使AC=5cm.A.1个B.2个C.3个D.4个3.下面四个所给的选项中,能折成如图给定的图形的是()A.B.C.D.4.两根木条一根长80cm另一根长60cm,把它们一端重合放在同一直线上,此时两根木条中点的距离是()A.10cm B.70cm或10cm C.20cm D.20cm或70cm5.已知∠AOB=90°,OC为一射线,OM,ON分别平分∠BOC和∠AOC,则∠MON是()A.45°B.90°C.45°或135°D.90°或135°6.将一段72cm长的绳子,从一端开始每3cm作一记号,每4cm也作一记号,然后从有记号的地方剪断,则这段绳子共被剪成的段数为()A.37B.36C.35D.347.4点钟时,时针与分针构成120°的角,问到4点半时,时针与分针所构成的角为()A.60°B.45°C.40°D.30°8.长方形纸沿直线切去一个角后,还剩几个角?()A.5B.4C.3D.3或4或5 9.一天,明明与同学玩游戏,一枚骰子抛掷三次,得三种不同的结果(如图),则写有“?”一面上的点数是()A.1B.2C.3D.610.如果∠1与∠2互余,∠3与∠4互补,且∠1=∠3,那么()A.∠2+90°=∠4B.∠2=∠4C.∠2与∠4互余D.∠2与∠4互补11.一个角的补角与它的余角相差()度.A.60°B.90°C.120°D.150°12.如图,某汽车公司所运营的公路AB段有四个车站依次是A、C、D、B,AC =CD=DB.现想在AB段建一个加油站M,要求使A、C、D、B站的各一辆汽车到加油站M所花的总时间最少,则M的位置在()A.在AB之间B.在CD之间C.在AC之间D.在BD之间13.如图,三个正方形有一个公共顶点A,那么∠1的度数为()A.10°B.15°C.20°D.25°14.五位朋友a、b、c、d、e在公园聚会,见面时握手致意问候.已知:a握了4次,b握了1次,c握了3次,d握了2次.到目前为止,e握了()次.A.1B.2C.3D.415.如图所示,在一条笔直的公路上有7个村庄,其中A、B、C、D、E、F离城市的距离分别为4,10,15,17,19,20km,而村庄G正好是AF的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在()A.A处B.C处C.G处D.E处16.已知点D在线段EF上,下列四个等式:①DE=2DF,②,③EF =2DF,④,其中能表示:点D是线段EF的一个三等分点的表达式是()A.①②③B.②③④C.①②④D.①③④17.如图,按给定的点和边,一共可以数出()个多边形?A.24B.30C.36D.4018.由下列条件一定能得到“P是线段AB的中点”的是()A.AP=AB B.AB=2PB C.AP=PB D.AP=PB=AB 19.一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面上的两数之和为“0”,则填在A、B、C内的三个数依次是()A.0,﹣2,1B.0,1,﹣2C.1,0,﹣2D.﹣2,0,1 20.一个角的补角的一半比这个角的余角的2倍小3°,那么这个角等于()A.58°B.59°C.60°D.61°二.填空题(共19小题)21.如图,在直线m上有A、B、C、D四个点,图中共有条线段,有条射线,有直线.22.如图中共有条直线.23.如图是一个正方体的展开图,标注了字母a的面是正方体的正面.如果正方体相对两个面上的式子的值相等,求(y﹣x)2015的值.24.如果1昼夜有20个小时,1小时有100分钟,那么当6时75分的时候,时针与分针的夹角是度.25.如图,C是线段AB上的一点,D是线段CB的中点.已知图中所有线段的长度之和为23,线段AC的长度与线段CB的长度都是正整数,则线段AC长度是多少?26.在一个平面内,画1条直线,能把平面分成2部分;画2条直线,最多能把平面分成4部分;画3条直线,最多能把平面分成7部分;画4条直线,最多能把平面分成11部分;…照此规律计算下去,画2004条直线,最多能把平面分成部分.27.三个有理数a、b、c之积是负数,其和是正数,当x=时,则x10﹣92x+2=.28.已知ax2+5x+14=2x2﹣2x+3a是关于x的一元一次方程,则其解是.29.某校七年级有三个班,(1)班有40人,(2)班有36人,(3)班有44人,现三个班都按相同的比例派同学参加第七届“学用杯”数学知识应用竞赛,已知全年级共有30人未参加,则该校七年级(1)班参加竞赛的有人.30.已知x﹣y=3,xy=2,则3x﹣5xy﹣3y的值是.31.方程的解是.32.使等式x=﹣x成立的x的值是.33.关于x的方程3x=2x+a的解与=的解相同,则a=.34.已知关于x的方程a(x﹣3)+b(3x+1)=5(x+1)有无穷多个解,则a+b =.35.点A,B是在数轴上不同的两个点,它们所对应的数分别是﹣4,,且点A、B到原点的距离相等,则x的值为.36.某商店售出两台电视机,一台赚了12%,另一台赔了12%,售价都是3080元,则商店的盈利情况是.37.如果a、b为定值,关于x的方程,无论k为任何值,它的根总是1,则2a﹣b=.38.若a,b,c是正数,则关于x方程的解为x等于.39.如图的数阵是由77个偶数排成的,其中20、22、24、36、38、40这六个数由一个平行四边形围住,它们的和是180.把这个平行四边形沿上下、左右平移后,又围住了右边数阵中的另外六个数,如果这六个数的和是660,那么,它们当中位于平行四边形左上角的那个数是.三.解答题(共6小题)40.某超市举行促销活动,对购物者实行了一项优惠措施:一次性购物满200元~499.99元者优惠5%;一次性购物500元以上者(包括500元)优惠10%.小慧妈妈在此活动期间,去该超市买了三次东西,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买,比三次分开买便宜39.4元,已经知道第一次的购物总额是第三次购物总额的.根据现有的条件,能否求出小慧妈妈第二次买了多少元的东西?若能,请写出详细解答过程;若不能,请说明理由.41.去年在德国举行的“世界杯”足球赛吸引了世界各国球迷的目光,不知道你对足球比赛的积分规则了解多少呢?最为常用的足球比赛的积分规则为:胜一场得3分,平一场得1分,输一场得0分.现在知道,有一支足球队在某个赛季共需比赛16场,现已比赛了9场,输了2场,得19分.请问:(1)前9场比赛中,这支球队共胜了多少场?(2)这支球队打满16场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满16场比赛,得分不低于34分,就可以达到预期的目标.请你分析一下,在后面的7场比赛中,这支球队至少要胜几场,才能达到预期目标?42.在一次人才招聘会上,有A、B两家公司分别开出他们的工资标准:A公司允诺第一年月工资为1500元,以后每月工资比上一年工资增加230元;B公司允诺第一个月工资为2000元,以后每月工资在上一年月工资基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人打算在A公司或B公司连续工作n年,则他第n年的月工资收入各为多少?(2)如该人打算连续在一家公司工作10年,仅以工资收入来看,该人去哪家公司较合算?43.如图所示,有一块长为40cm、宽为35cm的长方形红布,晶晶的妈妈想把它剪成一个正方形,第一次她剪去了一个一定宽度的长方形布片,然后在剩下的长方形布片中又剪去长方形的布片,这次剪去的布片的宽度是上次的2倍,这样剩下的布片恰好是一个正方形,请问晶晶妈妈第一次剪去的长方形布片的宽为多少厘米?44.地上有一堆苹果.第一天猴子吃掉了这堆苹果的个数的,又扔掉8个到河里;第二天吃掉的苹果数若再加上3个就是第一天所剩苹果的,第三天又吃了18个刚好吃完,问这堆苹果有多少个?45.某汽车配件厂有工人300人,生产甲种配件,平均每人每年可创造利润m 万元(m为大于零的常数),为减员增效,决定从中调配x人去生产新开发的乙种配件,根据预算,调配后继续生产甲种配件的工人平均每人每年创造利润可增加20%,生产乙种配件的工人平均每人每年可创造利润1.54m万元.(1)调配后,此汽车配件厂生产甲、乙两种配件的年利润分别为多少?(用含m,x的代数式表示)(2)如果调配后,生产甲种配件的年利润不小于调配前年利润的,生产乙种配件的年利润大于调配前年利润的一半,应如何设计调配方案?哪种方案全年总利润最大?七上期末复习参考答案一.选择题(共20小题)1.D;2.B;3.B;4.B;5.C;6.B;7.B;8.D;9.D;10.A;11.B;12.B;13.B;14.B;15.B;16.C;17.D;18.D;19.A;20.A;二.填空题(共19小题)21.6;8;1;22.3;23.;24.27;25.;26.2009011;27.﹣89;28.﹣;29.30;30.﹣1;31.x=2009;32.0;33.2;34.1;35.﹣3;36.赔了90元;37.17;38.a+b+c;39.100;三.解答题(共6小题)三.解答题(共6小题)40.则第二次购物为270﹣x=270﹣155=115元.41.解:(1)所以前9场比赛中,这个球队共胜了6场.(2)打满16场比赛最高能得19+(16﹣9)×3=40(分).(3)以后的比赛中这个球队至少要胜4场.42.解:(1)此人在A、B公司第n年的月工资数分别为a n=1500+230(n﹣1),b n=2000(1+5%)n﹣1.其中n为正整数;(2)若该人在A公司连续工作10年,则他的工资收入总量为12(a1+a2+…+a10)=304200(元).若该人在B公司连续工作10年,则他的工资收入总量为12(b1+b2+…+b10)=301869(元).故该人应选择在A公司工作.43.答:晶晶妈妈第一次剪去的长方形布片的宽为5厘米.44.答:这堆苹果有80个.45.解:(1)生产甲种配件的人数为300﹣x,平均每人每年创造的利润为m×(1+20%)万元,所以调配后企业生产甲种配件的年利润为(300﹣x)(1+20%)m万元;生产乙种配件的人数为x,平均每人每年创造的利润为1.54m,所以生产乙种配件的年利润为1.54mx万元;(2),解得97 <x≤100,∵x为正整数,∴x可取98,99,100.∴共有三种调配方案:①202人生产甲种配件,98人生产乙种配件;②201人生产甲种配件,99人生产乙种配件;③200人生产甲种配件,100人生产乙种配件;∵总利润y=(300﹣x)(1+20%)m+1.54mx,=0.34mx+360m∴x越大,利润y越大,∴当x取最大值100,即200人生产A种产品,100人生产B种产品时总利润最大.。
七年级数学上册第三章一元一次方程经典大题例题
(名师选题)七年级数学上册第三章一元一次方程经典大题例题单选题1、在解关于y的方程2y-13=y+a2-1时,小明在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为y=4,则方程正确的解是()A.y=-1B.y=-2C.y=1D.y=2答案:A分析:把y=4代入方程2(2y-1)=3(y+a)-1得出2×(8-1)=3(4+a)-1,求出方程的解是a=1,把a=1代入方程2y-1 3=y+a2-1得出2y-13=y+12-1,再去分母,去括号,移项,合并同类项,系数化成1即可.解:∵在解关于y的方程2y-13=y+a2-1时,小明在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为y=4,∴把y=4代入方程2(2y-1)=3(y+a)-1,得2×(8-1)=3(4+a)-1,解得:a=1,即方程为2y-13=y+12-1,去分母得2(2y-1)=3(y+1)-6,去括号得4y-2=3y+3-6,移项得4y-3y=3-6+2,解得y=-1,故选:A.小提示:本题考查一元一次方程的解和解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.2、古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x,则所列方程为()A.23x+17x+x=33B.23x+12x+17x=33C.23x+12x+17x+x=33D.x+23x+17x−12x=33答案:C分析:根据题意列方程23x+12x+17x+x=33.解:由题意可得23x+12x+17x+x=33.故选C小提示:本题考查了一元一次方程的应用,找等量关系是解题的关键.3、解方程3x−12=1−x+33时,去分母结果正确的是()A.3(3x−1)=1−2(x+3)B.3(3x−1)=1−(x+3) C.2(3x−1)=6−3(x+3)D.3(3x−1)=6−2(x+3)答案:D分析:根据等式的性质,把方程3x−12=1−x+33的等号的左右两边分别乘6,判断出去分母结果正确的是哪个即可.解:解方程3x−12=1−x+33时,去分母结果正确的是:3(3x-1)=6-2(x+3).故选:D.小提示:此题主要考查了解一元一次方程的方法,注意等式的性质的应用.4、下列运用等式的性质对等式进行的变形中,错误的是()A.若a(x2+1)=b(x2+1),则a=b B.若a=b,则ac=bcC.若a=b,则ac2=bc2D.若x=y,则x−3=y−3答案:C分析:根据等式的性质,逐项判断即可.解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.小提示:此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5、《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94−x)=35B.4x+2(35−x)=94C.2x+4(94−x)=35D.2x+4(35−x)=94答案:D分析:设鸡有x只,则兔子有(35-x)只,根据足共有94列出方程即可.解:设鸡有x只,则兔子有(35-x)只,根据题意可得:2x+4(35-x)=94,故选:D.小提示:题目主要考查一元一次方程的应用,理解题意列出方程是解题关键.6、下列方程变形中,正确的是()=1,去分母,得3(x−2)−(4x−3)=1A.x−2−4x−33B.1+x=4,移项,得x=4−1C.2x−(1−3x)=5,去括号,得2x−1−3x=5D.2x=−3,两边都除以2,得x=−23答案:B分析:根据去分母、去括号、移项、系数化1等基本步骤逐项判断即可.=1,去分母,得3(x−2)−(4x−3)=3,故本选项错误,不合题意;解:A,x−2−4x−33B,1+x=4,移项,得x=4−1,故本选项正确,符合题意;C,2x−(1−3x)=5,去括号,得2x−1+3x=5,故本选项错误,不合题意;,故本选项错误,不合题意;D,2x=−3,两边都除以2,得x=−32故选B.小提示:本题考查解一元一次方程,解题的关键是掌握去分母、去括号、移项、系数化1等基本步骤.7、在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4) C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)答案:A分析:根据水的体积不变的性质以及圆柱体体积计算公式,即可列出一元一次方程,从而得到答案. 依题意得:π×(92)2×x =π×(52)2×(x+4)故选:A .小提示:本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.8、将连续的奇数1、3、5、7、9、11等,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .34B .62C .118D .158答案:A分析:由题意,设T 字框内处于中间且靠上方的数为2n ﹣1,则框内该数左边的数为2n ﹣3,右边的为2n +1,下面的数为2n ﹣1+10,故T 字框内四个数的和为:8n +6.由题意,设T 字框内处于中间且靠上方的数为2n ﹣1,则框内该数左边的数为2n ﹣3,右边的为2n +1,下面的数为2n ﹣1+10,∴T 字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为34,则有:8n+6=34,解得n=3.5.不满足整数的条件.故框住的四个数的和不能等于34,故本选项符合题意;B、由题意,令框住的四个数的和为62,则有:8n+6=62,解得n=7.满足整数的条件.故本选项不符合题意;C、由题意,令框住的四个数的和为118,则有:8n+6=118,解得n=14.满足整数的条件.故本选项不符合题意;D、由题意,令框住的四个数的和为158,则有:8n+6=158,解得n=19.满足整数的条件.故本选项不符合题意;故选:A.小提示:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.9、已知x=y,则下列等式不一定成立的是()A.x﹣k=y﹣kB.x+2k=y+2kC.xk =ykD.kx=ky答案:C分析:根据等式的基本性质1是等式两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式两边都乘以(或除以)同一个数(除数不为0),所得的结果仍是等式可以得出答案.解:A、因为x=y,根据等式性质1,等式两边都减去k,等式仍然成立,所以A正确;B、因为x=y,根据等式性质1,等式两边都加上2k,等式仍然成立,所以B正确;C、因为x=y,根据等式性质2,等式两边都同时除以一个不为0的数,等式才成立,由于此选项没强调k≠0,所以C不一定成立;D、因为x=y,根据等式的基本性质2,等式两边都乘以k,等式仍然成立,所以D正确.故选C.小提示:本题主要考查了等式的基本性质,熟练掌握等式的基本性质以及理解到位除数不能为0是解决本题的关键.10、下列解方程的过程中,移项错误的是()A.方程2x+6=−3变形为2x=−6+3B.方程2x−6=−3变形为2x=−3+6C.方程3x=4−x变形为3x+x=4D.方程4−x=3x变形为x+3x=4答案:A分析:各方程移项变形得到结果,即可作出判断.解:A、方程2x+6=-3变形为2x=-3-6,该选项符合题意;B、方程2x-6=-3变形为2x=-3+6,该选项不符合题意;C、方程3x=4-x变形为3x+x=4,该选项不符合题意;D、方程4-x=3x变形为x+3x=4,该选项不符合题意.故选:A.小提示:此题考查了解一元一次方程,以及等式的性质,熟练掌握等式的性质是解本题的关键.填空题11、某足球协会举办一次足球赛,其记分规则及奖励方案(每人)如下表:(1)A队胜______场;(2)若每赛一场每名队员均得出场费500元,则A队的某一名队员在这12场比赛中所得的奖金与他的出场费的和为______元.答案: 5 18400分析:(1)设A队胜利x场,则平了(12−x)场,根据总积分为22分列出方程即可求解;(2)根据(1)中求得胜场数和平场数计算每名队员的奖金和出场费的总和即可解题.解:(1)设A队胜利x场,则平了(12−x)场,根据题意得:3x+(12−x)=22,解得:x=5;∴A队胜5场.所以答案是:5.(2)∵每场比赛出场费500元,12场比赛出场费共500×12=6000(元),赢了5场,奖金为1500×5=7500(元),平了7场,奖金为700×7=4900(元),∴奖金加出场费一共6000+7500+4900=18400(元).所以答案是:18400.小提示:本题主要考查了一元一次方程的应用,本题中根据总场数和总积分,设A队胜利x场,列出方程求解,是解题的关键.12、如图,在编写数学谜题时,“口”内要求填写同一个数字,若设“口”内的数字为y,则可列出方程___________.答案:5(120+y)=100y+30分析:根据题意可知,第一个乘数可以表示为120+y,积可以表示为100y+30,由此列出方程即可.解:由题意得:5(120+y)=100y+30,所以答案是:5(120+y)=100y+30.小提示:本题主要考查了列一元一次方程,正确理解题意是解题的关键.13、已知x+2y−3=0,用含x的代数式表示y:__________,用含y的代数式表示x:_________.答案:y=3−xx=3−2y2分析:先把x当常数,求解函数值y,再把y当常数,求解自变量x,从而可得答案.解:∵x+2y−3=0,∴2y=−x+3,∴y=3−x2,∵x+2y−3=0,∴x=3−2y,所以答案是:y=3−x2,x=3−2y小提示:本题考查的是函数自变量与因变量之间的关系,掌握用含有一个变量的代数式表示另外一个变量是解题的关键.14、如果关于x的方程12022x+2021=2x+m的解是x=2023,则关于y的方程12022(y+1)+2021=2(y+1)+m的解是y=___.答案:2022分析:根据题意得到y+1=2023,即可求出y的值.解:∵关于x的方程12022x+2021=2x+m的解是x=2023,∴关于y的方程12022(y+1)+2021=2(y+1)+m中的y+1=2023,解得:y=2022,所以答案是:2022.小提示:此题考查了一元一次方程解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程解的含义.15、为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月),例如:王女士家6月份用电420度,电费=180×0.6+220×0.7+20×0.9=280元,实行“阶梯价格”收费以后,居民用电__________千瓦时,其当月的平均电价每千瓦时恰好为0.65元.分析:设实行“阶梯价格”收费以后,居民月用电x千瓦时,其当月的平均电价每千瓦时恰好为0.65元,分情况讨论得出180<x<400,再由题意列出方程,解方程即可.解:设实行“阶梯价格”收费以后,居民月用电x千瓦时,其当月的平均电价每千瓦时恰好为0.65元,①当居民月用电量0<x≤180时,∵0.6<0.65,∴x>180;②当x=400时,电费为:180×0.6+220×0.7=262(元),平均电价=262÷400=0.655(元/度),∴180<x<400;由题意得:180×0.6+(x﹣180)×0.7=0.65x,解得:x=360.故实行“阶梯价格”收费以后,居民用电360千瓦时,其当月的平均电价每千瓦时恰好为0.65元.所以答案是:360.小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.解答题,则称该方程为“商解方程”.例如:2 16、我们规定:若关于x的一元一次方程a+x=b(a≠0)的解为x=ba+x=4的解为x=2且2=4,则方程2+x=4是“商解方程”.请回答下列问题:2(1)判断3+x=5是不是“商解方程”.(2)若关于x的一元一次方程6+x=3(m﹣3)是“商解方程”,求m的值.答案:(1)不是(2)m=275分析:(1)求出方程的解是x=2,再进行判断即可;(2)先求出方程的解,再根据题意得出关于m的方程,最后求出方程的解即可.(1)3+x=5,x=2,而2≠5,3所以3+x=5不是“商解方程”;(2)6+x =3(m −3),6+x =3m −9,x =3m −9−6=3m −15,∵关于x 的一元一次方程6+x =3(m −3)是“商解方程”,∴ 3(m−3)6=3m −15,解得:m =275.小提示:本题考查了一元一次方程的解和解一元一次方程,能熟记方程的解的定义(使方程左右两边相等的未知数的值,叫方程的解)是解此题的关键.17、观察下列两个等式:1−23=2×1×23−1,2−35=2×2×35−1. 给出定义如下:我们称使等式a −b =2ab −1成立的一对有理数(a ,b )为“好姊妹数对”,如:数对(1,23),(2,35),都是“好姊妹数对”. (1)数对(-2,1),(3,47)是“好姊妹数对”吗?(2)若(a ,3)是“好姊妹数对”,求a 的值;(3)若(m ,n )是“好姊妹数对”,那么(-n ,-m )是“好姊妹数对”吗?答案:(1)(−2,1)不“好姊妹数对”,(3,47)是“好姊妹数对”(2)a =−25(3)是“好姊妹数对”,理由见解析分析:(1)根据“好姊妹数对”的定义判断即可;(2)根据“好姊妹数对”的定义可得关于a 的一元一次方程,解方程即可;(3)根据“好姊妹数对”的定义解答即可.(1)解:(−2,1)不“好姊妹数对”,(3,47)是“好姊妹数对”,理由如下:∵−2−1=−3,2×(−2)×1−1=−5,∴(−2,1)不是“好姊妹数对”;∵3−47=177,2×3×47−1=177, ∴(3,47)是“好姊妹数对”.(2)解:∵(a,3)是“好姊妹数对”,∴a −3=6a −1,∴a =−25. (3)解:是“好姊妹数对”.理由:∵(m,n )是“好姊妹数对”,∴m −n =2mn −1,∴−n −(−m )=−n +m =m −n =2mn −1,∴(−n,−m )是“好姊妹数对”.小提示:本题考查有理数的混合运算、新定义,解答本题的关键是会用新定义解答问题.18、为了平衡电力负荷,减少用电高峰时段用电和不必要的能源消耗,浙江省居民生活用电可申请“峰谷电”,两种收费标准如下:未申请峰谷电即阶梯电价收员标准:低谷时用电200千瓦时.如果不申请峰谷电则需费用0.54×230+0.59×(300−230);若申请峰谷电则需费用0.57×100+0.29×200+0.05×(300−230).(1)小明家5月份用电总量为400千瓦时,其中峰时用电量为150千瓦时,低谷时间段用电量为250千瓦时,如不申请峰谷电,应付电费______元;若申请峰谷电,应付电费______元;(2)小强家未申请峰谷电,8月份一共交电费308.5元,求小强家8月份的用电总量;(3)小强听小朋介绍峰谷电节能且收费便宜,于是9月份就申请了峰谷电, 9月份用电总量是330千瓦时,经计算申请峰谷电后比申请前节约了54.5元,求小强家9月份的峰时用电量为多少?答案:(1)224.5 ;166.5(2)小强家8月份用电总量500千瓦时(3)小强家9月份峰时用电100千瓦时分析:(1)根据两种计费方式进行求解即可;(2)可设小强家8月份用电总量为x千瓦时,根据未申请峰谷电的方式进行列方程计算即可;(3)根据两种方式相差54.5元可列出方程求解.(1)解:不申请峰谷电,应付电费为:0.54×230+0.59×(400﹣230)=224.5(元),请峰谷电,应付电费为:0.57×150+0.29×250+0.05×(400﹣230)=166.5(元),所以答案是:224.5,166.5;(2)解:∵308.5>224.5,∴用电量超过400千瓦时,设小强家8月份用电总量为x千瓦时,依题意得:0.54×230+0.59×(400﹣230)+0.84(x﹣400)=308.5,解得:x=500,答:小强家8月份用电总量为500千瓦时;(3)解:设小强家9月份的峰时用电量为y千瓦时,依题意得:0.54×230+0.59×(330﹣230)﹣[0.57y+0.29(330﹣y)+0.05×(330﹣230)]=54.5,解得:y=100,答:小强家9月份的峰时用电量为100千瓦时.小提示:本题主要考查一元一次方程的应用,解答的关键是理解清楚题意找到等量关系.。
浙江省杭州市2022-2023学年度上学期七年级期末典型复习数学卷A(含解析)
