2013中考数学模拟试题沪科版(期中考试)

合集下载

上海市2013年中考数学试题及答案

上海市2013年中考数学试题及答案

2013年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) 1.下列式子中,属于最简二次根式的是( ) (A ) 9; (B )7 ; (C ) 20 ; (D )13. 2.下列关于x 的一元二次方程有实数根的是( )(A )210x +=;(B )210x x ++=;(C )210x x -+= ;(D )210x x --=. 3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( )(A )2(1)2y x =-+;(B )2(1)2y x =++; (C )21y x =+;(D )23y x =+.4.数据 0,1,1,3,3,4 的中位线和平均数分别是( )(A ) 2和2.4 ; (B )2和2 ; (C )1和2; (D )3和2. 5.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点, DE ∥BC ,EF ∥AB ,且AD ∶DB = 3∶5,那么CF ∶CB 等于( ) (A ) 5∶8 ; (B )3∶8 ; (C ) 3∶5 ; (D )2∶5. 6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中, 能判断梯形ABCD 是等腰梯形的是( ) (1) ∠BDC =∠BCD ;(B )∠ABC =∠DAB ;(C )∠ADB =∠DAC ;(D )∠AOB =∠BOC .二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:21a - = _____________.8.不等式组1023x x x->⎧⎨+>⎩ 的解集是____________.9.计算:23b aa b⨯= ___________. 10.计算:2 (─b ) + 3b = ___________.11.已知函数 ()231x f x =+,那么f = __________.图112.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为___________.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为___________.14.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为___________. 15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是____________.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时邮箱剩余油量是__________升. 17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.18.如图5,在△ABC 中,AB AC =,8BC =, tan C = 32 ,如果将△ABC沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D , 那么BD 的长为__________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分) 190111()2π--+ .图2)y (升)图4图520.解方程组: 22220x y x xy y -=-⎧⎨--=⎩.21.已知平面直角坐标系xoy (如图6),直线 12y x b =+经过第一、二、三象限,与y 轴交于点B ,点A (2,t )在这条直线上,联结AO ,△AOB 的面积等于1. (1)求b 的值; (2)如果反比例函数ky x=(k 是常量,0k ≠) 的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图7-1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图7-2所示,其示意图如图7-3所示,其中AB ⊥BC ,EF ∥BC ,0143EAB ∠=, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)O 11图6图7-1 图7-2图7-3A EFAEFA E FBC23.如图8,在△ABC 中,ο90=∠ACB , B A ∠>∠,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F .(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的 延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0120AOB ∠=. (1)求这条抛物线的表达式; (2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图8图925.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x BQ y ==,. (1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x 的值.图10备用图。

九年级数学期中考试卷(沪科版)

九年级数学期中考试卷(沪科版)
15.(1) (写成 不扣分)(2)图略.
16.解:点P(1,a)关于y轴的对称点是(﹣1,a),
∵点(﹣1,a)在一次函数y=2x+4的图象上,
∴a=2×(﹣1)+4=2,
∵点P(1,2)在反比例函数 的图象上,
∴k=2,
∴反比例函数的解析式为 .
四、解答题(II)(本题共2小题,每小题8分,满分16分)
17.本题需分两种情况讨论:
(1)如左图,过点P作PQ//BC,这时△AQP∽△ABC,则 ,可求的AQ=3;
(2)如右图,过点P作∠APQ=∠ABC,交AB于Q,这时△APQ∽△ABC,于是有 ,可求AQ= .
所以AQ的长为3或 .
18.过A作AM⊥BD于点M,交GE于N,
∵AC⊥CD,GE⊥CD,∴四边形ACEN为矩形.∴NE=AC.
∴x=3时,y最大,最大面积是12.
八、解答题(VI)(本题满分14分)
23.解:(1)理由:∵∠A=50°,∴∠ADE+∠DEA=130°.
∵∠DEC=50°,∴∠BEC+∠DEA=130°.
∴∠ADE=∠BEC.2分
∵∠A=∠B,∴△ADE∽△BEC.………4分
∴点E是四边形ABCD的AB边上的相似点.………5分
所以 ,即 ,此时
当 时, 的最大值是32;
七、解答题(V)(本题满分12分)
22.解:(1)∵正方形ABCD的边长为4,CE=1,CF= ,∴CF∥AG,BE=3.∴ = ,∴BG=4.
∵HM⊥AG,CB⊥AG,∴HM∥BE.∴ = .∴MG= x.∴y=x(4+4- x)=- x2+8x.
(2)∵y=- x2+8x=- (x-3)2+12.
A. 1 B. 2 C.3 D.4

浦东新区2013学年度第一学期初三年级数学期中试卷

浦东新区2013学年度第一学期初三年级数学期中试卷

EDACB l 3l 2l 1FDB EC A 2013学年度第一学期初三年级数学期中试卷(答题时间 100分钟,满分 150分)一、选择题:(本大题共6题,每题4分,满分24分)1.如图,123l l l ∥∥,下列比例式中正确的是………………( ) AD CE ()=;BC DF A AD (B)=;BC CE DFAB CD ()=;CD EF C A D D C()=.B E A FD (第1题图)2. 设e 是单位向量,a是非零向量,则下列式子中正确的是…………………………( ) ();A a e a = (B);a e a =1();C a e a =().a D e e=3. 如图,ABC △中,DE BC ∥交AB 于点D ,交AC 于点E ,如果ADE BCED S =S △四边形,那么下列等式成立的是…………………( )()DE BC A :=1:2; (B )D E B C = 2::()AE 1;C ::()AE AC=1.D :(第3题图) 4. 已知AD 是Rt ABC △的斜边BC 上的高,BC=a B=α∠,,那么AD 等于……( )2()a sin A β⋅; 2(B )a c o s β⋅;()a sin cos C ββ⋅⋅; ()a sin tan D ββ⋅⋅.5. 若,a c eb d f ==则下列式子中正确的是…………………………( ) ();a b e Acd f == (B);a ce a b c b df b d f ++++=++(),a b c d e f C b d f ---== 111().a c e D b d f---==6.如图,在三角形纸片ABC 中,,36AB AC A =∠-. 把这个三角形折叠,折痕AB E DE 交于点,D AC 于点,则下列结论中不正确的是…( ) (第6题图)AD AB()=DC BCA ;(B)BC AD CD 是和的比例中项; ()BC=BD C ; ()DA C D 点是的黄金分割点.F ED CB A B DE CANMDCBACDBAFa二、 填空题:(本大题共12题,每题4分,满分48分)7. 把ab cd =写出比例式,,,0a b c d (其中均不为)可以是 (写出一个即可). 8. 若线段AB 长为2cm ,P AB 是的黄金分割点,则较短线段PA= cm . 9. 已知αβ、均为锐角,且90αβ+=,若tan =3,+=ααβ则 .10. 化简:1(2a 3)(6)3b b a +--=.11. 两个相似三角形的相似比为4:9,则其对应的周长比是 . 12. 如图,已知点D E 、分别在A B C △的边A B A C 、上,且A E D =B∠∠,如果A B =7A C =4A D ,,,那么AE= . 13. 在梯形ABCD 中,AD BC ∥,AD BC <,AC 与BD 交于点O ,如果OBC ABD S =S =2△△, 那么COD S =△ .14. 如图,在ABC △中,点D 是边AC 上任意一点,点M N 、分布是ABD △和BCD △的重心,如果AC=6,那么线段MN 的长为 . 15. 如图,矩形ABCD 中,点E F 、分别在边AB AD 、上,且EF BD AD=3AF =a,,AB BC b = ∥,,设则向量EF关于ba 、的分解式是EF =.(第15题图)16. 如图,在ABC △中,ABC=90∠,CD 是斜边上的高,若3cos 5B =,则cot ACD ∠= . 17. 如图,在矩形ABCD 中,E F 、分别是边AD BC 、的中点,点G H 、在边DC 上,且1GH=DC 2,若AB=10BC=12,,则图中阴影部分面积为 .18. 在ABC △中,AB=3A=30∠,,则ABC △的面积为 .(第12题图) (第14题图) (第16题图) (第17题图)三、 解答题:(本大题共7题,满分78分)19. (本题满分10分)已知非零向量b a 和,求作a a 3b b +-(1)、(2)2 (不要求写作法,但要指出图中表示结论的向量).F 0DCEB AFCEBDA 20. (本题满分10分)计算:tan 603cot 60cot 45sin 60-+-21. (本题满分10分)已知:如图,在矩形ABCD 中,AB=4cm ,BC=8cm ,对角线AC 与BD 交于点O ,点E 在BC 边上,DE 与AC 交于点F ,EDC ADB ∠=∠. 求:(1)CE 的长;(2)CEF △的面积.22. (本题满分10分)已知:如图,在ABC △中,点D 在边AB 上,且1AD=AB 3,点F 在边BC 的延长线上,联结DF ,交AC 于点E ,设CF =k.BF求:CEAE的值.MNC F EB A D FMHG ED CBA已知:如图,四边形ABCD 是平行四边形,在边AB 的延长线上截取BE=AB ,点F 在AE 的延长线上,CE 和DF 交于点M ,BC 和DF 交于点N,联结BD . (1) 求证:BND CNM △∽△: (2) 如果2AD =AB AF ⋅,求证:CM AB=DM CN ⋅⋅.24. (本题满分12分)已知:如图,点E 是矩形ABCD 的边BC 上一点,EF AE ⊥,EF 分别交线段AC CD 、于点M F 、,BG AC ⊥,垂足为G ,BG 交AE 于点H . (1) 求证:ABE ECF △∽△:(2) 找出与ABH △相似的三角形,并证明;(3) 若点E 是BC 的中点,BC=2AB,AB=2,求AM 的长.如图11,在ABC Rt △中,90ACB ∠= ,CE 是斜边AB 上的中线,AB=10,4tanA=3,点P 是CE 延长线上的一动点,过点P 作PQ CB ⊥,交CB 的延长线于点Q ,设,.EP x BQ y == (1) 求y 关于x 的函数关系式及定义域;(4分)(2) 联结PB ,当PB 平方CPQ ∠时,求PE 的长;(4分)(3) 过点B 作BF B A ⊥交PQ 于F ,当BEF QBF △和△相似时,求x 的值.(6分)。

