高二数学下学期期末考试试题文(1)
福建省龙海第一中学2023-2024学年高二下学期第一次阶段性考试数学试题
福建省龙海第一中学2023-2024学年高二下学期第一次阶段性考试数学试题一、单选题1.在空间直角坐标系中,若()1,2,m k =u r 对应点M ,(),2,3n k k =--r ,若M 关于平面xOy 的对称点为()1,2,1-,则m n ⋅=u r r( )A .2B .2-C .5D .5-2.若平面α外的直线l 的方向向量为()1,0,2a =-r ,平面α的法向量为()8,1,4m =-r,则( )A .l α⊥B .//l αC .//a m r rD .l 与α斜交3.给出下列命题,其中正确的命题是( )A .若向量a r ,b r,c r 共面,则它们所在的直线共面B .已知OP xOA yOB zOC =++u u u r u u u r u u u r u u u r,若P ,A ,B ,C 四点共面,则1x y z ++=C .()1,1,1a =r 为单位向量D .已知向量()9,4,4a =-r ,()1,2,2b =r ,则a r 在b r上的投影向量为()1,2,24.已知直线1y x =+与曲线()ln y x a =+相切,则实数a =( ) A .1-B .1C .2D .35.若函数211()ln (0)f x a x a x x =-+≠既有极大值也有极小值,则a 的取值范围是( ) A .1,08⎛⎫- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭6.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,则点B 到平面1AB E 的距离为( )A B C .23D .137.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段AB 上的点,且3AEEB=,点P 在线段1D E 上,则点P 到直线AD 距离的最小值为( )A B C .35D .348.设0.02e 1a =-,0.012(e 1)b =-,sin 0.01tan 0.01c =+,则( ) A .c a b >>B .a b c >>C .c b a >>D .b a c >>二、多选题9.下列说法中正确的是( ) A .ππsin cos 44'⎛⎫= ⎪⎝⎭ B .2cos sin cos x x x x x x '--⎛⎫= ⎪⎝⎭C .设函数()ln f x x x =,若()02f x '=,则0e x =D .设函数()f x 的导函数为()f x ',且()()232ln f x x xf x '=++,则()924f '=-10.如图,在平行六面体1111ABCD A B C D -中,,E F 分别是,AB BC 的中点,以A 为顶点的三条棱长都是112,60A AD A AB BAD ∠∠∠===o,则下列说法正确的是( )A .EF //平面11AC DB .1AC ⊥平面1A BDC .1AC =D .1AC 与AC 11.已知正方体1111ABCD A B C D -的棱长为2,点,,EFG 分别为棱11,,AD AB B C 的中点,以下说法正确的是( )A .三棱锥A EFG -的体积为23B .直线EG 与面11ABB A 所成角的余弦值为1C .1BD u u u u r 在AD u u u r方向上的投影向量为BC u u u rD .过点,,EFG 作正方体的截面,所得截面的面积是三、填空题12.已知(),1,2A x ,()2,3,4B ,且AB =x 的值是.13.已知()()()()1f x x x a x b =+++为奇函数,则()y f x =在0x =处的切线方程为 14.对于函数()y f x =和()y g x =,及区间D ,存在实数,k b 使得()()f x kx b g x ≥+≥对任意x D ∈恒成立,则称()y f x =在区间D 上优于()y g x =.若()()1f x ax x =-在区间()0,∞+上优于()ln g x x =,则实数a 的取值范围是四、解答题15.已知函数()43f x x ax =+,x ∈R .(1)若函数在点 1,f 1 处的切线过原点,求实数a 的值; (2)若4a =-,求函数()f x 在区间[]1,4-上的最大值.16.如图:三棱柱111ABC A B C -中,11,,,1CA a CB b CC c CA CB CC ======r r u u u r u u u r u u ru u r ,2ππ,,,,,32a b a c b c N ===r r r r r r 是AB 的中点.(1)在线段BC 上是否存在一点T ,使得四边形11NTC A 为梯形说明理由;(2)若点M 是棱11C B 所在直线上的点,设111,C M tC B t =∈R u u u u r u u u u r,当A M C B ⊥时,求实数t 的值.17.某乡镇全面实施乡村振兴战略,大力推广“毛线玩具”加工产业.某生产合作社组建加工毛线玩具的分厂,需要每年投入固定成本10万元,每加工x 万件玩具,需要流动成本()C x 万元.当年加工量不足15万件时,()1212ln(1)C x x x =-+;当年加工量不低于15万件时,256()212002C x x x =+--.通过市场分析,加工后的玩具以每件20元的价格,全部由总厂收购. (1)求年利润()f x 关于年加工量x 的解析式;(年利润=年销售收入-流动成本-年固定成本) (2)当年加工量为多少万件时,该合作社的年利润最大?最大年利润是多少?(参考数据:ln 20.69≈).18.如图,已知在正三棱柱ABC ﹣A 1B 1C 1中,AB =2,AA 1=3,D ,E 分别在CC 1与AA 1上,AE =2,CD =1.(1)在线段BE 上找一点P 使得DP ⊥平面ABB 1A 1,并写出推理证明过程; (2)求二面角C 1﹣BE ﹣A 1的余弦值.19.英国数学家泰勒发现的泰勒公式有如下特殊形式:当()f x 在0x =处的()*n n ∈N 阶导数都存在时,()()()()()()()()323000002!3!!n n f f f f x f f x x x x n =++++''⋅⋅⋅+'+⋅⋅⋅.注:()f x ''表示()f x 的2阶导数,即为()f x '的导数,()()()3n f x n ≥表示()f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算1sin 2的值,精确到小数点后两位;(2)由该公式可得:246cos 12!4!6!x x x x =-+-+⋅⋅⋅.当0x ≥时,试比较cos x 与212x -的大小,并给出证明(不使用泰勒公式); (3)设*n ∈N ,证明:()111142tannk n n n k n k=>-+++∑.。
浙江宁波市2024年高二下学期期末考试数学试题+答案 (1)