浙江省杭州市2022-2023学年七年级上学期数学期末典型复习卷(A)一.选择题1.(2021秋•钱塘区期末)下列各组数中,互为倒数的是()A.﹣1与﹣1B.﹣0.25与C.﹣0.5与﹣2D.﹣1与12.(2021秋•钱塘区期末)2022的相反数是()A.﹣2202B.2202C.﹣2022D.20223.(2021秋•钱塘区期末)据科学家估计,地球的年龄大约是4600000000年,将数据4600000000用科学记数法表示应为()A.0.46×1010B.46×108C.4.6×1010D.4.6×1094.(2022春•上城区期末)原来花100元能购买某种糖果m千克,由于成本上涨,糖果涨价10%,那么涨价后花100元能买到糖果()A.千克B.千克C.千克D.千克5.(2022春•拱墅区期末)设(x﹣1)3=ax3+bx2+cx+d,则a﹣b+c﹣d的值为()A.2B.8C.﹣2D.﹣86.(2021秋•杭州期末)图中的长方形ABCD由1号、2号、3号、4号四个正方形和5号长方形组成,若1号正方形的边长为a,3号正方形的边长为b,则长方形ABCD的周长为()A.16a B.8b C.4a+6b D.8a+4b7.(2021秋•钱塘区期末)某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/时,求两个码头之间的距离,若设两个码头之间的距离为x千米,则可得方程为()A.4B.C.D.8.(2022春•滨江区期末)已知x﹣2y=1,且2=x﹣y.则x﹣4y=()A.﹣1B.1C.3D.49.(2021秋•杭州期末)如图,∠AOB,以OA为边作∠AOC,使∠BOC∠AOB,则下列结论成立的是()A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠AOC=2∠BOCD.∠AOC=∠BOC或∠AOC=3∠BOC10.(2021秋•上城区期末)如图,D、E顺次为线段AB上的两点,AB=20,C为AD的中点,则下列选项正确的是()A.若BE﹣DE=0,则AE﹣CD=7B.若BE﹣DE=2,则AE﹣CD=7C.若BE﹣DE=4,则AE﹣CD=7D.若BE﹣DE=6,则AE﹣CD=7二.填空题11.(2021秋•钱塘区期末)用四舍五入法把数1.3579精确到百分位,所得的近似数是.12.(2021秋•钱塘区期末)计算:.13.(2021秋•杭州期末)定义一种新运算:a⊕b=a2﹣2ab+b2,如1⊕2=12﹣2×1×2+22=1,若x⊕(﹣1)=x⊕3,则x=.14.(2021秋•上城区期末)若单项式x m+3y2与x2y n的和仍是单项式,则m n=.15.(2021秋•上城区期末)请写出一个次数为3,系数是负数的单项式:.16.(2021秋•西湖区期末)3x﹣7x=.17.(2021秋•钱塘区期末)甲每小时生产某种零件15个,甲生产3小时后,乙也加入生产同一种零件,再经过5小时,两人共生产这种零件210个,则乙每小时生产这种零件个.18.(2021秋•滨江区期末)多项式mx﹣n和﹣2mx+n(m,n为实数,且m≠0)的值随x的取值不同而不同,如表是当x取不同值时多项式对应的值,则关于x的方程﹣mx+n=2mx﹣n的解是.x1234mx﹣n﹣2﹣101﹣2mx+n1﹣1﹣3﹣519.(2021秋•钱塘区期末)已知线段AB=24cm,点D是线段AB的中点,直线AB上有一点C,且CD=3BC,则线段CD=cm.20.(2021秋•钱塘区期末)若∠α=42°24′,∠β=15.3°,则∠α与∠β的和等于.三.解答题21.(2021秋•钱塘区期末)计算:|﹣3|﹣(﹣2);22.(2021秋•西湖区期末)已知点A,B,C,D是同一数轴上的不同四点,且点M为线段AB的中点,点N为线段CD的中点.如图,设数轴上点O表示的数为0,点D表示的数为1.(1)若数轴上点A,B表示的数分别是﹣5,﹣1,①若点C表示的数是3,求线段MN的长.②若CD=1,请结合数轴,求线段MN的长.(2)若点A,B,C均在点O的右侧,且始终满足MN,求点M在数轴上所表示的数.23.(2021秋•拱墅区期末)计算:(1)﹣8+2﹣10.(2)1(﹣2)2.24.(2021秋•钱塘区期末)(1)先化简,再求值:,其中a=2,b=﹣3.(2)已知2x+y=3,求代数式3(x﹣2y)+5(x+2y﹣1)﹣2的值.25.(2021秋•上城区期末)在一次活动课中,有一位同学用一根长为acm(a>20)的绳子围成一个长比宽大10cm 的长方形.(1)求长方形的长和宽(用含有a的代数式表示);(2)他用另一根绳子围成一个正方形,且正方形的面积等于第一次围成的长方形的面积,他说:“当a=40时,围成的正方形的边长与原来长方形的宽之差小于3cm”,请你判断他的说法是否正确,并说明理由.26.(2021秋•杭州期末)在数学课上,老师给出了一道题目:“先化简再求值:(x2+□x﹣1)﹣3(x2﹣2x+4),其中x=﹣1”,□中的数据被污染,无法解答,只记得□中是一个实数,于是老师即兴出题,请同学们回答.(1)化简后的代数式中常数项是多少?(2)若点点同学把“x=﹣1”看成了“x=1”,化简求值的结果仍不变,求此时□中数的值;(3)若圆圆同学把“x=﹣1”看成了“x=1”,化简求值的结果为﹣3,求当x=﹣1时,正确的代数式的值.27.(2021秋•钱塘区期末)解下列方程:1+2x=7﹣x.28.(2021秋•杭州期末)甲、乙两人分别从A,B两地出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经4小时两人在C地相遇,相遇后经1小时乙到达A地.(1)乙的行驶速度是甲的几倍?(2)若已知相遇时乙比甲多行驶了120公里,求甲、乙行驶的速度分别是多少?29.(2021秋•滨江区期末)某操作车间有一段直线型向左移动的传输带,A,B两位操作工人站于传输带同侧且相距16米,操作组长F也站在该侧,且到A,B距离相等,传输带上有一个8米长的工具筐CE.(1)如图1,当CE位于A,B之间时,F发现工具筐的C端离自己只有1米,则工具筐C端离A米,工具筐E端离B米.(2)工具筐C端从B点开始随传输带向左移动直至工具筐E端到达A点为止,这期间工具筐E端到B的距离BE和工具筐E端到F的距离EF存在怎样的数量关系,并用等式表示.(你可以在图2中先画一画,再找找规律)30.(2021秋•拱墅区期末)已知∠AOB=90°,过点O作射线OC,射线OD平分∠AOC.(1)如图1,射线OC在∠AOB的外部(90°<∠AOC<180°),①若∠BOC=30°,求∠BOD的度数.②若∠BOC﹣∠BOD=15°,求∠BOC的度数.(2)如图2,射线OC在∠AOB的内部(0°<∠AOC<60°),若存在射线ON(0°<∠BON<30°),使得∠AON﹣∠BON=∠DON,试求出∠AOD与∠CON之间的等量关系.2022-2023学年上学期杭州七年级初中数学期末典型试卷1参考答案与试题解析一.选择题1.(2021秋•钱塘区期末)下列各组数中,互为倒数的是()A.﹣1与﹣1B.﹣0.25与C.﹣0.5与﹣2D.﹣1与1【考点】倒数.【专题】实数;推理能力.【分析】根据倒数的定义判断即可.【解答】解:A、﹣1的倒数是,故该选项不符合题意;B、﹣0.25,与﹣4互为倒数,故该选项不符合题意;C、﹣0.5的倒数是﹣2,故该选项符合题意;D、﹣1的倒数是﹣1,故该选项不符合题意;故选:C.【点评】本题考查了倒数的定义,掌握乘积为1的两个数互为倒数是解题的关键.2.(2021秋•钱塘区期末)2022的相反数是()A.﹣2202B.2202C.﹣2022D.2022【考点】相反数.【专题】实数;符号意识.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:2022的相反数是﹣2022.故选:C.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.3.(2021秋•钱塘区期末)据科学家估计,地球的年龄大约是4600000000年,将数据4600000000用科学记数法表示应为()A.0.46×1010B.46×108C.4.6×1010D.4.6×109【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:4600000000=4.6×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2022春•上城区期末)原来花100元能购买某种糖果m千克,由于成本上涨,糖果涨价10%,那么涨价后花100元能买到糖果()A.千克B.千克C.千克D.千克【考点】列代数式.【专题】销售问题;整式;运算能力;应用意识.【分析】先求出某种糖果的单价,再求出涨价10%的单价,再根据数量=总价÷单价列出代数式即可求解.【解答】解:依题意有:100÷[(1+10%)]=100=100m(千克).故选:A.【点评】此题考查了列代数式,列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.5.(2022春•拱墅区期末)设(x﹣1)3=ax3+bx2+cx+d,则a﹣b+c﹣d的值为()A.2B.8C.﹣2D.﹣8【考点】代数式求值.【专题】整式;运算能力.【分析】方法一:先计算(x﹣1)3的值,然后得出a,b,c,d的值,代入求解即可.方法二:令x=﹣1,可得﹣a+b﹣c+d=﹣8,两边同乘以﹣1可得结果.【解答】解:方法一:∵(x﹣1)3=x3﹣3x2+3x﹣1=ax3+bx2+cx+d,∴a=1,b=﹣3,c=3,d=﹣1,∴a﹣b+c﹣d=1+3+3+1=8,故选:B.方法一:令x=﹣1,则(x﹣1)3=x3﹣3x2+3x﹣1=﹣a+b﹣c+d=﹣8,两边同乘以﹣1得:a﹣b+c﹣d=8,故选:B.【点评】本题考查了代数式求值,解题的关键是得出a,b,c,d的值.6.(2021秋•杭州期末)图中的长方形ABCD由1号、2号、3号、4号四个正方形和5号长方形组成,若1号正方形的边长为a,3号正方形的边长为b,则长方形ABCD的周长为()A.16a B.8b C.4a+6b D.8a+4b【考点】整式的加减.【专题】几何图形问题;整式;运算能力.【分析】通过分析1号、2号、3号、4号四个正方形的边长和5号长方形的长,求得AB和BC的长,从而利用长方形的周长公式列式计算.【解答】解:∵1号正方形的边长为a,3号正方形的边长为b,∴2号正方形的边长为b﹣a,4号正方形的边长为a+b,∴5号长方形的长为a+a+b=2a+b,∴AB=b+b﹣a=2b﹣a,BC=b﹣a+2a+b=a+2b,∴长方形ABCD的周长为:2(AB+BC)=2[(2b﹣a)+(a+2b)]=2(2b﹣a+a+2b)=2×4b=8b,故选:B.【点评】本题考查整式加减的应用,准确识图,确定2号、4号正方形的边长和5号长方形的长,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.7.(2021秋•钱塘区期末)某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/时,求两个码头之间的距离,若设两个码头之间的距离为x千米,则可得方程为()A.4B.C.D.【考点】由实际问题抽象出一元一次方程.【专题】一次方程(组)及应用;应用意识.【分析】首先要理解题意找出题中存在的等量关系:顺水时的路程=逆水时的路程,根据此列方程即可.【解答】解:设若设两个码头之间的距离为x千米,因此可列方程为44,故选:A.【点评】此题考查了由实际问题抽象出一元一次方程,求出船在静水中的速度的等量关系是解决本题的关键.8.(2022春•滨江区期末)已知x﹣2y=1,且2=x﹣y.则x﹣4y=()A.﹣1B.1C.3D.4【考点】等式的性质.【专题】方程思想;应用意识.【分析】根据已知条件联立方程组,解方程组,再把解得的x、y的值代入代数式求值即可.【解答】解:由题意可联立方程组,由①得x=2y+1③,把③代入②得2=2y+1﹣y,解得y=1,∴x=3,即,∴x﹣4y=3﹣4=﹣1.故选:A.【点评】考查二元一次方程组的运用,关键是组成方程组,解方程组.9.(2021秋•杭州期末)如图,∠AOB,以OA为边作∠AOC,使∠BOC∠AOB,则下列结论成立的是()A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠AOC=2∠BOCD.∠AOC=∠BOC或∠AOC=3∠BOC【考点】角的大小比较.【专题】分类讨论;线段、角、相交线与平行线;运算能力.【分析】分两种情况,∠BOC在∠AOB的外部,∠BOC在∠AOB的内部.【解答】解:分两种情况:当∠BOC在∠AOB的外部,如图:∵∠BOC∠AOB,∴∠AOC=3∠BOC,当∠BOC在∠AOB的内部,如图:∵∠BOC∠AOB,∴∠AOC=∠BOC,故选:D.【点评】本题考查了角的大小比较,根据题目的已知条件画出图形是解题的关键,同时渗透了分类讨论的数学思想.10.(2021秋•上城区期末)如图,D、E顺次为线段AB上的两点,AB=20,C为AD的中点,则下列选项正确的是()A.若BE﹣DE=0,则AE﹣CD=7B.若BE﹣DE=2,则AE﹣CD=7C.若BE﹣DE=4,则AE﹣CD=7D.若BE﹣DE=6,则AE﹣CD=7【考点】两点间的距离.【专题】线段、角、相交线与平行线;几何直观.【分析】根据线段中点的定义与线段的和差逐项分析可得答案.【解答】解:由BE﹣DE=0,可设DE=x,则BE=x,∴AD=20﹣x﹣x=20﹣2x,∵C为AD的中点,∴AC=CD=10﹣x,AE=20﹣2x+x=20﹣x,∴AE﹣CD=(20﹣x)﹣(10﹣x)=10,故A错误;由BE﹣DE=2,可设DE=x,则BE=x+2,∴AD=20﹣x﹣(x+2)=18﹣2x,∵C为AD的中点,∴AC=CD=9﹣x,AE=18﹣2x+x=18﹣x,∴AE﹣CD=(18﹣x)﹣(9﹣x)=9,故B错误;由BE﹣DE=4,可设DE=x,则BE=x+4,∴AD=20﹣x﹣(x+4)=16﹣2x,∵C为AD的中点,∴AC=CD=8﹣x,AE=16﹣2x+x=16﹣x,∴AE﹣CD=(16﹣x)﹣(8﹣x)=8,故C错误;由BE﹣DE=6,可设DE=x,则BE=x+6,∴AD=20﹣x﹣(x+6)=14﹣2x,∵C为AD的中点,∴AC=CD=7﹣x,AE=14﹣2x+x=14﹣x,∴AE﹣CD=(14﹣x)﹣(7﹣x)=7,故D正确;故选:D.【点评】本题主要考查两点间的距离,中点的定义,线段的计算,熟练掌握线段中点的定义是解本题的关键.二.填空题11.(2021秋•钱塘区期末)用四舍五入法把数1.3579精确到百分位,所得的近似数是 1.36.【考点】近似数和有效数字.【专题】实数;数感.【分析】把千分位上的数字7进行四舍五入即可.【解答】解:1.3579≈1.36(精确到百分位).故答案为:1.36.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.(2021秋•钱塘区期末)计算:.【考点】有理数的混合运算.【专题】计算题;实数;运算能力.【分析】先算小括号里面的加减法,再算括号外面的除法.【解答】解:()6.故答案为:.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.(2021秋•杭州期末)定义一种新运算:a⊕b=a2﹣2ab+b2,如1⊕2=12﹣2×1×2+22=1,若x⊕(﹣1)=x⊕3,则x=1.【考点】有理数的混合运算.【专题】新定义;实数;运算能力.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义化简x⊕(﹣1)=x⊕3,得:x2+2x+1=x2﹣6x+9,移项合并得:8x=8,系数化为1得:x=1.故答案为:1.【点评】此题考查了有理数的混合运算,以及解一元一次方程,弄清题中的新定义是解本题的关键.14.(2021秋•上城区期末)若单项式x m+3y2与x2y n的和仍是单项式,则m n=1.【考点】合并同类项.【专题】整式;运算能力.【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同,求出m,n的值,然后代入式子进行计算即可.【解答】解:∵单项式x m+3y2与x2y n的和仍是单项式,∴m+3=2,n=2,∴m=﹣1,∴m n=(﹣1)2=1,故答案为:1.【点评】本题考查了合并同类项,熟练掌握合并同类项的法则是解题的关键.15.(2021秋•上城区期末)请写出一个次数为3,系数是负数的单项式:﹣2a2b(答案不唯一).【考点】单项式.【专题】整式;运算能力.【分析】根据单项式的定义解答即可.【解答】解:一个次数为3,系数是负数的单项式:﹣2a2b,故答案为:﹣2a2b(答案不唯一).【点评】本题考查了单项式,熟练掌握单项式的定义是解题的关键.16.(2021秋•西湖区期末)3x﹣7x=﹣4x.【考点】合并同类项.【专题】整式;运算能力.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此计算即可.【解答】解:3x﹣7x=(3﹣7)x=﹣4x,故答案为:﹣4x.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.17.(2021秋•钱塘区期末)甲每小时生产某种零件15个,甲生产3小时后,乙也加入生产同一种零件,再经过5小时,两人共生产这种零件210个,则乙每小时生产这种零件18个.【考点】一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】设乙每小时生产这种零件x个,根据题意列方程求解即可.【解答】解:设乙每小时生产这种零件x个,根据题意列方程得,15×3+(15+x)×5=210,解得x=18,故答案为:18.【点评】本题主要考查一元一次方程的应用,熟练根据题中等量关系列方程求解是解题的关键.18.(2021秋•滨江区期末)多项式mx﹣n和﹣2mx+n(m,n为实数,且m≠0)的值随x的取值不同而不同,如表是当x取不同值时多项式对应的值,则关于x的方程﹣mx+n=2mx﹣n的解是x=2.x1234mx﹣n﹣2﹣101﹣2mx+n1﹣1﹣3﹣5【考点】解一元一次方程.【专题】一次方程(组)及应用;运算能力.【分析】根据表格确定出方程mx﹣n=﹣2mx+n的解即可.【解答】解:根据表格得:当x=2时,mx﹣n=﹣1;当x=2时,﹣2mx+n=﹣1,则关于x的方程﹣mx+n=2mx﹣n的解是x=2.故答案为:x=2.【点评】此题考查了解一元一次方程,以及一元一次方程的解,弄清表格中的数据是解本题的关键.19.(2021秋•钱塘区期末)已知线段AB=24cm,点D是线段AB的中点,直线AB上有一点C,且CD=3BC,则线段CD=9或18cm.【考点】两点间的距离.【专题】线段、角、相交线与平行线;运算能力.【分析】根据线段中点的性质,可得BD的长,设BC=x,根据线段的和差列出方程解答便可.【解答】解:∵AB=24cm,点D是线段AB的中点,∴BD=12cm,设BC=xcm,则CD=3BC=3xcm,当C点在B、D之间时,DC=BD﹣BC,即3x=12﹣x,解得x=3,∴CD=9(cm);当C点在DB的延长线上时,DC=DB+BC,即3x=12+x,解得x=6,∴CD=18(cm);故答案为:9或18.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论以防遗漏.20.(2021秋•钱塘区期末)若∠α=42°24′,∠β=15.3°,则∠α与∠β的和等于57°42′.【考点】度分秒的换算.【专题】线段、角、相交线与平行线;运算能力.【分析】先将0.3°化成18′,即∠β=15.3°=15°18′,然后计算两个角的和即可.【解答】解:∵∠β=15.3°=15°+0.3×60′=15°18′,∴∠α+∠β=42°24′+15°18′=57°42′.故答案为:57°42′.【点评】本题考查度、分、秒的换算,掌握度、分、秒的换算方法以及单位之间的进率是正确解答的前提.三.解答题21.(2021秋•钱塘区期末)计算:|﹣3|﹣(﹣2);【考点】有理数的混合运算.【专题】计算题;实数;运算能力.【分析】(1)先算绝对值,再算减法;(2)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(1)|﹣3|﹣(﹣2)=3+2=5;【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.(2021秋•西湖区期末)已知点A,B,C,D是同一数轴上的不同四点,且点M为线段AB的中点,点N为线段CD的中点.如图,设数轴上点O表示的数为0,点D表示的数为1.(1)若数轴上点A,B表示的数分别是﹣5,﹣1,①若点C表示的数是3,求线段MN的长.②若CD=1,请结合数轴,求线段MN的长.(2)若点A,B,C均在点O的右侧,且始终满足MN,求点M在数轴上所表示的数.【考点】数轴.【专题】数形结合;实数;运算能力.【分析】(1)①先根据数轴上两点的距离可得AB的长,由线段中点的定义可得AM的长,同理得CN的长,由线段的和差关系可得MN的长;②存在两种情况:C在D的左边或右边,同理根据线段的和差关系可得MN的长;(2)设点A表示的数为a,点B表示的数为b,点C表示的数为c,结合数轴上两点间的距离公式,中点坐标公式和线段的和差关系列方程求解.【解答】解:(1)①如图1,∵点A,B表示的数分别是﹣5,﹣1,∴AB=﹣1﹣(﹣5)=4,∵M是AB的中点,∴AMAB=2,同理得:CD=3﹣1=2,CNCD=1,∴MN=AC﹣AM﹣CN=3﹣(﹣5)﹣2﹣1=5;②若CD=1,存在两种情况:i)如图2,点C在D的左边时,C与原点重合,表示的数为0,∴MN=AD﹣AM﹣DN=1﹣(﹣5)﹣2;ii)如图3,点C在D的右边时,C表示的数为2,∴MN=AC﹣AM﹣CN=2﹣(﹣5)﹣2;综上,线段MN的长为或;(2)设点A表示的数为a,点B表示的数为b,点C表示的数为c,∵点A、B、C、D、M、N是数轴上的点,且点M是线段AB的中点,点N是线段CD的中点,∴点M在数轴上表示的数为,点N在数轴上表示,∴MN=||,∵点A,B,C均在点O的右侧,且始终满足MN,∴2||=a+b+c,整理,得|a+b﹣1﹣c|=a+b+c,当a+b﹣1﹣c=a+b+c时,解得c(不符合题意,舍去),当﹣a﹣b+1+c=a+b+c时,解得:a+b,∴点M在数轴上表示的数为,综上,点M在数轴上所对应的数为.【点评】本题主要考查了数轴,数轴上的点的几何意义,绝对值的意义等知识的应用.掌握数轴上两点的距离公式是解题的关键.23.(2021秋•拱墅区期末)计算:(1)﹣8+2﹣10.(2)1(﹣2)2.【考点】有理数的混合运算.【专题】实数;运算能力.【分析】(1)从左向右依次计算即可.(2)首先计算乘方,然后计算乘法和减法即可.【解答】解:(1)﹣8+2﹣10=﹣6﹣10=﹣16.(2)1(﹣2)2=14=1﹣1=0.【点评】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.(2021秋•钱塘区期末)(1)先化简,再求值:,其中a=2,b=﹣3.(2)已知2x+y=3,求代数式3(x﹣2y)+5(x+2y﹣1)﹣2的值.【考点】整式的加减—化简求值.【专题】计算题;整体思想;整式;运算能力.【分析】(1)先化简整式,再代入求值;(2)先化简整式,再整体代入求值.【解答】解:(1)=2a2+2ab﹣2a2+3ab=5ab.当a=2,b=﹣3时,原式=5×2×(﹣3)=﹣30.(2)3(x﹣2y)+5(x+2y﹣1)﹣2=3x﹣6y+5x+10y﹣5﹣2=8x+4y﹣7.∵2x+y=3,∴原式=4(2x+y)﹣7=4×3﹣7=12﹣7=5.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.25.(2021秋•上城区期末)在一次活动课中,有一位同学用一根长为acm(a>20)的绳子围成一个长比宽大10cm 的长方形.(1)求长方形的长和宽(用含有a的代数式表示);(2)他用另一根绳子围成一个正方形,且正方形的面积等于第一次围成的长方形的面积,他说:“当a=40时,围成的正方形的边长与原来长方形的宽之差小于3cm”,请你判断他的说法是否正确,并说明理由.【考点】代数式求值;列代数式.【专题】整式;运算能力.【分析】(1)设长方形的长为xcm,则长方形的宽为(x﹣10)cm,根据长方形周长计算可得2(x+x﹣10)=a,计算x即可出长方形的长与宽的代数式;(2)设正方形的边长为y,根据正方形的面积和长方形的面积计算可得出y2=()(),即可得出正方形边长y 的代数式y,再把a=40代入,即可算出正方形的边长与长方形的边长相减即可得出答案.【解答】解:(1)设长方形的长为xcm,则长方形的宽为(x﹣10)cm,根据题意可得,2(x+x﹣10)=a,解得:x,所以长方形的长为:,宽为;(2)设正方形的边长为y,根据题意可得,y2=()(),y,当a=40时,y5,长方形的宽为5,则55=5()≈5×0.7=3.5>3.所以他的说法是不正确.【点评】本题主要考查了列代数式及代数式求值,根据题意列出代数式及代数式求值的方法进行计算是解决本题的关键.26.(2021秋•杭州期末)在数学课上,老师给出了一道题目:“先化简再求值:(x2+□x﹣1)﹣3(x2﹣2x+4),其中x=﹣1”,□中的数据被污染,无法解答,只记得□中是一个实数,于是老师即兴出题,请同学们回答.(1)化简后的代数式中常数项是多少?(2)若点点同学把“x=﹣1”看成了“x=1”,化简求值的结果仍不变,求此时□中数的值;(3)若圆圆同学把“x=﹣1”看成了“x=1”,化简求值的结果为﹣3,求当x=﹣1时,正确的代数式的值.【考点】整式的加减—化简求值.【专题】整式;运算能力.【分析】(1)设□中的数据为a,然后进行计算即可解答;(2)根据化简求值的结果仍不变,可得a+6=0,然后进行计算即可解答;(3)先把x=1代入进行计算求出a的值,最后再把x=﹣1,a=4的值代入进行计算即可.【解答】解:(1)设□中的数据为a,(x2+ax﹣1)﹣3(x2﹣2x+4)=x2+ax﹣1﹣x2+6x﹣12=(a+6)x﹣13,∴化简后的代数式中常数项是:﹣13;(2)∵化简求值的结果不变,∴整式的值与x的值无关,∴a+6=0,∴a=﹣6,∴此时□中数的值为:﹣6;(3)由题意得:当x=1时,(a+6)x﹣13=﹣3,∴a+6﹣13=﹣3,∴a=4,∴当x=﹣1时,(a+6)x﹣13=﹣4﹣6﹣13=﹣23,∴当x=﹣1时,正确的代数式的值为:﹣23.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.27.(2021秋•钱塘区期末)解下列方程:1+2x=7﹣x.【考点】解一元一次方程.【专题】一次方程(组)及应用;运算能力.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:1+2x=7﹣x,2x+x=7﹣1,3x=6,x=2;【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.28.(2021秋•杭州期末)甲、乙两人分别从A,B两地出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经4小时两人在C地相遇,相遇后经1小时乙到达A地.(1)乙的行驶速度是甲的几倍?(2)若已知相遇时乙比甲多行驶了120公里,求甲、乙行驶的速度分别是多少?【考点】一元一次方程的应用.【专题】行程问题;应用意识.【分析】(1)设甲的行驶速度是x公里/小时,乙的行驶的速度是y公里/小时,根据甲4小时行驶的路程与乙1小时行驶的路程相同得y=4x,可知乙的行驶速度是甲的4倍;(2)设甲的行驶速度是n公里/小时,则乙的行驶的速度是4n公里/小时,根据相遇时乙比甲多行驶了120公里列方程求出n的值即得到甲的行驶速度,再求出乙的行驶速度即可.【解答】解:(1)设甲的行驶速度是x公里/小时,乙的行驶的速度是y公里/小时,因为甲从A地到C地用4小时,乙从C地到A地用1小时,所以y=4x,所以乙的行驶速度是甲的4倍.(2)设甲的行驶速度是n公里/小时,则乙的行驶的速度是4n公里/小时,根据题意得4(4n﹣n)=120,解得n=10,所以4n=4×10=40,答:甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时.【点评】此题考查解一元一次方程、列一元一次方程解应用题等知识与方法,根据行程问题的基本数量关系正确地用代数式表示甲、乙的行驶路程是解题的关键.29.(2021秋•滨江区期末)某操作车间有一段直线型向左移动的传输带,A,B两位操作工人站于传输带同侧且相距16米,操作组长F也站在该侧,且到A,B距离相等,传输带上有一个8米长的工具筐CE.(1)如图1,当CE位于A,B之间时,F发现工具筐的C端离自己只有1米,则工具筐C端离A7米,工具筐E端离B1米.(2)工具筐C端从B点开始随传输带向左移动直至工具筐E端到达A点为止,这期间工具筐E端到B的距离BE和工具筐E端到F的距离EF存在怎样的数量关系,并用等式表示.(你可以在图2中先画一画,再找找规律)【考点】两点间的距离.【专题】线段、角、相交线与平行线;运算能力.【分析】(1)根据线段的和差可得答案;(2)分三种情况:当点C在线段BF上时或当点C在线段AF上时或当点C在线段BA的延长线上时,正确画出图形即可得到结论.【解答】解:(1)由题意得,AB=16m,∵F到A,B距离相等,∴AF=BF=8m,∵CE=8米,CF=1m,∴EF=8﹣1=7m,BE=8﹣7=1m.故答案为:7,1;(2)①当点C在线段BF上时,如图,设BC=x,则BE=8﹣x,EF=16﹣x,∴EF﹣BE=(16﹣x)﹣(8﹣x)=8;②当点C在线段AF上时,如图,设BC=x,则BE=x﹣8,EF=16﹣x,∴EF+BE=(16﹣x)+(x﹣8)=8;③当点C在线段BA的延长线上时,如图,设BC=x,则BE=x﹣8,EF=x﹣16,∴BE﹣EF=(x﹣8)﹣(x﹣16)=8;综上,EF﹣BE=8或EF+BE=8或BE﹣EF=8.【点评】本题考查两点间的距离,熟练掌握线段的和差是解题关键.30.(2021秋•拱墅区期末)已知∠AOB=90°,过点O作射线OC,射线OD平分∠AOC.(1)如图1,射线OC在∠AOB的外部(90°<∠AOC<180°),①若∠BOC=30°,求∠BOD的度数.②若∠BOC﹣∠BOD=15°,求∠BOC的度数.(2)如图2,射线OC在∠AOB的内部(0°<∠AOC<60°),若存在射线ON(0°<∠BON<30°),使得∠AON﹣∠BON=∠DON,试求出∠AOD与∠CON之间的等量关系.【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线;推理能力.【分析】(1)①由角的平分线可求解∠AOD的度数,再根据∠BOD=∠AOB﹣∠AOD可求解;②由角的平分线可得∠AOD=∠COD,设∠DOB=x°,根据∠BOC﹣∠DOB=15°计算可求解x值,进而求解∠BOC的度数;(2)可分两种情况:若射线ON在∠AOB的外部,则∠AON﹣∠BON=∠AOB=90°;若射线ON在∠AOB的内部,利用角平分线的定义及角的和差可求解.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=120°,∵OD平分∠AOC,∴∠AOD=∠COD=60°,∴∠BOD=∠AOB﹣∠AOD=90°﹣60°=30°,答:∠BOD的度数为30°;②∵OD平分∠AOC,。
七年级数学经典例题
七年级数学经典例题一、有理数运算。
1. 计算:(-2)+3-(-5)- 解析:- 根据有理数的运算法则,减去一个数等于加上这个数的相反数。
- 所以(-2)+3 - (-5)=(-2)+3+5。
- 先计算(-2)+3 = 1,再计算1 + 5=6。
2. 计算:-2^2-( - 3)^3÷(-1)^2023- 解析:- 先计算指数运算。
-2^2=-4(这里注意指数运算的优先级,先计算指数2^2 = 4,再加上负号)。
- (-3)^3=-27,(-1)^2023=-1。
- 则原式=-4-(-27)÷(-1)。
- 接着计算除法-27÷(-1) = 27。
- 最后计算-4 - 27=-31。
二、整式的加减。
3. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
- 对于a的同类项3a和-5a,合并得3a-5a=-2a。
- 对于b的同类项2b和-b,合并得2b - b=b。
- 所以化简结果为-2a + b。
4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1- 解析:- 先去括号,根据去括号法则,括号前是正号,去掉括号不变号;括号前是负号,去掉括号要变号。
- 原式=2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。
- 再合并同类项,2x^2-3x^2=-x^2,4y^2-5y^2=-y^2,-3xy+3xy = 0。
- 化简结果为-x^2-y^2。
- 当x=-2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。
三、一元一次方程。
5. 解方程:3x+5=2x - 1- 解析:- 移项,把含有x的项移到等号一边,常数项移到等号另一边,移项要变号。
- 得到3x - 2x=-1 - 5。
- 合并同类项得x=-6。