2013年中考数学模拟试卷及答案 .doc

2013年中考数学模拟试卷及答案 .doc

沪教版语文二年级上册知识点梳理一、教材概貌本册教材分七个部分:一、读课文识字,两个单元11篇课文。

二、读课文了解内容,两个单元11篇课文。

三、读课文圈划词句,两个单元12篇课文。

四、读课文边读边想,两个单元11篇课文。

五、古诗诵读,每单元安排一次,共8首古诗。

六、语文快乐宫,每单元安排一次,共8次。

七、听说活动,集中编排,共6次。

四、加部首,再组词。

且(姐)(姐姐)见(观)(观看)佥(捡)(捡起)采(菜)(卷心菜)(组)(小组)(现)(现在) (脸)(小脸)(彩)(理睬)(助)(帮助)(视)(电视)(险)(危险)(踩)(踩气球)————————————————————————————————京(凉)(凉风)者(暑)(暑假)犬(突)(突然)亥(该)(应该)(晾)(晾衣服)(著)(著名)(臭)(臭味)(刻)(立刻)(景)(风景)————————————————————————————————至(屋)(屋顶)争(净)(干净)舌(刮)(刮风)尧(绕)(围绕)(到)(到达)(睁)(睁开)(话)(说话)(晓)(春晓)————————————————————————————————匋(掏)(掏出)分(粉)(粉笔)吾(悟)(觉悟)勺(约)(大约)(萄)(葡萄)(盆)(花盆)(语)(语文)(钓)(钓鱼)五、形近字总结摸(摸鱼)彼(彼此)加(加法)仗(仰仗)洋(太平洋)豪(富豪)漠(沙漠)坡(山坡)如(如果)杖(拐杖)样(样子)毫(毫米)————————————————————————————————注(注意)级(年级)炼(锻炼)悔(后悔)捡(捡起)困(困难)住(居住)极(极大)练(练习)诲(教诲)俭(俭朴)因(原因)————————————————————————————————晴(晴朗)难(难题)苹(苹果)疲(疲惫)续(连续)麻(麻木)睛(眼睛)摊(摊开)萍(浮萍)坡(斜坡)读(读书)床(床头)————————————————————————————————壮(健壮)迹(奇迹)烂(灿烂)串(一串)峰(山峰)周(周末)状(状元)迸(迸发)炫(炫目)吊(吊起)锋(锋利)同(相同)————————————————————————————————佳(佳节)痛(痛快)第(第一)最(最好)研(研究)报(报告)鞋(鞋子)通(通过)弟(弟弟)趣(有趣)形(形状)服(衣服)————————————————————————————————幅(一幅画)晴(晴朗)漂(漂亮)板(甲板)练(练习)梅(梅花)副(一副眼镜)情(心情)飘(飘动)饭(吃饭)炼(锻炼)悔(后悔)————————————————————————————————鸟(小鸟)续(陆续)苍(苍白)称(称赞)泄(泄气)取(取下)壮(壮丽)岛(小岛)读(读书)创(创造)你(你们)世(世界)趣(有趣)状(形状)————————————————————————————————淘(淘气)论(无论)街(街道)及(以及)著(著名)仙(仙女)桃 (桃子)萄(葡萄)轮(车轮)行(行人)级(年级)者(作者)灿(灿烂)挑(挑水)————————————————————————————————孤(孤单)骗(受骗)洁(洁白)冷(冰冷)影(影子)讨(讨厌)辩(争辩)狐(狐狸)遍(一遍)结(结果)怜(可怜)景(风景)守(守卫)辨(分辨)————————————————————————————————刻(立刻)义(义气)但(但是)始(开始)轮(车轮)粉(粉笔)汤(菜汤)该(应该)议(议论)担(担心)治(治病)论(议论)纷(纷纷)荡(荡秋千)————————————————————————————————忽(忽然)郁(郁郁葱葱)挂(挂满)盛(茂盛)扒(扒开)摘(摘果子)葱(郁郁葱葱)随(随手)娃(娃娃)城(长城)趴(趴下)滴(一滴水)————————————————————————————————员(员工)勇(勇气)诵(朗诵)要(要好)贴(贴住)凶(凶恶)羽(羽毛)圆(圆形)涌(汹涌)通(通过)耍(玩耍)站(站立)汹(汹涌)翔(飞翔)————————————————————————————————低(低头)绕(围绕)烧(烧饭)异(奇异)计(巧计)防(防备)坑(土坑)底(底下)晓(春晓)浇(浇水)导(教导)记(记住)放(放学)抗(违抗)————————————————————————————————轮(轮船)援(救援)遇(遇见)摇(摇头)险(危险)讯(喜讯)速(速度)论(议论)暖(暖和)寓(寓言)遥(遥远)脸(脸蛋)迅(迅速)束(一束花)————————————————————————————————熊(小熊)原(原来)破(破坏)棉(棉花)传(传热)烂(灿烂)持(保持)能(能够)愿(心愿)被(被子)绵(海绵)转(转圈)拦(拦住)诗(古诗)————————————————————————————————内(体内)住(住下)修(修理)务(任务)流(流血)场(操场)缺(缺口)肉(吃肉)注(注意)休(休息)物(动物)留(留下)厂(工厂)决(决定)————————————————————————————————历(历史)偷(小偷)秘(神秘)绝(灭绝)谜(谜语)候(气候)其(其他)厉(严厉)愉(愉快)密(秘密)觉(觉得)迷(迷人)猴(猴子)期(日期)————————————————————————————————通(通过)凉(凉快)摇(摇头)痛(痛快)晾(晾干)遥(遥远)五、多音字总结扇shān (扇风)好hǎo(好事)行xíng(行人)教jiāo(教书)shàn (扇子) hào(好奇)háng(银行)jiào(教导)————————————————————————————————乐lě(快乐)干gān(干渴)空kōng(空气)切qiè(关切)yuè(音乐) gàn(树干)kòng(空白)qiē(切菜)————————————————————————————————为wéi (为人)曲 qū(弯曲)澄chéng(澄清)wèi (因为) qǔ(歌曲)dèng(澄沙)————————————————————————————————好 hǎo(好人)扇 shàn(扇子)漂 piào(漂亮)模mò(模仿)hào(好奇) shān(扇风) piāo(漂浮) mú(模样)————————————————————————————————曲 qū(曲折)行 hánɡ(一行字)都 dōu(都是)卷 juǎn(卷起)qǔ(乐曲) xínɡ(行动) dū(首都) juàn(试卷)————————————————————————————————着 zháo(着急)背 bēi(背书包)假 jiǎ(真假)藏 cánɡ(藏起来)zhe(看着) bèi(背地里) jià(放假) zànɡ(宝藏)———————————————————————————————间 jiān(房间)转zhuǎn(转身)吐 tǔ(吐出)重 zhònɡ(很重)jiàn(红白相间) zhuàn(转圈) tù(呕吐) chónɡ(重新)————————————————————————————————朝 cháo(朝天)背 bēi(背包)弹 tán(弹琴)降 jiànɡ(降落伞)zhāo(朝阳) bèi(背后) dàn(子弹) xiánɡ(投降)————————————————————————————————难 nán(难过)参 cān(参加)长 chánɡ(很长)舍 shě(舍不得)nàn(遇难) shēn(人参) zhǎnɡ(长大) shè(宿舍)————————————————————————————————血 xiě(流血)少 shǎo(多少)挨āi(挨着)结 jiē(结结实实)xuè(鲜血) shào(少年)ái(挨打) jié(成群结队)六、量词总结一(群)孩子一(把)折扇一(张)桌子一(个)愿望一(筐)葡萄一(份)报告一(条)蓝鲸一(辆)汽车一(个)早晨一(位)先生一(个)水洼一(条)小鱼一(只)燕子一(则)寓言一(只)小獾一(把)椅子一(幅)景象一(片)柿林一(块)巨石一(只)公鸡一(种)动物一(群)小虾一(个)研究一(行)小字一(幅)插图一(本)新书一(副)样子一(位)作家一(则)寓言一(次)教训一(个)故事一(个)日子一(把)椅子一(张)船票一(群)燕子一(艘)轮船一(块)甲板一(个)板凳一(张)桌子一(条)通道一(艘)破冰船一(股)寒流一(个)船员一(段)音乐一(架)飞机一(家)旅馆一(架)钢琴一(首)乐曲一(盆)冷水一(根/个)手指一(声)赞叹一(阵)清风一(架)飞机一(个)宇宙一(粒)米饭一(颗)水珠一(个)梦一(条)尾巴一(间)屋子一(把)扫帚一(对)翅膀一(群)鱼虾一(片)阳光一(朵)荷花一(个)圆盘一(片)花瓣一(张)荷叶一(个)莲蓬一(阵)清香一(个)好梦一(条)衣裙一(个)公园一(阵)微风一(个)鸭蛋一(位)农夫一(座)小桥一(头)狼一(只/群)天鹅一(幅)景象一(条)运河一(座)长城一(条)丝带一(个)奇迹一(架)飞机一(条)巨龙一(座)小岛一(个)鸟窝一(首)诗篇七、近义词总结晾——晒拾起——捡起喜爱——喜欢平时——平常愿望——希望追逐——追赶自豪——骄傲如果——假如舒服——舒适在乎——在意疲倦——疲劳休息——歇息才能——才干能干——精明知道——明白不朽——永久结结实实——壮壮实实欣喜——欣慰闻名中外——世界闻名美丽——漂亮喜爱——喜欢肯定——一定特意——特地愿望——希望严厉——严肃答应——同意教育——教导的确——确实奇怪——奇特疲劳——疲倦争辩——争论显露——显现在意——在乎喜欢——喜爱著名——有名似乎——好像也许——可能固然——虽然闻名中外——举世闻名非常—特别故意—有意孤单—孤独漂亮—美丽雪白—洁白惊奇—惊讶出世—出生立刻—马上凶恶—凶猛担心—担忧着急—焦急迟疑—犹豫议论—讨论疼爱—喜爱奇怪—奇特告别—辞别突然—忽然渐渐地—慢慢地浑身—全身果然—果真单独—孤独灭绝——灭亡依然——仍然遮住——挡住以为——认为小心——当心修理——修补赞叹——赞扬全神贯注——聚精会神争论——争吵请教——讨教欣赏——赞赏耐心——细心严厉——严格佩服——敬佩解释——解说八、反义词总结赢——输好——坏彼——此拾起——丢弃打开——合上永远——短暂认真——马虎答应——拒绝睁开——闭合也许——一定遥远——临近坚强——脆弱显露——隐藏喜欢——讨厌粗糙——精致疲劳——精神陆续——中断天堂——地狱灿烂——黯然陡峭——平坦瘦——胖粗——细开始——结束坐——站(立)伸——缩自卑——自信粗糙——光滑高兴——难过软弱——坚强寒冷——暖和消失——出现躲藏——寻找假——真淘气——乖巧开心——难过热闹——冷清开始—结束讨厌—喜欢热闹—冷清.聪明—愚蠢相信—怀疑凶恶—温和漂亮—丑陋惩罚——奖励故意——无意疑惑不解—恍然大悟一丝不苟—马马虎虎九、特殊的词语形式总结(1)AABB:千千万万结结实实花花绿绿高高兴兴进进出出弯弯曲曲说说笑笑许许多多大大小小干干净净清清楚楚整整齐齐安安静静纷纷扬扬开开心心严严实实挨挨挤挤郁郁葱葱许许多多安安静静清清楚楚明明白白纷纷扬扬(2)ABAB:金黄金黄火红火红雪白雪白碧绿碧绿瓦蓝瓦蓝商量商量讨论讨论研究研究学习学习(3)ABCC:金光闪闪议论纷纷兴致勃勃喜气洋洋气喘吁吁果实累累银光闪闪得意洋洋怒气冲冲气势汹汹白发苍苍来去匆匆(4)又X又X:又大又圆又大又红又高又大又唱又跳又香又甜又说又笑又宽又长又细又长又尖又长又黑又臭(5)不X不X:不大不小不多不少不长不短不上不下(6)无X无X :无边无际无法无天无时无刻无穷无尽无情无义无影无踪无边无际无亲无故无穷无尽无情无义无缘无故(6)越X越X :越来越快越来越好越来越美越来越多越跑越快越飞越高越走越慢越说越响越开越盛越长越胖越写越快(7)X来X去:荡来荡去跑来跑去走来走去跳来跳去走来走去飞来飞去划来划去转来转去(8)很X很X:很高很高很红很红很美很美很亮很亮(9)一X一X:一上一下一左一右一前一后一大一小(10)ABB:亮晶晶绿油油白茫茫黑乎乎黄澄澄金灿灿绿莹莹冷冰冰光秃秃雾蒙蒙热腾腾胖乎乎毛茸茸乐呵呵喜洋洋软绵绵一颗颗一串串(11)XX的:尖尖的圆圆的红红的闪闪的青青的绿绿的白白的黑黑的方方的十、填上合适的词总结1、填上合适的词(“的”+事物)(炎热)的夏天(凉爽)的秋天(光滑)的卵石(美丽)的贝壳(有趣)的故事(快乐)的孩子(晴朗)的日子(蓝色)的大海(勇敢)的燕子(诚实)的屠格涅夫(可怜)的小鱼(雄伟)的长城(壮丽)的景象(动人)的诗篇(勤劳)的人民(晴朗)的日子(花木灿烂)的春天(瓜果遍地)的秋色(金光闪闪)的大金帅苹果(晶莹透明)的葡萄(奇特)的石头(有趣)的名字(陡峭)的山峰(翻滚)的云海(闻名中外)的风景区(大大的)嘴巴(灰灰的)羽毛(瘦瘦的)身子(长长的)脖子(厚厚的)冰(漂亮的)影子(雪白的)羽毛(美丽的)天鹅(难看的)鸭子(孤单的)丑小鸭(淡淡的)清香(碧绿的)大圆盘(嫩黄色的)小莲蓬(美好的)梦(美丽的)荷花(闻名中外)的石榴园(嫩嫩)的枝条(嫩绿)的叶子(火红)的石榴花(可爱)的小喇叭(郁郁葱葱)的绿叶(甜津津)的味道(酸溜溜)的味道(酸酸甜甜)的味道(令人兴奋)的喜讯(波涛汹涌)的海面(活蹦乱跳)的鱼虾(自由飞翔)的海鸥(乌云密布)的天空(有趣)的生活(晶莹)的水珠(白茫茫)的大海(雪白)的浪花(可爱)的海鸥(遇难)的船只(庞大)的恐龙(温暖)的气候(火红)的太阳(著名)的学者(慈祥)的面容(爱学习)的杨时(漫天飞舞)的大雪(茂密)的森林(苍翠)的绿茵(辽阔)的牧场(清清)的小溪(洁白)的云彩(灿烂)的阳光(动听)的琴声(努力)的音乐家(热心)的小男孩2、填上恰当的词(“地”+动作)(坚强)地飞(亲切)地问(认真)地回答(大声)地争辩(细细)地品尝(快速)地滑行(渐渐)地离开(慢慢)地凋谢(急切)地扒开(高兴)地笑(渐渐)地成熟(欢乐)地飞翔(轻轻)地吹(小心)地挤(神秘)地消失(用力)地撞击(大胆)地推测(默默)地背书(静静)地等待(悄悄)地说话(刻苦)地学习(全神贯注)地弹琴(轻轻)地告诉(暗暗)地赞叹3、动作+事物(拾)贝壳(吹)喇叭(讲)故事(摸)大象(扇)翅膀(晒)太阳(读)课文(许)愿望(打)雪仗(摘)苹果(捉)小鱼(翻)跟头(收)作业(采)蘑菇(借)威风(找)借口(守)信用(开)玩笑(讲)道理(宣布)命令(乘坐)飞机(扑打)野兔(反击)老鹰(张开)爪子(弹出)后腿(扇动)翅膀(想出)巧计(完成)任务(修补)缺口(奔赴)现场(凝固)血液(举)例子(踢)足球(穿)鞋子滚(铁环)扔(垃圾)擦(汗水)洗(衣服)做(游戏)十一、好词佳句总结。