宁波市2023学年第二学期期末考试高二数学试题卷本试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、学校、准考证号填涂在答题卡上。
将条形码横贴在答题卡的“贴条形码区”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
所有答案必须写在答题卡上,写在试卷上无效。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,不要折叠、不要弄破。
选择题部分(共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合U ={1,2,3,4,5},A ={1,2,4},B ={1,5},则∁U A ∩B =()A.⌀B.{1}C.{5}D.{1,5}2.已知复数z =1+2i ,则1z 的虚部为()A.25B.25iC.-25i D.-253.已知角α的终边过点-4,3 ,则sin α+cos αsin α=()A.-12B.-13C.14D.734.已知a ,b 为单位向量,则“a ⊥b ”是“a -2b =2a +b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.对于直线m ,n 和平面α,β,下列说法错误的是()A.若m ⎳α,n ⎳α,m ,n 共面,则m ⎳nB.若m ⊂α,n ⎳α,m ,n 共面,则m ⎳nC.若m ⊥β,且α⎳β,则m ⊥αD.若m ⊥α,且m ⎳β,则α⊥β6.若ln x -ln y >y 2-x 2,则()A.ex -y>1 B.e x -y<1 C.ln x -y >0 D.ln x -y <07.袋子中有n 个大小质地完全相同的球,其中4个为红球,其余均为黄球,从中不放回地依次随机摸出2个球,已知摸出的2个球都是红球的概率为16,则两次摸到的球颜色不相同的概率为()\A.518B.49C.59D.13188.颐和园的十七孔桥,初建于清乾隆年间;永定河上的卢沟桥,始建于宋代;四川达州的大风高拱桥,修建于清同治7年.这些桥梁屹立百年而不倒,观察它们的桥梁结构,有一个共同的特点,那就是拱形结构,这是悬链线在建筑领域的应用.悬链线出现在建筑领域,最早是由十七世纪英国杰出的科学家罗伯特.胡克提出的,他认为当悬链线自然下垂时,处于最稳定的状态,反之如果把悬链线反方向放置,它也是一种稳定的状态,后来由此演变出了悬链线拱门,其中双曲余弦函数就是一种特殊的悬链线函数,其函数表达式为cosh x =e x +e -x 2,相应的双曲正弦函数的表达式为sinh x =e x -e -x2.若关于x 的不等式4m cosh 2x -4sinh 2x -1>0对任意的x >0恒成立,则实数m 的取值范围为()A.2,+∞B.[2,+∞)C.14,+∞ D.14,+∞ 二、选择题:本题共3小题,每小题6分,共18分。
山东省济宁市第一中学2023-2024学年高二下学期质量检测(三)(6月)数学试题
济宁市第一中学2023—2024学年度第二学期质量检测(三)高二数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}21,,31,A x x k k B x x k k ==+∈==+∈Z Z ∣∣,则A B ∩=( )A.∅B.{}6,xx k k =∈Z ∣ C.{}61,xx k k =+∈Z ∣ D.{}62,x x k k =+∈Z ∣ 2.命题“1,1ln x x x ∀>−≥”的否定是( ) A.1,1ln x x x ∀≤−< B.1,1ln x x x ∀>−< C.0001,1ln x x x ∃>−< D.0001,1ln x x x ∃≤−< 3.下列说法错误的是( )A.决定系数2R 越大,模型的拟合效果越好B.若变量x 和y 之间的样本相关系数为0.982r =−,则变量x 和y 之间的负相关程度很强C.残差平方和越小的模型,拟合的效果越好D.在经验回归方程30.8y x =−+中,当解释变量x 每增加1个单位时,响应变量y 平均增加3个单位 4.已知随机变量()()2,,6,X N Y B p µσ∼∼,且()()()13,2P X E X E Y ≥==,则p =( ) A.16 B.14 C.13 D.125.在()631(1)x x −+的展开式中,3x 的系数为( ) A.20 B.25 C.30 D.35 6.“04a <<”是“函数()211f x ax ax =−+的定义域为R ”的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件7.用四种颜色给下图的6个区域涂色,每个区域涂一种颜色,相邻区域不同色,若四种颜色全用上,则共有多少种不同的涂法( )A.72B.96C.108D.1448.已知函数()2e ,02,0x x x f x x x x <= −+≥ ,若关于x 的方程()()()2220f x t f x t −++=有3个不同的实数根,则实数t 的取值范围为( )A.1,e ∞ −−B.1,0e −C.1,1e− D.()e,2−二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若0a b <<,则下列不等式中一定成立的是( ) A.e e a b b a < B.11b a< C.11b b a a +<+ D.11a b a b−<− 10.已知,A B 分别为随机事件,A B 的对立事件,()()0,1P A P B <<,则( )A.()()||1P B A P B A += B.()()()||P B A P B A P A +=C.若,A B 互斥,则()|0P A B =D.若()()()1P AB P A P B =⋅− ,则,A B 独立11.已知函数()e xf x x =−,则下列说法正确的是( )A.()exf 在R 上是增函数B.1x ∀>,不等式()()2ln f ax f x≥恒成立,则正实数a 的最小值为2eC.若()f x t =有两个零点12,x x ,则120x x +>D.若过点()1,M m 恰有2条与曲线()y f x =相切的直线,则1e 1m −<<−三、填空题:本大题共3小题,每小题5分,共15分.12.有7把相同的椅子排成一排,要求3个人坐下且不相邻,共__________种坐法.13.已知正实数,x y 满足3xy x y −−=,则2x y +的最小值为__________. 14.关于x 的方程()eln e ln ex xt t x x +=+−有解,则实数t 的取值范围__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知集合{}260,{123}A xx x B x m x m =+−<=−<<+∣∣. (1)若A B A ∩=,求实数m 的取值范围;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围. 16.