部编数学七年级上册专题09压轴大题分类练(三大考点)(期末真题精选)(解析版)含答案
专题09 压轴大题分类练(三大考点)一.新定义(热点题型)1.在数轴上,把原点记作点O ,表示数1的点记作点A .对于数轴上任意一点P (不与点O ,点A重合),将线段PO 与线段PA 的长度之比定义为点P 的特征值,记作P ,即P =PO PA,例如:当点P 是线段OA 的中点时,因为PO =PA ,所以P =1.(1)如图,点P 1,P 2,P 3为数轴上三个点,点P 1表示的数是−14,点P 2与P 1关于原点对称.①P 2= 13 ;②比较P 1,P 2,P 3的大小 P 1<P 2<P 3 (用“<”连接);(2)数轴上的点M 满足OM =13OA ,求M ;(3)数轴上的点P 表示有理数p ,已知P <100且P 为整数,则所有满足条件的p 的倒数之和为 198 .试题分析:(1)①根据定义求出线段P 2A 与P 2O 的值即可解答;②根据定义分别求出P 1,P 3的值即可比较;(2)分两种情况,点M 在原点的右侧,点M 在原点的左侧;(3)根据题意可知,分两种情况,点P 在点A 的右侧,点P 在OA 之间.答案详解:解:(1)①∵点P 1表示的数是−14,点P 2与P 1关于原点对称,∴点P 2表示的数是14,∵点A 表示的数是1,∴P 2A =1−14=34,P 2O =14,∴P 2=P 2O P 2A =1434=13,②∵点P 1表示的数是−14,∴P 1A =1﹣(−14)=54,P 1O =14,∴P 1=P 1O P 1A =1454=15,∵1<P 3<2,∴1<P 3O <2,0<P 3A <1,∴P 3=P 3O P 3A >1,∴P 1<P 2<P 3,所以答案是:①13,②P 1<P 2<P 3;(2)分两种情况:当点M 在原点的右侧,∵OM =13OA ,∴OM =13,∴点M 表示的数为:13,∴MO =13,MA =1−13=23,∴M =MO MA =1323=12,当点M 在原点的左侧,∵OM =13OA ,∴OM =13,∴点M 表示的数为:−13,∴MO =13,MA =1﹣(−13)=43,∴M =MO MA =1343=14,∴M 的值为:12或14;(3)∵P <100且P 为整数,PA∴PO >PA 且PO 为PA 的倍数,当P =PO PA=1时,∴PO =PA ,即点P 为OA 的中点,∴p =12,∴当P =1时,p 的值为12,当P =PO PA=2时,∴PO =2PA ,当点P 在OA 之间,∴p =2(1﹣p ),∴p =23,当点P 在点A 的右侧,∴p =2(p ﹣1),∴p =2,∴当P =2时,p 的值为:2或23,当P =PO PA=3时,∴PO =3PA ,当点P 在OA 之间,∴p =3(1﹣p ),∴p =34,当点P 在点A 的右侧,∴p =3(p ﹣1),∴p =32,∴当P =3时,p 的值为:34或32,PA∴PO=4PA,当点P在OA之间,∴p=4(1﹣p),∴p=4 5,当点P在点A的右侧,∴p=4(p﹣1),∴p=4 3,∴当P=4时,p的值为:45或43,…当P=POPA=99时,∴PO=99PA,当点P在OA之间,∴p=99(1﹣p),∴p=99 100,当点P在点A的右侧,∴p=99(p﹣1),∴p=99 98,∴当P=99时,p的值为:99100或9998,∴所有满足条件的p的倒数之和为:2+32+12+43+23+54+34+...+10099+9899=2+(32+12)+(43+23)+(54+34)+...+(10099+9899)=2+2+2+2+...+2=2×99=198,所以答案是:198.2.对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 12 倍分点,点C 是点B 到点A 的 23 倍分点;(2)点B 到点C 的3倍分点表示的数是 1或4 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的2倍分点,写出x 的取值范围.试题分析:(1)通过计算BA BC ,CB CA的值,利用题干中的定义解答即可;(2)设这点为E ,对应的数字为a ,利用分类讨论的思想方法根据EB EC=3分别列出方程,解方程即可得出结论;(3)分两种情况:①点D 在点B 的左侧,②点D 在点C 的右侧,分别计算出x 的两个临界值即可得出结论.答案详解:解:(1)∵点A ,B ,C 分别表示﹣4,﹣2,2,∴BA =﹣2﹣(﹣4)=2,BC =2﹣(﹣2)=4,CA =2﹣(﹣4)=6.∵BA BC =24=12,∴点B 是点A 到点C 的12倍分点,∵CB CA =46=23,∴点C 是点B 到点A 的23倍分点.所以答案是:12;23;(2)设这点为E ,对应的数字为a ,则EB EC=3.当点E 在B ,C 之间时,∵EBEC=3,∴x−(−2)2−x=3,解得:x=1.当点E在C点的右侧时,∵EBEC=3,∴x−(−2)x−2=3,解得:x=4.综上,点B到点C的3倍分点表示的数是1或4.所以答案是:1或4.(3)①点D在点B的左侧,∵−2−(−4)−2−x=2,解得:x=﹣3.∴x的最小值为﹣3.∴x的取值范围为﹣3≤x≤﹣2;②点D在点C的右侧,∵2−(−4)x−2=2,解得:x=5,∴x的最大值为5,∴x的取值范围2≤x≤5,综上,线段BC上存在点A到点D的2倍分点,则x的取值范围为:﹣3≤x≤﹣2或2≤x≤5.3.知识背景:已知a,b为有理数,规定:f(a)=|a﹣2|,g(b)=|b+3|,例如:f(﹣3)=|﹣3﹣2|=5,g(﹣2)=|﹣2+3|=1.知识应用:(1)若f(a)+g(b)=0,求3a﹣5b的值;(2)求f(a﹣1)+g(a﹣1)的最值;知识迁移:若有理数a,b,c满足|a﹣b+c+3|=a+b+c﹣3,且关于x的方程ax﹣2c=2a﹣cx有无数解,f(2b﹣4)≠0,求|a+2b+c+5|﹣|a+b+c+7|﹣|﹣3﹣b|的值.试题分析:(1)根据题中的新规定列出等式,再利用非负数的性质求出a与b的值,代入原式计算即可得到结果;(2)根据题中的新规定列出等式,根据数轴上两点间的距离公式及绝对值的代数意义求出最小值即可;知识迁移:求出a+c=0,b>3,再计算绝对值即可.答案详解:解:(1)∵f(a)=|a﹣2|,g(b)=|b+3|,∴f(a)+g(b)=|a﹣2|+|b+3|=0,∴a=2,b=﹣3,∴3a﹣5b=3×2﹣5×(﹣3)=6+15=21;(2)f(a﹣1)+g(a﹣1)=|a﹣3|+|a+2|,∵|a﹣3|+|a+2|表示点a到3和﹣2的距离之和,∴|a﹣3|+|a+2|≥5,∴f(a﹣1)+g(a﹣1)有最小值5;知识迁移:整理ax﹣2c=2a﹣cx得(a+c)x=2(a+c),∵方程有无数解,∴a+c=0,∵|a﹣b+c+3|=|(a+c)﹣(b﹣3)|,当a+c≥b﹣3时,|a﹣b+c+3|=a+c﹣b+3=a+b+c﹣3,∴b=3,∴a+c≥0;当a+c≤b﹣3时,|a﹣b+c+3|=b﹣3﹣a﹣c=a+b+c﹣3,∴a+c=0,∴b≥3;∵f(2b﹣4)≠0,∴|2b﹣4﹣2|≠0,∴b≠3,∴b>3,∴|a+2b+c+5|﹣|a+b+c+7|﹣|﹣3﹣b|=|2b+5|﹣|b+7|﹣|﹣3﹣b|=2b +5﹣(b +7)﹣(3+b )=﹣5.4.如图,点A 、O 、C 、B 为数轴上的点,O 为原点,A 表示的数是﹣8,C 表示的数是2,B 表示的数是6.我们将数轴在点O 和点C 处各弯折一次,弯折后CB 与AO 处于水平位置,线段OC 处产生了一个坡度,我们称这样的数轴为“折坡数轴”,其中O 为“折坡数轴”原点,在“折坡数轴”上,每个点对应的数就是把“折坡数轴”拉直后对应的数.记AB 为“折坡数轴”拉直后点A 和点B 的距离:即AB =AO +OC +CB ,其中AO 、OC 、CB 代表线段的长度.(1)若点T 为“折坡数轴”上一点,且TA +TB =16,请求出点T 所表示的数;(2)定义“折坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.动点P 从点A 处沿“折坡数轴”以每秒2个单位长度的速度向右移动到点O ,再上坡移动,当移到点C 时,立即掉头返回(掉头时间不计),在点P 出发的同时,动点Q 从点B 处沿“折坡数轴”以每秒1个单位长度的速度向左移动到点C ,再下坡到点O ,然后再沿OA 方向移动,当点P 重新回到点A 时所有运动结束,设点P 运动时间为t 秒,在移动过程中:①点P 在第 212 秒时回到点A ;②当t = 2或225或315或345 时,PQ =2PO .(请直接写出t 的值)试题分析:(1)首先判断出点T 的位置,设T 表示的数为x ,根据T 的位置分两种情况列出方程求解即可;(2)①分别根据“时间=路程÷速度”求出点P 运动的时间,再求和即可;②分别求出点Q 在运动时间,结合点P ,点Q 的不同位置,根据PQ =2PO 列出方程求解即可. 答案详解:解:(1)∵AB =AO +OC +CB =|﹣8|+6=14,而TA +TB =16,16>AB ,∴T 不在AB 内,设T 表示的数为x ,当T 在点A 的左侧时,TA +TB =TA +TA +AB =(﹣8﹣x )+(﹣8﹣x )+14=16,解得:x =﹣9;当T 在点B 的右侧时,TA +TB =TB +TB +AB =(﹣8﹣x )+(﹣8﹣x )+14=16,解得:x =7,所以答案是:﹣9和7;(2)①∵AO =8,∴点P 从A 到O 所需时间为:t 1=AO 2=82=4,∵OC =2,∴点P 从O 到C 所需时间为:t 2=OC12×2=2,返回时,点P 从C 到O 所需时间为:t 3=OC 2×2=24=12,点P 从O 到A 所需时间为:t 4=t 1=4,∴点P 运动的总时间t =t 1+t 2+t 3+t 4=212,故点P 在212秒时回到了点A ,所以答案是:212;②(Ⅰ)当点P 在AO 上,点Q 在BC 上时,PQ =PO +OC +CQ =(8﹣2t )+2+(4﹣t )=14﹣3t ,PO =8﹣2t ,∵PQ =2PO ,∴14﹣3t =2(8﹣2t ),解得:t =2;(Ⅱ)当P 在OC 上,此时Q 在OC 上,设点Q 在OC 上的时间为t ′,a )当OP +QC =OC ,即t ′+2t ′=2,即t ′=23时,P 、Q 相遇,PQ =OC ﹣OP ﹣QC =2﹣t ′﹣2t ′,PO =t ′,由PQ =2PO 得:2﹣t ′﹣2t ′=2t ′,解得:t ′=25,∴t =4+25=225;b )当Q 到达点O 时,点P 刚到OC 的中点,并继续向上走2﹣1=1(秒),PQ =OP +OQ =t ′+(t ′﹣1),PO =t ′,由PQ =2PO 得:2t ′﹣1=2t ′,此时无解;c )当Q 在OA 上,P 在OC 向下移动时,PQ =OQ +OP =(t ′﹣1)+[2﹣2×2(t ′﹣2)],PO =2﹣2×2(t ′﹣2),由PQ =2PO 得,(t ′﹣1)+[2﹣2×2(t ′﹣2)]=2[2﹣2×2(t ′﹣2)],解得:t ′=115,此时,t =4+t ′=315;(Ⅲ)当点P 重新回到OA 上,设P 回到O 点后运动时间为t ″,在t ″之间,点P 、Q 已经运动了4+2+12=132(秒),此时,Q 在OA 上走了132−4﹣1=32,即OQ =32×1=32,1)PQ =OQ ﹣OP =(32+t ″)﹣2t ″,PO =2t ″,由PQ =2PO 得:(32+t ″)﹣2t ″=2t ″,解得,t ″=310,此时,t =132+310=345;2)当P 在Q 右侧,超过Q 后,PQ =OP ﹣OQ =2t ″﹣(32+t ″),PO =2t ″,由PQ =2PO 得:2t ″﹣(32+t ″)=4t ″,解得,t ″=−12(舍去),综上所述,当t =2或225或315或345秒时,PQ =2PO .所以答案是:2或225或315或345.5.对数轴上的点和线段,给出如下定义:点M是线段a的中点,点N是线段b的中点,称线段MN 的长度为线段a与b的“中距离”.已知数轴上,线段AB=2(点A在点B的左侧),EF=6(点E在点F的左侧).(1)当点A表示1时,①若点C表示﹣2,点D表示﹣1,点H表示4,则线段AB与CD的“中距离”为3.5,线段AB与CH的“中距离”为 1 ;②若线段AB与EF的“中距离”为2,则点E表示的数是 1或﹣3 .(2)线段AB、EF同时在数轴上运动,点A从表示1的点出发,点E从原点出发,线段AB的速度为每秒1个单位长度,线段EF的速度为每秒2个单位长度,开始时,线段AB、EF都向数轴正方向运动;当点E与点B重合时,线段EF随即向数轴负方向运动,AB仍然向数轴正方向运动.运动过程中,线段AB、EF的速度始终保持不变.设运动时间为t秒.①当t=2.5时,线段AB与EF的“中距离”为 3.5 ;②当线段AB与EF的“中距离”恰好等于线段AB的长度时,求t的值.试题分析:(1)①先由点A和AB的长求得点B表示的数,然后求得AB的中点所表示的数,再求得CH的中点所表示的数,即可得到线段AB与CH的“中距离”;②先由①得到AB的中点所表示的数,然后设点E表示的数为x,则点F表示的数为x+6,进而求得EF的中点的所表示的数,最后由线段AB与EF的“中距离”为2列出方程求得x的值;(2)①先用含有t的式子分别表示点A、点B、点E、点F所表示的数,然后得到t=2.5时点A、B、E、F所表是的数,进而求得线段AB与EF的“中距离”;②分情况讨论,分为点E向数轴正方向和向数轴负方向运动两种情况讨论,然后根据条件列出方程求得t的值.答案详解:解:(1)①∵AB=2(点A在点B的左侧),点A表示1,∴点B表示3,∴线段AB的中点表示2,∵点C表示﹣2,点H表示4,∴线段CH的中点表示1,∴线段AB与CH的“中距离”为2﹣1=1,所以答案是:1.②由①得,线段AB的中点表示2,设点E表示x,则点F表示x+6,∴线段EF的中点表示x+3,∵线段AB与EF的“中距离”为2,∴|x+3﹣2|=2,解得:x=1或x=﹣3,∴点E表示的数是1或﹣3,所以答案是:1或﹣3.(2)由题意得,点A表示的数为1+t,点B表示的数为3+t,当点E向数轴正方向运动时,点E表示的数为2t,点F表示的数为2t+6,当点E与点B重合时,3+t=2t,解得:t=3,∴当点E向数轴负方向运动时,点E表示的数为6﹣2(t﹣3)=12﹣2t,点F表示的数为12﹣2(t﹣3)=18﹣2t,①当t=2.5时,点E向数轴正方形运动,点A表示的数为3.5,点B表示的数为5.5,点E表示的数为5,点F表示的数为11,∴线段AB的中点表示的数为4.5,线段EF的中点表示的数为8,∴线段AB与EF的“中距离”为8﹣4.5=3.5;所以答案是:3.5.②当点E向数轴正方向运动,即0<t≤3时,线段AB的中点表示的数为2+t,线段EF的中点表示的数为2t+3,∵线段AB与EF的“中距离”恰好等于线段AB的长度,∴|2t+3﹣(2+t)|=2,解得:t=1或t=﹣3(舍);当点E向数轴负方向运动,即t>3时,线段AB的中点表示的数为2+t,线段EF的中点表示的数为15﹣2t,∵线段AB与EF的“中距离”恰好等于线段AB的长度,∴|15﹣2t﹣(2+t)|=2,解得:t =113或t =5,∴当线段AB 与EF 的“中距离”恰好等于线段AB 的长度时,t 的值为1或113或5.6.我们将数轴上点P 表示的数记为x P .对于数轴上不同的三个点M ,N ,T ,若有x N ﹣x T =k (x M ﹣x T ),其中k 为有理数,则称点N 是点M 关于点T 的“k 星点”.已知在数轴上,原点为O ,点A ,点B 表示的数分别为x A =﹣2,x B =3.(1)若点B 是点A 关于原点O 的“k 星点”,则k = −32 ;若点C 是点A 关于点B 的“2星点”,则x C = ﹣7 ;(2)若线段AB 在数轴上沿正方向运动,每秒运动1个单位长度,取线段AB 的中点D .是否存在某一时刻,使得点D 是点A 关于点O 的“﹣2星点”?若存在,求出线段AB 的运动时间;若不存在,请说明理由;(3)点Q 在数轴上运动(点Q 不与A ,B 两点重合),作点A 关于点Q 的“3星点”,记为A ',作点B 关于点Q 的“3星点”,记为B '.当点Q 运动时,QA '+QB '是否存在最小值?若存在,求出最小值及相应点Q 的位置;若不存在,请说明理由.试题分析:(1)由“k 星点”的定义列出方程可求解;(2)设点表示的数为a ,点B 表示的数a +5,则线段AB 的中点D 表示的数为2a 52,由“k 星点”的定义列出方程可求解;(3)先求出A ',B '表示的数,可求QA '+QB '=|﹣6﹣3y |+|9﹣3y |,由绝对值的性质可求解. 答案详解:解:(1)∵点B 是点A 关于原点O 的“k 星点”,∴3﹣0=k (﹣2﹣0),解得:k =−32,∵点C 是点A 关于点B 的“2星点”,∴x C ﹣3=2×(﹣2﹣3),∴x C =﹣7,所以答案是:−32,﹣7;(2)设点表示的数为a ,点B 表示的数a +5,则线段AB 的中点D 表示的数为2a 52,∵点D 是点A 关于点O 的“﹣2星点”,∴2a 52−0=﹣2×(a ﹣0),∴a =−56,∴t =−61=76,∴当t =76,使得点D 是点A 关于点O 的“﹣2星点”;(3)当点Q 在线段AB (点Q 不与A ,B 两点重合)上时,QA '+QB '存在最小值,理由如下:设点Q 表示的数为y ,∵点A '是点A 关于点Q 的“3星点”,∴点A '表示的数为﹣6﹣2y ,∵点B '是点B 关于点Q 的“3星点”,∴点B '表示的数是9﹣2y ,∴QA '+QB '=|﹣6﹣2y ﹣y |+|9﹣2y ﹣y |=|﹣6﹣3y |+|9﹣3y |,当y <﹣2时,QA '+QB '=3﹣6y >15,当﹣2<y <3时,QA '+QB '=15,当y >3时,QA '+QB '=6y ﹣3>15,∴当点Q 在线段AB (点Q 不与A ,B 两点重合)上时,QA '+QB '存在最小值,最小值为15.7.【阅读理解】射线OC 是∠AOB 内部的一条射线,若∠COA =12∠BOC ,则我们称射线OC 是射线OA 的伴随线.例如,如图1,∠AOB =60°,∠AOC =∠COD =∠BOD =20°,则∠AOC =12∠BOC ,称射线OC 是射线OA 的伴随线;同时,由于∠BOD =12∠AOD ,称射线OD 是射线OB 的伴随线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的伴随线,则∠AOM= 40 °,若∠AOB的度数是α,射线ON是射线OB的伴随线,射线OC是∠AOB的平分线,则∠NOC的度数是 α6 .(用含α的代数式表示)(2)如图3,如∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒3°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒5°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.试题分析:(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.答案详解:解:(1)40°,α6;(2)射线OD与OA重合时,t=1805=36(秒)①当∠COD的度数是20°时,有两种可能:若在相遇之前,则180﹣5t﹣3t=20,∴t=20;若在相遇之后,则5t+3t﹣180=20,∴t=25;所以,综上所述,当t=20秒或25秒时,∠COD的度数是20°.②相遇之前:(i)如图1,OC是OA的伴随线时,则∠AOC=12∠COD即3t=12(180﹣5t﹣3t)∴t=90 7(ii)如图2,OC是OD的伴随线时,则∠COD=12∠AOC即180﹣5t﹣3t=12×3t∴t=360 19相遇之后:(iii)如图3,OD是OC的伴随线时,则∠COD=12∠AOD即5t+3t﹣180=12(180﹣5t)∴t=180 7(iv)如图4,OD是OA的伴随线时,则∠AOD=12∠COD即180﹣5t=12(3t+5t﹣180)∴t=30所以,综上所述,当t=907,36019,1807,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.8.如图1,对于线段AB和∠A′OB′,点C是线段AB上的任意一点,射线OC′在∠A′OB′内部,如果ACAB=∠A′OC′∠A′OB′,则称线段AC是∠A′OC′的伴随线段,∠A′OC′是线段AC的伴随角.例如:AB=10,∠A′OB′=100°,若AC=3,则线段AC的伴随角∠A′OC′=30°.(1)当AB=8,∠A′OB′=130°时,若∠A′OC′=65,试求∠A′OC′的伴随线段AC的长.(2)如图2,对于线段AB和∠A′OB′,AB=6,∠A′OB′=120°.若点C是线段AB上任一点,E,F分别是线段AC,BC的中点,∠A′OE′,∠A′OC′,∠A′OF′分别是线段AE,AC,AF的伴随角,则在点C从A运动到B的过程中(不与A,B重合),∠E′OF′的大小是否会发生变化?如果会,请说明理由;如果不会,请求出∠E′OF′的大小.(3)如图3,已知∠AOC是任意锐角,点M,N分别是射线OA,OC上的任意一点,连接MN,∠AOC的平分线OD与线段MN相交于点Q.对于线段MN和∠AOC,线段MP是∠AOD的伴随线段,点P和点Q能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.试题分析:(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF=12AB,再利用伴随角和伴随线段的定义列出等式,可得出结论;(3)由伴随角和伴随线段的定义可得,点P和点Q重合时,是MN的中点,画出图形,测量即可.答案详解:解:(1)由伴随角和伴随线段的定义可知,ACAB =∠A′OC′∠A′OB′,∴AC8=65°130°=12,∴AC=4.(2)不会,∠E′OF′=60°.理由如下:∵点E,F分别是线段AC,BC的中点,∴EC=12AC,CF=12BC,∴EF=12AB=3.∵∠A′OE′,∠A′OC′,∠A′OF′分别是线段AE,AC,AF的伴随角,∴AEAB=∠A′OE′∠A′OB′,ACAB=∠A′OC′∠A′OB′,AFAB=∠A′OF′∠A′OB′,∵EF=AF﹣AE,∴EFAB=AFAB−AEAB=∠A′OF′∠A′OB′−∠A′OE′∠A′OB′=∠E′OF′∠A′OB′=12,∵∠A′OB′=120°,∴∠E′OF′=60°.(3)能,理由如下:∵OD是∠AOC的平分线,∴∠AOD=12∠AOC,∵线段MP是∠AOD的伴随线段,∴MPMN=∠AOD∠AOC=12.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.二.数形结合之数轴与方程(经典题型)9.我们知道数轴上两点间的距离等于这两点所表示数的差的绝对值,例如:点A,B在数轴上分别对应的数为a,b,则A,B两点间的距离表示为AB=|a﹣b|.根据以上知识解决问题:(1)如图1所示,在数轴上点E,F表示的数分别为﹣5,3,则EF= 8 ;(2)①如图2所示,点P表示数x,点M表示数﹣2,点N表示数2x+14,且MN=2PM,求:点P和点N表示的数.②在上述①的条件下,数轴上是否存在点Q.使PQ+QN=52QM?若存在,请直接写出点Q所表示的数;若不存在,请说明理由.试题分析:(1)由点E ,F 表示的数分别为﹣5,3,可得EF =|﹣5﹣3|=8;(2)①由点P 表示数x ,点M 表示数﹣2,点N 表示数2x +14,得MN =2x +16,PM =﹣2﹣x ,即得2x +16=2(﹣2﹣x ),可解得P 表示的数是﹣5,N 表示的数是4;②设Q 表示的数是m ,分四种情况:当Q 在P 左侧时,(﹣5﹣m )+(4﹣m )=52(﹣2﹣m ),解得m =﹣8,当Q 在P 、M 之间,(m +5)+(4﹣m )=52(﹣2﹣m ),解得m =−285(不合题意,舍去),当Q 在M 、N 之间,(m +5)+(4﹣m )=52(m +2),解得m =85,当Q 在N 右侧,(m +5)+(m ﹣4)=52(m +2),解得m =﹣8(不合题意,舍去).答案详解:解:(1)∵点E ,F 表示的数分别为﹣5,3,∴EF =|﹣5﹣3|=8,所以答案是:8;(2)①∵点P 表示数x ,点M 表示数﹣2,点N 表示数2x +14,∴MN =(2x +14)﹣(﹣2)=2x +16,PM =﹣2﹣x ,∵MN =2PM ,∴2x +16=2(﹣2﹣x ),解得x =﹣5,∴2x +14=2×(﹣5)+14=4,答:P 表示的数是﹣5,N 表示的数是4;②设Q 表示的数是m ,当Q 在P 左侧时,PQ =﹣5﹣m ,QN =4﹣m ,QM =﹣2﹣m ,∵PQ +QN =52QM ,∴(﹣5﹣m )+(4﹣m )=52(﹣2﹣m ),解得m =﹣8,当Q 在P 、M 之间,PQ =m +5,QN =4﹣m ,QM =﹣2﹣m ,∵PQ +QN =52QM ,∴(m +5)+(4﹣m )=52(﹣2﹣m ),解得m =−285(不合题意,舍去),当Q在M、N之间,PQ=m+5,QN=4﹣m,QM=m+2,∵PQ+QN=52 QM,∴(m+5)+(4﹣m)=52(m+2),解得m=8 5,当Q在N右侧,PQ=m+5,QN=m﹣4,QM=m+2,∵PQ+QN=52 QM,∴(m+5)+(m﹣4)=52(m+2),解得m=﹣8(不合题意,舍去),综上所述,Q表示的数是﹣8或8 5.10.如图,数轴上A,B两点对应的数分别是﹣20和10,P,Q两点同时从原点出发,P以每秒2个单位长度的速度沿数轴向左匀速运动,Q以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点B后立即返回,以相同的速度沿数轴向左运动.点P到达点A时,P,Q两点同时停止运动.设运动时间为t秒.(1)当t=1时,线段PQ= 7 ;(2)当PQ=5时,求t的值;(3)在P,Q两点运动的过程中,若点A,点P,点Q三点中的一个点是另外两个点为端点的线段的中点,直接写出t的值.试题分析:(1)根据数轴上两点间距离公式可得;(2)分两种情况:当0≤t≤2或2<t≤10时,分别列出方程可得答案;(3)分两种情况:当0≤t≤2或2<t≤10时,再根据线段中点的定义可得答案.答案详解:解:(1)t=1时,点P表示的数是﹣2,点Q表示的数是5,∴PQ=5﹣(﹣2)=7,所以答案是:7;(2)当0≤t≤2时,点P表示的数是﹣2t,点Q表示的数是5t,则5t ﹣(﹣2t )=5,解得t =57;当2<t ≤10时,点P 表示的数是﹣2t ,点Q 表示的数是10﹣(5t ﹣10)=20﹣5t ,则|(20﹣5t )﹣(﹣2t )|=5,解得t =5或253;所以当PQ =5时,t 的值是57或5或253;(3)当0≤t ≤2时,点P 表示的数是﹣2t ,点Q 表示的数是5t ,点A 表示的数是﹣20,若点P 是线段AQ 的中点,则PA =PQ ,﹣2t +20=5t +2t ,解得t =209>2,故不存在此情况;当2<t ≤10时,点P 表示的数是﹣2t ,点Q 表示的数是10﹣(5t ﹣10)=20﹣5t ,点A 表示的数是﹣20,若点P 是线段AQ 的中点,则PA =PQ ,﹣2t +20=20﹣5t +2t ,解得t =0,故不存在此情况;若点Q 是线段AP 的中点,则QA =PQ ,20﹣5t +20=﹣2t ﹣20+5t ,解得t =7.5.当A 是PQ 的中点时,2t ﹣20=30﹣5(t ﹣2),t =607,综上,t 的值是7.5或607.11.规定:A ,B ,C 是数轴上的三个点,当CA =3CB 时我们称C 为[A ,B ]的“三倍距点”,当CB =3CA 时,我们称C 为[B ,A ]的“三倍距点”.点A 所表示的数为a ,点B 所表示的数为b 且a ,b 满足(a +3)2+|b ﹣5|=0.(1)a = ﹣3 ,b = 5 ;(2)若点C 在线段AB 上,且为[A ,B ]的“三倍距点”,则点C 所表示的数为 3 ;(3)点M 从点A 出发,同时点N 从点B 出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t 秒.当点B 为M ,N 两点的“三倍距点”时,求t 的值.试题分析:(1)根据非负性的性质.即可求得a ,b 的值;(2)根据“三倍距点”的定义即可求解;(3)分点B为[M,N]的“三倍距点”和点B为[N,M]的“三倍距点”两种情况讨论即可.答案详解:解:(1)∵(a+3)2+|b﹣5|=0,∴a+3=0,b﹣5=0,∴a=﹣3,b=5,所以答案是:﹣3;5;(2)∵点A所表示的数为﹣3,点B所表示的数为5,∴AB=5﹣(﹣3)=8,∵点C为[A,B]的“三倍距点”,点C在线段AB上,∴CA=3CB,CA+CB=AB=8,∴CB=2,∴点C所表示的数为5﹣2=3,所以答案是:3;(3)根据题意可知:点M所表示的数为3t﹣3,点N所表示的数为t+5,∴BM=|5﹣(3t﹣3)|=|8﹣3t|,BN=|t+5﹣5|=t,(t>0),当点B为[M,N]的“三倍距点”时,即BM=3BN,∴|8﹣3t|=3t,∴8﹣3t=3t或8﹣3t=﹣3t,解8﹣3t=3t,得:t=4 3,而方程8﹣3t=﹣3t,无解,当点B为[N,M]的“三倍距点”时,即3BM=BN,∴3|8﹣3t|=t,∴24﹣9t=t或24﹣9t=﹣t,解得:t=125或t=3,综上所述,当t=125或t=3或t=43时,点B为M,N的“三倍距点”.12.已知,C,D为线段AB上两点,C在D的左边,AB=a,CD=b,且a,b满足(a﹣120)2+|4b ﹣a|=0.(1)a = 120 ,b = 30 ;(2)如图1,若M 是线段AD 的中点,N 是线段BC 的中点,求线段MN 的长;(3)线段CD 在线段AB 上从端点D 与点B 重合的位置出发,以3cm /s 的速度沿射线BA 的方向运动,同时点P 以相同速度从点A 出发沿射线AB 的方向运动,当点P 与点D 相遇时,点P 原路返回且速度加倍,线段CD 的运动状态不变,直到点C 到达点A 时线段CD 和点P 同时停止运动,设运动时间为ts ,在此运动过程中,当t 为多少s 时线段PC =10cm ?