2013年上海中考数学真题卷含答案解析

2013年上海中考数学真题卷含答案解析

2013年上海市初中毕业统一学业考试数学试题(含答案全解全析)(满分120分,考试时间120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共6题,每题4分,满分24分)1.下列式子中,属于最简二次根式的是()A.√9B.√7C.√20D.√132.下列关于x的一元二次方程有实数根的是()A.x2+1=0B.x2+x+1=0C.x2-x+1=0D.x2-x-1=03.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+34.数据0,1,1,3,3,4的中位数和平均数分别是()A.2和2.4B.2和2C.1和2D.3和25.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8B.3∶8C.3∶5D.2∶56.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.∠BDC=∠BCDB.∠ABC=∠DABC.∠ADB=∠DACD.∠AOB=∠BOC第Ⅱ卷(非选择题,共126分)二、填空题(本大题共12题,每题4分,满分48分)7.因式分解:a2-1=.8.不等式组{x-1>0,2x+3>x的解集是.9.计算:3b2a ·ab=.10.计算:2(a-b)+3b=.11.已知函数f(x)=3x2+1,那么f(√2)=.12.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为.14.在☉O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.15.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .18.如图,在△ABC 中,AB=AC,BC=8,tan C=32,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D,那么BD 的长为 .三、解答题(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)19.计算:√8+|√2-1|-π0+(12)-1.20.解方程组{x -y =-2,x 2-xy -2y 2=0.21.已知平面直角坐标系xOy(如图),直线y=12x+b 经过第一、二、三象限,与y 轴交于点B,点A(2,t)在这条直线上,连结AO,△AOB 的面积等于1.(2)如果反比例函数y=k(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.x22.某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.23.如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF ∥AB交DE的延长线于点F.(2)连结CD,过点E作DC的垂线交DC于点H,交CF的延长线于点G,求证:∠B=∠A+∠HGC.24.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.在矩形ABCD中,点P是边AD上的动点,连结BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的☉P和以QC长为半径的☉Q外切时,求x的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F,如果EF=EC=4,求x 的值.答案全解全析:1.B ∵√9=√3,√20=2√5,√13=√33.故A 、C 、D 排除,选B.2.D 在x 2-x-1=0中,Δ=b 2-4ac=(-1)2-4×(-1)=5>0.故选D.3.C 原抛物线向下平移1个单位,则所得新抛物线的表示式为y=x 2+1.故选C.评析 本题比较容易,根据二次函数图象的平移规律“上加下减,左加右减”进行解题.考查二次函数图象的平移.4.B ∵数据已经从小到大排列,∴中位数为(1+3)÷2=2,平均数为(0+1+1+3+3+4)÷6=2. 故选B.5.A ∵DE∥BC,∴AE∶EC=AD∶DB=3∶5, ∵EF∥AB,∴BF∶FC=AE∶EC=3∶5, 故CF∶CB=5∶8.故选A.6.C 若满足∠BDA=∠CAD,则∠ACB=∠DBC,∴BO=OC,OD=OA.故AC=DB.对角线相等的梯形是等腰梯形,故选C.7.答案 (a+1)(a-1)解析 利用平方差公式分解得a 2-1=(a+1)(a-1). 8.答案 x>1解析 两个不等式的解集分别为x>1,x>-3,根据“同大取大”知,不等式组的解集为x>1. 9.答案 3b 解析3b 2b·b b =bb ·3b 2b=3b.10.答案 2a+b解析 原式=2a-2b+3b=2a+b. 11.答案 1 解析 f(√2)=2+1=33=1.12.答案 27解析 ∵字母e 在单词中共出现两次,单词一共7个字母,∴概率为27.13.答案 40%解析 百分比为(50+30)÷(50+80+30+40)=40%. 14.答案 √5解析 如图,连结OA,过点O 作OC⊥AB 于点C.根据垂径定理得:AC=12AB=2. ∴OC=√bb 2-A b 2=√32-22=√5.15.答案 答案不唯一,如∠ABC=∠DEF解析 ∵BF=CE,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE.添加∠ABC=∠FED,可由“ASA”公理推断出△ABC≌△DEF.16.答案 20解析 设直线解析式为y=kx+b.将(0,35),(160,25)代入可得y=-b16+35.当x=240时,y=20,即到达乙地时油箱剩余油量是20升.评析 本题考查利用待定系数法求解一次函数解析式. 17.答案 30°解析 当特征角是100°时,角β=50°,另一个角为180°-100°-50°=30°,∴最小内角的度数为30°. 18.答案154解析 如图1,过点A 作AH⊥BC 交BC 于点H,∴BH=HC=4,∵tan C=32,∴AH=6,AC=2√13.如图2,R 为AC 中点,则RC=√13.过点R 作RM⊥BC 于点M,∴RM=3,CM=2.∴BM=6.设BD=x,∴DM=6-x ,∵直线l 垂直平分BR,∴BD=RD=x,在Rt△DRM 中,利用勾股定理建立方程:32+(6-x)2=x 2,解得x=154,即BD=154.图1图219.解析 √8+|√2-1|-π0+(12)-1=2√2+√2-1-1+2=3√2. 20.解析 {x -y =-2, ①x 2-xy -2y 2=0,② 由②可得:(x-2y)(x+y)=0, 所以x=2y 或x=-y, 则原方程组可以转化成为 {x -y =-2,x =2y或{x -y =-2,x =-y .解得{x =-4,y =-2或{x =-1,y =1.评析 本题考查可化为两个二元一次方程组的二元二次方程组的求解方法.对方程②因式分解是解决这道题的关键.21.解析 (1)因为直线y=12x+b 经过第一、二、三象限,所以点B 在y 轴正半轴上,所以b>0.因为S △AOB =12·b·2=1,所以b=1,点B 的坐标为(0,1).(2)由(1)知直线的解析式是y=12x+1.又因为点A(2,t)在直线上,所以可得到A(2,2).因为点A 在反比例函数的图象上,所以k=2×2=4,所以反比例函数的解析式为y=4b . 22.解析 过点A 作AH∥BC,EH⊥AH. ∵∠EAB=143°,∴∠EAH=53°,∠AEH=37°, ∴cos∠AEH=cos 37°=bbbb≈0.8. ∵AE=1.2,∴EH=AE·0.8=0.96.∴栏杆EF 距离地面的高度是0.96+1.2=2.16≈2.2米. 23.证明 (1)∵DF∥BC,DB∥FC, ∴四边形DBCF 为平行四边形. 又∵D 为Rt△ACB 斜边中点,DE∥BC,∴bb bb =bb bb =12, ∴DE=12BC,又DF=BC,∴DE=12DF, ∴EF=DE.(2)∵D 为AB 中点,∴DC=DB=AD, ∴∠B=∠DCB.∵∠EHC=∠ACB=90°,∴∠HEC+∠ACD=90°, ∠DCB+∠ACD=90°,∴∠HEC=∠DCB. ∵∠HEC 为△EGC 的外角, ∴∠HEC=∠ECG+∠G, 又AD∥CF,∴∠ECG=∠A, ∴∠HEC=∠A+∠HGC, ∴∠B=∠A+∠HGC.24.解析 (1)∵OA=OB=2,∠AOB=120°,作AF⊥x 轴, ∴∠AOF=60°,可得到点A(-1,√3),B(2,0). 代入y=ax 2+bx(a>0)中,可得{b (-1)2+(-1)b =√3,22a +2b =0,解得{a =√33,b =-23√3,∴y=√33x 2-23√3x.(2)y=√33x 2-23√3x=√33(x 2-2x+1)-√33=√33(x-1)2-√33, ∴点M 的坐标为(1,-√33).过点M 作MQ⊥x 轴,则MQ=√33,OQ=1,tan∠QOM=bb bb =√33, ∴∠QOM=30°,∠AOM=120°+30°=150°.(3)连结AB,由(1)知∠AOF=60°.又∵OA=OB,∴∠OAB=∠ABO=30°,∴∠ABx=150°=∠AOM,∴点C 在B 点的右侧,设点C(c,0).△AOM 相似于△ABC 可分两种情况讨论:①∠CAB=∠MAO,即△ABC∽△AOM,AB BC =AO OM ,易知AB=2√3,BC=c-2,AO=2,OM=23√3, 则2√3b -2=23√3⇒c=4,∴C 1(4,0). ②∠CAB=∠AMO,即△ABC∽△MOA,bb bb =OM OA ,AB=2√3,BC=c-2,AO=2,OM=23√3, 则2√3c -2=23√32⇒c=8,∴C 2(8,0),综上两种情况,点C 坐标为(4,0)或(8,0).25.解析 (1)∵AD∥BC,∴∠APB=∠PBQ, ∵QM 是PB 的垂直平分线,∴∠QMB=∠PAB=90°,∴△APB∽△MBQ,∴AP PB =BMBQ .∵AP=x,AB=5,∠BAD=90°, ∴BP=√bb 2+A b 2=√b 2+25,又BM=BP 2=√x 2+252,BQ=y,AP=x,则√x 2+25=√x 2+252y, 化简得y=25+b 22b (1≤x≤13). (2)如图所示,∵☉P 与☉Q 外切,∴圆心距PQ=AP+CQ=x+(13-y). ∵QM 是PB 的垂直平分线,∴BQ=PQ=y,即y=x+(13-y),又由(1)知y=25+b 22b ,则{y =x +(13-y ),y =25+x 22x ,解得{x =2513,y =9713. ∴x=2513.(3)连结EQ,∵EC=EF=4,∠EFQ=∠ECQ=90°,EQ=EQ,∴△ECQ≌△EFQ,∴∠EQC=∠EQF,又DM 为BP 的垂直平分线,则可得∠PQM=∠BQM,∴2(∠EQF+∠PQM)=180°,∴∠EQM=90°,则可知∠EQC=∠APB,又∵∠ECQ=∠PAB=90°,∴△APB∽△CQE,∴EC CQ =AB AP ,413-y =5x ,代入(1)中的y=25+x 22x, 整理之后可得13x 2-130x+125=0,解得x=65±10√2613, 检验,当x=65±10√2613时,在定义域内,∴x=65±10√2613.。

2013-2014学年八年级(下)期中数学试卷沪科版

2013-2014学年八年级(下)期中数学试卷沪科版

2013-2014学年八年级(下)期中数学试卷姓名 得分一、选择题(每小题4分,共40分)1x 的取值范围是( ). A .x >1 B .x <1 C .x ≥1D .x ≤1 2.下列计算正确的是( )A .BC .D .3+3.下列式子中,属于最简二次根式的是( )A . 9;B .7 ;C . 20 ;D . 13 .4.若最简二次根式72-m 和28+m 是同类二次根式,则m 的值为( )A . 9或-1;B .-1 ;C .1 ;D . 95.一直角三角形的两边长分别为3和4.则第三边的长为( )A .5;B .7;C .5 ;D .5或76.关于x 的一元二次方程x 2+3x+2-m 2=0的根的情况是( )A .有两个不相等的实根B .有两个相等的实根C .无实数根D .不能确定7.如图所示,在Rt △ABC 中,∠C=90°,以AB 、BC 为直径的半圆面积分别是12.5πcm 2和4.5πcm 2,则Rt △ABC 的面积为( )A .24cm 2B .30cm 2C .48cm 2D .60cm 28.把方程)2(5)2(-=+x x x 化成02=++c bx ax 形式以后,a,b,c 的值分别是( )A .1,-3,10B .1,7,-10C .1,-5,12D .1,3,29.目前我国已建立了比较完善的经济困难学生资助体系。

某校去年上半年发给每个经济困难学生389元,今年上半年发放了438元,设每半年...发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=38910.已知2=x 是一元二次方程022=++mx x 的一个解,则m 的值是 ( )A .-3B .3C . 0D .0或3二、填空题(每小题4分,共32分)11.计算:32741236++-= 12.已知a<b<0,化简b a a --2=13.一元二次方程07632=-+x x 的两根为21,x x ,则21x x += ,21x x ⋅=14.比较大小32_______23,(填“>”,“<”或“=”)15.用配方法解关于x 的一元二次方程0322=--x x ,配方后的方程可以是16.已知关于y 的方程032=-+m y y 的判别式的值为13,则m =17.一根旗杆在离地面9 m 处断裂,旗杆顶部落在离旗杆底部12 m 处,则旗杆折断前有=18.如所示“勾股树”,所有三角形均是直角三角形,其最大边长为7cm ,则A 、B 、C 、D 四个小面积之和为= cm 2.三、解答题(共六小题,共46分)19.解下列方程(共2小题,每小题6分,共12分)(1)0582=--x x (2)()()3332-=-x x x20.(8分)先简化,再求值:,其中x=12-.21.(8分)阅读材料,回答问题 材料:为解方程0624=--x x 可将方程变形为()06222=--x x ,然后设y x =2,则()222y x =,原方程可化为062=--y y ①, 解得3,221=-=y y 。