(15分)已知函数()26e 3xf x x ax =−−.(1)若曲线()y f x =在点()()0,0f 处的切线方程为560x y −+=,求a ; (2)若函数()f x 在R 上单调递增,求实数a 的取值范围.17.(15分)将氢储存在甲基环乙烷和甲苯等有机液体中是储氢和运输氢的重要方向.2023年12月俄罗斯科学院西伯利亚分院科研人员用镍和锡取代铂,研发出一种新型高效的脱氢催化剂,脱氢效率达99.9%,且对储氢载体没有破坏作用,可重复使用.近年来,我国氢能源汽车产业迅速发展,下表是某市氢能源乘用车的年销售量与年份的统计表:(1)求氢能源乘用车的销量关于年份的线性回归方程,并预测2024年氢能源乘用车的销量; (2)为了研究不同性别的学生对氢能源的了解情况,某校组织了一次有关氢能源的知识竞赛活动,随机抽取了男生和女生各60名,得到如表所示的数据: 了解 不了解 合计 男生 25 女生 20 合计(i )根据已知条件,填写上述22×列联表;(ii )依据0.01α=的独立性检验,能否认为该校学生对氢能源的了解情况与性别有关? 参考公式:1.回归方程ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,niii nii x x y y b ay bx x x ==−−==−−∑∑ 2.()()()()22(),n ad bc n a b c d a b c d a c b d χ−==+++++++. α0.050 0.010 0.001 x α3.8416.63510.82818.(17分)某省2023年开始将全面实施新高考方案.在6门选择性考试科目中,物理、历史这两门科目采用原始分计分:思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为,,,A B C D E 、共5个等级,各等级人数所占比例分别为15%35%35%13%、、、和2%,并按给定的公式进行转换赋分.该省部分学校联合组织了一次高二年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.(1)其中一所学校某班生物学科获得A 等级的共有10名学生,其原始分及转换赋分如表:现从这10名学生中随机抽取3人,设这3人中生物的赋分不低于95分的人数为X ,求X 的分布列和数学期望:(2)假设此次高二学生生物学科原始分Y 近似服从正态分布()266.7,13.3N .现随机抽取了100名高二学生的此次生物学科的原始分,后经调查发现其中有一名学生舞弊,剔除掉这名学生成绩后,记ξ为其他被抽到的原始分不低于80分的学生人数,预测当()P k ξ=取得最大值时k 的值.()k +∈N 附,若()2,N ηµσ∼,则()()0.68,220.95P P µσηµσµσηµσ−≤≤+≈−≤≤+≈.19.(17分)已知函数()()()11ln f x a x ax a x=−++−∈R . (1)求函数()f x 的单调区间;(2)当2a =−时,()()()12e x g x f x x x x =+−++,记函数()y g x =在1,14上的最大值为m ,证明:43m −<<−.济宁市第一中学2023—2024学年度第二学期质量检测(三)高二数学答案一、单项选择题1-4CCDD 5-8BBBB1.C 【详解】设x A B ∈∩,因为{}{}21,,31,A x x k k B x x k k ==+∈==+∈Z Z ∣∣,所以2131,,x k n k n =+=+∈Z ,故23k n =,故2,n s s =∈Z ,所以61,x s s =+∈Z ,所以{}61,A B xx k k ∩==+∈Z ∣.故选:C.2.C 【详解】由命题“1,1ln x x x ∀>−≥”则该命题的否定为:0001,1ln x x x ∃>−<.3.D 【详解】用决定系数2R 来刻画回归效果,2R 越大,表示残差平方和越小,即模型的拟合效果越好,故A 正确;若变量x 和y 之间的样本相关系数为0.982,r r =−接近-1,则变量x 和y 之间的负相关很强,故B 正确;比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,故C 正确;在经验回归方程30.8y x =−+中,当解释变量x 每增加1个单位时,响应变量y 平均减小3个单位,故D 错误.4.D 【详解】由于X 服从正态分布()2,N µσ,且()132P X ≥=,故其均值()3E X µ==.而Y 服从二项分布()6,B p ,故()6E Y p =,再由()()E X E Y =,就有36p =,得12p =. 5.B 【解析】因为6(1)x +的通项为616C r rr T x−+=,当()31x −内取3x 时,624r r −=⇒=,则42256C 15T xx ==,此时系数为31545×=;当()31x −内取-1时,633r r −=⇒=, 则33246C 20T xx ==,此时系数为12020=−′−;所以系数为452025−=.故选:B. 6.B 【解析】因为函数()211f x ax ax =−+的定义域为R ,所以210ax ax −+≠对任意x ∈R 恒成立. i .0a =时,10≠对任意x ∈R 恒成立;ii .0a ≠时,只需2Δ40a a =−<,解得:04a <<;所以04a ≤<.记集合()[)0,4,0,4A B ==.因为AB ,所以“04a <<”是“函数()211f x ax ax =−+的定义域为R ”的充分不必要条件.7.B 【详解】设四种颜料为1,2,3,4,①先涂区域B ,有4中填涂方法,不妨设涂颜色1; ②再涂区域C ,有3中填涂方法,不妨设涂颜色2; ③再涂区域E ,有2中填涂方法,不妨设涂颜色3;④若区域A 填涂颜色2,则区域D 、F 填涂颜色1,4,或4,3,若区域A 填涂颜色4,则区域D 、F 填涂颜色1,3或4,3,共4中不同的填涂方法, 综合①②③④,由分步计数原理可得,共有432496×××=种不同的填涂法.故选:B.8.B 【详解】因为当0x <时,()e x f x x =,所以()()1e x f x x =+′,所以当(),1x ∞∈−−时,()()0,f x f x ′<单调递减;当()1,0x ∈−时,()()0,f x f x ′>单调递增,所以()()11ef x f ≥−=−,且()0f x <; 又因为当0x ≥时,()222(1)1f x x x x =−+=−−+, 所以()f x 在()0,1x ∈时单调递增,在()1,x ∞∈+时单调递减,且.()()11f x f ≤=, 所以作出函数()2e ,0,2,0x x x f x x x x <= −+≥ 的大致图象如图:由()()()2220fx t f x t −++=得()()20f x f x t −−=,所以()2f x =或()f x t =,则()2f x =无解,所以只有方程()f x t =有3个不同的实数根,数形结合可知10et −<<.