试题分析:(1)由绝对值及偶次方的非负性可求出a ,b 的值;(2)由中点的定义得AM =12AD =12(AC +CD )=12(AC +30)=12AC +15)、CN =12BC =12(AB ﹣AC )=12(120﹣AC )=60−12AC ,由MN =CN ﹣CM 即可求解;(3)分两种情况:①点P 与点D 相遇前,②点P 与点D 相遇后,每种情况再分点P 在点C 左边,点P 在点C 右边解答即可.答案详解:解:(1)∵a ,b 满足(a ﹣120)2+|4b ﹣a |=0,∴a ﹣120=0,4b ﹣a =0,∴a =120,b =30.所以答案是:120;30;(2)∵M 是线段AD 的中点,N 是线段BC 的中点,∴AM =12AD =12(AC +CD )=12(AC +30)=12AC +15,CN =12BC =12(AB ﹣AC )=12(120﹣AC )=60−12AC ,∴CM =AM ﹣AC =12AC +15﹣AC =15−12AC ,∴MN =CN ﹣CM )=60−12AC ﹣(15−12AC )=﹣60−12AC ﹣15+12AC =45(cm );(3)由题意得:点P 与点D 相遇的时间为120÷(3+3)=20(s ),点C 到达点A 的时间为(120﹣30)÷3=30(s ),①点P 与点D 相遇前,即t <20时,Ⅰ点P 在点C 左边,线段PC =10cm ,∴PD =PC +CD =10+30=40(cm ),由题意得:(3+3)t =120﹣40,解得:t =403,Ⅱ点P 在点C 右边,线段PC =10cm ,∴PD =CD ﹣PC =30﹣10=20(cm ),由题意得:(3+3)t =120﹣20,解得:t =503,②点P 与点D 相遇后,即20≤t ≤30时,Ⅰ点P 在点C 左边,线段PC =10cm ,∴PD =PC +CD =10+30=40(cm ),由题意得:(3×2﹣3)(t ﹣20)=40,解得:t =1003>30(不合题意,舍去),Ⅱ点P 在点C 右边,线段PC =10cm ,∴PD =CD ﹣PC =30﹣10=20(cm ),由题意得:(3×2﹣3)(t ﹣20)=20,解得:t =803,综上,当t 为403s 或503s 或803s 时线段PC =10cm .13.如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,数轴上有一点C ,且AC =2CB ,a 、b 满足|a +4|+(b ﹣11)2=0.(1)a = ﹣4 ,b = 11 ;(2)求点C 表示的数;(3)点P 从点A 出发,以每秒4个单位长度的速度沿数轴向右运动,同时点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左运动,若AP +BQ =2PQ ,求t 的值.试题分析:(1)根据非负数的性质列方程,分别求出a 、b 的值即可;(2)设点C 表示的数为x ,分三种情况进行讨论,一是点C 在点A 与点B 之间,二是点C 在点B 的右侧,三是点C 在点A 的左侧,对符合题意的情况列方程求出x 的值,对不符合题意的情况直接舍去即可;(3)先根据题意得AP =4t ,BQ =3t ,则点P 表示的数是﹣4+4t ,点Q 表示的数是11﹣3t ,再按点P 在点Q 左侧和点P 在点Q 右侧分别列方程求出t 的值即可.答案详解:解:(1)∵|a +4|≥0,(b ﹣11)2≥0,且|a +4|+(b ﹣11)2=0,∴|a +4|=0,(b ﹣11)2=0,∴a =﹣4,b =11,所以答案是:﹣4,11.(2)设点C 表示的数为x ,若点C 在A 、B 两点之间,则x +4=2(11﹣x ),解得x =6;若点C 在点B 的右侧,则x +4=2(x ﹣11),解得x =26;若点C 在点A 的左侧,则CA <CB ,∴不存在CA =2CB 的情况,综上所述,点C 表示的数是6或26.(3)由题意可知,AP =4t ,BQ =3t ,∴点P 表示的数是﹣4+4t ,点Q 表示的数是11﹣3t ,当点P 在点Q 左侧时,则4t +3t =2[11﹣3t ﹣(﹣4+4t )],解得t =107;当点P 在点Q 右侧时,则4t +3t =2[﹣4+4t ﹣(11﹣3t )],解得t =307,综上所述,t 的值为107或307.三.数形结合之角的动边与方程(超难题型)14.如图,∠AOD =130°,∠BOC :∠COD =1:2,∠AOB 是∠COD 补角的13.(1)∠COD = 60° ;(2)平面内射线OM 满足∠AOM =2∠DOM ,求∠AOM 的大小;(3)将∠COD 固定,并将射线OA ,OB 同时以2°/s 的速度顺时针旋转,到OA 与OD 重合时停止.在旋转过程中,若射线OP 为∠AOB 的平分线,OQ 为∠COD 的平分线,当∠POQ +∠AOD =50°时,求旋转时间t (秒)的取值范围.试题分析:(1)设∠BOC =α,则∠COD =2α,由此可表达∠AOB 的度数,最后根据角度的和差计算建立方程,求解即可;(2)需要分两种情况,一种是射线OM 在∠AOD 的内部,一种是射线OM 在∠AOD 的外部,根据角度的和差关系建立方程,求解即可;(3)本题需要分类讨论,当射线OB 与射线OQ 重合前,射线OP 与射线OQ 重合前,射线OA 与射线OP 重合前,射线OP 与射线OD 重合后,由此得出t 的取值范围分别是0≤t ≤40,40<t ≤45,45<t ≤50,50<t ≤55,55<t ≤65.画出图形分别表示∠AOD 和∠POQ ,建立方程求出t 的值.答案详解:解:(1)设∠BOC =α,则∠COD =2α,∵∠AOB 是∠COD 补角的13,∴∠AOB =13(180°﹣2α)=60°−23α,∵∠AOB +∠BOC +∠COD =∠AOD ,即60°−23α+α+2α=130°,解得α=30°,∴∠COD =2α=60°;所以答案是:60°;(2)由于射线OM 的位置不确定,所以需要分两种情况:①射线OM 在∠AOD 的内部,如图1:∵∠AOM =2∠DOM ,∠AOD =130°,∴∠AOM +∠DOM =∠AOD ,即3∠DOM =130°,∴∠DOM =(1303)°,∴∠AOM =2∠DOM =(2603)°;②射线OM 在∠AOD 的外部,如图2:∵∠AOM =2∠DOM ,∠AOD =130°,∴∠AOM +∠DOM =360°﹣∠AOD ,即3∠DOM =360°﹣130°,∴∠DOM =(2303)°,∴∠AOM =2∠DOM =(4603)°;综上,∠AOM 的度数为:(2603)°或(4603)°;(3)由(1)知,∠AOB =40°,∠BOC =30°,∠COD =60°;∵射线OP 为∠AOB 的平分线,OQ 为∠COD 的平分线,∴∠AOP =∠BOP =20°,∠COQ =∠COQ =30°,当射线OA ,OB 同时以2°/s 的速度顺时针旋转时,∠AOD =130°﹣2°t ,当射线OB 与射线OQ 重合前,即0≤t ≤30,如图3,此时∠POQ =∠AOD ﹣∠AOP ﹣∠DOQ =130°﹣2°t ﹣20°﹣30°=80°﹣2°t ,∴∠POQ +∠AOD =80°﹣2°t +130°﹣2°t =210°﹣2°t ,不是50°,不符合题意;射线OB 与射线OQ 重合后,射线OP 与射线OQ 重合前,即30<t ≤40时,如图4,此时∠BOD =90°﹣2°t ,∴∠BOQ =∠DOQ ﹣∠BOD =30°﹣(90°﹣2°t )=2°t ﹣60°,∴∠POQ =∠BOP ﹣∠BOQ =20°﹣(2°t ﹣60°)=80°﹣2°t ;此时∠POQ+∠AOD=80°﹣2°t+130°﹣2°t+=210°﹣4°t,不是50°,不符合题意;射线OP与射线OQ重合后,射线OB与射线OD重合前,即40<t≤45时,如图5,此时∠BOD=90°﹣2°t,∴∠BOQ=∠DOQ﹣∠BOD=30°﹣(90°﹣2°t)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OB与射线OD重合后,射线OA与射线OQ重合前,即45<t≤50时,如图6,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OA与射线OQ重合后,射线OP与射线OD重合前,即50<t≤55,如图7,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OP与射线OD重合后,射线OA与射线OD重合前,即55<t≤65时,如图8,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;综上可知,当∠POQ+∠AOD=50°时,旋转时间t(秒)的取值范围为40≤t≤65.15.如图①,已知∠AOB=100°,∠BOC=60°,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).(3)其实线段的计算与角的计算存在着紧密的联系.如图②,已知线段AB=a,延长线段AB 到C,使BC=m,点M、N分别为线段AC、BC的中点,求线段MN的长(用含a,m的式子表示).试题分析:(1)由已知条件求∠AOC的度数,再利用角平分线的定义可求解∠BOM,∠BON的度数,结合∠MON=∠BOM+∠BON可求解;(2)由已知条件求∠AOC的度数,再利用角平分线的定义可求解∠BOM,∠BON的度数,结合∠MON=∠BOM+∠BON可求解;(3)由已知条件求AC的长,再利用中点的定义可求解BM,BN的度数,结合MN=BM+BN可求解;答案详解:解:(1)∵∠AOB =100°,∠BOC =60°,∴∠AOC =∠AOB +∠BOC =100°+60°=160°,∵OM 平分∠AOC ,∴∠MOC =∠MOA =12∠AOC =80°,∴∠BOM =∠AOB ﹣∠AOM =100°﹣80°=20°,∵ON 平分∠BOC ,∴∠BON =∠CON =30°,∴∠MON =∠BOM +∠BON =20°+30°=50°;(2)∵∠AOB =α,∠BOC =β,∴∠AOC =∠AOB +∠BOC =α+β,∵OM 平分∠AOC ,∴∠MOC =∠MOA =12∠AOC =12(α+β),∴∠BOM =∠AOB ﹣∠AOM =α−12(α+β)=12α−12β,∵ON 平分∠BOC ,∴∠BON =∠CON =12β,∴∠MON =∠BOM +∠BON =12α−12β+12β=12α,故∠MON =α2;(3)∵AB =a ,BC =m ,∴AC =AB +BC =a +m ,∵M 是AC 中点,∴MC =12AC =a m 2,∵N 是BC 中点,∴NC =12BC =m 2,∴MN =MC ﹣NC =a m 2−m 2=a 2.16.如图,∠AOB =90°,∠COD =60°.(1)若OC 平分∠AOD ,求∠BOC 的度数;(2)若∠BOC=114∠AOD,求∠AOD的度数;(3)若同一平面内三条射线OT、OM、ON有公共端点O,且满足∠MOT=12∠NOT或者∠NOT=12∠MOT,我们称OT是OM和ON的“和谐线”.若射线OP从射线OB的位置开始,绕点O按逆时针方向以每秒12°的速度旋转,同时射线OQ从射线OA的位置开始,绕点O按顺时针方向以每秒9°的速度旋转,射线OP旋转的时间为t(单位:秒),且0<t<15,求当射线OP为两条射线OA和OQ的“和谐线”时t的值.试题分析:(1)利用角平分线的定义解答即可;(2)设∠AOD=x,利用角的和差列出关于x的方程,解方程即可求得结论;(3)利用分类讨论的思想方法,根据题意画出图形,用含t的代数式表示出∠AOP和∠QOP的度数,依据“和谐线”的定义列出方程,解方程即可求得结论.答案详解:解:(1)OC平分∠AOD,∴∠COD=∠AOC=12∠AOD.∵∠COD=60°,∴∠AOD=2∠COD=120°;(2)设∠AOD=x,则∠BOC=114x.∵∠AOD=∠AOB+∠BOD,∠BOD=∠COD﹣∠BOC,∴∠AOD=∠AOB+∠COD﹣∠BOC,∵∠AOB=90°,∠COD=60°,∴∠AOD=150°﹣∠BOC.∴x=150−114x.解得:x=140°.∴∠AOD的度数为140°.(3)当射线OP与射线OQ未相遇之前,如图,由题意得:∠AOQ=9t,∠BOP=12t.∴∠AOP=90°﹣∠BOP=90°﹣12t,∠QOP=90°﹣∠AOQ﹣∠BOP=90°﹣21t.∵射线OP为两条射线OA和OQ的“和谐线”,∴∠QOP=12∠AOP.∴90°﹣21t=12(90°﹣12t).解得:t=3.当射线OP与射线OQ相遇后且均在∠AOB内部时,如图,由题意得:∠AOQ=9t,∠BOP=12t.∴∠AOP=90°﹣∠BOP=90°﹣12t,∠QOP=∠BOP﹣∠BOQ=∠BOP﹣(90°﹣∠AOQ)=21t﹣90°.∵射线OP为两条射线OA和OQ的“和谐线”,∴∠QOP=12∠AOP或∠AOP=12∠QOP.∴21t﹣90°=12(90°﹣12t)或90°﹣12t=12(21t﹣90).解得:t=5或t=6.当射线OP在∠AOB的外部,射线OQ在∠AOB的内部时,如图,。
人教版七年级上册数学期末复习典型试题(按题型总结)
七年级上册数学期末复习典型试题一.填空题1、-0.5绝对值是 ,相反数是 ,倒数是 。
2、一个数绝对值是4,则这个数是 ,数轴上及原点距离为5数是 。
3、—2x 及3x —1互为相反数,则=x 。
4、(1)设b a 、互为相反数,d c 、互为倒数,则2013(b a +)-cd 值是_____________。
(2)已知a 、b 互为相反数,c 、d 互为倒数,且3=m ,则20052)(242cd b m a -+-=_________。
5、已知=___________。
6、(1)已知0)1(32=-++b a ,则=+b a 3 。
(2)如果2|1|(2)0a b -++=,则()2012b a +值是______________.。
(3)若()0522=++-y x ,则y x= 。
7、(1)单项式 -22xy π系数是 ,次数是 ;多项式 次数 。
(2)单项式32xy π-系数是___________,次数是___________. 8、(1)如果 是关于x 一元一次方程,则k ____。
(2)如果关于y 一元一次方程,则m = 。
9、(1)已知x=3是方程ax-6=a+10解,则a=_____________。
(2)若x =2是方程解,则值是 。
10、将弯曲河道改直,可以缩短航程,是因为:两点之间, 最短11、小明将一根木条固定在墙上只用了两个钉子,他这样做依据是 ____.12、如图所示, ∠AOB 是平角, ∠AOC=300, ∠BOD=600, OM 、ON 分别是∠AOC、∠BOD 平分线, ∠MON 等于_________________. 13、如图,图中共有 条线段,共有 个三角形。
14. 如图3,∠AOD=80°,∠AOB=30°,OB 是∠AOC 平分线,则∠AOC 度数为______,∠COD 度数为________. 15、计算51°36ˊ=____°25.14°= ___° ____′____″;下午1点24分,时针及分针所组成____度。
部编数学七年级上册期末真题必刷压轴60题(17个考点专练)(解析版)含答案
期末真题必刷压轴60题(17个考点专练)一.正数和负数(共2小题)1.(2023春•南岗区期末)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计﹣27.8﹣70.3200138.1﹣8188458表中星期六的盈亏被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?【分析】设星期六为x元,根据题意可得等量关系:七天的盈亏数之和=458,根据等量关系列出方程,再解方程即可.【解答】解一:458﹣(﹣27.8﹣70.3+200+138.1﹣8+188),=458+27.8+70.3﹣200﹣138.1+8﹣188,=38,因为38为正数,故星期六是盈利,盈利38元,答:星期六是盈利38元.解二:设星期六为x元,则:﹣27.8﹣70.3+200+138.1﹣8+x+188=458,x=458+27.8+70.3﹣200﹣138.1+8﹣188,x=38,因为38为正数,故星期六是盈利,盈利38元,答:星期六是盈利38元.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.正确理解正负数的意义.2.(2022秋•长寿区期末)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负,单位:辆)星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)产量最多的一天比产量最少的一天多生产多少辆;(2)该厂实行计件工资制,一周结算一次,每辆车60元,超额完成任务每辆再奖15元,少生产一辆倒扣15元,那么该厂工人这一周的工资总额是多少元?【分析】(1)根据表格及题意求出七天的生产情况,即可求出产量最多的一天比产量最少的一天多生产的;(2)求出七天共生产的辆数,与1400比较,判断是超额还是没有完成任务,即可得到结果.【解答】解:(1)根据题意得:星期一到星期日生产的辆数分别为:205;198;196;213;190;216;191,则产量最多的一天比产量最少的一天多生产216﹣190=26(辆);(2)根据题意得:一周总产量为205+198+196+213+190+216+191=1409(辆),∵1409>1400,∴超额完成9辆,则该厂工人这一周的工资总额是1409×60+9×15=84540+135=84675(元).【点评】此题考查了正数与负数,属于应用题,弄清题意是解本题的关键.二.数轴(共5小题)3.(2022秋•鼓楼区期末)数轴上某一个点表示的数为a,比a小2的数用b表示,那么|a|+|b|的最小值为( )A.0B.1C.2D.3【分析】理解绝对值的定义,如|a﹣2|表示数轴上点a到2的距离;|a|=|a﹣0|表示a到原点的距离;【解答】解:∵比a小2的数用b表示,∴b=a﹣2,∴|a|+|b|=|a﹣0|+|a﹣2|,那么|a|+|b|的最小值就是在数轴上找一点a到原点和到2的距离最小,显然这个点就是在0与2之间,当a在区间0与2之间时,|a﹣0|+|a﹣2|=|2﹣0|=2为最小值,∴|a|+|b|的最小值为2,故选:C.【点评】本题考查绝对值的定义,难点在于|a﹣0|+|a﹣2|对这个式子的理解并用绝对值意义来解答.4.(2022秋•黄埔区校级期末)已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c ﹣a|= 2b+2c﹣2a .【分析】去绝对值符号的关键是判断绝对值符号里面的数的符号,根据题意确定了符号,容易去绝对值符号.【解答】解:根据图形,a﹣b<0,b+c>0,c﹣a>0,所以|a﹣b|+|b+c|+|c﹣a|=b﹣a+b+c+c ﹣a=2b+2c﹣2a.故答案为:2b+2c﹣2a.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.5.(2021秋•佳木斯期末)已知,A,B在数轴上对应的数分别用a,b表示,且(ab+100)2+|a﹣20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合.【分析】(1)先根据非负数的性质求出a,b的值,在数轴上表示出A、B的位置,再根据数轴上两点间的距离公式,求出A、B之间的距离即可;(2)设P点对应的数为x,当P点满足PB=2PC时,分三种情况讨论,根据PB=2PC 求出x的值即可;(3)根据第一次点P表示﹣1,第二次点P表示2,点P表示的数依次为﹣3,4,﹣5,6…,找出规律即可得出结论.【解答】解:(1)∵(ab+100)2+|a﹣20|=0,∴ab+100=0,a﹣20=0,∴a=20,b=﹣10,∴AB=20﹣(﹣10)=30,数轴上标出A、B的位置,如图:(2)∵|BC|=6且C在线段OB上,∴x C﹣(﹣10)=6,∴x C=﹣4,∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,x P﹣x B=2(x c﹣x p),∴x p+10=2(﹣4﹣x p),解得:x p=﹣6,当P在点C右侧时,x p﹣x B=2(x p﹣x c),x p+10=2x p+8,x p=2,综上所述P点对应的数为﹣6或2.(3)第一次点P表示﹣1,第二次点P表示2,依次﹣3,4,﹣5,6…则第n次为(﹣1)n•n,点A表示20,则第20次P与A重合;点B表示﹣10,点P与点B不重合.【点评】本题考查的是数轴,非负数的性质以及同一数轴上两点之间的距离公式的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.6.(2022秋•碑林区校级期末)将一条数轴在原点O和点B处各折一下,得到如图所示的“折线数轴”,图中点A表示﹣10,点B表示10,点C表示18.我们称点A和点C在数轴上的“友好距离”为28个单位长度.动点P从点A出发,以2单位长度/秒的速度沿着“折线数轴”向其正方向运动.当运动到点O与点B之间时速度变为原来的一半.经过点B后立刻恢复原速;同时,动点Q从点C出发,以1单位长度/秒的速度沿着“折线数轴”向其负方向运动,当运动到点B与点O之间时速度变为原来的两倍,经过O后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至点C需要 19 秒,动点Q从点C运动至点A需要 23 秒;(2)P,Q两点相遇时,求出相遇点M在“折线数轴”上所对应的数;(3)是否存在t值,使得点P和点Q在“折线数轴”上的“友好距离”等于点A和点B 在“折线数轴”上的“友好距离”?若存在,求出t的值;若不存在,请说明理由.【分析】(1)根据题意可得,动点P从点A运动至点C需要的时间是:10÷2+10÷1+8÷2=19(s),动点Q从点C运动至点A需要的时间是:8÷1+10÷2+10÷1=23(s);(2)根据题意可知,P、Q两点在OB上相遇,P点运动到OB上时表示的数是t﹣5,Q 点运动到OB上时表示的数是10﹣2(t﹣8),则t﹣5=10﹣2(t﹣8),求出t的值,再求M点表示的数即可;(3)分7种情况讨论:①当0≤t≤5时,P点在OA上,Q点在BC上,此时P点表示的数是﹣10+2t,Q点表示的数是18﹣t,由题意可得,28﹣3t=20,解得t=;②当5<t≤8时,P点在OB上,Q点在BC上,此时P点表示的数是t﹣5,Q点表示的数是18﹣t,由题意可得,23﹣2t=20,解得t=(舍);③8<t≤13时,点P、Q都在BO上,此时PQ<10,此情况不符合题意;④13<t≤15时,P点在OB上,Q点在OA上,此时P点表示的数是t﹣5,Q点表示的数是13﹣t,由题意可得,2t﹣18=20,解得t=19(舍);⑤15<t≤19时,P点在BC上,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,由题意可得,3t﹣33=20,解得t=;⑥19<t≤23时,P点在C 的右侧,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,由题意可得,3t﹣33=20,解得t=(舍);⑦t>23时,P点在C点右侧,Q点在A点左侧,PQ>20,不符合题意.【解答】解:(1)∵点A表示﹣10,点B表示10,点C表示18,∴OA=10,BO=10,BC=8,∴动点P从点A运动至点C需要的时间是:10÷2+10÷1+8÷2=19(s),动点Q从点C运动至点A需要的时间是:8÷1+10÷210÷1=23(s),故答案为:19,23;(2)根据题意可知,P、Q两点在OB上相遇,P点运动到OB上时表示的数是t﹣5,Q点运动到OB上时表示的数是10﹣2(t﹣8),∴t﹣5=10﹣2(t﹣8),解得t=,∴M点表示的数是﹣5=;(3)存在t值,使得点P和点Q在“折线数轴”上的“友好距离”等于点A和点B在“折线数轴”上的“友好距离”,理由如下:∵点A表示﹣10,点B表示10,∴点A和点B在“折线数轴”上的“友好距离”是20,①当0≤t≤5时,P点在OA上,Q点在BC上,此时P点表示的数是﹣10+2t,Q点表示的数是18﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为18﹣t+10﹣2t=28﹣3t,由题意可得,28﹣3t=20,解得t=;②当5<t≤8时,P点在OB上,Q点在BC上,此时P点表示的数是t﹣5,Q点表示的数是18﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为18﹣t﹣t+5=23﹣2t,由题意可得,23﹣2t=20,解得t=(舍);③8<t≤13时,点P、Q都在BO上,此时PQ<10,∴此情况不符合题意;④13<t≤15时,P点在OB上,Q点在OA上,此时P点表示的数是t﹣5,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为t﹣5+13﹣t=8(舍);⑤15<t≤19时,P点在BC上,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为13﹣t+2t﹣20=t﹣7,由题意可得,t﹣7=20,解得t=27;⑥19<t≤23时,P点在C的右侧,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为13﹣t+2t﹣20=t﹣7,由题意可得,t﹣7=20,解得t=27;⑦t>23时,P点在C点右侧,Q点在A点左侧,PQ>20,不符合题意;综上所述:t的值为27或.【点评】本题考查实数与数轴,熟练掌握实数上点与数轴的对应关系,弄清“友好函数”的定义是解题的关键.7.(2022秋•石门县期末)附加题:已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?【分析】(1)若点P对应的数与﹣1、3差的绝对值相等,则点P到点A,点B的距离相等.(2)根据当P在A的左侧以及当P在B的右侧分别求出即可;(3)设经过a分钟点A与点B重合,根据点A比点B运动的距离多4,列出方程,求出a的值,即为点P运动的时间,再乘以点P运动的速度,可得点P经过的总路程.【解答】解:(1)∵1﹣(﹣1)=2,2的绝对值是2,1﹣3=﹣2,﹣2的绝对值是2,∴点P对应的数是1.(2)当P在AB之间,PA+PB=4(不可能有)当P在A的左侧,PA+PB=﹣1﹣x+3﹣x=6,得x=﹣2当P在B的右侧,PA+PB=x﹣(﹣1)+x﹣3=6,得x=4故点P对应的数为﹣2或4;(3)解:设经过a分钟点A与点B重合,根据题意得:2a=4+a,解得a=4.则6a=24.答:点P所经过的总路程是24个单位长度.【点评】本题考查了绝对值、路程问题、一元一次方程等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.三.有理数的乘方(共1小题)8.(2021秋•头屯河区期末)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2019,则m的值是( )A.46B.45C.44D.43【分析】根据有理数的乘方和数字的变化寻找规律即可求解.【解答】解:23=3+5,第一项为22﹣2+1,最后一项为3+2×133=7+9+11,第一项为32﹣3+1,最后一项为7+2×243=13+15+17+19,第一项为42﹣4+1,最后一项为13+2×3…453的第一项为452﹣45+1=1981,最后一项为1981+2×44=2069,1981到2069之间有奇数2019,∴m的值为45.故选:B.【点评】本题考查了有理数的乘方,解决本题的关键是根据数字的变化情况寻找规律.四.有理数的混合运算(共3小题)9.(2022秋•江海区期末)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(﹣2)2﹣|﹣7|+3﹣2×(﹣)=4﹣7+3+1=1.【点评】考查了有理数的混合运算,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.10.(2022秋•孝南区期末)对于有理数a、b,定义一种新运算“⊕”,规定:a⊕b=|a+b|﹣|a﹣b|(1)计算2⊕(﹣3)的值;(2)若a⊕a=8,则a= ±4 .【分析】(1)根据新定义规定的运算公式列式计算可得;(2)根据新定义规定的计算公式可得a⊕a=|a+a|﹣|a﹣a|=|2a|=2|a|,即2|a|=8,解之可得.【解答】解:(1)2⊕(﹣3)=|2﹣3|﹣|2+3|=﹣4;(2)a⊕a=|a+a|﹣|a﹣a|=|2a|=2|a|,由条件得2|a|=8,∴a=±4,故答案为:±4.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握新定义规定的运算公式和有理数的混合运算顺序及运算法则.11.(2022秋•安顺期末)若a,b是有理数,定义一种新运算⊕:a⊕b=2ab+1.计算:例如:(﹣3)⊕4=2×(﹣3)×4+1=﹣23.试计算:(1)3⊕(﹣5).(2)[3⊕(﹣5)]⊕(﹣6).【分析】直接套用公式列出算式,根据实数的混合运算即可得出结果.【解答】解:(1)根据题意可得:原式=2×3×(﹣5)+1=﹣30+1=﹣29;(2)根据题意可得:2×(﹣29)×(﹣6)+1=348+1=349.【点评】本题主要考查有理数的混合运算,根据新规定的运算法则列出算式是解题的关键.五.列代数式(共2小题)12.(2022秋•闽侯县校级期末)某农户承包果树若干亩,今年投资24400元,收获水果总产量为20000千克.此水果在市场上每千克售a元,在果园直接销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天200元.(1)分别用含a,b的代数式表示两种方式出售水果的收入.(2)若a=4.5元,b=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.(3)该农户加强果园管理,力争到明年纯收入达到72000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入﹣总支出)?【分析】(1)市场出售收入=水果的总收入﹣额外支出.而水果直接在果园的出售收入为:20000b元.