2013年上海市中考数学试卷及答案

2013年上海市中考数学试卷及答案

2013年上海市中考数学试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)(2013•上海)下列式子中,属于最简二次根式的是()A.B.C.D.2.(4分)(2013•上海)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=03.(4分)(2013•上海)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.(4分)(2013•上海)数据0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4 B.2和2 C.1和2 D.3和25.(4分)(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:56.(4分)(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD 是等腰梯形的是()A.∠BDC=∠BCD B.∠ABC=∠DAB C.∠ADB=∠DAC D.∠AOB=∠BOC二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(2013•上海)分解因式:a2﹣1=_________.8.(4分)(2013•上海)不等式组的解集是_________.9.(4分)(2013•上海)计算:=_________.10.(4分)(2013•上海)计算:2(﹣)+3=_________.11.(4分)(2013•上海)已知函数,那么=_________.12.(4分)(2013•上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为_________.13.(4分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_________.14.(4分)(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为_________.15.(4分)(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是_________.(只需写一个,不添加辅助线)16.(4分)(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_________升.17.(4分)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_________.18.(4分)(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为_________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)(2013•上海)计算:.20.(10分)(2013•上海)解方程组:.21.(10分)(2013•上海)已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.22.(10分)(2013•上海)某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC 于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.24.(12分)(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x 轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.(14分)(2013•上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.2013年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)(2013•上海)下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解答:解:A、=3,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=,不是最简二次根式,故此选项错误;故选:B.点评:本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.(4分)(2013•上海)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0考点:根的判别式.专题:计算题.分析:计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.解答:解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.3.(4分)(2013•上海)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3考点:二次函数图象与几何变换.分析:根据向下平移,纵坐标相减,即可得到答案.解答:解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.点评:本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.(4分)(2013•上海)数据0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4 B.2和2 C.1和2 D.3和2考点:中位数;加权平均数.分析:根据中位数和平均数的定义求解即可.解答:解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.故选B.点评:本题考查了中位数及平均数的定义,属于基础题,掌握基本定义是关键.5.(4分)(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5考点:平行线分线段成比例.专题:压轴题.分析:先由AD:DB=3:5,求得BD:AB的比,再由DE∥BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF∥AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.解答:解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选A.点评:此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.6.(4分)(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD 是等腰梯形的是()A.∠BDC=∠BCD B.∠ABC=∠DAB C.∠ADB=∠DAC D.∠AOB=∠BOC考点:等腰梯形的判定.专题:压轴题.分析:等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.解答:解:A、∵∠BDC=∠BCD,∴BD=BC,根据已知AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;B、根据∠ABC=∠DAB和AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;C、∵∠ADB=∠DAC,AD∥BC,∴∠ADB=∠DAC=∠DBC=∠ACB,∴OA=OD,OB=OC,∴AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项正确;D、根据∠AOB=∠BOC,只能推出AC⊥BD,再根据AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误.故选C.点评:本题考查了对等腰梯形的判定定理的应用,主要考查学生的推理能力和辨析能力,注意:等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(2013•上海)分解因式:a2﹣1=(a+1)(a﹣1).考点:因式分解-运用公式法.分析:符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).解答:解:a2﹣1=(a+1)(a﹣1).点评:本题主要考查平方差公式分解因式,熟记公式是解题的关键.8.(4分)(2013•上海)不等式组的解集是x>1.考点:解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>1;由②得,x>﹣3,故此不等式组的解集为:x>1.故答案为:x>1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(4分)(2013•上海)计算:=3b.考点:分式的乘除法.专题:计算题.分析:分子和分母分别相乘,再约分.解答:解:原式==3b,故答案为3b.点评:本题考查了分式的乘除法,分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.10.(4分)(2013•上海)计算:2(﹣)+3=.考点:*平面向量.分析:先去括号,然后进行向量的加减即可.解答:解:2(﹣)+3=2﹣2+3=2+.故答案为:2+.点评:本题考查了平面向量的知识,属于基础题,掌握向量的加减运算是关键.11.(4分)(2013•上海)已知函数,那么=1.考点:函数值.分析:把自变量的值代入函数关系式进行计算即可得解.解答:解:f()==1.故答案为:1.点评:本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.12.(4分)(2013•上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.考点:概率公式.分析:让英文单词theorem中字母e的个数除以字母的总个数即为所求的概率.解答:解:∵英文单词theorem中,一共有7个字母,其中字母e有2个,∴任取一张,那么取到字母e的概率为.故答案为.点评:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.13.(4分)(2013•上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为40%.考点:条形统计图.分析:各个项目的人数的和就是总人数,然后利用报名参加甲组和丙组的人数之和除以总人数即可求解.解答:解:总人数是:50+80+30+40=200(人),则报名参加甲组和丙组的人数之和占所有报名人数的百分比为×100%=40%.故答案是:40%.点评:本题考查了条形统计图,正确读图,理解图形中说明的意义是关键.14.(4分)(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.考点:垂径定理;勾股定理.分析:根据题意画出图形,过点O作OD⊥AB于点D,由垂径定理可得出BD的长,在Rt△OBD中,利用勾股定理及可求出OD的长.解答:解:如图所示:过点O作OD⊥AB于点D,∵AB=4,∴BD=AB=×4=2,在Rt△OBD中,∵OB=3cm,BD=2cm,∴OD===.故答案为:.点评:本题考查的是垂径定理及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.15.(4分)(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF.(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:求出BC=EF,∠ACB=∠DFE,根据SAS推出两三角形全等即可.解答:解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:AC=DF.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.16.(4分)(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.考点:一次函数的应用.分析:先运用待定系数法求出y与x之间的函数关系式,然后把x=240时带入解析式就可以求出y的值,从而得出剩余的油量.解答:解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+3.5.当x=240时,y=﹣×240+3.5=2升.故答案为:2点评:本题考查了运用待定系数法求一次函数的运用,根据自变量求函数值的运用,解答时理解函数图象的含义求出一次函数的解析式是关键.17.(4分)(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.考点:三角形内角和定理.专题:压轴题;新定义.分析:根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.解答:解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.点评:此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.18.(4分)(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.考点:翻折变换(折叠问题).专题:压轴题.分析:首先根据已知得出△ABC的高以及B′E的长,利用勾股定理求出BD即可.解答:解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=8,tanC=,∴=,QC=BQ=4,∴AQ=6,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过B′点作B′E⊥BC于点E,∴B′E=AQ=3,∴=,∴EC=2,设BD=x,则B′D=x,∴DE=8﹣x﹣2=6﹣x,∴x2=(6﹣x)2+32,解得:x=,直线l与边BC交于点D,那么BD的长为:.故答案为:.点评:此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)(2013•上海)计算:.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行二次根式的化简、绝对值、零指数幂、负整数指数幂的运算,然后按照实数的运算法则计算即可.解答:解:原式=2+﹣1﹣1+2=3.点评:本题考查了实数的运算,涉及了二次根式的化简、绝对值、零指数幂、负整数指数幂等知识,属于基础题.20.(10分)(2013•上海)解方程组:.考点:高次方程.分析:先由②得x+y=0或x﹣2y=0,再把原方程组可变形为:或,然后解这两个方程组即可.解答:解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,.点评:此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.21.(10分)(2013•上海)已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)连接OA,过A作AC垂直于y轴,由A的横坐标为2得到AC=2,对于直线解析式,令y=0求出x 的值,表示出OB的长,三角形AOB面积以OB为底,AC为高表示出,根据已知三角形的面积求出OB 的长,确定出B坐标,代入一次函数解析式中即可求出b的值;(2)将A坐标代入一次函数求出t的值,确定出A坐标,将A坐标代入反比例解析式中求出k的值,即可确定出反比例解析式.解答:解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB=OB•AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,则反比例解析式为y=.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.22.(10分)(2013•上海)某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)考点:解直角三角形的应用.分析:过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠EAH=53°,则∠EAH=53°,然后在△EAH中,利用余弦函数的定义得出EH=AE•cos∠AEH≈0.96米,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.解答:解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB﹣∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°﹣∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.点评:本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问题转化为数学问题加以计算.23.(12分)(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC 于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.考点:菱形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=BC,进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.解答:证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.点评:此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.24.(12分)(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x 轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.考点:二次函数综合题.专题:压轴题.分析:(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)根据(1)中解析式求出M点坐标,再利用锐角三角函数关系求出∠FOM=30°,进而得出答案;(3)分别根据当△ABC1∽△AOM以及当△C2AB∽△AOM时,利用相似三角形的性质求出C点坐标即可.解答:解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).点评:此题主要考查了锐角三角函数的应用以及待定系数法求二次函数解析式和相似三角形的性质等知识,利用分类讨论思想以及数形结合得出是解题关键.25.(14分)(2013•上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.考点:四边形综合题.专题:压轴题.分析:(1)利用相似三角形△ABP∽△MQB,求出y关于x的函数解析式;注意求x的取值范围时,需考虑计算x最大值与最小值的情形;(2)如答图1所示,利用相外切两圆的性质,求出PQ的长;利用垂直平分线的性质PQ=BQ,列方程求出x的值;(3)如答图2所示,关键是证明△CEQ∽△ABP,据此列方程求出x的值.解答:解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0将y=(x2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=.(3)按照题意画出图形,如答图2所示,连接QE.∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=.点评:本题是中考压轴题,难度较大.试题的难点在于:其一,所考查的知识点众多,包括相似三角形的判定与性质、矩形的性质、勾股定理、圆的位置关系、角平分线的性质、垂直平分线的性质、解分式方程与一元二次方程等,对数学能力要求很高;其二,试题计算量较大,需要仔细认真计算,避免出错.参与本试卷答题和审题的老师有:caicl;sd2011;gbl210;HJJ;sks;HLing;wdxwwzy;CJX;hdq123;未来;ZJX;星期八;lantin;zjx111;zhjh(排名不分先后)菁优网2013年12月10日。

2013年上海市中考数学试卷有答案

2013年上海市中考数学试卷有答案

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前上海市2013年初中毕业统一学业考试数学试卷数 学本试卷满分150分,考试时间100分钟.一、选择题(本大题共6题,每小题4分,满分24分) 1.下列式子中,属于最简二次根式的是( ) ABCD2.下列关于x 的一元二次方程有实数根的是( ) A .210x +=B .210x x ++=C .210x x -+=D .210x x --=3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是 ( )A .2(1)2y x =-+B .2(1)2y x +=+ C .21y x =+D .33y x =+4.数据0,1,1,3,3,4的中位线和平均数分别是( ) A .2和2.4B .2和2C .1和2D .3和25.如图1,已知在ABC △中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE BC ∥,EF AB ∥,且:3:5AD DB =,那么:CF CB 等于( )A .5:8B .3:8C .3:5D .2:5 6.在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( )A .BDC BCD ∠=∠B .ABC DAB ∠=∠ C .ADB DAC ∠=∠D .AOB BOC ∠=∠二、填空题(本大题共12题,每小题4分,满分48分) 7.因式分解:21a -= .8.不等式组1023x x x -⎧⎨+⎩>>的解集是 .9.计算:23b aa b= .10.计算:2()3a b b -+= .11.已知函数23()1f x x =-,那么f = . 12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为 .13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .14.在O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为 .15.如图3,在ABC △和DEF △中,点B 、F 、C 、E 在同一直线上,BF CE =,AC DF ∥,请添加一个条件,使ABC DEF △≌△,这个添加的条件可以是 .(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y (升)与行驶里程x(千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时油箱剩余油量是 升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100︒,那么这个“特征三角形”的最小内角的度数为 . 18.如图5,在ABC △中,AB AC =,8BC =,3tan 2C =,如果将ABC △沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为 .三、解答题(本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分) 19.0111|π()2--+毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)20.解方程组:22220x y x xy y -=-⎧⎨--=⎩21.已知平面直角坐标系xOy (如图6),直线12y x b =-经过第一、二、三象限,与y 轴交于点B ,点)(2,1A 在这条直线上,联结AO ,AOB △的面积等于1.(1)求b 的值;(2)如果反比例函数ky x=(k 是常量,0k ≠)的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图2所示,其示意图如图3所示,其中AB BC ⊥,EF BC ∥,143EAB ∠=︒, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计)参考数据:sin370.60︒≈,cos370.80︒≈,tan37︒0.75≈.23.如图8,在ABC △中,90ACB ∠=︒,B A ∠∠>,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F .(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xOy 中,顶点为M 的抛物线2(0)y ax bx a =->经过点A 和x 轴正半轴上的点B ,2AO BO ==,120AOB ∠=︒. (1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且ABC △与AOM △相似,求点C 的坐标.25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x =,BQ y =.(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的P 和以QC 长为半径的Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x 的值.数学试卷第5页(共16页)数学试卷第6页(共16页)数学试卷 第7页(共16页) 数学试卷 第8页(共16页)【考点】分式的乘除法.2a b +2()32232a b b a b b a b ++=-+=+. 【提示】先去括号,然后进行向量的加减即可.325OD OB BD =-=-=OB AC OB代入直线解析式得:数学试卷第9页(共16页)数学试卷第10页(共16页)xcosAE AEH∠∴栏杆EF段距离地面的高度为: 1.20.96 2.16 2.2AB EH+≈+=≈(米).cosAE AEH∠段距离地面的高度为:【考点】解直角三角形的应用.∴1DCB B∠=∠=∠,∵1A ADG∠+∠=∠,∴A G B∠+∠=∠.1数学试卷第11页(共16页)数学试卷第12页(共16页)3⎩数学试卷第13页(共16页)数学试卷第14页(共16页)数学试卷 第15页(共16页) 数学试卷 第16页(共16页)(3)按照题意画出图形,如图2所示,连接QE .(2)如图1所示,利用相外切两圆的性质,求出PQ 的长;利用垂直平分线的性质PQ BQ =,列方程求出x 的值.(3)如图2所示,关键是证明CEQ ABP △∽△,据此列方程求出x 的值. 【考点】四边形综合题.。