二、多项选择题9.BD 10.ACD 11.ABD 9.BD 解:110,0a b b a<<∴<< ,且110a b b a <+<+,故选项B 和D 正确;()()110,1111b b ab b ab a b a b b a a a a a a a a ++−−−+−==>∴>++++ ,故选项C 错误; 构造函数()e xf x x =,则()()2e 1x x f x x−=′, 当01x <<时,()()0,f x f x ′<在()0,∞+上单调递减;当1x >时,()()0,f x f x φ>在()0,∞+上单调递增;而,a b 与1的大小未知,故选项A 不确定,错误;10.ACD 【解析】因为()()()()()()()()||1,P AB P AB P A P B A P B A P A P A P A +=+==A 正确,B 不正确; 若,A B 互斥,则()0P AB =,所以()()()|0,P AB PA B C P B ==正确; 因为()()1P B P B =−,所以()()()P AB P A P B =⋅,即,A B 独立,D 正确.故选:ACD 11.ABD 【详解】对A :因为()e xf x x =−,所以()e 1xf x ′=−,由()e 100xf x x ′−>⇒>.所以()e xf x x =−在(),0∞−上单调递减,在()0,∞+上单调递增.设e x t =,则0t >且e x t =在R 上单调递增.由“同增异减”可知()exf R 上单调递增.故A 正确;对B :因为a 为正实数,1x >,所以20,ln 0ax x >>,结合函数()f x 的单调性,可知:()()22ln ln (1)f ax f x ax x x ≥⇔≥>.所以2ln x a x ≥.设()2ln (1)xh x x x =>,则()()221ln x h x x−=′,由 ()()221ln 0x h x x−=>′可得:e x <.所以()h x 在()1,e 上单调递增,在()e,∞+上单调递减,所以()max 2()e e h x h ==.所以正实数a 的最小值为2e,故B 正确; 对C :如图:因为()f x t =有两个零点12,x x ,结合函数()f x 的单调性,不妨设120,0x x <>.则10x −>.设()()(),(0)g x f x f x x =−−>,那么()00g =且()e 1e 1e e 20x x x x g x −−=−+−=+−>′在()0,∞+上恒成立,所以()g x 在()0,∞+单调递增,所以()()0f x f x −−>在()0,∞+上恒成立,所()()(0)f x f x x >−>.由()()()122f x f x f x =>−,且()f x 在(),0∞−上单调递减,所以12120x x x x <−⇒+<.故C 错误;对D :设切点为()000,e xx x −,切线斜率为0e 1x −,所以函数在0x x =处的切线方程为:()()0000e e1x x y x x x −+=−−,因为切线过点()1,m ,所以()()()000000e e11e 21x x x m x x m x −+=−−⇒=−−设()()e 21x x x ϕ=−−,所以()()e 1x x x ϕ=−′,由()()e 101xx x x ϕ=−>⇒<′,所以()x ϕ在(),1∞−上递增,在()1,∞+上递减,且()1e 1ϕ=−,当0x <时()1x ϕ>−,且x ∞→−时,()1x ϕ→−.因为()00e 21xm x =−−有两解,则1e 1m −<<−.故D正确.三、填空题:本题共4小题,每小题5分,共20分.12.6013.3 【详解】正实数,x y 满足3xy x y −−=,故()13x y x −=+,所以31xy x +=−, 则301xx +>−,又0x >,解得1x >,故()344222121333111x x y x x x x x x ++=+=++=−++≥=+−−−,当且仅当()4211x x −=−,即1x =2x y +的最小值为3+.故答案为:314.10,e【详解】由()eln e ln ex xt t x x +=+−,得()ln ln eeln e e ln tx x t x x −+=+−令()e e x f x x =+则()()ln ln f t f x x =−,易知()f x 单调递增,所以ln ln t x x =−,令()()ln ,0,g x x x x ∞=−∈+,则()1xg x x′−=,当()0,1x ∈时,()()0,g x g x ′>单调递增;当()1,x ∞∈+时,()()0,g x g x ′<单调递减,所以()ln 11t g ≤=−,得10e t <≤.实数t 的取值范围为10,e .故答案为:10,e四、解答题15.(13分)(1)由题意知{32}A xx −<<∣, 因为A B A ∩=,所以A B ⊆, 则13232m m −≤−+≥ ,解得4m ≥,则实数m 的取值范围是[)4,∞+;(2)因为“x A ∈”是“x B ∈”的必要不充分条件,所以B 是A 的真子集, 当B =∅时,123m m −≥+解得23m ≤−; 当B ≠∅时,13232123m m m m −≥−+≤ −<+(等号不能同时取得),解得2132m −<≤−,综上,1,2m ∞ ∈−−.16.(15分)解:(1)因为()26e 3xf x x ax =−−,所以()6e 6xf x x a =−−′,因为曲线()y f x =在点()()0,0f 处的切线方程为560x y −+=, 所以()05f ′=,即65a −=,解得1a =.(2)因为()6e 6xf x x a =−−′,又函数()f x 在R 上单调递增,所以()6e 60xf x x a =−−≥′恒成立,即6e 6x a x ≤−在R 上恒成立,令()6e 6,xg x x x =−∈R ,则()()6e 66e 1xxg x =−=−′,所以当0x >时()0g x ′>, 当0x <时()0g x ′<,所以()g x 在(),0∞−上单调递减,在()0,∞+上单调递增,所以()g x 在0x =处取得极小值即最小值,即()min ()06g x g ==,所以6a ≤,即实数a 的取值范围为(],6∞−.17.(15分) 【详解】(1)年份x 的平均数2020x =,销量y 的平均数5y =,所以()52222121(2)(1)01210i i x x =−=−+−+++=∑,()()51iii x x y y =−−∑()()()()()()201820202520192020 3.5520202020 2.55=−×−+−×−+−×− ()()()()2021202085202220209518.5+−×−+−×−=,所以()()()5152118.5ˆ 1.8510iii i i x x y y b x x ==−−===−∑∑, 所以ˆˆ5 1.852*******a y bx =−=−×=−,所以氢能源乘用车的销量y 关于年份x 的线性回归方程为ˆ 1.853732y x −,令2024x =,得ˆ 1.852*********.4y=×−=. 