(2)根据(1)中得到的代数式,将a=4.5,b=4,代入代数式计算即可.(3)根据(2)的数据,首先确定今年的最高收入,然后计算增长率即可.【解答】解:(1)将这批水果拉到市场上出售收入为:20000a﹣×2×100﹣×200=20000a﹣4000﹣4000=(20000a﹣8000)(元)在果园直接出售收入为20000b(元);(2)当a=4.5时,市场收入为20000a﹣8000=20000×4.5﹣8000=82000(元).当b=4时,果园收入为20000b=20000×4=80000(元).因为82000>80000,所以应选择在市场出售;(3)因为今年的纯收入为82000﹣24400=57600,×100%=25%,所以增长率为25%.【点评】本题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达.13.(2022秋•沁县期末)某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m3时,按2元/m3计算;月用水量超过20m3时,其中的20m3仍按2元/m3计算,超过部分按2.6元/m3计算.设某户家庭月用水量xm3.月份4月5月6月用水量151721(1)用含x的式子表示:当0≤x≤20时,水费为 2x 元;当x>20时,水费为 2.6x﹣12 元.(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费多少元?【分析】(1)分类讨论:当x≤20时,水费为2x元;当x>20时,水费为[20×2+2.6(x ﹣20)]元;(2)由(1)得到四月份和五月份的用水量按2元/立方米计费、六月份的用水量按方式二计费,然后把三个月的水费相加即可.【解答】解:(1)当0≤x≤20时,水费为2x元;当x>20时,水费为20×2+2.6(x﹣20)=2.6x﹣12元.故答案为:2x、2.6x﹣12;(2)15×2+17×2+2.6×21﹣12=30+34+54.6﹣12=106.6,答:小花家这个季度共缴纳水费106.6元.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是水费要分段付费.六.代数式求值(共3小题)14.(2022秋•罗湖区校级期末)若a<b<c,x<y<z,则下面四个代数式的值最大的是( )A.ax+by+cz B.ax+cy+bz C.bx+ay+cz D.bx+cy+az【分析】要比较两个多项式的大小,只需采用作差法,将它们的差因式分解就可解决问题.【解答】解:∵b<c,y<z,∴b﹣c<0,y﹣z<0,∴(ax+by+cz)﹣(ax+bz+cy)=by+cz﹣bz﹣cy=b(y﹣z)﹣c(y﹣z)=(y﹣z)(b﹣c)>0,∴ax+by+cz>ax+bz+cy,即A>B.同理:A>C,B>D,∴A式最大.故选:A.【点评】本题主要考查了整式的加减、因式分解、不等式的性质、不等式的传递性等知识,比较大小常用作差法或作商法,应熟练掌握.15.(2022秋•衡南县期末)盱眙县防疫部门配送新冠疫情物资,甲、乙两仓库分别有防疫物资30箱和50箱,A、B两地分别需要防疫物资20箱和60箱.已知从甲、乙仓库到A、B两地的运价如表:到A地到B地甲仓库每箱15元每箱12元乙仓库每箱10元每箱9元(1)若从甲仓库运到A地的防疫物资为x箱,则用含x的代数式表示从甲仓库运到B地的防疫物资为 (30﹣x) 箱,从乙仓库将防疫物资运到B地的运输费用为 (270+9x) 元;(2)求把全部防疫物资从甲、乙两仓库运到A、B两地的总运输费(用含x的代数式表示并化简);(3)如果从甲仓库运到A地的防疫物资为10箱时,那么总运输费为多少元?【分析】(1)根据题意,从甲仓库运到A地的防疫物资为x箱,则用含x的代数式表示从甲仓库运到B地的防疫物资为(30﹣x)箱,从乙仓库运到B地的防疫物资为(30+x)箱,从乙仓库将防疫物资运到B地的运输费用为(270+9x)元;(2)根据总运输费=从甲、乙两仓库运到A、B两地的费用之和列出代数式;(3)把x=10代入(2)中代数式即可.【解答】解:(1)∵甲仓库有防疫物资30箱,从甲仓库运到A地的防疫物资为x箱,∴从甲仓库运到B地的防疫物资为(30﹣x)箱;∵B地需要防疫物资60箱,从甲仓库运到B地的防疫物资为(30﹣x)箱;∴从乙仓库运到B地的防疫物资为:60﹣30+x=(30+x)箱,∴从乙仓库将防疫物资运到B地的运输费用为:9×(30+x)=(270+9x)元,故答案为:(30﹣x),(270+9x);(2)总运费:15x+12(30﹣x)+10(20﹣x)+9(30+x)=(2x+830)元,∴全部防疫物资从甲、乙两仓库运到A、B两地的总运输费(2x+830)元;(3)当x=10时,2x+830=2×10+830=850,∴总运输费为850元.【点评】本题考查列代数式和代数式求值,关键是根据题意列出代数式.16.(2022秋•阜平县期末)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b.(1)计算:(x2+y)ω(x2﹣y);(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.【分析】(1)先依据定理列出代数式,然后依据整式的运算法则进行计算即可;(2)将x=﹣2,y=2代入(1)的化简结果进行计算即可.【解答】解:(x2+y)ω(x2﹣y)=3(x2+y)﹣2(x2﹣y)=3x2+3y﹣2x2+2y=x2+5y;(2)将x=﹣2,y=2代入得:原式=(﹣2)2+5×2=2+20=14.【点评】本题主要考查的是整式的加减和求代数式的值,掌握整式的加减法则是解题的关键.七.整式的加减(共2小题)17.(2022秋•深圳校级期末)数轴上点A对应的数为a,点B对应的数为b,且多项式x3y﹣2xy+5的二次项系数为a,常数项为b.(1)直接写出:a= ﹣2 ,b= 5 .(2)数轴上点A、B之间有一动点P,若点P对应的数为x,试化简|2x+4|+2|x﹣5|﹣|6﹣x|;(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,沿数轴以每秒2个单位长度的速度向左移动,到达A点后立即返回并向右继续移动,请直接写出经过 2或或6或8 秒后,M、N两点相距1个单位长度,并选择一种情况计算说明.【分析】(1)根据多项式中二次项系数与常数项的定义即可求解;(2)由题意可得﹣2<x<5,根据绝对值的意义去掉绝对值符号,再化简即可;(3)设经过t秒M,N两点相距一个单位长度.分四种情况进行讨论:①点M、点N 没有相遇之前;②点M、点N相遇后,但是点N没有到达A点;③点N到达A点后返回,但是没有追上点M;④点N到达A点后返回,追上了点M.【解答】解:(1)∵多项式x3y﹣2xy+5的二次项系数为a,常数项为b,∴a=﹣2,b=5.故答案为﹣2,5;(2)依题意,得﹣2<x<5,则|2x+4|+2|x﹣5|﹣|6﹣x|=2x+4+2(5﹣x)﹣(6﹣x)=2x+4+10﹣2x﹣6+x=x+8;(3)设经过t秒M,N两点相距一个单位长度.①M,N第一次相距一个单位长度时,t+1+2t=7,解得t=2;②M,N第二次相距一个单位长度时,t+2t=7+1,解得t=;③当M,N第三次相距一个单位长度时,t﹣2(t﹣3.5)=1,解得t=6;④当M,N第四次相距一个单位长度时,2(t﹣3.5)﹣t=1,解得t=8.故答案为2或或6或8.【点评】本题考查了一元一次方程的应用,整式的加减以及数轴,解题关键是要读懂题目的意思,根据题目给出的条件,分类讨论并且找出合适的等量关系列出方程,再求解.18.(2022秋•阜平县期末)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.【分析】(1)先根据题意列出关于A的式子,再去括号,合并同类项即可;(2)先根据题意列出关于A﹣B的式子,再去括号,合并同类项即可.【解答】解:(1)∵A+B=9x2﹣2x+7,B=x2+3x﹣2∴A=9x2﹣2x+7﹣(x2+3x﹣2)=9x2﹣2x+7﹣x2﹣3x+2=8x2﹣5x+9;(2)A﹣B=8x2﹣5x+9﹣(x2+3x﹣2)=8x2﹣5x+9﹣x2﹣3x+2=7x2﹣8x+11.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.八.整式的加减—化简求值(共5小题)19.(2022秋•宁明县期末)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).【分析】先去括号,然后合并同类项,最后代入x、y的值即可.【解答】解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.【点评】此题考查了数轴,整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(2022秋•岳普湖县校级期末)先化简,再求值2x3+4x﹣﹣(x+3x2﹣2x3),其中x=﹣3.【分析】先去括号、合并同类项化简,再代入计算即可;【解答】解:原式=2x3+4x﹣﹣x﹣3x2+2x3,=4x3+3x﹣x2,当x=﹣3时,原式=﹣108﹣9﹣30=﹣147.【点评】本题考查的加减混合运算,代数式求值,解题的关键是掌握去括号法则、合并同类项法在等知识,属于中考常考题型.21.(2022秋•仓山区期末)先化简,再求值:5(3x2y﹣xy2)﹣4(﹣x2y+3xy3),其中x=﹣2,y=3.【分析】根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可.【解答】解:原式=15x2y﹣5xy2+4x2y﹣12xy3=19x2y﹣5xy2﹣12xy3,当x=﹣2、y=3时,原式=19×(﹣2)2×3﹣5×(﹣2)×32﹣12×(﹣2)×33=228+90+648=966.【点评】本题考查了对整式的加减,合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入﹣2时应用括号.22.(2022秋•淮滨县期末)先化简,再求值:(3x2+5x﹣2)﹣2(2x2+2x﹣1)+2x2﹣5,其中x2+x﹣3=0.【分析】原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=3x2+5x﹣2﹣4x2﹣4x+2+2x2﹣5=x2+x﹣5,由x2+x﹣3=0,得到x2+x=3,则原式=3﹣5=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(2022秋•新都区期末)先化简,再求值:(5a2﹣3b2)+(a2+b2)﹣(5a2+3b2),其中a=﹣1,b=1.【分析】先去括号、合并同类项化简原式,再将a、b的值代入计算即可得.【解答】解:原式=5a2﹣3b2+a2+b2﹣5a2﹣3b2=a2﹣5b2,当a=﹣1、b=1时,原式=(﹣1)2﹣5×12=1﹣5=﹣4【点评】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和法则.九.解一元一次方程(共1小题)24.(2022秋•六盘水期末)解下列方程:(1)4﹣x=7x+6(2)﹣=4.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:﹣x﹣7x=6﹣4,合并得:﹣8x=2,解得:x=﹣;(2)去分母得:4(2x﹣1)﹣3(x+1)=48,去括号得:8x﹣4﹣3x﹣3=48,移项合并得:5x=55,解得:x=11.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.一十.一元一次方程的应用(共24小题)25.(2022秋•广阳区期末)为响应习总书记“绿水青山,就是金山银山”的号召,某校今年3月争取到一批植树任务,领到一批树苗,按下列方法依次由各班领取:第一班领取全部的,第二班领取100棵和余下的,第三班领取200棵和余下的,第四班领取300棵和余下的…,最后树苗全部被领完,且各班领取的树苗相等,则树苗总棵数为( )A .6400B .8100C .9000D .4900【分析】设树苗总数为x 棵,根据各班的树苗数都相等,可得出第一班和第二班领取的树苗数相等,由此可得出方程.【解答】解:设树苗总数x 棵,根据题意得:x =100+(x ﹣x ﹣100),解得:x =9000,答:树苗总数是9000棵.故选:C .【点评】本题考查了一元一次方程的应用,解答本题的关键是得出各班的树苗数都相等,这个等量关系,因为第一班,第二班领取数量好表示,所以我们就选取这两班建立等量关系.26.(2022秋•南开区校级期末)某超市推出如下优惠方案:(1)购物款不超过200元不享受优惠;(2)购物款超过200元但不超过600元一律享受九折优惠;(3)购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,则小明的妈妈应付款( )元.A .522.80B .560.40C .510.40D .472.80【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过200,即是168元.第二次就有两种情况,一种是超过200元但不超过600元一律9折;一种是购物超过600元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【解答】解:(1)第一次购物显然没有超过200元,即在第二次消费168元的情况下,他的实质购物价值只能是168元.(2)第二次购物消费423元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过200元但不足600元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=423,解得:x=470.①第二种情况:他消费超过600元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=423,解得:x=528.75(舍去)即在第二次消费423元的情况下,他的实际购物价值可能是470元.综上所述,他两次购物的实质价值为168+470=638(元),超过了600元.因此一次性购买可以按照8折付款:638×0.8=510.4(元)综上所述,她应付款510.4元.故选:C.【点评】本题考查了一元一次方程的应用.解题关键是第二次购物的432元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.27.(2022秋•岳麓区校级期末)随着夏天的到来,西瓜越来越受大家欢迎,6月某水果店购进一批西瓜,第一周销售麒麟瓜的利润率是30%,销售爆炸瓜的利润率是40%,麒麟瓜销量是爆炸瓜销量的2倍,结果第一周这两种西瓜的总利润率是35%,受本地西瓜的冲击,第四周销售麒麟瓜的利润率比第一周下降了,销售爆炸瓜的利润率比第一周下降了,结果第四周这两种西瓜的总利润率达到27%,则第四周麒麟瓜、爆炸瓜的销量之比是 6:7 .(利润率=×100%)【分析】设麒麟瓜与爆炸瓜每千克的成本分别为m,n,第一周爆炸瓜销量为x,则麒麟瓜销量为2x,根据第一周这两种西瓜的总利润率是35%,可以得到m=2n,设第四周麒麟瓜、爆炸瓜销量分别为a,b,根据第四周这两种西瓜的总利润率达到27%,列出方程可求四周麒麟瓜、爆炸瓜的销售之比.【解答】解:设麒麟瓜与爆炸瓜每千克的成本分别为m,n,第一周爆炸瓜销量为x,则麒麟瓜销量为2x,依题意有:(1+30%)m×2x+(1+40%)×nx=(1+35%)(m×2x+nx),整理得:n=2m,设第四周麒麟瓜、爆炸瓜销量分别为a,b,依题意有:。
【必考题】初一数学上期末试题(及答案)
【必考题】初一数学上期末试题(及答案)一、选择题1.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x -1)=2070 B .x(x +1)=2070 C .2x(x +1)=2070 D .(1)2x x -=2070 2.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个B .2个C .3个D .4个3.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 4.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°5.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15D .0.8×40%x ﹣x =156.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( ) A .350元B .400元C .450元D .500元7.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -48.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=9.下列各数:(-3)2,0,212⎛⎫-- ⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有( ) A .2个 B .3个 C .4个 D .5个 10.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( )A .2.897×106B .28.94×105C .2.897×108D .0.2897×10711.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a 是方框①,②,③,④中的一个数,则数a 所在的方框是( )A .①B .②C .③D .④ 12.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或3二、填空题13.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.14.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.15.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________.16.已知一个长方形的周长为(86a b +)厘米(0,0a b >>),长为(32a b +)厘米,则它的宽为____________厘米.17.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值 是 .18.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____.19.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____20.点A、B、C在同一条数轴上,且点A表示的数为﹣18,点B表示的数为﹣2.若BC=14AB,则点C表示的数为_____.三、解答题21.计算题(1)(3)(5)-+-(2)111 12+436⎛⎫⨯-⎪⎝⎭22.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二三四五六下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?23.如图,已知∠AOC=90°,∠COD比∠DOA大28°,OB是∠AOC的平分线,求∠BOD 的度数.24.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?25.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】解:根据题意得:每人要赠送(x ﹣1)张相片,有x 个人, ∴全班共送:(x ﹣1)x=2070, 故选A . 【点睛】本题考查由实际问题抽象出一元二次方程.2.D解析:D 【解析】 【分析】 【详解】解:①3a+2b 无法计算,故此选项符合题意; ②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a ²,∴原式计算错误,故此选项符合题意; ④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意; ⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意; 故选D3.D解析:D 【解析】 【分析】 【详解】解:由数轴上a ,b 两点的位置可知0<a <1,a <﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b <0,故选项A 错;数轴上右边的数总比左边的数大,所以a ﹣b >0,故选项B 错误; 因为a ,b 异号,所以ab <0,故选项C 错误; 因为a ,b 异号,所以ba<0,故选项D 正确.4.B解析:B【解析】【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【详解】∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣28°=152°.故选:B.【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.5.B解析:B【解析】【分析】首先设这种服装每件的成本价是x元,根据题意可得等量关系:进价×(1+40%)×8折-进价=利润15元,根据等量关系列出方程即可.【详解】设这种服装每件的成本价是x元,由题意得:6.B解析:B【解析】【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【详解】设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.7.C解析:C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道: 第1个图形中三角形的个数是4, 第2个图形中三角形的个数是8, 第3个图形中三角形的个数是12,从而得出一般的规律,第n 个图形中三角形的个数是4n . 故选C . 【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.8.C解析:C 【解析】 【分析】根据合并同类项法则逐一进行计算即可得答案. 【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误 故选:C 【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.9.C解析:C 【解析】 【分析】 【详解】解:(−3) ²=9,212⎛⎫-- ⎪⎝⎭=−14,(-1)2009=−1,-22=−4,−(−8)=8,3|-|4-=34, 则所给数据中负数有:21 2⎛⎫-- ⎪⎝⎭,(-1)2009,-22,3|-|4-,共4个故选C10.A解析:A 【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将2897000用科学记数法表示为:2.897×106.故选A.考点:科学记数法—表示较大的数.11.B解析:B【解析】【分析】先假定一个方框中的数为A,再根据日历上的数据规律写出其他方框中的数,相加得5a+5,即可作出判断.【详解】解:设中间位置的数为A,则①位置数为:A−7,④位置为:A+7,左②位置为:A−1,右③位置为:A+1,其和为5A=5a+5,∴a=A−1,即a为②位置的数;故选B.【点睛】本题主要考查一元一次方程的应用,关键在于题干的理解.12.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.二、填空题13.【解析】【分析】按照定义式发现规律首尾两两组合相加剩下中间的最后再求和即可【详解】====故答案为:【点睛】本题考查了定义新运算在有理数的混合运算中的应用读懂定义发现规律是解题的关键解析:120182【解析】 【分析】 按照定义式()1f x x x=+,发现规律,首尾两两组合相加,剩下中间的12,最后再求和即可. 【详解】11111(1)(2)(2019)20192018201732f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋯⋯+++++⋯⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=11111122017201820192020201920184323201820192020+++⋯+++++⋯+++ =1201912018120171312120202020201920192018201844332⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++⋯+++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =120182+ =120182故答案为:120182【点睛】本题考查了定义新运算在有理数的混合运算中的应用,读懂定义,发现规律,是解题的关键.14.265【解析】【分析】根据经过一次输入结果得131经过两次输入结果得131…分别求满足条件的正数x 的值【详解】若经过一次输入结果得131则5x +1=131解得x =26;若经过二次输入结果得131则5解析:26,5,45【解析】 【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26; 若经过二次输入结果得131,则5(5x +1)+1=131,解得x =5; 若经过三次输入结果得131,则5[5(5x +1)+1]+1=131,解得x =45; 若经过四次输入结果得131,则5{5[5(5x +1)+1]+1}+1=131,解得x =−125(负数,舍去);故满足条件的正数x 值为:26,5,45. 【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x 的值.15.10℃【解析】【分析】用最高温度减去最低温度然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】2-(-8)=2+8=10(℃)故答案为10℃【点睛】本题考查了有理数的减法掌握减去一个数解析:10℃ 【解析】 【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】 2-(-8), =2+8, =10(℃). 故答案为10℃. 【点睛】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.16.【解析】【分析】根据长方形的周长公式列式整理即可【详解】解:由题意得它的宽为:厘米故答案为:【点睛】本题考查了列代数式以及整式的加减运算正确化简是解题的关键 解析:()a b +【解析】 【分析】根据长方形的周长公式列式整理即可. 【详解】解:由题意得,它的宽为:()()86232866422a b a b a b a ba b +-++--==+厘米,故答案为:()a b +. 【点睛】本题考查了列代数式以及整式的加减运算,正确化简是解题的关键.17.158【解析】试题分析:分析前三个正方形可知规律为右上和左下两个数的积减左上的数等于右下的数且左上左下右上三个数是相邻的偶数因此图中阴影部分的两个数分别是左下是12右上是14解:分析可得图中阴影部分解析:158 【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.解:分析可得图中阴影部分的两个数分别是左下是12,右上是14, 则m=12×14﹣10=158. 故答案为158.考点:规律型:数字的变化类.18.70°【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份每一份是30°借助图形找出5时40分时针和分针之间相差的大格数用大格数乘30°即可【详解】钟表两个数字之间的夹角为:度5点40分时针解析:70° 【解析】 【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出5时40分时针和分针之间相差的大格数,用大格数乘30°即可. 【详解】钟表两个数字之间的夹角为:3603012=度 5点40分,时针到6的夹角为:4030301060-⨯=度 分针到6的夹角为:23060⨯=度 时针和分针的夹角:60+10=70度 故答案为:70°. 【点睛】本题考查了钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动112︒⎛⎫ ⎪⎝⎭,并且利用起点时间时针和分针的位置关系建立角的图形.19.80【解析】【分析】根据标价×=售价求解即可【详解】解:设该商品的标价为x 元由题意08x =64解得x =80(元)故答案为:80元【点睛】考查了销售问题解题关键是掌握折扣售价标价之间的关系解析:80【解析】【分析】根据标价×10折扣=售价,求解即可. 【详解】解:设该商品的标价为x 元由题意0.8x =64解得x =80(元)故答案为:80元.【点睛】考查了销售问题,解题关键是掌握折扣、售价、标价之间的关系. 20.﹣6或2【解析】【分析】先利用AB 点表示的数得到AB =16则BC =4然后把B 点向左或向右平移4个单位即可得到点C 表示的数【详解】解:∵点A 表示的数为﹣18点B 表示的数为﹣2∴AB=﹣2﹣(﹣18)=解析:﹣6或2.【解析】【分析】先利用A 、B 点表示的数得到AB =16,则BC =4,然后把B 点向左或向右平移4个单位即可得到点C 表示的数.【详解】解:∵点A 表示的数为﹣18,点B 表示的数为﹣2.∴AB =﹣2﹣(﹣18)=16,∵BC =14AB , ∴BC =4, 当C 点在B 点右侧时,C 点表示的数为﹣2+4=2;当C 点在B 点左侧时,C 点表示的数为﹣2﹣4=﹣6,综上所述,点C 表示的数为﹣6或2.故答案为﹣6或2.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题21.(1)-8;(2)5【解析】【分析】(1)根据有理数的加法法则进行计算即可;(2)去括号,再计算加减即可.【详解】(1)(3)(5)8-+-=-;(2)11112+3425 436⎛⎫⨯-=+-=⎪⎝⎭.【点睛】本题考查有理数的运算,解题时需注意,若先去括号比较简单,则应先去括号,再计算加减.22.(1)本趟公交车在起点站上车的人数是10人;(2)此趟公交车从起点到终点的总收入是90元.【解析】【分析】(1)根据下车的总人数减去上车的总人数得到起点站上车的人数即可;(2)从起点开始,把所有上车的人数相加,计算出和以后再乘以2即可求解.【详解】(1)(3+6+10+7+19)-(12+10+9+4+0)=45﹣35=10(人)答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.【点睛】本题考查了有理数加减运算的应用,读懂题意,正确列出算式是解决问题的关键. 23.14°【解析】试题分析:先由∠COD﹣∠DOA=28°,∠COD+∠DOA=90°,解方程求出∠COD与∠DOA 的度数,再由OB是∠AOC的平分线,得出∠AOB=45°,则∠BOD=∠AOB﹣∠DOA,求出结果.试题解析:解:设∠AOD的度数为x,则∠COD的度数为x+28°.因为∠AOC=90°,所以可列方程x+x+28°=90°,解得x=31°,即∠AOD=31°,又因为OB是∠AOC的平分线,所以∠AOB=45°,所以∠BOD=∠BOA-∠AOD=45-31°=14°.点睛:本题主要考查了角平分线的定义及利用方程思想求角的大小.24.先安排整理的人员有10人【解析】试题分析:等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.试题解析:设先安排整理的人员有x 人,依题意得,2(15)16060x x ++= 解得, x=10.答:先安排整理的人员有10人.考点:一元一次方程25.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】()()223x xy 2y 2x 3y ----223x 3xy 6y 2x 6y =---+2x 3xy =-.当x 1=-,y 2=时, ()()22x 3xy 1312-=--⨯-⨯ 167=+=.【点睛】本题考查整式的加减-化简求值,熟练掌握运算法则是解题关键.。