2013年上海市初中毕业统一学业模拟考试 数学试卷

2013年上海市初中毕业统一学业模拟考试 数学试卷

2013年上海市初中毕业统一学业模拟考试数学试卷考生注意:1.本试卷含三个题,共25题:2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.关于相似三角形,下列命题中不.正确的是………………………………( ) (A) 两个等腰直角三角形相似; (B) 含有30°角的两个直角三角形相似;(C)相似三角形的面积比等于相似比; (D) 相似三角形的周长比等于相似比.. 2.点(1,2)P -关于x 轴对称的点的坐标为………………………………( ) A .(1,2); B .(1,2)-; C .(1,2)-; D .(1,2)--. 3.下列方程中,有两个不相等实数根的是………………………………( ) A .2440x x -+= ; B .2310x x +-=; C .210x x ++=; D .2230x x -+=.4.下列运算中,计算结果正确的是………………………………………( ) A .3(1)31a a -=-; B .222()a b a b +=+;C .632a a a ÷=; D .326(3)9a a =.5.下列命题中是真命题的是……………………………………………( ) A .经过平面内任意三点可作一个圆;B .相交两圆的公共弦一定垂直于连心线;C .相等的圆心角所对的弧一定相等;D .内切两圆的圆心距等于两圆半径的和.6.一个面积为20的矩形,若长与宽分别为y x ,,则y 与x 之间的关系用图像可表示为……………………………………………………………( )二、填空题(本大题共12题,每题4分,满分48分) 7.12-的倒数是 ▲ . A . B . C . D .8= ▲ .9.布袋中装有2个红球,3个黄球,4个绿球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是绿球..的概率是 ▲ . 10.分解因式:2242x x -+= ▲ .11.解方程2223311x x x x--=-时,若设21x y x =-,则原方程可化为关于y 的方程是 ▲ . 12.若函数2()2f x x x =--,则(2)f -= ▲ .13.若一次函数的图像如图所示,则此一次函数的解析式为 ▲ . 14.如果将抛物线23y x =-沿y 轴向上平移2个单位后,得到新的抛物线,那么新抛物线的表达式为 ▲ .15.,行四边形ABCD 中,E 是AD 上一点,且3AD AE =,设BA a = ,BC b = ,则BE =▲ .(结果用a 、b表示)16.如图,在地面上离旗杆底部5米的A 处,用测角仪测得旗杆顶端C 的仰角为60º,若测角仪的高度为AD =1.5米,则旗杆BC 的高为 ▲ 米.(结果保留根号)17.如图,在Rt △ABC 中,90C ∠=º,60B ∠=º,若将Rt △ABC 绕直角顶点C 顺时针旋转90 º,点A 、B 分别旋转至点A’ 、B’ , 联结A A’ ,则∠A A’ B’ = ▲ . 18.在⊙O 中,若弦AB 是圆内接正四边形的边,弦AC 是圆内接正六边形的边,则∠BAC =▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)解不等式组:3 2(2)7; (1)331 (2)36.x x x x <-++--≤⎧⎪⎨⎪⎩20.(本题满分10分)解方程:221111x x =+--.13题图B 17题图 16题图21.(本题满分10分)如图,已知OC 是⊙O 的半径,弦AB =6,AB ⊥OC ,垂足为M ,且CM =2.(1)联结AC ,求∠CAM 的正弦值;(2)求OC 的长.22.(本题满分10分)某中学对九年级准备选考1分钟跳绳的同学进行测试,测试结果如下表: 频数分布表请回答下列问题:(1)此次测试成绩的中位数落在第 ▲ 组中;(2)如果成绩达到或超过180次/分钟的同学可获满分,那么本次测试中获得满分的人数占参加测试人数的 ▲ %;(3)如果该校九年级参加体育测试的总人数为200人,若要绘制一张统计该校各项目选考人数分布的扇形图(如22题图),图中A 所在的扇形表示参加选考1分钟跳绳的人数占测试总人数的百分比,那么该扇形的圆心角应为 ▲ °;(4)如果此次测试的平均成绩为171次/分钟,那么这个成绩是否可用来估计该校九年级学生跳绳的平均水平?为什么? 23.(本题满分12分)如图,正方形ABCD 中,E 是AD 边上一点,且BE =CE , BE 与对角线AC 交于点F ,联结DF ,交EC 于点G .(1)求证:∠ABF =∠ADF ; (2)求证:DF ⊥EC .C21题图 扇形统计图22题图B A 23题图24.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线经过点A(1,0),B(5,0),C(2,4),点E 在y 轴正半轴上,且(1)求抛物线的表达式及其顶点坐标;(2)若将三角形OAE 绕点E 逆时针旋转90°,点A 落 在点A ′处,将上述抛物线经过左右平移后经过点A ′,求此时抛物线的解析式(3)点F 在平移后的抛物线上,FG ⊥y 轴于G ,若以A,G ,F,B 为顶点的四边形是平行四边形,求此时F 的坐标 25.(本题满分14分)如图,在边长为1的正方形ABCD 中,点E 在边BC 上(与端点不重合),点F 在射线DC 上.(1)若AF =AE ,并设CE =x ,△AEF 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)当CE 的长度为何值时,△AEF 和△ECF 相似? (3)若41CE ,延长FE 与直线AB 交于点G ,当CF 的长度为何值时,△EAG 是等腰三角形?(第25题图)FEBBA(备用图一)。

2013年沪科版中考数学模拟试题

2013年沪科版中考数学模拟试题

安庆市2013届初中毕业班十八校联考一模数 学 试 题 命题:安庆九中 审题:安庆九中(满分:150分 时间:120分钟) 题 号一二 三 四 五 六 总 分 得分得分 评卷人 一、选择题(本题共10题,每小题4分,共40分)1、抛物线23(4)9y x =+-的顶点坐标是 ( )A. (4,9)B. (4,9)-C. (4,9)-D. (4,9)--2、二次函数2241y x x =++向左平移7个单位,再向下平移6个单位得到的解析式为( )A.22(6)7y x =-- C.22(8)5y x =++B. 22(8)7y x =+-D. 22(6)5y x =-+3、b 是a 、c 的比例中项,且a:b=7:3,则b:c=( )A. 9∶7B. 7∶3C. 3∶7D. 7∶94、已知α为锐角,3sin(20)α︒-=,则α=( )A. 20︒B. 40︒C. 60︒D. 80︒5、如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,DE ∥BC,且S △ADE:S 四边形DBCE=1:8,那么AE:AC 等于( )A .1 : 9B .1 : 3C .1 : 8D . 1 : 26、过圆内一点M 的最长弦为50,最短弦长为14,则圆心 O 到M 的距离为( )3924 C. 18 D. 29B A CD E 第5题-0 1 1- xy第8题图 第7、如图所示,二次函数2(0)y ax bx c a =++≠的图象,且与x 轴交点的横坐标分别为12x x ,,其中121x -<<-,201x <<,下列结论:(1)240b ac ->;(2)0abc <;(3)0a b c -+>(4)20a b ->; (5)520a b c -+>A.1B.2C.3D.48、如图,已知AD 、BC 是圆内的两条平行弦,40ABC ︒∠=,那么BCD ∠=( )A. 40︒B. 45︒C. 90︒D. 30︒9、如图,在平行四边形ABCD 中,E 为CD 上一点,DE:EC=3:5,连接AE,BD,且交于点F ,则S △DEF ︰S △EBF ︰S △ABF=( )A. 3:8:25B. 3:5:8C. 9:24:64D. 9:15:2510、如图,AB 为⊙O 的直径,弦AC ,BD 交于点P ,若AB=3,CD=1,则sin ∠APD=( ).A .13 B .142 C .232 D .22得分 评卷人 二、填空题(本题共4题,每题5分,共20分)11、已知抛物线622-+=mx x y 的顶点坐标为(4,-38),则m 的值是 。

【沪科版】初三数学上期中模拟试题含答案

【沪科版】初三数学上期中模拟试题含答案

一、选择题1.如图,在ABC 中,75CAB ∠=︒,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置,使得CC //AB ',则BAB '∠=( )A .30B .35︒C .40︒D .50︒2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.下列图形中,是中心对称图形的是( )A .B .C .D .4.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C 26D 415.如图,Rt OCB ∆的斜边在y 轴上,3OC =30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0) 6.如图,在△ABC 中,AB =2.2,BC =3.6,∠B =60°,将△ABC 绕点A 按逆时针方向旋转得到△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.5B .1.4C .1.3D .1.27.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③ 8.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .9.二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论正确的是( )A .0abc >B .20a b +<C .关于x 的方程230ax bx c +++=有两个相等的实数根D .930a b c ++<10.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+ 11.用配方法解方程x 2﹣4x ﹣7=0,可变形为( ) A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11 12.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15 13.一元二次方程20x x -=的根是( ) A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 14.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8二、填空题 15.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.16.二次函数y=(x+2)2-5的最小值为_______.17.2251=-+-y x x 的图象不经过__________象限;18.一元二次方程-+=(5)(2)0x x 的解是______________.19.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.20.关于x 的方程2880kx x -+=有两个实数根,则k 的取值范围______________.三、解答题21.(探索发现)如图①,四边形ABCD 是正方形,M ,N 分别在边CD 、BC 上,且45MAN=∠︒,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将ADM ∆绕点A 顺时针旋转90︒,点D 与点B 重合,得到ABE ∆,连接AM 、AN 、MN .(1)试判断DM ,BN ,MN 之间的数量关系,并写出证明过程.(2)如图②,点M 、N 分别在正方形ABCD 的边BC 、CD 的延长线上,45MAN=∠︒,连接MN ,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB=AD ,120BAD=∠︒,180B+D=∠∠︒,点N ,M 分别在边BC ,CD 上,60MAN=∠︒,请直接写出线段BN ,DM ,MN 之间的数量关系.22.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC 各顶点都在格点上,点A ,C 的坐标分别为(-1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题: (1)求AC 的长;(2)将△ABC 绕点C 按逆时针方向旋转90°,画出旋转后的△A 1B 1C ,直接写出A 点对应点A 1的坐标.23.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值;(2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴. 24.阅读下列材料:我们知道,一次函数y kx b =+的图象是一条直线,而y kx b =+经过恒等变形可化为直线的另一种表达形式0Ax By C ++=(A 、B 、C 是常数,且A 、B 不同时为0).如图1,点()P m n ,到直线l :0Ax By C ++=的距离(d )计算公式是:22A m B n Cd A B ⨯+⨯+=+.例:求点()1,2P 到直线51126y x =-的距离d 时,先将51126y x =-化为51220x y --=,再由上述距离公式求得()()()225112222113512d ⨯+-⨯+-==+-. 解答下列问题:如图2,已知直线443y x =--与x 轴交于点A ,与y 轴交于点B ,抛物线245y x x =-+上的一点()3,2M .(1)请将直线443y x =--化为“0Ax By C ++=”的形式; (2)求点M 到直线AB 的距离; (3)抛物线上是否存在点P ,使得PAB △的面积最小?若存在,求出点P 的坐标及PAB △面积的最小值;若不存在,请说明理由.25.按要求的方法解方程,否则不得分.(1)2450x x -=+(配方法)(2)22730x x -+=(公式法)(3)(1)(2)24x x x ++=+(因式分解法)26.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值. 对于代数式2ax bx c ++,若存在实数n ,当x=n 时,代数式的值也等于n ,则称n 为这个代数式的不变值. 例如:对于代数式2x ,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值. 在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A=0.(1)代数式22x -的不变值是________,A=________.(2)已知代数式231x bx -+,若A=0,求b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】旋转中心为点A ,B 与B′,C 与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB ,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.