所以预测2024年氢能源乘用车的销量约为12.4万台. (2)(i )根据男生和女生各6022×列联表为: 了解 不了解 合计 男生 35 25 60 女生 20 40 60 合计5565120(ii )零假设0H :该校学生对氢能源的了解情况与性别无关, 根据22×列联表中的数据可得,22120(35402520)7.55 6.63560605565χ××−×≈>×××,依据0.01α=的独立性检验,可以推断0H 不成立, 即该校学生对氢能源的了解情况与性别有关.18.(17分)解:(1)据题意可知:X 服从参数为10,4,3的超几何分布,因此()()346310C C 0,1,2,3C k k P X k k −⋅===, 则()()312646331010C C C 2016010,1C 1206C 1202P X P X ========, ()()213464331010C C C 363412,3C 12010C 12030P X P X ========, 所以X 的分布列为X 的数学期望为()1131601236210305E X =×+×+×+×=. (2)据题意可知()()10.68800.162P Y P Y µσ−≥=≥+==, 那么()99,0.16B ξ∼有()9999C 0.160.84k k k P k ξ−=⋅⋅,要使()P K ξ=取最大值,只需991198999999111009999C 0.160.84C 0.160.840.160.84C 0.160.84k k k k k kk k k k k k −++−−−−− ≥ ≥ , 得:0.840.162121396499115160.160.84400421100k k k k k k k k k ≥ +≥− −+⇒⇒≤≤ −≥ ≥ − 且N k +∈, 故:当15k =或16时,()P k ξ=取得最大值.19.(17分)解:(1)()()11ln f x a x ax x =−++−的定义域为()0,∞+,又()()()221111x ax a f x a x x x−−+′=−++=, ①当0a ≤时,10ax −<,若()0,1x ∈,则()0f x ′>,若()1,x ∞∈+,则()0f x ′<, 所以()f x 在()0,1上单调递增,在()1,∞+上单调递减; ②当0a >时,若11a >,即01a <<时,同理可得,()f x 在()10,1,,a ∞ + 上单调递增,在11,a 上单调递减; 若11a=,即1a =时,()()0,f x f x ′≥在()0,∞+上单调递增; 若101a <<,即1a >时,同理可得,()f x 在()10,,1,a ∞ + 上单调递增,在1,1a 上单调递减;综上所述,当0a ≤时,()f x 的单调递增区间为()0,1,单调递减区间为()1,∞+; 当01a <<时,()f x 的单调递增区间为()10,1,,a ∞ + ;单调递减区间为1,1a ; 当1a =时,()f x 的单调递增区间为()0,∞+; 当1a >时,()f x 的单调递增区间为()10,,1,a ∞ + ;单调递减区间为1,1a; (2)证明:当2a =−时,()()()()()1112e ln 22e ln 2e x x x g x f x x x x x x x x x x x x x =+−++=−−+−++=−+−, 则()()(111e 11e x x g x x x x x =−−+=−′, 当114x <<时,10x −<, 令()1e x h x x =−,则()21e 0x h x x=+>′, 所以()h x 在1,14上单调递增. 因为()121e 20,1e 102h h =−<=−>, 所以存在01,12x ∈,使得()00h x =,即001e x x =,即00ln x x =−, 故当01,4x x ∈ 时,()()0,0h x g x <>′;当()0,1x x ∈时,()()0,0h x g x ><′;即()g x 在01,4x上单调递增,在()0,1x 上单调递减. 所以()()()()0max 0000000000000112()2e ln 22212x m g x g x x x x x x x x x x x x x ===−−+=−−−=−−=−+. 令()2112,,12G x x x x =−−∈ ,则()()22221220x G x x x −=−=>′, 所以()G x 在1,12 上单调递增,所以()()()14,132G x G G x G>=−<=− ,所以43m −<<−.。
上海市第三女子中学2020-2021学年高二下学期期末考试数学试卷含解析 (1)
2020-2021学年上海市第三女子中学高二(下)期末数学试卷一、填空题(共12小题).1.若,则n=2.半径为1的球的表面积是.3.在的二项展开式中,常数项是.4.有6名同学排成一排照相,其中甲、乙两人相邻的排法共有种.(用数值表示)5.面积为4的正方形绕其一边所在的直线旋转一周,所得的几何体的侧面积为.6.如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小为.7.有四个运动员,报名参加三个比赛项目,若每人限报一项,且每项至少一人报名,共有不同的报名方法.8.已知一个长方体的长、宽、高的比为1:2:3,它的对角线长是,则这个长方体的体积为.9.设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,则该同学在这两个科目中至少选择一个的概率是10.已知空间中两条不同的直线m、n和平面α,给出三个论断:①m⊥n;②n∥α;③m⊥α.请以其中两个论断作为条件,另一个为结论,写出一个真命题:若,则.(填写相应序号)11.在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O到平面ABC 的距离是,则B、C两点的球面距离是.12.在正方体ABCD﹣A1B1C1D1的所有棱中,若任取其中两条,则它们所在的直线是异面直线的概率为.二、选择题13.已知α、β是两个不同平面,m为α内的一条直线,则“m∥β”是“α∥β”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件14.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正四棱柱的一条侧棱,如图,若阳马以该正四棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.1615.下列四个命题中真命题是()A.