人教版七年级数学上册期末常考类解答题专项复习
人教版七年级数学上册期末常考类解答题专项复习1.保山电力公司某检修小组从保山城区出发,在320国道(南北方向)上检修线路,规定:向南行驶为正,向北行驶为负;某天行车里程(单位:千米)依先后次序记录如下:-4,+7,-9,+8,+6,-5,-2.(1)请问收工时检修小组离城区多远?在城区的什么方向?(2)若行车每千米耗油0.2升,请问这天行车共耗油多少升?2.已知某粮库一周前存有粮食100吨,本周内粮库进出粮食的记录如下表(运进为正,运出为负):(1)通过计算,说明本周内哪天粮库剩下的粮食最多?(2)若每周平均进出的粮食量大致相同,则再过几周粮库库存粮食达到200吨?(3)若运进的粮食为购进的,购买价位2000元/吨,运出的粮食为卖出的,卖出价为2300元/吨,则这一周的利润为多少?3.观察下列等式112⨯=1﹣12,123⨯=12﹣13,134⨯=13﹣14,将以上三个等式两边分别相加得112⨯+123⨯+134⨯=1﹣12+12﹣13+13﹣14=1﹣14=34.(1)猜想并写出1(1)n n=+;(2)112⨯+123⨯+134⨯+…+120162017⨯=;(3)探究并计算:1111 24466820162018 ++++⨯⨯⨯⨯;(4)计算:111111111 41224406084112144180 ++++++++.4.已知:b是最小的正整数,且a、b满足(c-6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=___,b=___,c=___.(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B 之间运动时,请化简式子:|x+1|-|x-1|-2|x+5|(请写出化简过程)(3)在(1)的条件下,数轴上的A,B,M表示的数为a,b,y,是否存在点M,使得点M 到点A,点B的距离之和为5?若存在,请求出y的值;若不存在,请说明理由.(4)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.5.观察下列各式,完成下列问题。
新人教版七年级(上)期末数学常考试题100题-(解析与答案)
新人教版七年级(上)期末数学常考试题100题参考答案与试题解析一、选择题(共30小题)1.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.2.在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A.l个B.2个C.3个D.4个考点:有理数.专题:推理填空题.分析:根据负数的定义先选出负数,再选出分数即可.解答:解:负分数是﹣,﹣0.7,共2个.故选:B.点评:本题考查了对有理数的理解和运用,能理解分数的定义是解此题的关键.3.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元考点:一元一次方程的应用.专题:销售问题.分析:要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.解答:解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=135解得:x=108比较可知,第一件赚了27元第二件可列方程:(1﹣25%)x=135解得:x=180,比较可知亏了45元,两件相比则一共亏了18元.故选:C.点评:此题的关键是先算出两件衣服的原价,才能知道赔赚.不可凭想象答题.4.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.专题:压轴题;动点型.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p 点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.点评:本题考核立意相对较新,考核了学生的空间想象能力.5.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7B.18 C.12 D.9考点:代数式求值.专题:整体思想.分析:观察题中的两个代数式3x2﹣4x+6和x2﹣+6,可以发现3x2﹣4x=3(x2﹣),因此,可以由“代数式3x2﹣4x+6的值为9”求得x2﹣=1,所以x2﹣+6=7.解答:解:∵3x2﹣4x+6=9,∴方程两边除以3,得x2﹣+2=3x2﹣=1,所以x2﹣+6=7.故选:A.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣的值,然后利用“整体代入法”求代数式的值.6.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2B.﹣2 C.D.﹣考点:一元一次方程的解.专题:计算题.分析:此题用m替换x,解关于m的一元一次方程即可.解答:解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.点评:本题考查代入消元法解一次方程组,可将4x﹣3m=2和x=m组成方程组求解.7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能考点:数轴;有理数的加法.专题:数形结合.分析:首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.解答:解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.点评:本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.8.若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1C.D.0考点:一元一次方程的解.专题:计算题.分析:方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.解答:解:把x=﹣1代入方程得:﹣=1,解得:k=1故选:B.点评:本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.9.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是()A.2B.3C.4D.6考点:同类项.分析:本题考查同类项的定义(所含字母相同,相同字母的指数相同),由同类项的定义可得:2m=4,3﹣n=1,求得m和n的值,从而求出它们的和.解答:解:由同类项的定义可知n=2,m=2,则m+n=4.故选:C.点评:注意同类项定义中的两个“相同”,所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.10.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg考点:正数和负数.分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.解答:解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.11.运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣c B.如果a=b,那么a+c=b+cC.如果a=b,那么D.如果a=b,那么ac=bc考点:等式的性质.分析:根据等式的基本性质可判断出选项正确与否.解答:解:A、根据等式性质1,a=b两边都减c,即可得到a﹣c=b﹣c,故本选项正确;B、根据等式性质1,a=b两边都加c,即可得到a+c=b+c,故本选项正确;C、根据等式性质2,当c≠0时原式成立,故本选项错误;D、根据等式性质2,a=b两边都乘以c,即可得到ac=bc,故本选项正确;故选:C.点评:主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.12.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣C.﹣10或D.﹣10或﹣考点:含绝对值符号的一元一次方程.专题:计算题.分析:解此题分两步:(1)求出|x﹣|﹣1=0的解;(2)把求出的解代入方程mx+2=2(m﹣x),把未知数转化成已知数,方程也同时转化为关于未知系数的方程,解方程即可.解答:解:先由|x ﹣|﹣1=0,得出x=或﹣;再将x=和x=﹣分别代入mx+2=2(m﹣x),求出m=10或故选:A.点评:解答本题时要格外注意,|x ﹣|﹣1=0的解有两个.解出x的值后,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.13.对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A.B.C.D.考点:直线、射线、线段.分析:根据直线能向两方无限延伸,射线能向一方无限延伸,线段不能延伸,据此进行选择.解答:解:B中这条直线与这条射线能相交;A、C、D中直线和射线不能相交.故选B.点评:本题考查了直线、射线和线段的性质.14.下列两个数互为相反数的是()A.﹣和0.2 B.﹣和0.333 C.﹣2.25和2D.5和﹣(﹣5)考点:相反数.分析:此题依据相反数的概念作答.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.解答:解:A、﹣的相反数是,错误;B、﹣的相反数的是,错误;C、﹣2.25和2互为相反数,正确;D、5的相反数是﹣5,5=﹣(﹣5),错误.故选:C.点评:此题关键是看两个数是否“只有符号不同”,并注意分数与小数的转化.15.下列代数式中符合书写要求的是()A.a b2×4 B.C.D.6xy2÷3考点:代数式.分析:本题较为简单,对各选项进行分析,看是否符合代数式正确的书写要求,即可求出答案.解答:解:A:ab2×4,正确的写法应为:4ab2,故本项错误.B:xy为正确的写法,故本项正确.C:2a2b,正确写法应为a2b,故本项错误.D:6xy2÷3,应化为最简形式,为2xy2,故本项错误.故选:B.点评:本题考查代数式的书写规则,根据书写规则对各项进行判定即可.16.下列各式中,正确的是()A.3a+b=3ab B.23x+4=27x C.﹣2(x﹣4)=﹣2x+4 D.2﹣3x=﹣(3x﹣2)考点:整式的加减.分析:A和B选项,不是同类项,不能合并;C中,去括号的时候,数字漏乘了,应是﹣2x+8;D中,根据添括号的法则,正确.解答:解:A、3a+b表示3a与b的和,3ab表示3a与b的积,一般不等,故A错误;B、不是同类项,不能合并,故B错误;C、漏乘了后面一项,故C错误;D、2﹣3x=﹣(3x﹣2),故D正确.故选:D.点评:理解同类项的概念:所含字母相同,相同字母的指数相同.注意去括号的时候,符号的变化和数字不要出现漏乘现象.17.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.﹣8 C.﹣10 D.8考点:同解方程.专题:计算题.分析:在题中,可分别求出x的值,当然两个x都是含有m的代数式,由于两个x相等,可列方程,从而进行解答.解答:解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2由题意知=m﹣2解之得:m=﹣8.故选:B.点评:根据题目给出的条件,列出方程组,便可求出未知数.18.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定考点:代数式.分析:由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.解答:解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.点评:本题考查了代数式的换算,比较简单,容易掌握.19.下列说法中,(1)﹣a一定是负数;(2)|﹣a|一定是正数;(3)倒数等于它本身的数是±1;(4)绝对值等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个考点:有理数;相反数;绝对值;倒数.分析:本题须根据负数、正数、倒数、绝对值的有关定义以及表示方法逐个分析每个说法,得出正确的个数.解答:解:∵如果α为负数时,则﹣α为正数,∴﹣α一定是负数是错的.∵当a=0时,|﹣a|=0,∴|﹣a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴(3)题对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.所以正确的说法共有1个.故选:A.点评:本题考查了负数、正数、倒数、绝对值的有关定义以及表示方法.20.下列式子:中,整式的个数是()A.6B.5C.4D.3考点:整式.专题:应用题.分析:根据整式的定义分析判断各个式子,从而得到正确选项.解答:解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.点评:本题主要考查了整式的定义:单项式和多项式统称为整式.注意整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式是数字或字母的积,其中单独的一个数或字母也是单项式;多项式是几个单项式的和,多项式含有加减运算.21.下列各式:,,﹣25,中单项式的个数有()A.4个B.3个C.2个D.1个考点:单项式.分析:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.解答:解:根据单项式的定义知,单项式有:﹣25,a2b2.故选:C.点评:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,这是判断单项式的关键.22.下列说法中正确的个数是()(1)a和0都是单项式;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3;(3)单项式的系数为﹣2;(4)x2+2xy﹣y2可读作x2,2xy,﹣y2的和.A.1个B.2个C.3个D.4个考点:多项式;单项式.专题:应用题.分析:根据单项式、多项式的次数、单项式的系数、多项式的定义分别对4种说法进行判断,从而得到正确结果.解答:解:(1)根据单项式的定义,可知a和0都是单项式,故说法正确;(2)根据多项式的次数的定义,可知多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故说法错误;(3)根据单项式的系数的定义,可知单项式的系数为﹣,故说法错误;(4)根据多项式的定义,可知x2+2xy﹣y2可读作x2,2xy,﹣y2的和,故说法正确.故说法正确的共有2个.故选:B.点评:本题考查了单项式、单项式的系数,多项式、多项式的次数的定义.属于基础题型,比较简单.用到的知识点有:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.单项式中的数字因数叫做单项式的系数.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数.23.若2y﹣7x=0(xy≠0),则x:y等于()A.7:2 B.4:7 C.2:7 D.7:4考点:等式的性质.专题:计算题.分析:本题需利用等式的性质对等式进行变形,从而解决问题.解答:解:根据等式性质1,等式两边同加上7x得:2y=7x,∵7y≠0,∴根据等式性质2,两边同除以7y得,=.故选:C.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.24.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=2考点:一元一次方程的定义.专题:计算题.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.解答:解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.25.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5考点:解一元一次方程;整式的加减.分析:根据解一元一次方程的步骤计算,并判断.解答:解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.点评:此题主要考查一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“﹣”号的,括号里各项都要变号.26.如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,(如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点),其中正确的分法有()A.1种B.2种C.3种D.4种考点:作图—应用与设计作图.分析:根据D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点,利用三角形中位线定理,求证△ADF,△BDE,△DEF,△EFC是同底同高,然后即可证明其面积相等,其他3种情况,同理可得.解答:解:∵D、E、F分别是AB、BC、AC的中点,∴在图①中,DE=AC,EF=AB,DF=BC,∴△ADF,△BDE,△DEF,△EFC是同底同高,∴根据三角形面积公式可得△ADF,△BDE,△DEF,△EFC面积相等.同理可得图②,∵D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点.同理可得图③,图④中4个三角形面积相等,所以四种分法都正确.故选:D.点评:此题主要考查三角形中位线定理和三角形面积的计算,难度不是很大,只是步骤繁琐,属于中档题.27.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为矩形D.球体的三种视图均为同样大小的图形考点:认识立体图形.分析:根据立体图形的概念和定义进行分析即解.解答:解:棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,所以可能出现三角形;侧面是四边形.A、长方体、正方体符合棱柱的结构特征,是棱柱,故正确;B、三棱柱的底面是三角形,侧面是四边形,故错误;C、直六棱柱底面是正六边形,有六个侧面,侧面为矩形,故正确;D、球体的三种视图均为同样大小的图形,都为圆形,故正确.故选:B.点评:本题主要考查棱柱的特征:上下底面可以是任意多边形,但侧面一定是四边形.28.下列判断中正确的是()A.3a2bc与bca2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式考点:整式;同类项.分析:根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.解答:解:A、3a2bc与bca2是同类项,故错误;B、是整式,故错;C、单项式﹣x3y2的系数是﹣1,正确;D、3x2﹣y+5xy2是3次3项式,故错误.故选:C.点评:主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.29.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=考点:一元一次方程的定义.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解答:解:A、x2﹣4x=3的未知数的最高次数是2次,不是一元一次方程,故A错误;B、x=0符合一元一次方程的定义,故B正确;C、x+2y=1是二元一次方程,故C错误;D、x﹣1=,分母中含有未知数,是分式方程,故D错误.故选:B.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的最高次数是1,一次项系数不是0,这是这类题目考查的重点.30.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义.与支出2万元不具有相反意义,故错误.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.二、填空题(共30小题)31.已知+=0,则的值为﹣1 .考点:绝对值.专题:压轴题.分析:先判断出a、b异号,再根据绝对值的性质解答即可.解答:解:∵+=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.点评:本题考查了绝对值的性质,主要利用了负数的绝对值是它的相反数,判断出a、b异号是解题的关键.32.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= 5或11 cm.考点:两点间的距离.专题:分类讨论.分析:点C可能在线段AB上,也可能在AB的延长线上.因此分类讨论计算.解答:解:根据题意,点C可能在线段AB上,也可能在AB的延长线上.若点C在线段AB上,则AC=AB﹣BC=8﹣3=5(cm);若点C在AB的延长线上,则AC=AB+BC=8+3=11(cm).故答案为:5或11.点评:此题考查求两点间的距离,运用了分类讨论的思想,容易掉解.33.有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是④⑤.考点:等式的性质.分析:由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.解答:解:∵①+②比③+④重,∴③与④中至少有一个轻球,∵⑤+⑥比⑦+⑧轻,∴⑤与⑥至少有一个轻球,∵①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.故答案为:④⑤.点评:本题考查的是等式的性质:等式性质1,等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2,等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.34.请写出一个方程的解是2的一元一次方程:x﹣2=0 .考点:一元一次方程的定义.专题:开放型.分析:可设未知数为x,由于x=2,那么x﹣2=0.解答:解:答案不唯一,例如x﹣2=0.故答案为:x﹣2=0.点评:解决本题的关键是把未知数看成2得到相应等式.35.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为体育委员买了3个足球,2个篮球,剩余的经费.考点:代数式.专题:应用题.分析:本题需先根据买一个足球a元,一个篮球b元的条件,表示出3a和2b的意义,最后得出正确答案即可.解答:解:∵买一个足球a元,一个篮球b元.∴3a表示委员买了3个足球2b表示买了2个篮球∴代数式500﹣3a﹣2b:表示委员买了3个足球、2个篮球,剩余的经费.故答案为:体育委员买了3个足球、2个篮球,剩余的经费点评:本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.36.(2010•宿迁)已知5是关于x的方程3x﹣2a=7的解,则a的值为 4 .考点:一元一次方程的解.专题:计算题.分析:根据方程的解的定义,把x=5代入方程3x﹣2a=7,即可求出a的值.解答:解:∵x=5是关于x的方程3x﹣2a=7的解,∴3×5﹣2a=7,解得:a=4.故答案为:4.点评:本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.37.观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为64x7;第n个单项式为(﹣2)n﹣1x n.考点:单项式.专题:压轴题;规律型.分析:要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为正,数字变化规律是2n﹣1,字母变化规律是x n.解答:解:由题意可知第n个单项式是(﹣1)n﹣12n﹣1x n,即(﹣2)n﹣1x n,第7个单项式为(﹣1)7﹣127﹣1x7,即64x7.故答案为:64x7;(﹣2)n﹣1x n.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.38.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是 2 .考点:一元一次方程的解.专题:计算题.分析:方程的解就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=m代入原方程即可求得m的值.解答:解:把x=m代入方程4x﹣3m=2,得:4m﹣3m=2,解得:m=2.故答案为:2.点评:本题考查的是方程的解的定义,要熟练掌握定义的内容.39.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是150×80%﹣x=20 .考点:由实际问题抽象出一元一次方程.专题:应用题.分析:首先理解题意找出题中存在的等量关系:售价﹣成本=利润,根据等量关系列方程即可.解答:解:设这种服装的成本价为每件x元,则实际售价为150×80%元,根据实际售价﹣成本=利润,那么可得到方程:150×80%﹣x=20.故答案为:150×80%﹣x=20.点评:本题以经济中的打折问题为背景,主要考查根据已知条件构建方程的能力,其中把握等量关系“售价﹣成本=利润”是关键.40.若单项式2x2y m与x n y3是同类项,则m+n的值是 5 .考点:同类项.专题:计算题.分析:本题考查同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.解答:解:由同类项的定义可知n=2,m=3,则m+n=5.故答案为:5.点评:同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.41.若,则= .考点:等式的性质.专题:计算题.分析:根据等式的性质1,等式两边都加上1,等式仍然成立可得出答案.解答:解:根据等式的性质:两边都加1,,则=,故答案为:.点评:本题主要考查等式的性质,观察要求的式子和已知的式子之间的关系,从而利用等式的性质进行计算.42.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有8个.考点:认识平面图形.专题:压轴题.分析:解这类题要仔细观察图形,逐个找出来而且要注意外面这个最大的.解答:解:小的正六边形将有6个小正三角形组成,图中可当作正六边形的中心的有7个,加上最大的这个正六边形,一共有8个.故答案为:8.点评:解决本题的关键应理解正六边形的构造特点.43.观察下列图形的排列规律(其中△是三角形,□是正方形,○是圆),○△□□○△□○△□□○△□┅┅若第一个图形是圆,则第2008个图形是三角形(填图形名称).考点:认识平面图形.专题:规律型.分析:解此类题首先要仔细观察图形找出其中的规律进行解答.解答:解:观察图形的排列规律知,7个图形循环一次,2008÷7=286…6,又由第一个图形是圆形,则第20个图形是三角形.故答案为:三角形.。
七年级数学上册典型例题复习
函数是两个变量之间的一种对应关系,即对于每一个自变量 $x$,都有唯一一个因变量 $y$ 与之对应。
函数初步
02
几何部分
总结词:理解线段、射线、直线的概念,掌握角的基本性质。
线与角
详细描述
判断下列语句中,哪些是命题?哪些不是命题?为什么?