【详解】解:∵CC′∥AB ,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C 、C′为对应点,点A 为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=30°.故选:A .【点睛】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.2.D解析:D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【解答】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.C解析:C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的概念.4.D解析:D【分析】根据旋转的性质可得BA=BE,∠ABE=60°,AC=DE,进而可得△ABE是等边三角形,然后根据等边三角形的性质和已知条件可得∠EAD=90°,根据勾股定理可求出DE的长,即为AC的长解:∵△EBD 是由△ABC 旋转得到,∴BA =BE ,∠ABE =60°,AC =DE ,∴△ABE 是等边三角形,∴∠EAB =60°,∵∠BAD =30°,∴∠EAD =90°,∵AE =AB =5,AD =4,∴DE =22AE AD +=2254+=41,即AC=41.故选:D .【点睛】本题考查了旋转的性质、等边三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.5.A解析:A【分析】如图,利用含30度的直角三角形三边的关系得到1BC =,再利用旋转的性质得到3,1,90OC OC B C BC B C O BCO ====∠''''=='∠︒,然后利用第四象限点的坐标特征写出点B ′的坐标.【详解】如图,在Rt OCB ∆中,30BOC ∠=︒,3331BC ∴===, Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为(3,1)-.故选A .本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30456090180︒︒︒︒︒,,,,. 6.B【分析】运用旋转变换的性质得到AD =AB ,进而得到△ABD 为等边三角形,求出BD 即可解决问题.【详解】解:如图,由题意得:AD =AB ,且∠B =60°,∴△ABD 为等边三角形,∴BD =AB =2,∴CD =3.6﹣2.2=1.4.故选:B .【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.7.B解析:B【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③.【详解】由图象知,抛物线与x 轴有两个交点,方程ax 2+bx+c=0有两个不相等的实数根,∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <,抛物线与y 轴交于正半轴0c >,对称轴直线为1x =-, ∴102b a-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >,∴420a b c -+>,故③正确.故选:B .【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键8.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.9.D解析:D【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知:a <0,b >0,c >0,abc <0,故A 选项错误;对称轴为x=-2b a=1,得2a=-b , ∴2a+b=0,故B 错误; 由图像可得二次函数的图象与x 轴有两个交点,故230ax bx c +++=有两个相等的实数根的说法错误,故C 错误;∵对称轴为x=1,∴抛物线与x 轴的另一个交点得横坐标小于2,∴当x=3时,y=9a+3b+c <0,故D 正确;【点睛】本题考查了图象与二次函数系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.10.B解析:B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1.故选:B .【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.11.D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.12.B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.13.A解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x 1=0,x 2=1,故选:A .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 14.D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.二、填空题15.y2<y1<y3【分析】根据二次函数的对称性增减性可以得解【详解】解:由二次函数的解析式可得x=2时y 取得最小值∴最小又由二次函数图象的对称性质可知x=0与x=4的函数值相等∴令x=0时函数值为y 则解析:y 2<y 1<y 3【分析】根据二次函数的对称性、增减性可以得解.【详解】解:由二次函数的解析式可得x=2时y 取得最小值,∴2y 最小,又由二次函数图象的对称性质可知x=0与x=4的函数值相等,∴令x=0时函数值为y ,则1y y =,再由二次函数的增减性质可知x<2时,y 随着x 的增大反而减小,所以由于0>-2,因此x=0时的函数值小于x=-2时的函数值,即3y y <,∴13y y <,∴213y y y <<,故答案为213y y y <<.【点睛】本题考查二次函数的应用,熟练掌握二次函数图象的对称性、增减性及最大最小值的求法是解题关键.16.-5【分析】根据二次函数的顶点式的意义即可确定函数的最值【详解】解:∵y=(x+2)2-5∴当x=-2时函数有最小值为-5故答案为-5【点睛】本题主要考查了二次函数的最值掌握根据二次函数的顶点式求最解析:-5【分析】根据二次函数的顶点式的意义即可确定函数的最值.【详解】解:∵y=(x+2)2-5∴当x=-2时,函数有最小值为-5.故答案为-5.【点睛】本题主要考查了二次函数的最值,掌握根据二次函数的顶点式求最值的方法是解答本题的关键.17.第二【分析】可得知该函数的图象开口向下再分别求出该函数的对称轴和与y 轴的交点利用函数的增减性即可做出判断【详解】解:对于∵a=﹣2﹤0b=5∴该函数的图象开口向下对称轴为直线x=∴当x ﹤时函数y 随x解析:第二【分析】可得知该函数的图象开口向下,再分别求出该函数的对称轴和与y 轴的交点,利用函数的增减性即可做出判断.【详解】解:对于2251=-+-y x x ,∵a=﹣2﹤0,b=5,∴该函数的图象开口向下,对称轴为直线x=54, ∴当x ﹤54时,函数y 随x 的增大而增大, 又∵当x=0时,y=﹣1, ∴当x ﹤0时,y ﹤﹣1,即y ﹤0,∴函数图象不经过第二象限,故答案为:第二.【点睛】本题考查二次函数的图象与性质,属于二次函数的基础题,解答的关键是掌握二次函数的性质,利用二次函数的增减性解决问题.18.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 19.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解 解析:8【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解.【详解】 由题可得:1212132x x x x +==,, ∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8.【点睛】 本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键. 20.且【分析】利用根的判别式b2-4ac 由于原方程有实数根那么判别式大于或等于零【详解】解:∵关于x 的方程有两个实数根且解得:且故答案为且【点睛】关于x 的方程有两个实数根(1)说明这是一个一元二次方程故 解析:k 2≤且0k ≠【分析】利用根的判别式b 2-4ac .由于原方程有实数根,那么判别式大于或等于零.【详解】解:∵关于x 的方程2880kx x -+=有两个实数根,2(8)480k ∆=--⋅⋅≥,且0k ≠,解得:k 2≤且0k ≠,故答案为k 2≤且0k ≠,.【点睛】关于x 的方程有两个实数根,(1)说明这是一个一元二次方程,故“二次项系数不能为0”;(2)“根的判别式△的值要大于或等于0”;这两个条件要同时满足,解题时不要忽略了第一个条件.三、解答题21.(1)MN DM BN =+,证明见解析;(2)MN BN DM =-,证明见解析;(3)MN DM BN =+.【分析】(1)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN DM BN =+; (2)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN BN DM =-; (3)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN DM BN =+;【详解】证明:(1)如图①,∵四边形ABCD 是正方形∴AB=AD ,ABCADC BAD =90 将ADM 绕点A 顺时针旋转90︒,得到ABE ∴ADM ≌ABE ∴AM AE,DM BE,MAD EAB MAE BAD 90∵MAN 45 EAN MAN 45 在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS≌ MN EN∵EN EB BN DM BN =+=+,∴MN BN DM =+(2)如图②,将ADM 绕点A 顺时针旋转90,得到ABE∵四边形ABCD 是正方形∴AB=AD ,ABCADC BAD =90 ∵ADM 绕点A 顺时针旋转90,得到ABE∴ADM ≌ABE∴AM AE,DM BE,MAD EAB MAE BAD 90, ∵MAN 45EANMAN 45 在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS ≌MN EN∵BNEB EN DM MN , 即:MN BN DM =-;(3)如图,∵AB AD =,BAD 120∠=,BD 180, 将ADM 绕点A 顺时针旋转120,得到ABE ∴ADM ≌ABE ∴AM AE,DM BE,MAD EABMAEBAD 120 MAN 60EAN MAN 60在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS≌ MN EN ENBE BN MN DM BN ;【点睛】本题主要考查正方形的性质及全等三角形的判定和性质等知识,利用旋转法构造全等三角形是解题的关键是学会.22.(1)10;(2)作图见解析,A 1(-3,-2)【分析】(1)结合题意,根据勾股定理的性质计算,即可得到答案;(2)根据旋转的性质,结合题意,分别作出A ,B 的对应点A 1,B 1,即可解决问题.【详解】(1)结合题意得:AC =()()2201121910⎡⎤⎡⎤----=+⎣⎦+=⎣⎦=10. (2)结合题意,得1A C AC =,1B C BC =∴()103,11A ---,即()13,2A --△A 1B 1C 作图如下: .【点睛】本题考查了勾股定理、直角坐标系、旋转的知识;解题的关键是熟练掌握勾股定理、直角坐标系、旋转的性质,从而完成求解.23.(1)94a =;(2)2x = 【分析】(1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点, 0∴∆=,即940a -=, ∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=,∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值. 24.(1)43120x y ++=;(2)点M 到直线AB 的距离为6;(3)存在,413,39P ⎛⎫ ⎪⎝⎭,△PAB 面积最小值为656. 【分析】(1)根据题意可直接进行化简;(2)根据题中所给公式可直接进行代值求解;(3)设点()2,45P a a a -+,根据题意可得点P 到直线AB 的距离,然后根据三角形面积计算公式可得2327422PAB Sa a =-+,最后根据二次函数的性质可进行求解. 【详解】 解:(1)由443y x =--可得:43120x y ++=; (2)由公式d =()3,2M 可得:点M 到直线AB的距离为:3065d ===; (3)存在点P ,使△PAB 的面积最小,理由如下:设点()2,45P a a a -+,则有:点P 到直线AB的距离为:238275a a d -+==,由图像可得当y>0时,x 的值为全体实数,∴238270a a -+>,∵直线443y x =--与x 轴交于点A ,与y 轴交于点B , ∴当x=0时,y=-4,当y=0时,x=-3, ∴()()3,0,0,4A B --,∴5AB =, ∴22132734654222236PAB S AB d a a a ⎛⎫=⋅=-+=-+ ⎪⎝⎭, ∴当43a =时,△PAB 的面积最小,即为656PAB S =, ∴此时点P 的坐标为413,39⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像与性质及点到直线的距离公式,关键是根据题中所给点到直线的距离公式进行分析和求解问题即可.25.(1)1215x x ==-,;(2)12132x x ==,;(3)1221x x ,=-=. 【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)方程整理后利用因式分解法解方程即可.【详解】(1)2450x x -=+,移项得:245x x +=,配方得:24454x x ++=+,即()229x +=,直接开平方得:23x +=±,∴1215x x ==-,;(2)22730x x -+=,∵2a =,7b =-,3c =, ()2247423250b ac =-=--⨯⨯=>,∴775224x ±±==⨯, ∴12132x x ==,; (3)(1)(2)24x x x ++=+,整理得:23224x x x ++=+,即220x x +-=,因式分解得:()()210x x +-=,∴20x +=或10x -=,∴1221x x ,=-=.【点睛】本题考查了解一元二次方程,解题的关键是会用配方法、公式法、因式分解法解方程.26.(1)-1,2;3;(2)11b =-+21b =--【分析】(1)根据不变值的定义可得出关于x 的一元二次方程,解之即可求出x 的值,再作差后可求出A 的值;(2)由A=0可得出方程23(1)1x b x -++=0有两个相等的实数根,进而可得出△=0,解答即可得出结论.【详解】解:(1)根据题意得,220x x --=,解得,11x =-,22x =∴A=2-(1)=2+1=3,故答案为:-1,2;3;(2)根据题意得,23(1)1x b x -++=0有两个相等的实数根,∴△=[- (b+1)]2-4×3×1=0∴11b =-+21b =--【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.。