空间中垂直于同一直线的两条直线互相平行B.经过空间中的三个点有且只有一个平面C.过球面上任意两点的大圆有且只有一个D.过空间任一点与两条异面直线都垂直的直线有且只有一条16.两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种三、解答题17.从某中学200名新生中随机抽取10名进行身高测量,得到的数据为:168、159、166、163、170、161、167、155、162、169(单位:cm),试估计该中学200名新生身高的平均值和中位数,并求身高大于165cm的概率估计值.18.已知n∈N*,n≥3,二项式(x﹣2)n的展开式为a0+a1x+a2x2+⋯+a n x n,其中a1,a2满足a2=﹣3a1.(1)求n;(2)求a0+a1+a2+⋯+a n的值.19.如图,在一个圆锥内作一个内接圆柱(圆柱下底面在圆锥的底面上,圆柱上底面的圆在圆锥的侧面上),圆锥的母线长为4,AB、CD是底面的两条直径,且AB=4,AB⊥CD,圆柱与圆锥的公共点F恰好为其所在母线PA的中点,点O是底面的圆心.(1)求圆柱与圆锥的体积的比值;(2)求异面直线OF和PC所成角的大小.20.从1、3、5、7中任取2个数字,从0、2、4、6、8中任取2个数字,用这四个数字组成无重复数字的四位数,所有这些四位数构成集合M.(1)求集合M中不含有数字0的元素的个数;(2)求集合M中含有数字0的元素的个数;(3)从集合M中随机选择一个元素,求这个元素能被5整除的概率.21.如图,在多面体ABC﹣A1B1C1中,AA1、BB1、CC1均垂直于平面ABC,AA1=4,CC1=3,BB1=AB=AC=BC=2.(1)求点A到平面A1B1C1的距离;(2)求平面ABC与平面A1B1C1所成锐二面角的大小;(3)求这个多面体ABC﹣A1B1C1的体积.参考答案一、填空题1.若,则n=10解:若,则n=6+4=10.故答案为:10.2.半径为1的球的表面积是4π.解:由题意,半径为1的球的表面积是4π•12=4π.故答案为4π.3.在的二项展开式中,常数项是20.解:由.由6﹣2r=0,得r=3.∴常数项是.故答案为:20.4.有6名同学排成一排照相,其中甲、乙两人相邻的排法共有240种.(用数值表示)解:因为甲、乙两人相邻,所以先将甲、乙两人进行捆绑,方法共有种,再将甲、乙两人看成整体进行排序共有种排法,所以共有种,故答案为:240.5.面积为4的正方形绕其一边所在的直线旋转一周,所得的几何体的侧面积为8π.解:面积为4的正方形边长为2,正方形绕其一边所在的直线旋转一周,所得几何体是底面半径为2,母线长为2的圆柱,所以该圆柱的侧面积为S侧=2πrl=2π×2×2=8π.故答案为:8π.6.如图,圆锥的侧面展开图恰好是一个半圆,则该圆锥的母线与底面所成的角的大小为60°.解:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与底面所成角的余弦值==,∴母线与底面所成角是60°.故答案为:60°.7.有四个运动员,报名参加三个比赛项目,若每人限报一项,且每项至少一人报名,共有36不同的报名方法.解:四个运动员分为3组共有种情况,将分好的3组分到三个比赛项目,共有种情况,有四个运动员,报名参加三个比赛项目,若每人限报一项,且每项至少一人报名,共有种情况.故答案为:36.8.已知一个长方体的长、宽、高的比为1:2:3,它的对角线长是,则这个长方体的体积为48.解:设长方体的长宽高分别为m,2m,3m(m>0),由题意可得:,∴m2=4,m=2,长方体的体积:V=m×2m×3m=6m3=48.故答案为:48.9.设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,则该同学在这两个科目中至少选择一个的概率是0.8解:设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,∴该同学在这两个科目中至少选择一个的概率是:p=1﹣(1﹣0.5)(1﹣0.6)=0.8.故答案为:0.8.10.已知空间中两条不同的直线m、n和平面α,给出三个论断:①m⊥n;②n∥α;③m⊥α.请以其中两个论断作为条件,另一个为结论,写出一个真命题:若②③,则①.(填写相应序号)解:由m⊥n,n∥α,得m∥α或m⊂α或m与α相交,相交也不一定垂直,故由①②不能得到③;由m⊥n,m⊥α,得n∥α或n⊂α,故由①③不能得到②;由m⊥α,得m必垂直于平面α内的任意一条直线,又n∥α,所以m⊥n,故由②③可得①.故答案为:②③,①.11.在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O到平面ABC 的距离是,则B、C两点的球面距离是π.解:根据题意,∠ABC=90°,AC是小圆的直径.所以过球心O作小圆的垂线,垂足O’是AC的中点,|O′C|==,AC=3,则BC=OB=OC=3,则∠BOC=,故B、C两点的球面距离l=×3=π;故答案为:π.12.在正方体ABCD﹣A1B1C1D1的所有棱中,若任取其中两条,则它们所在的直线是异面直线的概率为.解:正方体有12条棱,从中取两条的方法数式,其中异面直线的方法数:12×4÷2=24,所以所在的直线是异面直线的概率为:==,故答案为:.二、选择题13.已知α、β是两个不同平面,m为α内的一条直线,则“m∥β”是“α∥β”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件解:①若m∥β,m为α内的一条直线,则α∥β或α与β相交,∴充分性不成立,②若α∥β,m为α内的一条直线,根据面面平行得性质可得m∥β,∴必要性成立,∴m∥β是α∥β的必要不充分条件,故选:B.14.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正四棱柱的一条侧棱,如图,若阳马以该正四棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16解:由题意可知,以AA1为底面矩形的一边,则矩形可以为矩形AA1B1B,矩形AA1D1D,故阳马可以为:C1﹣AA1B1B,C1﹣AA1D1D,D1﹣AA1B1B,D1﹣AA1D1D,C﹣AA1B1B,C﹣AA1D1D,D﹣AA1B1B,D﹣AA1D1D,所以阳马的个数是8个.故选:B.15.下列四个命题中真命题是()A.空间中垂直于同一直线的两条直线互相平行B.经过空间中的三个点有且只有一个平面C.过球面上任意两点的大圆有且只有一个D.过空间任一点与两条异面直线都垂直的直线有且只有一条解:空间中垂直于同一直线的两条直线平行、相交或异面,故A错误;经过空间中不在同一直线上的三个点有且只有一个平面,故B错误;过球的一个直径的两个端点的大圆有无数个,故C错误;过空间任一点作两条异面直线的平行线,则所作的两条直线确定一个平面,过该点与所确定的平面垂直的直线有且只有一条,故过空间任一点与两条异面直线都垂直的直线有且只有一条,故D正确.