1. 把直尺边缘上的每一点与三角ห้องสมุดไป่ตู้边缘上的每一点连起来的线段都是射线。
七年级数学上册典型例题复习
目录
contents
代数部分 几何部分 应用题部分 综合题部分
01
代数部分
掌握一元一次方程和一元一次不等式的解法,理解方程与不等式的实际应用。
总结词
解一元一次方程
解一元一次不等式
方程与不等式的实际应用
例如,解方程 $2x - 4 = 0$,通过移项、合并同类项、系数化为1等步骤,得到 $x = 2$。
线与角
2. 画线段AB。
3. 两条平行线被一条直线所截得的同位角的度数相等。
下列语句中,哪些是正确的?哪些是错误的?为什么?
线与角
1. 两点确定一条直线。
2. 两点之间,线段最短。
3. 同位角相等。
线与角
总结词:掌握相交线的性质,理解平行线的定义和性质。
相交线与平行线
详细描述
下列说法中,正确的是( )
学生需要掌握代数和几何的基本概念和公式,并能够根据题目要求进行灵活运用。
总结词:这类题目涉及代数和几何两个领域的知识,需要学生灵活运用概念和公式进行解答。
代数与几何的综合题
总结词:这类题目将数学知识与实际生活情境相结合,要求学生运用数学知识解决实际问题。
详细描述
应用题的综合题通常涉及一元一次方程、不等式、百分比等数学知识,并结合实际生活中的问题,如购物、行程、工程等。
七年级数学上册典型例题复习
总结解题技巧
总结解题过程中的技巧和方法,提高 解题效率。
掌握多种解题方法
对于同一题目,尝试不同的解题方法, 拓展思路。
培养数学思维
培养逻辑思维
通过解题练习,培养逻辑 思维能力,提高分析问题 和解决问题的能力。
增强空间想象能力
通过几何图形的观察和想 象,增强空间想象能力。
运用数学模型
尝试运用数学模型解决实 际问题,培养数学应用能 力。
02
几何部分
线段、射线、直线
总结词
理解基本概念
详细描述
线段是两点之间所有点的集合,有两个端点,可以度量长度;射线是有一个固 定端点,另一侧则沿一个方向无限延伸,有一个端点但不可以度量长度;直线 则是向两个方向无限延伸,没有端点且不可以度量长度。
Байду номын сангаас
角
总结词
掌握角的分类与度量
详细描述
根据角的度数大小,可以分为锐角、直角、钝角。此外,还有平角和周角。平角 等于180度,周角等于360度。
实际应用题
总结词
考察学生运用数学知识解决实际问题的能力。
详细描述
实际应用题通常涉及生活中的场景,如购物、行程、工程等,需要学生将实际问题转化为数学模型, 通过建立方程或不等式,求解得出实际问题的答案。
开放性问题
总结词
考察学生的数学思维能力和创新能力。
详细描述
开放性问题通常没有标准答案,需要学生运用所学数学知识 ,通过观察、猜想、推理等方式,探索不同的解题思路和方 法,培养创新思维和解决问题的能力。
首先移项得到 $3x = 3$,然后除以系数3得到 $x = 1$。
代数式的值
总结词
掌握代数式的值的概念和计算方法
七年级上册数学典型例题
七年级数学上册经典试题1 •如果温度上升2*记作+2。
:那么温度下降JC记作()A.+2°CB. - 2°CC.+3°CD. - 3°C【考点】正数和负数.【解劄上升2T记作+2°C,下降3咒记作・3t;故选:D.2.-0 —定是()A.正数B・负数C.O D•以上选项都不正确【考点】正数和负数.【解劄"中。
的符号无法确定,故“的符号无法确定.故选:D.3.2019的相反数是()A.2019 B -2019 C禽 D.说【考点】相反数.【解答】2019的相反数是- 2019.故选:B.4•在数轴上,点儿B在原点0的两侧,分别表示数G 2,将21点A 向右平移1个单位长度,得到点C,若CO = 80,则a 的值为()【考点】数轴.【解劄丁点C 在原点的左侧,・••点C 表示的数为・2, 故选:A.5•下列各数中,最大的数是(D.-2 【考点】有理数大小比较.【解劄则最大的数是£ 故选:B.6. - +的绝对值杲()A.-3B.-2C. - 1D1 C.0故选:B.C.2D.-2A・-1 B.1【考点】绝对值.【解劄1=117.已知|a| = l, b是2的相反数,则方的值为()A.-3B.-1C.-1 或-3D.1 或・3 【考点】相反数;15:绝对值;19:有理数的加法. 【解答】・・・同二1, b是2的相反数,・"二]或d 二-1, b - - 2,当a - 1 时,a+b = 1 - 2 = - 1 ;当° 二-1 时,a+b = - 1 - 2 = - 3;综上,ci+b的值为-1或一3, 故选:C.8.算式-I- (-1)之值为何?()A•今 B.岭C.* D.舟【考点】有理数的减法.【解劄原式二二-尹+二警二-|=诗故选:A.A.0.1044xl06辆B.1.044xl06辆9.据CC7"新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为()【考点】科学记数法一表示较大的数.【解劄104400用科学记数法表示应为1.044X105,故选:C.10.(2019-毕节市)如果3如1与9劭加是同类项,那么加等于()A.2B.lC.-lD.0【考点】同类项.【解答】根据题意可得:2加亠加+1,解得5二2,故选:A.11•按如图所示的运算程序,能使输出y值为丨的是()C.m 二 1, /7 = 2D.加二2, I辆【考点】有理数的混合运算;33:代数式求值.辆【考点】科学记数法一表示较大的数.【解答】104400用科学记数法表示应为1.044X105, 故选:C.10. (2019・毕节市)如果3ab2m'1与9血加是同类项,那么加等于()A.2 B」C. - 1 D.0【考点】同类项.【解答】根据题意可得:2加二加+1,解得:m二2、故选:A.11•按如图所示的运算程序,能使输出丿值为1的是()K.m - 1, n- 1 B.m = 1, /? = 0C.m = 1, n = 2D.m = 2, n - 1【考点】有理数的混合运算;33:代数式求值.【解答】当加二1, /?二1时,y二2加+1二2+1二3,当加二1, /7 = 0 0 寸,y = 2n- 1 = - 1,当加二1, 〃二2 时,y二2加+1 二3,当加二2, n- 1 时,y-2n- 1 = 1,故选:D.12.《增删算法统宗》记载:“有个学生资性好,一部孟子三日7,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍’问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读天个字,则下面所列方程正确的是A.x+2x+4x 二34685 Bx+2x+3x 二34685C.x+2x+2i = 34685D.x+|r申二34685【考点】由实际问题抽象出一元一次方程.【解答】设他第一天读兀个字,根据题意可得:工+2x+4x二34685,故选:A.13•某正方体的每个面上都有一个汉字,如图是它的一种展开 图,那么在原正方体中,与“点“字所在面相对面上的汉字是() 点A.青 B 春 C.梦 D.想【考点】正方体相对两个面上的文字.【解劄 展开图中“点与春“是对面「亮与“想”是对面「胄 与梦'是对面;故选:B.14•下列哪个图形是正方体的展开图()B.D.【考点】几何体的展开图.【解答】根据正方体展开图的特征,选项A 、C 、D 不是正方 体展开图;选项B 是正方体展开图••A C故选:B.15•如图,小明从力处沿北偏东40。
七年级数学上册期期末典型例题
第1页 共12页 ◎ 第2页 共12页2014-2015学年北集坡一中期末复习典型例题1.下列事件中,必然事件是 ( ) A .掷一枚硬币,正面朝上. B .a 是有理数,则a ≥0.C .某运动员跳高的最好成绩是20 .1米.D .从车间刚生产的产品中任意抽取一个,是次品.2.实数a b ,在数轴上的位置如图所示,下列各式正确的是 ( )A .0a >B .0>+b aC .0>-b aD .0<ab 3.下列运算正确的是 ( )A .7(3)10x x --=B .5611a b ab +=C .23ab ba ab +=D .()a b a b --=+4.如图,点C 为线段AB 上一点, AC ︰CB =3︰2,D 、E 两点分别为AC 、AB 的中点,若线段DE =2cm ,则AB 的长为 ( )A.8 cmB.12 cmC.14 cmD. 10 cm5.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆……依此规律,第7个图形的小圆个数是 ( )A .41B .45C .50D .606.某种商品若按标价的八折出售,可获利20%,若按标价出售,则可获利 ( ) A.25% B. 40% C. 50% D. 66.7%7.初一(19)班有48名同学,其中有男同学n 名,将他们编成1号、2号、…,n 号。
在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,n 号同学给一半同学打过电话,由此可知该班女同学的人数是 ( ) A .22 B .24 C .25 D .268.如果代数式2235y y ++的值是6,求代数式2463y y +-的值是 .9.钟表上的时间是2时30分,此时时针与分针所成的夹角是 度.10.某地居民生活用电基本价格为0.50元/度, 规定每月基本用电量为a 度,超出部分电量的每度电价比基本用电量的每度电价高20%.某用户在5月份用电100度,共缴电费56元,则基本用电量a 是 度.11.如图,将一张长为1、宽为a 的长方形纸片(121<<a )折一下,剪下一个边长等于宽度a 的正方形(称为第一次操作);再将剩下的长方形如图折一下,再次剪下一个边长等于该长方形宽度的正方形(称为第二次操作)……如此反复操作下去,直到第n 次操作后,剩下的小长方形为正方形时停止操作.当3=n 时,a 的值为 .12.甲、乙、丙三人分别拿出相同数量的钱,合伙订购某种商品若干件.商品买来后,甲、乙分别比丙多拿了7、11件,最后结算时,三人要求按所得商品的实际数量付钱,进行多退少补.已知甲要付给丙14元, 那么乙还应付给丙 元. 13.计算:()5637)2(2--⨯--⨯-14.计算:524436183414÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫⎝⎛-+-+-15.解方程:)21(25)2(34y y y --=+-16.解方程:12136x x x -+-=-17.先化简,再求值:若()0232=++-y x ,求代数式2222224])32(2[3xy y x y x xy xy y x ++---的值.18.列方程解应用题:小明和小东两人练习跑步,都从甲地出发跑到乙地,小明每分钟跑250米,小东每分钟跑200米,小明让小东先出发3分钟之后再出发,结果两人同时到达乙地,求甲、乙两地之间的路程是多少米?第3页 共12页 ◎ 第4页 共12页19如下的两幅不完整的统计图反映了重庆一中校男子篮球队的年龄分布情况:请根据图中提供的信息,解答下列问题:(1)重庆一中校男子篮球队队员有多少人? (2)将条形统计图补充完整;(3)在扇形统计图中,求出“15岁”部分所对应的圆心角的度数; (4)重庆一中校男子篮球队队员的平均年龄是多少?20.如图, 已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE , 且OC 平分AOD ∠,DOE BOE ∠=∠3,70COE ∠=︒,求BOE ∠的度数.21.某公司要把240吨白砂糖运往某市的A 、B 两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆. (1)求两种货车各用多少辆;(2)如果安排10辆货车前往A 地,其中调往A 地的大车有a 辆,其余货车前往B 费为W ,求W 与a 的关系式(用含有a 的代数式表示W ).22.张先生准备在沙坪坝购买一套小户型商品房,他去某楼盘了解情况得知, 是8000元/2m ,面积如图所示(单位:米,卫生间的宽未定,设宽为x 米)了以下两种优惠方案:方案一:整套房的单价是8000元/2m ,其中厨房可免费赠送32的面积; 方案二:整套房按原销售总金额的9折出售. (1)用1y 表示方案一中购买一套该户型商品房的总金额,用2y 房的总金额,分别求出1y 、2y 与x 的关系式;(2)求x 取何值时,两种优惠方案的总金额一样多?(3)张先生因现金不够,于2012年1月在建行借了9万元住房贷款,贷款期限为6款的下一个月起逐月偿还,贷款月利率是0.5%,每月还款数额=平均每月应还的贷款本金数额+利息,月利息=上月所剩贷款本金数额×月利率. ①张先生借款后第一个月应还款数额是多少元?②假设贷款月利率不变,若张先生在借款后第n (721≤≤n ,n 是正整数)个月的还款数额为P 请写出P 与n 之间的关系式.23.(9分)如图,∠AOB 为直角,∠BOC 为锐角,且OM 平分∠AOC ,ON 平分∠BOC . ⑴.若∠BOC =46°,试求∠MON 的度数; ⑵.如果⑴中的∠BOC =α(α为锐角),其他条件不变,第5页 共12页 ◎ 第6页 共12页试求∠MON 的度数(结果用含α的式子表示). ⑶.如果∠AOB =β,∠BOC =46°其他条件不变, 试求∠M ON 的度数(结果用含β的式子表示).24.如图,把弯曲的河道改直,能够缩短航程, 这样做根据的道理是( ) A .两点之间,线段最短 B .两点确定一条直线 C .两点之间,直线最短 D .两点确定一条线段25.如图,已知O 是直线AD 上的点, 三个角∠AOB 、∠BOC 、∠COD 从小到大依次相差20度, 则∠AOB = 度.26.已知a 、b 互为相反数,m 的相反数与n 互为倒数,求()()20052004mn b a ++的值。
上海七上期末数学典型题50道(含解析)
上海七上期末典型题50道(基础版)一、单选题1.(2020·上海浦东新·七年级期末)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2020·上海闵行·七年级期末)在直角坐标平面内,已知点B 和点A (3,4)关于x 轴对称,那么点B 的坐标()A.(3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(﹣3,4)3.(2020·上海嘉定·七年级期末)下列等式中,从左到右的变形是因式分解的是()A.2x(x-1)=2x 2-2xB.x 2-2x+3=x(x-2)+3C.(x+y)2=x 2+2xy+y 2D.-x 2+2x=-x(x-2)4.(2021·上海宝山·七年级期末)计算:()24a a -⋅的结果是()A.8a B.6a C.8a -D.6a -5.(2020·上海宝山·七年级期末)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(2020·上海宝山·七年级期末)将一张长方形纸片折一次,折痕平分这个长方形的面积,则这样的折纸方法有()A.1种B.2种C.4种D.无数种7.(2021·上海浦东新·七年级期末)下列图形中,不是旋转对称图形的是()A.正三角形B.等腰梯形C.正五边形D.正六边形8.(2021·上海宝山·七年级期末)如图,ABC 经过平移后得到DEF ,下列说法:①//AB DE②AD BE=③ACB DFE∠=∠④ABC 和DEF 的面积相等⑤四边形ACFD 和四边形BCFE 的面积相等,其中正确的有()A.4个B.3个C.2个D.1个9.(2021·上海宝山·七年级期末)已知11x y -=3,则代数式232x xy y x xy y +---的值是()A.72-B.112-C.92D.3410.(2021·上海浦东新·七年级期末)分式26x y 与14xy 的最简公分母是()A.212xy B.224xy C.26y D.4xy11.(2021·上海宝山·七年级期末)下列分式中,最简分式是()A.1510x B.243aba C.133x x --D.121x x ++12.(2021·上海宝山·七年级期末)计算()()1111x y x y ----+÷-的结果为()A.+-x yx y B.x yx y -+C.y xy x +-D.y xy x-+13.(2021·上海浦东新·七年级期末)下列运算结果正确的是()A.3362x x x ⋅=B.326()x x -=-C.33(2)8x x =D.623x x x ÷=二、填空题14.(2020·上海市民办立达中学七年级期末)等边三角形是旋转对称图形,它至少绕对称中心旋转_________度,才能和本身重合.15.(2020·上海市民办立达中学七年级期末)如图,△AOB绕点O顺时针旋转得到△COD,已知点A、O、D在一条直线上,且∠AOB=30°,则旋转角为__________°.16.(2020·上海市民办立达中学七年级期末)小王是学校足球队的成员,他穿着自己的球衣站在镜子前,看到镜子里球衣的号码如图所示,那么他实际的球衣号码是___________.17.(2020·上海浦东新·七年级期末)如图,ABC 顺时针旋转能与ADE 重合,且70BAE ∠=︒,则旋转角是__________度.18.(2020·上海嘉定·七年级期末)已知线段AB的长度为3厘米,现将线段AB向左平移4厘米得到线段CD,那么线段CD的长度为_____厘米.19.(2021·上海闵行·七年级期末)计算:02=____.20.(2020·上海宝山·七年级期末)当2a =时,代数式(1)2a a +的值是________.21.(2020·上海宝山·七年级期末)将多项式23365x x x --+按字母x 降幂排列,结果为________.22.(2020·上海宝山·七年级期末)计算:24y y y ⋅⋅=________.23.(2020·上海松江·七年级期末)设某数为x ,用含x 的代数式表示“比某数的2倍多3的数”:______.24.(2020·上海松江·七年级期末)分解因式:()()32a m n b m n -+-=______.25.(2020·上海松江·七年级期末)计算:(2a +b )(2a ﹣b )=_________.26.(2021·上海浦东新·七年级期末)计算()24282x y xy ÷=__________.27.(2020·上海浦东新·七年级期末)如图所示,△COD 是△AOB 绕点O 顺时针方向旋转35°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠BOC 的度数是_____.28.(2020·上海外国语大学闵行外国语中学七年级期末)如图,如果将△ABC绕点A逆时针旋转40°得到△ADE,其中但D恰好落在BC边上,那么∠ADE=______.29.(2020·上海宝山·七年级期末)如图,在ABC 中,3AC =,5BC =.如果将ABC 沿直线EF 翻折后,点B 落在点A 处,那么AEC 的周长为________.30.(2020·上海宝山·七年级期末)如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)31.(2021·上海黄浦·七年级期末)若点A (1-x ,5),B (3,y )关于y 轴对称,则x +y =________.32.(2021·上海闵行·七年级期末)点A 位于点B 的北偏东方向15°,若将点B 以点A 为旋转中心旋转90°落在点C 处,则点A 在点C 的______方向.33.(2021·上海浦东新·七年级期末)如果分式231x x +-有意义,那么x的取值范围是_____.34.(2021·上海浦东新·七年级期末)A、B两地相距121千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到20分钟,求甲车的平均速度.若设甲车平均速度为4x千米/小时,则所列方程是__________.35.(2021·上海宝山·七年级期末)化简:221216x x x +-=-___________________.36.(2021·上海浦东新·七年级期末)计算:22(2)a =__________.37.(2021·上海浦东新·七年级期末)如果单项式24m a bc 为7次单项式,那么m 的值为_____.38.(2021·上海浦东新·七年级期末)分解因式:2310x x +-=_____.39.(2021·上海宝山·七年级期末)已知单项式33m x y 与单项式25n x y 的和仍然是单项式,那么m n +=________________.40.(2021·上海宝山·七年级期末)如果20217a =,20212b =,那么232021a b -=________________.三、解答题41.(2020·上海宝山·七年级期末)在正方形网格中,每个小正方形的边长均为1个单位长度,ABC 三个顶点的位置如图所示.(1)请画出ABC 关于点O 中心对称的111A B C △:(2)请画出ABC 关于直线OB 的轴对称图形222A B C △.42.(2020·上海松江·七年级期末)如图,已知ABC 和点O,画出ABC 绕点O按逆时针方向旋转90°后得到的图形.43.(2021·上海宝山·七年级期末)在正方形网格中,ABC三个顶点的位置如图所示(1)请画出ABC关于点O的中心对称的图形;(2)画出ABC关于直线MN的轴对称的图形.44.(2021·上海宝山·七年级期末)计算:2121 1x xx x++⎛⎫+÷⎪⎝⎭45.(2021·上海宝山·七年级期末)解方程:41133x x=+ --46.(2021·上海宝山·七年级期末)先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为满足不等式11x ->的最小整数.47.(2021·上海宝山·七年级期末)计算:()()231231x y x y --+-48.(2021·上海宝山·七年级期末)计算:()()23241242a a b a ab-+÷-+49.(2021·上海宝山·七年级期末)分解因式:322288x x y y x-+-50.(2021·上海宝山·七年级期末)数学业余小组在活动中发现:()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a b a a b ab b a b -+++=-()()5432234566a b a a b a b a b ab b a b -+++++=-……()()12322321 n n n n n n n na b a a b a b a b ab b a b -------++⋅⋅⋅+++=-(1)请你在答题卡中写出(补上)上述公式中积为55a b -的一行;(2)请仔细领悟上述公式,并将33+a b 分解因式:(3)请将54322345a a b a b a b ab b +++++分解因式.上海期末精选50题(基础版)一、单选题1.(2020·上海浦东新·七年级期末)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形的定义“平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形”、中心对称图形的定义“平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形”逐项判断即可.【详解】A、是轴对称图形,也是中心对称图形,则此项符合题意B、是轴对称图形,不是中心对称图形,则此项不符题意C、不是轴对称图形,是中心对称图形,则此项不符题意D、不是轴对称图形,也不是中心对称图形,则此项不符题意故选:A.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟记定义是解题关键.2.(2020·上海闵行·七年级期末)在直角坐标平面内,已知点B和点A(3,4)关于x轴对称,那么点B的坐标()A.(3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(﹣3,4)【答案】C【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数解答.【详解】解:∵点B和点A(3,4)关于x轴对称,∴点B的坐标为(3,﹣4),故选:C.【点睛】本题考查的是关于x轴、y轴对称的点的坐标,掌握关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题的关键.3.(2020·上海嘉定·七年级期末)下列等式中,从左到右的变形是因式分解的是()A.2x(x-1)=2x 2-2xB.x 2-2x+3=x(x-2)+3C.(x+y)2=x 2+2xy+y2D.-x 2+2x=-x(x-2)【答案】D【分析】根据因式分解的定义逐项判断即可得.【详解】A、等式的右边不是乘积的形式,不是因式分解,此项不符题意;B、等式的右边不是乘积的形式,不是因式分解,此项不符题意;C、等式的右边不是乘积的形式,不是因式分解,此项不符题意;D、等式的右边是乘积的形式,且左右两边相等,是因式分解,此项符合题意;故选:D.【点睛】本题考查了因式分解,熟记定义是解题关键.4.(2021·上海宝山·七年级期末)计算:()24a a -⋅的结果是()A.8a B.6a C.8a -D.6a -【答案】B【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=⋅==.故选B.【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.5.(2020·上海宝山·七年级期末)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形和中心对称图形的定义逐项判断即可.【详解】解:A、是轴对称图形,也是中心对称图形,故此选项符合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意.故选:A.【点睛】本题考查了轴对称图形和中心对称图形的识别,掌握轴对称图形和中心对称图形的定义是解题关键.6.(2020·上海宝山·七年级期末)将一张长方形纸片折一次,折痕平分这个长方形的面积,则这样的折纸方法有()A.1种B.2种C.4种D.无数种【答案】D【分析】根据长方形的中心对称性解答即可.【详解】解:根据长方形的中心对称性,过中心的直线可把长方形分成面积相等的两部分,所以使得折痕平分这个长方形的面积的方法共有无数种.故选D.【点睛】本题考查了长方形的中心对称性,比较简单,一定要熟练掌握并灵活运用.7.(2021·上海浦东新·七年级期末)下列图形中,不是旋转对称图形的是()A.正三角形B.等腰梯形C.正五边形D.正六边形【答案】B【分析】根据旋转对称图形的定义选出正确选项.【详解】A选项,正三角形旋转120︒会重合,是旋转对称图形;B选项,不是旋转对称图形;C选项,正五边形旋转72︒会重合,是旋转对称图形;D选项,正六边形旋转60︒会重合,是旋转对称图形.