【沪科版】初三数学上期中模拟试卷(及答案)

【沪科版】初三数学上期中模拟试卷(及答案)

一、选择题1.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .23C .4D .452.如图,将等边ABC 绕点C 逆时针旋转得到A B C '',旋转角为()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80° 3.如图,将ABC 绕点C 顺时针旋转80°,得到DEC ,若3120B A ∠=∠=︒,则α∠的度数是( )A .60︒B .50︒C .40︒D .30 4.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( ) A .m >3B .0<m≤3C .m <0D .m <0或m >3 5.如图,将△ABC 绕顶点C 旋转得到△A B C '', 且点B 刚好落在A B ''上,若∠A =35°,∠BCA '=40°,则∠A BA '等于( )A .45°B .40°C .35°D .30°6.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5-- 7.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .8.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .49.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D . 10.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.11.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++= 12.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=605013.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 14.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根C .有两个不相等的实数根D .无法确定 二、填空题15.如图,已知二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x <-1时,y <0;②30a b +>;③2-13a ≤≤-;④248ac a b ->;其中正确的结论有_________.16.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 17.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.18.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.19.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.20.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____三、解答题21.(1)(操作发现)如图1,将△ABC 绕点A 顺时针旋转60°,得°到△ADE ,连接BD ,则∠ABD=_______度. (2)(类比探究)如图2,在边长为7的等边三角形ABC 内有一点P ,∠APC=90°°,∠BPC=120°,求△APC 的面积.22.如图,在97⨯网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,,,,,A B C E F 均为格点,请按要求仅用一把无刻度的直尺作图.(1)将ABC ∆绕点O 旋转180︒得到BAD ∆,请画出点O 和BAD ∆;(2)将格点线段EF 平移至格点线段MN (点,E F 的对应点分别为,M N ),使得MN 平分四边形ABCD 的面积,请画出线段MN ;(3)在线段AD 上找一点P ,使得AOP BOD ∠=∠,请画出点P .23.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.24.如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线y kx b =+与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)直接写出抛物线的解析式.(2)求证:BF BC =.(3)若1k =,在直线y kx b =+下方抛物线上是否存在点Q ,使得QBF 的面积最大?若存在,求出点Q 的坐标及QBF 的最大面积;若不存在,请说明理由.25.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a 元,求a 的值.26.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先利用互余计算出∠BAC =30°,再根据含30度的直角三角形三边的关系得到AB =2BC =2,接着根据旋转的性质得A 'B '=AB =2,B 'C =BC =1,A 'C =AC ,∠A '=∠BAC =30°,∠A 'B ' C =∠B =60°,于是可判断CA A '为等腰三角形,所以∠CA A '=∠A '=30°,再利用三角形外角性质计算出∠B 'CA =30°,可得B 'A =B 'C =1,然后利用A A '=A B '+A 'B '进行计算.【详解】解:∵∠ACB =90°,∠B =60°,∴∠BAC =30°,∴AB =2BC =2×1=2, ∵ABC 绕点C 顺时针旋转得到A 'B 'C , ∴A 'B '=AB =2,B 'C =BC =1,A 'C =AC ,∠A '=∠BAC =30°,∠A 'B 'C =∠B =60°, ∴CA A '为等腰三角形, ∴∠CA A '=∠A '=30°,∵A 、B '、A '在同一条直线上,∴∠A 'B 'C =∠B 'AC +∠B 'CA ,∴∠B 'CA =60°﹣30°=30°,∴B 'A =B 'C =1,∴A A '=A B '+A 'B '=2+1=3.故选:A .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系. 2.A解析:A【分析】利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案;【详解】解:如图,∵ABC 和A B C ''均为等边三角形,∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=,∵160BDA '∠=︒∴160DOA A ''∠+∠=︒∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒∴20ACA '∠=︒∴α的大小是20°故选:A【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.3.A解析:A【分析】根据旋转的性质找到对应点、对应角、对应线段作答.【详解】解:∵3120B A ∠=∠=︒∴120B ∠=︒,40A ∠=︒∵△ABC 绕点C 逆时针旋转80°得到△DEC ,∴∠D=∠A=40°,∠DEC=∠B=120°,∴∠DCE=180°-40°-120°=20°,∵∠DCA=80°∴∠α=∠DCA-∠DCE=80°-20°=60°.故选:A .【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度. 4.C解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P (-m ,m-3)关于原点O 的对称点是P′(m ,3-m ),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m 的取值范围.【详解】解:点P (-m ,m-3)关于原点O 的对称点是P′(m ,3-m ),∵P′(m ,3-m ),在第二象限,∴030m m <⎧⎨->⎩,∴m <0.故选:C .【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.5.D解析:D【分析】由旋转的性质可得出35A A '∠=∠=︒,CB CB '=,B ABC '∠=∠,由已知条件结合三角形外角的性质求出B BC '∠的度数,即可得出ABC ∠的度数,即可得出A BA '∠的度数.【详解】由旋转的性质可得:35A A '∠=∠=︒,CB CB '=,B ABC '∠=∠,∴B BC B ''∠=∠,40BCA '∠=︒,∴75B A C BCA B '''∠=∠+∠=︒,∴75B '∠=︒,∴75ABC B '∠=∠=︒,∴180757530A BA '∠=︒-︒-︒=︒.故选:D .【点睛】本题主要考查三角形外角的性质以及旋转的性质,根据三角形外角的性质以及旋转的性质求出对应角的度数是解题关键.6.C解析:C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P (-3,-5)关于原点对称的点的坐标是(3,5),故选C .点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数. 7.C解析:C【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案.【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0,∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600,∴顶点坐标为(20,600),∵s 从0开始到最大值时停止,∴0≤t≤20,∴C 选项符合题意,故选:C .【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.8.C解析:C【分析】根据抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上即可求出a 、b 、c 的正负,即可判断①;根据抛物线与x 轴的交点坐标即可判断②;把x=1代入抛物线即可判断③;求出抛物线的对称轴,根据图象即可判断④.【详解】解:∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-2b a>0,c <0, 即b <0,∴abc >0,∴①正确;由抛物线与x 轴有两个交点,∴△=b 2-4ac >0,故②正确;由图象可知:x=1时,y=a+b+c <0,故③正确; 由图象可得,当0<x<-2b a时,y 随着x 的增大而减小,故④错误; ∴正确的个数有3个.故选:C .【点睛】 本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力.9.D解析:D【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得.【详解】设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BC s =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤, 由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合,故选:D .【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键.10.B解析:B【解析】解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误.故选B .根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断. 11.C解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.12.D解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x,依题意,得:5000(1+x)2=6050.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.13.A解析:A【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x-1400=0,即x2+65x-350=0.故选:A.【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.14.C解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k)2﹣4×1×(﹣2)=k2+8>0,即可得到答案.【详解】解:△=(﹣k)2﹣4×1×(﹣2)=k2+8.∵k2≥0,∴k2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C.本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.二、填空题15.①③【分析】由二次函数的对称性可得与x 轴的另一个交点坐标为由图像可得开口向下则有对称轴为直线即由此可进行求解问题【详解】解:由二次函数二次函数的图像与x 轴交于点A (30)对称轴为直线x =1可得抛物线 解析:①③【分析】由二次函数的对称性可得与x 轴的另一个交点坐标为()1,0-,由图像可得开口向下,则有0a <,240b ac ->,对称轴为直线1x =,即20a b +=,由此可进行求解问题.【详解】解:由二次函数二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,可得抛物线与x 的另一个交点坐标为()1,0-,开口向下,即0a <,当1x ≤时,y 随x 的增大而增大,∴当1x <-时,y <0,故正确;∵对称轴为直线1x =,即20a b +=,0a <,∴300a b a a +=+=<,故②错误;设抛物线的解析式为()()13y a x x =+-,则223y ax ax a =--, 令x=0时,则有y=-3a ,∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),∴233a ≤-≤, 解得:213a -≤≤-,故③正确; ∵23c ≤≤,240b ac ->, 由248ac b a ->得248ac a b ->,∵0a <, ∴224b c a-<, ∴20c -<,∴2c <,与23c ≤≤矛盾,故④错误;所以正确的结论有①③;故答案为①③.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 16.(﹣13)【分析】根据y =a (x ﹣h )2+k 的顶点是(hk )可得答案【详解】y =﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3)【分析】根据y =a (x ﹣h )2+k 的顶点是(h ,k ),可得答案.【详解】y =﹣12(x+1)2+3的顶点坐标是(﹣1,3), 故答案为:(﹣1,3).【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y =a (x−h )2+k ,顶点坐标为(h ,k )是解答此题的关键.17.【分析】首先求出点A 和点B 的坐标然后求出解析式分别求出直线过抛物线顶点时m 的值以及直线过原点时m 的值结合图形即可得到答案【详解】令解得:或则A (20)B (-20)∵与关于y 轴对称:顶点为(12)∴的解析:02m <<【分析】首先求出点A 和点B 的坐标,然后求出2C 解析式,分别求出直线y m =过抛物线顶点时m的值以及直线y m =过原点时m 的值,结合图形即可得到答案. 【详解】令2240y x x =-+=,解得:0x =或2x =,则A (2,0),B (-2,0),∵1C 与2C 关于y 轴对称,1C :()2224212y x x x =-+=--+,顶点为(1,2), ∴2C 的解析式为()2221224y x x x =-++=--(20x -≤≤),顶点为(-1,2),当直线y m =过抛物线顶点时,它与1C ,2C 共有2个不同的交点,此时2m =;当直线y m =过原点时,它与1C ,2C 共有3个不同的交点,此时0m =; ∴当02m <<时,直线y m =与1C ,2C 共有4个不同的交点. 故答案为:02m <<.【点睛】本题考查了抛物线与x 轴的交点、二次函数的图象与几何变换、一次函数与二次函数的关系,数形结合是解题的关键.18.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程. 19.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.20.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用.三、解答题21.(1)60;(2)3【分析】(1)【操作发现】:如图1中,只要证明△DAB 是等边三角形即可;(2)【类比探究】:如图2中,将△CBP 绕点C 逆时针旋转60°得△CAP ',连接PP ',证明∠APP '=30°,∠PAP '=90°,设AP '=t ,表示出AP 和PC ,利用勾股定理求出t ,进而可求出△APC 的面积.【详解】解:(1)解:∵△ABC 绕点A 顺时针旋转60°,得到△ADE ,∴AD=AB ,∠DAB=60°,∴△DAB 是等边三角形,∴∠ABD=60°,故答案为60. (2)将△CBP 绕点C 逆时针旋转60°得△CAP ',连接PP ',则△PCP '为等边三角形,∴∠CPP '=∠CP 'P=60°.∵∠BPC=120°,∠CPP '=60°,又∵∠APC=90°,∴∠APP '=30°,由旋转得∠AP 'C=∠BPC=120°,∴∠APP '=120°-60°=60°,∴∠PAP '=90°,可设AP '=t ,则PC=PP '=2t ,()222t t -3t ,在Rt △APC 中,()()()222327t t +=, ∴t=1, ∴AP=3,PC=2,∴S △APC =12332⨯⨯=. 【点睛】 本题属于几何变换综合题,考查了旋转变换,等边三角形的性质,勾股定理等知识,解题的关键是添加常用辅助线,构造全等三角形解决问题,用转化的思想思考问题,属于中考常考题.22.(1)如图所示,见解析;(2)如图所示,见解析;(3)如图所示,见解析.【分析】(1)依据旋转方向,旋转角度以及旋转中心,即可得到△BAD .(2)依据平移的方向和距离,即可得到MN ;(3)延长QO 与AD 的交点即为点P .【详解】解:(1)如图所示.(2)如图所示;(3)如图所示.【点睛】本题主要考查了利用平移变换以及旋转变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照几何变换确定对应点后,再顺次连接对应点即可得到几何变换后的图形.23.(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米, ∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6; (2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.24.(1)2114y x =+;(2)见解析;(3)存在,最大值为2+,此时Q 点坐标为()2,2.【分析】(1)利用待定系数法求抛物线解析式;(2)设B(x ,2114x +),而F (0,2),利用两点间的距离公式得到BF=2114x +,而BC=2114x +,所以BF=BC ; (3)作//QE y 轴交AB 于点E ,设2114Q t t ⎛⎫+ ⎪⎝⎭,,利用QBF EQF EQB S S S =+△△△和二次函数的性质即可求解.【详解】(1)把点(-2,2),(4,5)代入2y ax c =+得:42165a c a c +=⎧⎨+=⎩, 解得:141a c ⎧=⎪⎨⎪=⎩, 所以抛物线解析式为2114y x =+; (2)设B(x ,2114x +),已知F (0,2), ∴2222222221111211444BF x x x x x ⎛⎫⎛⎫⎛⎫=++-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴2114BF x =+, ∵BC x ⊥轴,∴2114BC x =+, ∴BF BC =; (3)作//QE y 轴交AB 于点E .经过点F (0,2),且1k =时,∴一次函数解析式为2y x =+,解方程组22114y x y x =+⎧⎪⎨=+⎪⎩, 得22242x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 则(22222B ++,, 设2114Q t t ⎛⎫+ ⎪⎝⎭,,则()2E t t +,, ∴221121144EQ t t t t ⎛⎫=+-+=-++ ⎪⎝⎭, ∴QBF EQF EQB S S S =+△△△((21112222221224EQ t t ⎛⎫=⋅+⋅=⋅+-++ ⎪⎝⎭ )21222224t +=--++当2t =时,QBF S △有最大值,最大值为222+,此时Q 点坐标为()22,. 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求函数解析式;要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.25.(1)至少卖出仙女山红茶800盒;(2)a 的值为5.【分析】(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得关于x 的不等式,求解即可;(2)根据(1)的结果得出桃片糕最多卖出的盒数,根据题意得出关于x 的方程,解方程即可.【详解】解:(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得:50x+12(2000-x )≥54400,解得:x≥800,∴x 的最小值是800,∴至少卖出仙女山红茶800盒;(2)∵(1)中最少卖出仙女山红茶800盒,∴桃片糕最多卖出的盒数为:2000-800=1200(盒).由题意得:12×(110%3a -)×1200×(1+6a%)+50(1-4a%)×800×(1+4a%)=54400-80a , 解得:a 1=0(舍去),a 2=5.∴a 的值为5.【点睛】 本题考查了一元一次不等式和一元二次方程在实际问题中的应用,理清题中的数量关系并正确列式是解题的关键.26.(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-.(2)()31512272x x x ->⎧⎨+<+⎩解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.。

初三期中数学试卷沪科版

初三期中数学试卷沪科版

一、选择题(共20小题,每小题3分,满分60分)1. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(1,0)和(3,0),则该函数的解析式为()。

A. y=2x^2-4x-2B. y=x^2-2x-3C. y=2x^2+4x+2D. y=x^2+2x+32. 在等腰三角形ABC中,AB=AC,若∠B=30°,则∠C的度数是()。

A. 60°B. 75°C. 30°D. 45°3. 已知一元二次方程x^2-5x+6=0的解为x1和x2,则x1+x2的值为()。

A. 5B. 6C. 7D. 84. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是()。

A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 已知数列{an}的通项公式为an=2n+1,则该数列的前10项之和S10等于()。