故选:D.16.两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种解:第一类:三局为止,共有2种情形;第二类:四局为止,共有2×=6种情形;第三类:五局为止,共有2×=12种情形;故所有可能出现的情形共有2+6+12=20种情形故选:C.三、解答题17.从某中学200名新生中随机抽取10名进行身高测量,得到的数据为:168、159、166、163、170、161、167、155、162、169(单位:cm),试估计该中学200名新生身高的平均值和中位数,并求身高大于165cm的概率估计值.解:将数据从小到大排序得155,159,161,162,163,166,167,168,169,170.故其平均值为=164,其中位数为=164.5,身高大于165cm的概率估计值为=.18.已知n∈N*,n≥3,二项式(x﹣2)n的展开式为a0+a1x+a2x2+⋯+a n x n,其中a1,a2满足a2=﹣3a1.(1)求n;(2)求a0+a1+a2+⋯+a n的值.解:(1)∵n∈N*,n≥3,二项式(x﹣2)n的展开式为a0+a1x+a2x2+⋯+a n x n,其中a1,a2满足a2=﹣3a1,∴•(﹣2)n﹣2=﹣3•(﹣2)n﹣1,解得n=13.(2)令x=1,可得a0+a1+a2+⋯+a n=(1﹣2)13=﹣1.19.如图,在一个圆锥内作一个内接圆柱(圆柱下底面在圆锥的底面上,圆柱上底面的圆在圆锥的侧面上),圆锥的母线长为4,AB、CD是底面的两条直径,且AB=4,AB⊥CD,圆柱与圆锥的公共点F恰好为其所在母线PA的中点,点O是底面的圆心.(1)求圆柱与圆锥的体积的比值;(2)求异面直线OF和PC所成角的大小.解:(1)连接PO,则,∴圆锥的体积为:;∵F是PA的中点,且AB=4,∴圆柱的底面直径为2,∴圆柱的侧棱长为,∴圆柱的体积为:;则圆柱与圆锥的体积的比值为=;(2)由题可知,OC,OB,OP三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示的空间直角坐标系,则:O(0,0,0),A(0,﹣2,0),P(0,0,),F(0,﹣1,),C(2,0,0),则,所以cos<>=,∴异面直线OF和PC所成的角的大小为arccos.20.从1、3、5、7中任取2个数字,从0、2、4、6、8中任取2个数字,用这四个数字组成无重复数字的四位数,所有这些四位数构成集合M.(1)求集合M中不含有数字0的元素的个数;(2)求集合M中含有数字0的元素的个数;(3)从集合M中随机选择一个元素,求这个元素能被5整除的概率.【解答】(1)从1、3、5、7中任取2个数字为,从2、4、6、8中任取2个数字为,组成无重复数字的四位数;(2)从1、3、5、7中任取2个数字为,必选0,所以从2、4、6、8中任取1个数字为,0不排首位,先给0选个位置,剩余数字全排为;故含有数字0的元素的个数为=432;(3)能被5整除分情况讨论:①选5不选0:=108,②选0不选5:=72,③0,5都选:=120,所以能被5整除得方法数:108+72+120=300,所以能被5整除的概率.21.如图,在多面体ABC﹣A1B1C1中,AA1、BB1、CC1均垂直于平面ABC,AA1=4,CC1=3,BB1=AB=AC=BC=2.(1)求点A到平面A1B1C1的距离;(2)求平面ABC与平面A1B1C1所成锐二面角的大小;(3)求这个多面体ABC﹣A1B1C1的体积.解:(1)以点A为坐标原点,建立空间直角坐标系如图所示,则,,所以,,设平面A1B1C1的法向量为,则,即,令y=1,则z=2,,故,所以点A到平面A1B1C1的距离为=;(2)由(1)可知,平面A1B1C1的法向量为,又平面ABC的一个法向量为,所以,又平面ABC与平面A1B1C1所成的角为锐二面角,所以平面ABC与平面A1B1C1所成锐二面角的大小为;(3)过点B1作B1E∥AB交AA1于点E,过点B1作B1F∥BC交CC1于点F,取AB的中点P,连结BP,则BP⊥AC,因为AA1⊥平面ABC,且BP⊂平面ABC,则BP⊥AA1,又AA1∩AC=A,AA1,AC⊂平面AA1C1C,所以BP⊥平面AA1C1C,===,故多面体ABC﹣A1B1C1的体积为.。
高二下数学测试1(解析版)(1)
武汉外国语学校高二下数学测试1一、单选题1.吹气球时,记气球的半径r 与体积V 之间的函数关系为()r V ,()r V '为()r V 的导函数.已知()r V 在03V ≤≤上的图像如图所示,若1203V V <≤≤,则下列结论正确的是( )A .()()()()10211021r r r r --<-- B .()()12r r ''≤ C .()()121222r V r V V V r ++⎛⎫< ⎪⎝⎭ D .存在()012,V V V ∈,使得()()()21021r V r V r V V V --'=点之间的斜率,()0r V '表示00(,())C V r V 处切线的斜率,由于()012,V V V ∈,所以可以平移直线AB 使之和曲线相切,切点就是点C ,所以该选项正确.故选:D2.在1和10之间插入n 个实数,使得这()2+n 个数构成递增的等比数列,将这()2+n 个数的乘积记作n T ,则1211lg lg lg T T T +++=( )A .132B .11C .44D .521232121n n c q q qq+++⋅⋅⋅+++⋅⋅=⋅⋅⋅⋅=1134513lg 2222T ++=+++⋅⋅⋅+=3.已知()f x 满足()()0f x f x +-=,且当0x <时,21()f x x x =+,则曲线()y f x =在点()1,(1)f 处的切线方程为( )A .10x y +-=B .320x y --=C .330x y --=D .20x y --=的切线方程为()031y x -=-,整理得330x y --=﹒故选:C .4.若直线:l y x b =+与曲线y b 的取值范围是( )A .(B .C .D .||b 5.在平行六面体1111ABCD A B C D -中,14AB AD AA ===,90BAD ∠=︒,1160BAA DAA ∠==︒,则异面直线1A C 与1BC 所成角的余弦值是( )A B .23C D .13【答案】C 【详解】如下图,构建基向量AB ,AD ,1AA .则11AC A A AB AD =++,111BC AD AD AA ==+,所以22222111111()222AC AC A A AB AD A A AB AD A A AB A A AD AD AB ==++=+++⋅⋅+⋅⋅+⋅⋅161616244cos120244cos120244cos90=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒14864()42=+⨯-=,222211111()2BC BC AD AA AD AA AD AA ==+=++⋅⋅1616244cos 6043=++⨯⨯⨯︒=,1111()()AC BC A A AB AD AD AA ⋅=++⋅+11111A A AD A A AA AB AD AB AA AD AD AD AA =⋅+⋅+⋅+⋅+⋅+⋅44cos12044044cos604444cos608=⨯⨯︒-⨯++⨯⨯︒+⨯+⨯⨯︒=,所以11111183cos ,6443A C BC A C BC A C BC ⋅<>===⨯⋅.