故选:B.【点睛】本题考查旋转对称图形,解题的关键是掌握旋转对称图形的定义.8.(2021·上海宝山·七年级期末)如图,ABC经过平移后得到DEF,下列说法:①//AB DE②AD BE=③ACB DFE∠=∠④ABC 和DEF 的面积相等⑤四边形ACFD 和四边形BCFE 的面积相等,其中正确的有()A.4个B.3个C.2个D.1个【答案】A【分析】根据平移的性质逐一判断即可.【详解】解:ABC 经过平移后得到DEF ,∴//AB DE ,故①正确;AD BE =,故②正确;ACB DFE ∠=∠,故③正确;ABC 和DEF 的面积相等,故④正确;四边形ACFD 和四边形BCFE 都是平行四边形,且AD CF BE ==,即两个平行四边形的底相等,但高不一定相等,∴四边形ACFD 和四边形BCFE 的面积不一定相等,故⑤不正确;综上:正确的有4个故选A.【点睛】此题考查的是图形的平移,掌握平移的性质是解题关键.9.(2021·上海宝山·七年级期末)已知11xy -=3,则代数式232x xy yx xy y +---的值是()A.72-B.112-C.92D.34【答案】D【分析】由113x y -=得出3y xxy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得.【详解】113x y-=,∴3y xxy-=,∴3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xyxy xy xy -+-+-====-----.故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.10.(2021·上海浦东新·七年级期末)分式26x y 与14xy的最简公分母是()A.212xy B.224xy C.26y D.4xy【答案】A【分析】找出26y 和4xy 的最小公倍数即可.【详解】解:26y 和4xy 的最小公倍数是212xy .故选:A.【点睛】本题考查分式最简公分母,解题的关键是掌握最简公分母的求法.11.(2021·上海宝山·七年级期末)下列分式中,最简分式是()A.1510xB.243ab a C.133x x --D.121x x ++【答案】D【分析】根据最简分式的定义:在化简结果中,分子和分母已没有公因式,这样的分式称为最简分式,逐一判断即可.【详解】解:A.1510x中,分子和分母有公因数5,不是最简分式,故本选项不符合题意;B.243aba 中,分子和分母有公因式a ,不是最简分式,故本选项不符合题意;C.()113331x x x x --=--中,分子和分母有公因数式1x -,不是最简分式,故本选项不符合题意;D.121x x ++中,分子和分母没有公因式,是最简分式,故本选项符合题意.故选D.【点睛】此题考查的是最简分式的判断,掌握最简分式的定义是解题关键.12.(2021·上海宝山·七年级期末)计算()()1111x y x y ----+÷-的结果为()A.+-x y x y B.x y x y-+C.y x y x +-D.y x y x-+【答案】C【分析】先将其化为分式形式,根据负指数幂的性质和分式的基本性质化简即可.【详解】解:()()1111x y x y ----+÷-=1111x y x y ----+-=1111x y xy+-=1111xy x y xy x y ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=y x y x+-故选C.【点睛】此题考查的是分式的化简和负指数幂的性质,掌握分式的基本性质是解题关键.13.(2021·上海浦东新·七年级期末)下列运算结果正确的是()A.3362x x x ⋅=B.326()x x -=-C.33(2)8x x =D.623x x x ÷=【答案】C【分析】直接利用幂的乘方运算法则、同底数幂的乘法、同底数幂的除法法则分别计算得出答案.【详解】A、x 3•x 3=x 6,故此选项错误;B、326()x x -=,故此选项错误;C、326()x x -=,故此选项正确;D、624x x x ÷=,故此选项错误;故选:C.【点睛】此题考察代数式的化简,掌握幂的乘方、同底数幂相乘相除法则才能正确解答.二、填空题14.(2020·上海市民办立达中学七年级期末)等边三角形是旋转对称图形,它至少绕对称中心旋转_________度,才能和本身重合.【答案】120【分析】根据旋转角和旋转对称图形的定义结合图形特点即可得出答案.【详解】3603120︒÷=︒所以等边三角形至少绕对称中心旋转120︒,才能和本身重合.故答案为120【点睛】本题主要考查旋转对称图形的特点,掌握旋转对称图形的特点是解题的关键.15.(2020·上海市民办立达中学七年级期末)如图,△AOB绕点O顺时针旋转得到△COD,已知点A、O、D在一条直线上,且∠AOB=30°,则旋转角为__________°.【答案】150【分析】根据旋转图形的特点可知30COD ∠=︒,再利用平角的定义即可求出旋转角.【详解】∵△AOB绕点O顺时针旋转得到△COD ∴30COD AOB ∠=∠=︒∴旋转角180150AOC COD ∠=︒-∠=︒故答案为150【点睛】本题主要考查旋转角的概念,掌握旋转角的概念是解题的关键.16.(2020·上海市民办立达中学七年级期末)小王是学校足球队的成员,他穿着自己的球衣站在镜子前,看到镜子里球衣的号码如图所示,那么他实际的球衣号码是___________.【答案】15【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面成轴对称图形即可得出答案.【详解】∵2的对称图形是5,1的对称图形还是1∴他的实际球衣号码为15故答案为15【点睛】本题主要考查轴对称图形的特点,掌握轴对称图形的特点是解题的关键.17.(2020·上海浦东新·七年级期末)如图,ABC 顺时针旋转能与ADE 重合,且70BAE ∠=︒,则旋转角是__________度.【答案】35【分析】由△ABC顺时针旋转能与△ADE重合,且∠BAE=70°,即可求得旋转角的度数.【详解】解:∵△ABC顺时针旋转能与△ADE重合,且∠BAE=70°,∴∠BAC=∠DAE=12∠BAE=35°.∴旋转角的大小是35°.故答案为:35.【点睛】本题考查旋转的性质,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.18.(2020·上海嘉定·七年级期末)已知线段AB的长度为3厘米,现将线段AB向左平移4厘米得到线段CD,那么线段CD的长度为_____厘米.【答案】3【分析】根据平移的性质即可得.【详解】由平移的性质得:线段CD的长度等于线段AB的长度,则线段CD的长度3厘米,故答案为:3.【点睛】本题考查了图形的平移,熟练掌握平移的性质是解题关键.19.(2021·上海闵行·七年级期末)计算:02=____.【答案】1【分析】根据零指数幂法则进行计算即可.【详解】解:021=,故答案为:1.【点睛】本题考查了零指数幂运算,需熟练掌握零指数幂的运算法则.20.(2020·上海宝山·七年级期末)当2a =时,代数式(1)2a a +的值是________.【答案】3【分析】直接把a的值代入计算即可.【详解】解:当2a =时,原式=2(21)32⨯+=故答案为:3.【点睛】本题主要考查了代数式求值问题,在解题时要根据题意带入计算即可.21.(2020·上海宝山·七年级期末)将多项式23365x x x --+按字母x 降幂排列,结果为________.【答案】32365x x x +--【分析】按x的指数从大到小排列即可.【详解】解:将多项式23365x x x --+按字母x 降幂排列,结果为32365x x x +--故答案为:32365x x x +--.【点睛】此题考查的是将多项式降幂排列,掌握降幂的定义是解题关键.22.(2020·上海宝山·七年级期末)计算:24y y y ⋅⋅=________.【答案】7y 【分析】根据同底数幂的乘法法则解答即可.【详解】解:24y y y ⋅⋅=1472y y ++=故答案为:7y .【点睛】本题考查了同底数幂的乘法,属于基础题目,熟练掌握运算法则是解题的关键.23.(2020·上海松江·七年级期末)设某数为x ,用含x 的代数式表示“比某数的2倍多3的数”:______.【答案】23x +【分析】比x 的2倍多3,即x 乘以2再加上3.【详解】解:比x 的2倍多3的数是:23x +.故答案是:23x +.【点睛】本题考查列代数式,解题的关键是根据题意列出代数式.24.(2020·上海松江·七年级期末)分解因式:()()32a m n b m n -+-=______.【答案】()(32)m n a b -+【分析】直接利用提取公因式法即可求解.【详解】解:()()()32(32)a m n b m n m n a b -+-=-+,故答案为:()(32)m n a b -+.【点睛】本题考查利用提公因式法因式分解.注意要将m n -看成一个整体提公因式.25.(2020·上海松江·七年级期末)计算:(2a +b )(2a ﹣b )=_________.【答案】224a b ﹣【分析】根据平方差公式,即可解答.【详解】解:(2a +b )(2a ﹣b )=4a 2﹣b 2,故答案为:4a 2﹣b 2.【点睛】本题主要考查平方差公式,解决本题的关键是熟记平方差公式.26.(2021·上海浦东新·七年级期末)计算()24282x y xy ÷=__________.【答案】24xy 【分析】根据单项式除以单项式运算法则,本题只需要把系数、同底数幂分别相除作为商的因式,计算得出答案即可.【详解】解:原式21422(82)4y x xy --=÷=.【点睛】本题考查了单项式除以单项式,掌握单项式除以单项式的运算法则是解题关键.27.(2020·上海浦东新·七年级期末)如图所示,△COD 是△AOB 绕点O 顺时针方向旋转35°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠BOC 的度数是_____.【答案】20°【分析】由旋转的性质可得∠AOC =∠BOD =35°,进一步即可求得结果.【详解】解:∵△COD 是△AOB 绕点O 顺时针方向旋转35°后所得的图形,∴∠AOC =∠BOD =35°,∵∠AOD =90°,∴∠BOC =20°.故答案为:20°.【点睛】本题考查了旋转变换的性质,属于基础题型,熟练掌握旋转的性质是解题关键.28.(2020·上海外国语大学闵行外国语中学七年级期末)如图,如果将△ABC绕点A逆时针旋转40°得到△ADE,其中但D恰好落在BC边上,那么∠ADE=______.【答案】70°【分析】由将△ABC绕点A逆时针旋转40°得到△ADE,可得AB=AD,∠BAD=40°,继而求得∠B的度数,然后由旋转的性质,可求得∠ADE的度数.【详解】解:∵将△ABC绕点A逆时针旋转40°得到△ADE,∴AB=AD,∠BAD=40°,∴∠B=∠ADB=70°,∴∠ADE=∠B=70°.故答案为:70°.【点睛】此题考查了旋转的性质以及等腰三角形的性质.注意掌握旋转前后图形的对应关系是关键.29.(2020·上海宝山·七年级期末)如图,在ABC 中,3AC =,5BC =.如果将ABC 沿直线EF 翻折后,点B 落在点A 处,那么AEC 的周长为________.【答案】8【分析】根据折叠的性质可得BE=AE,然后根据三角形的周长公式和等量代换即可求出结论.【详解】解:由折叠的性质可得BE=AE∴AEC的周长为AE+EC+AC=BE+EC+AC=BC+AC=5+3.=8故答案为:8.【点睛】此题考查的是折叠问题,掌握折叠的性质是解题关键.30.(2020·上海宝山·七年级期末)如图,将ABC绕点A逆时针旋转120︒得ADE,已知4AB=,1AC=,那么图中阴影部分的面积是________.(结果保留π)【答案】5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:∵将ABC绕点A逆时针旋转120︒得ADE,∴S△ABC =S△ADE,∴阴影部分的面积=扇形DAB的面积+S△ADE -扇形EAC的面积-S△ABC=扇形DAB的面积-扇形EAC的面积∴阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.31.(2021·上海黄浦·七年级期末)若点A(1-x,5),B(3,y)关于y轴对称,则x+y=________.【答案】9【详解】解:∵点A(1-x,5)与B(3,y)关于y轴对称∴x=4,y=5∴x+y=4+5=9.故答案为:9【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.32.(2021·上海闵行·七年级期末)点A位于点B的北偏东方向15°,若将点B以点A为旋转中心旋转90°落在点C处,则点A在点C的______方向.【答案】北偏西75°或南偏东75°【分析】画出图形,分两种情况求解即可.【详解】解:由题意得,∠1=∠4=15°,若是顺时针旋转,∵∠5=∠2=180°-90°-15°=75°,∴点A在点C1的南偏东75°方向;若是逆时针旋转,∵∠6=∠3=90°-15°=75°,∴点A在点C2的北偏西75°方向.综上可知,点A在点C的北偏西75°或南偏东75°方向.故答案为:北偏西75°或南偏东75°.【点睛】本题考查了旋转的性质,方位角,以及分类讨论的数学思想,分类讨论是解答本题的关键.33.(2021·上海浦东新·七年级期末)如果分式231xx+-有意义,那么x的取值范围是_____.【答案】13 x≠【分析】根据分式有意义的条件,分母不为零,列不等式求解,写出答案即可.【详解】解:由题意得:310x-≠,解得:13 x≠,故答案为:13x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题关键.34.(2021·上海浦东新·七年级期末)A、B两地相距121千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到20分钟,求甲车的平均速度.若设甲车平均速度为4x千米/小时,则所列方程是__________.【答案】1211211453x x -=【分析】设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据甲车比乙车多用了20分钟的等量关系列出方程即可.【详解】解:设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据题意得:12112.31145x x -=故答案为:12112.31145x x -=【点睛】本题考查由实际问题抽象出分式方程,关键是设出速度,以时间差作为等量关系列方程.35.(2021·上海宝山·七年级期末)化简:221216x x x +-=-___________________.【答案】34x x --【分析】先将分子、分母因式分解,然后约分即可.【详解】解:221216x x x +-=-()()()()4344x x x x +-=+-34x x --故答案为:34x x --.【点睛】此题考查的是分式的约分,掌握利用十字相乘法因式分解和分式的基本性质是解题关键.36.(2021·上海浦东新·七年级期末)计算:22(2)a =__________.【答案】44a 【分析】利用积的乘方,等于每个因式的乘方的积进行计算即可.【详解】解:224(2)4a a =故答案为:44a 【点睛】本题考查了幂的运算性质,熟记运算法则是基本要求.37.(2021·上海浦东新·七年级期末)如果单项式24m a bc 为7次单项式,那么m 的值为_____.【答案】4【分析】根据单项式次数的定义,算出m 的值.【详解】解:∵单项式24m a bc 的次数为7,∴217m ++=,解得4m =.故答案是:4.【点睛】本题考查单项式的次数,解题的关键是掌握单项式次数的定义.38.(2021·上海浦东新·七年级期末)分解因式:2310x x +-=_____.【答案】(5)(2)x x +-【分析原式利用十字相乘法分解即可.【详解】原式=(x-2)(x+5),故答案为:(x-2)(x+5)【点睛】此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.39.(2021·上海宝山·七年级期末)已知单项式33m x y 与单项式25n x y 的和仍然是单项式,那么m n +=________________.【答案】5【分析】根据题意可知:单项式33m x y 与单项式25n x y 是同类项,然后根据同类项的定义即可求出m和n,从而求出结论.【详解】解:∵单项式33m x y 与单项式25n x y 的和仍然是单项式,∴单项式33m x y 与单项式25n x y 是同类项,∴m=2,n=3∴m n +=5故答案为:5.【点睛】此题考查的是求同类项的指数中的参数,掌握合并同类项法则和同类项的定义是解题关键.40.(2021·上海宝山·七年级期末)如果20217a =,20212b =,那么232021a b -=________________.【答案】498【分析】根据同底数幂除法的逆用和幂的乘方的逆用变形,然后利用整体代入法求值即可.【详解】解:∵20217a =,20212b =,∴232021a b -=2320212021a b ÷=()()2320212021a b ÷=2372÷=498÷=498故答案为:498.【点睛】此题考查的是幂的运算性质的应用,掌握同底数幂除法的逆用和幂的乘方的逆用是解题关键.三、解答题41.(2020·上海宝山·七年级期末)在正方形网格中,每个小正方形的边长均为1个单位长度,ABC 三个顶点的位置如图所示.(1)请画出ABC 关于点O 中心对称的111A B C △:(2)请画出ABC 关于直线OB 的轴对称图形222A B C △.【答案】(1)图见教师;(2)图见教师【分析】(1)找出A、B、C关于点O的对称点111A B C 、、,顺次连接即可;(2)找出A、B、C关于直线OB 的对称点222A B C 、、,顺次连接即可.【详解】解:(1)找出A、B、C关于点O的对称点111A B C 、、并顺次连接,如图所示:111A B C △即为所求;(2)找出A、B、C关于直线OB 的对称点222A B C 、、并顺次连接,如上图所示:222A B C △即为所求.【点睛】此题考查的是轴对称和中心对称图形,先找出已知三角形各顶点的对应点是解题关键.42.(2020·上海松江·七年级期末)如图,已知ABC 和点O,画出ABC 绕点O按逆时针方向旋转90°后得到的图形.【分析】根据旋转图形的性质,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于90︒,找到对应点后顺次连接即可.【详解】如图所示,A B C '''V 即为所求三角形.【点睛】本题考查了画旋转图形,根据旋转图形的性质画图是解题关键.43.(2021·上海宝山·七年级期末)在正方形网格中,ABC 三个顶点的位置如图所示(1)请画出ABC 关于点O 的中心对称的图形;(2)画出ABC 关于直线MN 的轴对称的图形.【答案】(1)图见教师;(2)图见教师【分析】(1)分别找出点A、B、C关于点O的对称点A 1、B 1、C 1,然后顺次连接即可;(2)分别找出点A、B、C关于直线MN的对称点A 2、B 2、C 2,然后顺次连接即可.【详解】解:(1)分别找出点A、B、C关于点O的对称点A 1、B 1、C 1,然后顺次连接,如图所示,111A B C △即为所求;(2)分别找出点A、B、C关于直线MN的对称点A 2、B 2、C 2,然后顺次连接,如图所示,222A B C △即为所求.【点睛】此题考查的是画已知图形关于某点成中心对称的图形和关于某直线成轴对称的图形,掌握中心对称的定义和轴对称的定义是解题关键.44.(2021·上海宝山·七年级期末)计算:21211x x x x ++⎛⎫+÷⎪⎝⎭【答案】11x +【分析】根据分式的加法法则和除法法则计算即可.【详解】解:21211x x x x ++⎛⎫+÷⎪⎝⎭=2121x xx x x +⋅++=()211x xx x +⋅+=11x +.【点睛】此题考查的是分式的混合运算,掌握分式的加法法则和除法法则是解题关键.45.(2021·上海宝山·七年级期末)解方程:41133x x=+--【答案】x =8【分析】先将分式方程化为整式方程,然后解整式方程并验根即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1
下列数中:①0.2%,②0.3 ,
③—
,④
2
7 , ⑤ 22
7
,⑥
⑦ 3 0.08, ⑧
8,
⑨1.203200320003……(填序号)
169 ,
有理数是: 无理数是: 正数是: 负数是:
2、在数轴上A点表示
11 2
,与点A的距离等于3的点所表示的数是_____. 3、已知按一定规律排列的一组数:1,–3,5,–7,...,21,–23.如果从中选出若干个数使它们的和 等于0,那么至少要选______个数.
例题13在学完“有理数的运算”后, 实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规
则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分. ⑴ 如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题? ⑵ ㈠班代表队的最后得分能为145分吗?请简要说明理由.
x 。
3.
有一道题目是一个多项式减去2ab-3bc+4,小张误当成了加法计算,结果得到2bc-1-2ab, 正确结果应当是_______ _____。
例题5 选择题:
。 1.若n为正整数,则化简(-1)na+(-1)n+1a的结果是( ). (A)0 (B)2a (C)-2a (D)2a或-2a
2、多项式ab―2a―3的各项系数和常数项分别是…………( )
七年级上数学典型例题选 6---7章
例题1 2003年我国遭受到非典型性肺炎传染性疾病的巨大影响,全国人民万众一心,众志成城,抗击 “非典”.图甲是某市某中学献爱心、抗“非典”学生自愿捐款活动情况制成的条形图, 图乙是该中学学
1
7.
的立方根是
;平方根是______。
8
8.
81 的平方根是
;
;平方根的绝对值
9. 下列结论正确的是( )
A. (6)2 6 B.
C. (16)2 16 D.
( 3)2 9
2
16 25
16 25
例题10.计算:
1. ( 3 ) ( 5 4 ) ( 7 6 )
1 2. 2 (2)
3;
例题14 已知 ,求
y x22x3 yx
的平方根;(5分)
例题15设
1 y1 5 x 1 ,
y2
2x 1 4,当来自x为何值时,y y 1 、
、
2 互为相反数?
七年级上数学典型例题选 4---5章
例题1 用代数式表示: (1)m的倒数的3倍与m的平方差的50%;
(2)x的
1
4
与y的平方的差
(3)甲数a与乙数b的差除以甲、乙两数 的积.
x3 x4 1 53
1.72x x 1 0.3 0.7
例题11已知
x 3是方程
的解
n , 满足关系式
mn ,求
的值。
33x1mx412
2nm 1
例题12. 某商店选用两种价格分别为每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂 拌糖果的售价是每千克25元,要配置这种杂拌糖100千克,问要用这两种糖果多少千克?
(4)一个三位数的个位数字为x,十位数字比个位数字少而3,百位数字为y,则这个三 位数是____________;
例题2 填空题:
1.单项式
r 2 h 的系数是 ,次数是 。
2.写一个含两个不同字母的三次二项式 。
1 2m
2 x y 3.若单项式
与
合并后为
,则 a+m-n=
.
2ax2 y3
2xn y3
例题14 小林每时走5千米,小洪每时走4千米,两人同时从A村出发去B村,出发0.5时后,小林因事返 回A村,在A村停留15分后再去B村,这样,小林与小洪同时到达B村.求A、B两村的距离.
例题15 一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由甲、乙两人合 做,并且施工期间乙休息7天,问几天完成?
3. (2)4(111)(2)3 834
11. 计算:(每题5分,共10分)
(1)
3 31 2
(2)
8
10 3 2
27
12、求下列各式中
x的值:
(1) 1x623610
(2) (x1)2 25
(3) 8(x3)3 27
例题13(9分)有10筐苹果,以每筐20千克为基准,超过的千克数记作负数,记录如下:+3,–l, +4,–3,0,+2,+4,–5,+3.5,–2.5.问这10筐苹果的总质量是多少千克?
A、ab,―2a,―3 B、0,―2,―3
C、1,―2,―3
D、1,2,3
3、将整式―[a―(b+c)]去括号,得………………………( ) A、―a―b+c B、―a+b―c C、―a+b+c D、―a―b―c
例题6 已知a、b是正数m的两个平方根,c,d互为倒数,求代数式2a+3cd+2b的值
例题7 设S=
4、绝对值小于4的所有负整数的和是 5、某一天,北京早晨的气温为
___
4C
,中午的气温比早晨上升了12℃,那么这天中午的气温是
____ .. _
℃;如果午夜的气温比中午又下降了10℃,那么午夜的气温是
__ ℃.___
1
6.
36
的平方根是
;算术平方根
是
;算术平方根的相反数是
是
;
;平方根的倒数是
2.
例题3 把下列代数式分别填入下表适当的位置:,
3
3a,
,
a
a b ,
a22ab1
, 5,―xy,
ab 2
代
整式
数
式
非整式
单项式 多项式
3, a
3a,
5,―xy,
a b a22ab1
2
a b
例题4 1. 如果
x4(y6)20,那么 xy
2.
如果
(a3)xa260
是一元一次方程,那么
a
,方程的解为
2x2x,Rx2x
求:S―R
例题8 某电影院共有20排座位.已知第一排有18座,后面每排都比前一排多2个位. (1)写出计算第n排的座位数an; (2)当n=20时,求an.
例题9.先化简,再求值:
3 (3y2x2)3 (y2x2) 3
其中 x2, y1
例题10.解方程:
2x12x
(写出检验过程)
例题16 张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张, 则学生可享受半价优惠。”乙旅行社说:“包括老师在内按全票价的6折优惠。”若全票价为240元, 当学生从数为多少人时,两家旅行社的收费一样多?
例题26 一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每 名工人每天能挖土3立方米或运土5立方米, 如何分配挖土和运土人数,使挖出的土能及时运走?