A. 110B. 120C. 130D. 1406. 若a,b是方程x^2-2x+1=0的两个实数根,则a+b的值为()。

A. 1B. 2C. 3D. 47. 已知函数f(x)=ax^2+bx+c(a≠0),若f(1)=3,f(2)=5,则a的值为()。

A. 1B. 2C. 3D. 48. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是()。

A. 45°B. 60°C. 75°D. 90°9. 已知数列{an}的通项公式为an=n^2-1,则该数列的第10项an10等于()。

A. 99B. 100C. 101D. 10210. 若方程x^2-3x+2=0的两个实数根互为相反数,则x^2-3x+2=0的解为()。

A. x=1B. x=-1C. x=2D. x=-211. 已知函数f(x)=ax^2+bx+c(a≠0),若f(-1)=3,f(1)=1,则a的值为()。

2013学年第一学期上海黄浦区九年级数学期中试卷

2013学年第一学期上海黄浦区九年级数学期中试卷

2013学年第一学期九年级期中考试数学试卷(时间100分钟,满分150分) 2013.11(本试卷所有答案请书写在答题卷规定位置上)一、选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列四组数中,能组成比例的是A .1,3,4,6;B .0.2,0.8,12,30;C .12,16,45,60;D .0.1,0.2,0.3,0.4.2.在比例尺为1:2000的地图上测得A 、B 两地间的图上距离为5cm ,则AB 两地间的实际距离为A .10m ;B .25m ;C .100m ;D .250m .3.已知在ABC Rt ∆中,︒=∠90C ,α=∠A ,3=AC ,那么AB 的长为A .αsin 3;B .αcos 3; C.αsin 3; D .αcos 3. 4.如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是78⨯方格纸(每个小方格均为正方形)中的格点,为使△DEM ∽△ABC ,则点 M 应是F 、G 、H 、K 四点中的A .H ;B .G ;C .F ;D .K .5.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列比例式不能判定DE ∥BC 的是A .EC AE DB AD =; B .AE AC AD AB =;C .BC DE AB AD =;D .ACCEAB BD =. 6.已知△ABC ,D ,E ,F 分别是AB ,BC ,CA 的中点,设AB a =u u u r r ,AC b =u u u r r ,则DE DF +u u u r u u u r是A .1()2a b +r r ;B .12a b -+r r ;C .12a b -r r ;D .1()2a b -r r .二、填空题(本大题共12题,每题4分,满分48分)7.若0234x y z ==≠,则23x yz+= ▲ . 8.若两个相似三角形的面积之比为4:9,则在这两个三角形中,面积较小的三角形与面积较大的三角形的周长之比为 ▲ .第4题BACE D 第5题l 3l 2l 1F E B D A 9.如图,DE ∥BC ,:4:5DEBC =,则:EA AC = ▲ .10.在△ABC 中,90A ∠=︒,如果10AC =,1tan 2B =,那么AB = ▲ . 11.已知线段AB ,延长AB 到点C ,使3AB BC=,则CB =u u u r▲ AB uuu r .12.已知点P 是线段AB 的黄金分割点,PA >PB ,且1PA =,则AB = ▲ .13.如图,在△ABC 中,AD 是中线,G 是重心,过点G 作EF ∥BC ,分别交AB 、AC 于点E 、F ,若18AC =,则AF = ▲ .14.如图,已知直线1l ∥2l ∥3l ,4AB =,6DF =,4BC =,则EF = ▲ . 15.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,CD 平分ACB ∠,BC DE //,如果10AC =,4AE =,那么BC = ▲ . 16.如图,正方形DEAF 内接于△ABC ,已知8AC =,16AB =,那么正方形的边长是 ▲ .17.已知Rt ABC ∆的两条直角边之比为3:4,△ABC ∽△111A B C ,若△111A B C 的最短边长12cm ,则△111A B C 最长边的中线长为 ▲ cm .18.在△ABC 中,6AB =,8BC =,7CA =,延长CA 至点P ,使PBA C ∠=∠,则AP = ▲ . 三、简答题(本大题共4题,每题10分,满分40分) 19.计算:cos30tan 45cot 45sin 60︒+︒︒-︒.20.如图,在Rt △ABC 中,90C ∠=︒,3sin 4A =,6BC =(1)求AC 的长;(2)求cotB 的值.21.如图,已知向量a ρ、b ρ,求作向量x ρ,使x ρ满足b a a x b ρρρρρ-=--3)(2(不要求写作法,但要保留作图痕迹,并写结论)22.已知:如图,△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,60ADE ∠=︒. (1)求证:△ABD ∽△DCE ;(2)如果3AB =,2=3EC ,求DC 的长.四、解答题(本大题共2题,每题12分,满分24分)23.如图,在△BAC 中,90A ∠=︒,60B ∠=︒,作AD BC ⊥,垂足为D ,E 为边AB上一点,联结CE 交AD 于点P ,点F 为线段CE 上一点,且:CF EF =(1)求证:FD ∥AB ;(2)当2AB =,且49DFP AEP S S ∆∆=时,求BE 的长.24.如图:已知一次函数334y x =+的图像分别交x 轴、y 轴于A 、B 两点,且点4C m (,)在一次函数334y x =+的图像上,CD ⊥x 轴于点D . (1)求m 的值及A 、B 两点的坐标;rbra(2)如果点E 在线段AC 上,且23AE EC =,求E 点的坐标; (3)如果点P 在x 轴上,那么当△APC 与△ABD 相似时,求点P 的坐标.五、(本题满分14分)25.如图1,在正方形ABCD 中,AB =1,点E 在AB 延长线上,联结CE 、DE ,DE 交边BC 于点F ,设BE x =,CF y =.(1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)如图2,对角线AC 、BD 的交点记作O ,直线OF 交线段CE 于点G ,求证: CEB COG ∠=∠;(3)在(2)的条件下,当OG =时,求x 的值.AEAEx2013学年第一学期九年级期中考试参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.C;2.C;3.D;4.A;5.C;6.B.二、填空题(本大题共12题,每题4分,满分48分)7.134;8.2:3;9.4:5;10.20;11.13-;12.2;13.12;14.3;15.15;16.163;17.10;18.9.三、简答题(本大题共4题,每题10分,满分40分)19.解:0000cos30tan45cot45sin60+-…………(8分)1分)1分)20.解:(1)在Rt△ABC中,∵sinBCAAB =,………………………(2分)又∵3sin4A=,6BC=∴364AB=.……………………………………………(2分) ∴8AB =.……………………………………………(1分)∴在Rt △ABC中,AC ==2分)(2)在Rt △ABC 中,cot =BCB AC.………(1分) 又∵6BC =,AC =∴cot =BC B AC .………………………………………(2分) 21.解:b a a x b -=+-322……………………………………………(1分)22-=-.……………………………………………(2分)+-=21………………………………………………(2分)图(略).…………………………………………………………(4分) 结论.………………………………………………………………(1分)22.证明:(1)∵△ABC 是等边三角形 ∴060B C ∠=∠=………………………………(1分)∵ADE CDE BAD B ∠+∠=∠+∠…………(1分) 又∵060ADE ∠=,∴CDE BAD ∠=∠……………………………(1分)在△ABD 与△DCE 中CDE BAD B C ∠=∠⎧⎨∠=∠⎩∴△ABD ∽△DCE ……………………………(2分)(2)∵△ABD ∽△DCE∴ABBDCEDC=.…………………………………(2分) 设DC x =,∵3AB =且△ABC 是等边三角形,∴3BD x =-∴2333x x-=,∴11x =,22x =,……………(2分)∴1DC =或2DC =.…………………………(1分)四、解答题(本大题共2题,每题12分,满分24分) 23. (1)在Rt ADB ∆中,∵060B ∠=,∴设BD k =,则2AB k = …………………………(1分) 在Rt BAC ∆中,4BC k =∴34CD BC = ……………………………………………(2分) 又∵:3:1CF EF =,∴34CF CE =………………………(1分)∴CF CD CE BC=………………………………………………(1分) ∴FD ∥AB ………………………………………………(1分)(也可利用相似三角形来求出34CD BC =)(2)∵FD ∥AB , ∴△DFP ∽△AEP ……………(1分) ∴2()DFP AEP S DF S AE ∆∆=, ∴23DF AE =……………………………(1分) 由(1)得34DF CD BE CB ==,即34DF BE =…………………(1分) 设BE x =,2AB =,则2AE x =-,∴32423xx =-…………………………………………(1分) ∴1617x =,即1617BE =……………………………(2分) 24.(1)6m =,(4,0)A -,(0,3)B ………………………(3分) (2)过E 作EF x ⊥轴,垂足F 点,…………………(1分)∵23AE EC =,∴25AE AC =…………………………(1分)又∵根据题意得 EF ∥CD 且8AD =,6CD =∴AE EF AC CD =∴125EF =……………………(2分)∴E 点的坐标为:412(,)55E -……………………(1分)(3)当点P 在OA 延长线上时, BAD APC ∠>∠,BAD ACP ∠>∠,且,BAD PAC ∠<∠∴点P 在射线AO 上…………(1分)① 当AP ADAC AB=时,1(12,0)P ……………………(1分)② 当AP ABAC AD=时,29(,0)4P ……………………(1分) 综上所述:符合条件的P 点坐标为1(12,0)P 或29(,0)4P …………(1分)五、(本题满分14分)(1)正方形ABCD 中,DC ∥AB , ∴DC CFBE BF=, 即11y x y =-.…………………………………(2分) ∴11y x =+ x 的取值范围是0x >;………………………(2分) (2)∵1(1)11CF AE x x •=•+=+,12AC CO •==∴CF COAC AE =…………………………………(2分) 又∵45,OCF EAC ∠=∠=︒∴△OCF ∽△EAC …………………………………(2分) ∴CEB COG ∠=…………………………………(1分)(3)在Rt △CBE中,CE =…………(1分) ∵CEB COG ∠=∠,ECA ∠是公共角,∴△OCG ∽ △ECA ………………………………(2分)∴OG COAE CE =∴51x =+, 解得113x =,23x =…(2分) 经检验113x =,23x =都是满足方程的解 答(略)感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A .B . D .C .2013年中考总复习数学测试题(五)一、选择题 (本题有10个小题, 每小题4分, 共40分)1. 设02a =,2(3)b =-,c =,11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是 ( )A .c a d b <<<B .b d a c <<<C .a c d b <<<D .b c a d <<< 2.计算422()a a ÷的结果是( )A .2aB .5aC .6aD .7a3.若)(n m +∶n =5∶2,则m ∶n 的值是( )A .5∶2B .2∶3C . 2∶5D .3∶24. 如图,把一块直角三角板的直角顶点放在直尺的一边上, 如果∠1=32o ,那么∠2的度数是( )A.32oB.58oC.60oD.68o5.左下图为主视方向的几何体,它的俯视图是( ) 6.若分式xx x --2632的值为0,则x 的值为( )A.0 B.2C.-2 D.0或27. 用配方法解方程2410x x ++=,配方后的方程是( )A .2(2)3x += B.2(2)3x -= C.2(2)5x -= D.2(2)5x +=8.同学们玩过滚铁环吗?当铁环的半径是30cm ,手柄长40cm .当手柄的一端 勾在环上,另一端到铁环的圆心的距离为50cm 时,铁环所在的圆与手柄所 在的直线的位置关系为( )A 、 相离B 、相交C 、相切D 、不能确定9.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点),(y x .已知小华前二次掷得的两个点所确定的直线经过点)7,4(P ,则他第三次掷得的点也在这条直线上的概率为( )A .61 B .31 C .32 D . 21 10.若},,,max{21n s s s 表示实数n s s s ,,,21 中的最大值.设),,(321a a a A =,⎪⎪⎪⎭⎫ ⎝⎛=321b b b B ,记}.,,max{332211b a b a b a B A =⊗设,1(-=x A )1,1+x ,⎪⎪⎪⎭⎫⎝⎛--=|1|21x x B ,若1-=⊗x B A ,则x 的取值范围为( )A . 131≤≤-xB .211+≤≤xC .121≤≤-xD . 311+≤≤x二、填空题(本大题共4小题,每小题5分,共20分)O 为BC 、EF 的中点,则AD :BE 的值为____________14.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) .三、(本大题共2小题,每小题8分,满分16分) 15计算:++---12|31|422sin60°16.先化简,再求值:,其中x 满足方程:x 2+x ﹣6=0.四、(本大题共2小题,每小题8分,满分16分)17利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l 成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形;(2)完成上述设计后,整个图案的面积等于 .第13题图第14题图18. 右表反映了x 与y 之间存在某种函数关系,现给出了几种可能的函数关系式: y=x+7,y=x ﹣5,y=﹣,y=x ﹣1(1)从所给出的几个式子中选出一个你认为满足上表要求的函数表达式: ; (2)请说明你选择这个函数表达式的理由.五、(本大题共2小题,每小题10分,满分20分)19、(本小题满分10分)为了迎接体育中考,某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的500名男生中随机抽取了部分男生的测试成绩( 单位:米,精确到0.01米)作为样本进行分析,绘制了如图所示的频数分布直方图( 每组含最低值,不含最高值).已知图中从左到右每个小长方形的高的比依次为2:4:6:5:3,其中1.80~2.00这一小组的频数为8,请根据有关信息解答(1)填空:这次调查的样本容量为 ,2.40~2.60 这一小组的频率为 ;(2)请指出样本成绩的中位数落在哪一小组内,并说明理由;(3)样本中男生立定跳远的人均成绩不低于多少米?(4)请估计该校初三男生立定跳远成绩在2.00米以上 ( 包括2.00米)的约有多少人?20. 如图所示,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一个交点为B ,且与y 轴交于点C .(1)求m 的值;(2)求点B 的坐标; (3)该二次函数图象上有一点D (x ,y )(其中x >0,y >0),使S △ABD =S △ABC ,求点D 的坐标.(第20题)六、(本大题共2小题,每小题12分,满分2421.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.第19题图 1.60 1.80 2.00 2.20 2.40 2.60)D CBA 捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行) (1)直接写出渔船离港口的距离s 和它离开港口的 时间t 的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离. (3)在渔政船驶往黄岩岛的过程中,求渔船从港口 出发经过多长时间与渔政船相距30海里?22. 当a >0,且x >0时,因为⎝⎛⎭⎪⎫x -a x 2≥0,所以x -2 a +a x ≥0.从而x +a x ≥2 a (当x=a 时,取等号).记函数y =x +ax(a >0,x >0),由上述结论,可知:当x =a 时,该函数有最小值为2 a . 直接应用:已知函数y 1=x (x >0)与函数y 2=1x(x >0),则当x =______时,y 1+y 2取得最小值为______. 变形应用:已知函数y 1=x +1(x >-1)与函数y 2=(x +1)2+4(x >-1),求y 2y 1的最小值,并指出取得该最小值时相应的x 的值.实际应用已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设汽车一次运输路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本最低?最低是多少元?七、(本题满分14分)23.我们把既有外接圆又有内切圆的四边形称为双圆四边形,如图1,四边形ABCD 是双圆四边形,其外心为O 1,内心为O 2.图1 图2 图3(1)在平行四边形、矩形、菱形、正方形、等腰梯形中,双圆四边形有 个; (2)如图2,在四边形ABCD 中,已知:∠B =∠D =90°,AB =AD ,问:这个四边形是否是双圆四边形?如果是,请给出证明;如果不是,请说明理由;(3)如图3,如果双圆四边形ABCD 的外心与内心重合于点O ,试判定这个四边形的形状,并说明理由;2012—2013学年度第二学期九年级期中考试数学试题参考答案一、选择题(本大题共10小题,每小题4分,共40分.)12.13.14.三、(本大题共2小题,每小题8分,满分16分) 第15题解:原式=23232)13(16⨯++--- =3321316+++-- =3215+- 第16题解:(x+1﹣)÷=÷=•=,∵x满足方程x2+x﹣6=0,∴(x﹣2)(x+3)=0,解得:x1=2,x2=﹣3,当x=2时,原式的分母为0,故舍去;当x=﹣3时,原式==.四、(本大题共2小题,每小题8分,满分16分)第17题解答:解:(1)如图所示:先作出关于直线l的对称图形;再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形.(2)∵边长为1的方格纸中一个方格的面积是1,∴原图形的面积为5,∴整个图案的面积=4×5=20.故答案为:20.第18题解答:解:(1)∵由表中所给的x、y的对应值的符号均相反,∴所给出的几个式子中只有y=﹣符合条件,故答案为:y=﹣;(2)∵由表中所给的x、y的对应值的符号均相反,∴此函数图象在二、四象限,∵xy=(﹣6)×1=(﹣5)×1.2=﹣6,∴所给出的几个式子中只有y=﹣符合条件.五、(本大题共2小题,每小题10分,满分20分)19、(本小题满分10分)------2分-------------4第20题解:(1)将(3,0)代入二次函数解析式,得 -32+2×3+m =0. 解得,m =3.(2)二次函数解析式为y =-x 2+2x +3,令y =0,得 -x 2+2x +3=0.解得x =3或x =-1.∴点B 的坐标为(-1,0).(3)∵S △ABD =S △ABC ,点D 在第一象限, ∴点C 、D 关于二次函数对称轴对称.∵由二次函数解析式可得其对称轴为x =1,点C 的坐标为(0,3), ∴点D 的坐标为(2,3).第21题解:(1) 当0≤t ≤5时 s =30t当5<t ≤8时 s=150 当8<t ≤13时 s=-30t+390(2) 渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s=kt+b⎪⎩⎪⎨⎧+=+=b k b k 33415080 解得: k=45 b=-360∴s=45t -360⎩⎨⎧+-=-=3903036045t s t s 解得 t=10 s=90渔船离黄岩岛距离为 150-90=60 (海里) (3) S 渔=-30t+390S 渔政=45t -360分两种情况: ① S 渔-S 渔政=30-30t+390-(45t -360)=3021HGF EO O DB CA 解得t=485 (或9.6)② S 渔政-S 渔=3045t -360-(-30t+390)=30解得 t=525(或10.4)∴当渔船离开港口9.6小时或10.4小时时, 两船相30海里.八、(本题满分14分)第23题(1)1 ………………………………………………2分(2)四边形ABCD 是双圆四边形. ……………………………………3分 证明:设AC 的中点为O 1, ∵∠ABC =∠ADC =90°,∴O 1B =O 1D =AC 21=O 1A =O 1C , ∴A 、B 、C 、D 在以O 1为圆心,以O 1A 为半径的圆上. ……………………5分 作∠ABC 的平分线,交AC 于O 2,分别作O 2E ⊥AB ,O 2F ⊥BC ,O 2G ⊥CD ,O 2H⊥AD ,E 、F 、G 、H 是垂足,O 2E =O 2F .在Rt △ABC 和Rt △ADC 中, ∵AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC , ∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴O 2E =O 2H ,O 2G =O 2F ,即O 2E =O 2F =O 2G =O 2H ,∴以O 2为圆心,以O 2E 为半径的圆与四边形ABCD 的各边都相切.故四边形ABCD 是双圆四边形. …………………………………10分(3)四边形ABCD 是正方形.理由如下: ∵小圆是四边形ABCD 的内切圆,∴圆心O 到AB 、BC 、CD 、DA 的距离相等. ……………………………12分 又∵AB 、BC 、CD 、DA 是大圆的弦,∴AB =BC =CD =DA ,∴四边形ABCD 是正方形. …………………………………………14分⌒⌒ ⌒ ⌒。

相关文档
最新文档