故选:C. 6.已知EF 是圆22:2430C x y x y +--+=的一条弦,且CE CF ⊥,P 是EF 的中点,当弦EF 在圆C 上运动时,直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则线段AB 长度的最小值是( )A .1B .42+2C.D .2由题可知::(1)C x -,所以点P 的轨迹方程上存在两点,A B ,使得)到直线l 的距离为7.已知抛物线2:2(0)C y px p =>的焦点为F ,直线l F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若||4AF =,则以下结论不正确的是( ) A .2p = B .F 为AD 的中点 C .||2||BD BF = D .||2BF =二、多选题9.下列函数中,既是奇函数又在区间(0,1)上单调递增的是()A.y=2x3+4x B.y=x+sin(-x)C.y=log2|x| D.y=2x-2-x答案ABD解析由奇函数的定义可知,A、B、D均为奇函数,C为偶函数,所以排除C;对于A,y′=6x2+4>0,所以y =2x 3+4x 在(0,1)上单调递增;对于B ,y ′=1-cos x ≥0,且y ′不恒为0,所以y =x +sin(-x )在(0,1)上单调递增;对于D ,y ′=2x ln 2+2-x ln 2>0,所以y =2x -2-x 在(0,1)上单调递增.故选ABD. 3.【多选题】已知ln x 1-x 1-y 1+2=0,x 2+2y 2-4-2ln 2=0,记M =(x 1-x 2)2+(y 1-y 2)2,则( ) A .M 的最小值为25B .当M 最小时,x 2=125C .M 的最小值为45D .当M 最小时,x 2=65答案 BC解析 本题考查两点间距离的最小值的相关问题,导数的应用.由ln x 1-x 1-y 1+2=0得y 1=ln x 1-x 1+2,(x 1-x 2)2+(y 1-y 2)2的最小值可转化为函数y =ln x -x +2图象上的点到直线x +2y -4-2ln 2=0上的点的距离的最小值的平方.由y =ln x -x +2得y ′=1x -1,与直线x +2y -4-2ln 2=0平行的直线的斜率为-12,则令1x -1=-12,解得x =2,∴切点坐标为(2,ln 2),∴点(2,ln 2)到直线x +2y -4-2ln 2=0的距离为|2+2ln 2-4-2ln 2|1+4=255,即函数y =ln x -x +2的图象上的点到直线x +2y -4-2ln 2=0上的点的距离的最小值为255,∴(x 1-x 2)2+(y 1-y 2)2的最小值为45.过点(2,ln 2)与直线x +2y -4-2ln 2=0垂直的直线为y -ln 2=2(x -2),即2x -y -4+ln 2=0.由⎩⎪⎨⎪⎧x +2y -4-2ln 2=0,2x -y -4+ln 2=0,解得x =125,即当M 最小时,x 2=125.故选BC.11.已知正三棱锥O ABC -的底面边长为2A ,B ,C 三点均在以O 为球心的球O的球面上,Q 是该球面上任意一点,下列结论正确的有( ▲ ) A .球O 的半径为43B .三棱锥O ABC -的内切球半径为36C .QA QB ⋅的取值范围是⎡⎢⎣⎦D .若QA ⊥平面ABC ,则异面直线AC 与QB【解析】设2,,G H O 分别为,,BC AB AQ 的中点,1O 为ABC ∆的中心,ABC S ∆=S =表,COB S ∆∴=OG =,43OB ∴==,故A 对;13V S r =表,121333r =⋅,r ∴=B 对;2221QA QB QH BH QH ⋅=-=-,4433QH ⎡∈-⎢⎣⎦,141499QA QB ⎡-+∴⋅∈⎢⎣⎦,故C错;2//,//QB O H AC HG,222222222133cos 226O H HG O G O HG O H HG ⎛+- +-∴∠===-⋅,cos θ∴=D 对. 12.已知F为双曲线22:1C x y -=的右焦点,P 在双曲线C 右支上,点2K ⎛⎫⎪ ⎪⎝⎭. 设PKF α∠=,PFK β∠=, KPF γ∠=,下列判断正确的是( ▲)A .α最大值为3πB.sin sin 2βα≤ C .tan αβ=D .存在点P 满足2γα= 【解析】过P向2x =作垂线,垂足为1P ,过P 向x 轴作垂线,垂足为2P,设直线:2PK x ty =+不妨设0t >,221x ty xy ⎧=⎪⎨⎪-=⎩,消y ,()221102t y ∴-+-=,2420t ∴∆=-=, 2t ∴=,1tan k t α∴===cos 3α∴=,cos 3α∴≥,故A错;sin 2βα≤⇔PK ≤(易得1PF PP =1PK ⇔=1PP PK ⇔≥cos 3α⇔≥,故B 对;tanαβ=⇔222PPPF KP =⇔=12⇔=(显然成立),故C 对;1sinsin sin sin 2KFPF αγγα=⇔=12sin cos 2ααα⇔=⋅cos 22P x α⇔=-⎭14cos P x α⇔=(已知cos 1α≤≤)1,44P x ⎡⇔∈⎢⎣⎦(显然成立),(也可用极限思想考虑)故D 对. 三、填空题13.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=2x -ln x ,则f ′(1)=________. 答案 2e -114.已知直线y ax b =+与曲线ln 2y a x =+相切,则223a b +的最小值为____________.15.在等比数列{}n a 中,5312a a -=,6424a a -=,记数列{}n a 的前n 项和、前n 项积分别为n S ,n T ,若()21n n S T λ+≤对任意正整数n 都成立,则实数λ的最小值为___________.122n -⋅⋅=时,()21nnS T +四、解答题17.求下列函数的导数: (1)y =sin 4x +cos 4x ;(2)y =x 3e cos x .解析 (1)∵y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =1-12sin 22x=1-14(1-cos 4x )=34+14cos 4x ,∴y ′=-sin 4x .(2)y ′=(x 3)′e cos x +x 3(e cos x )′=3x 2e cos x +x 3e cos x ·(cos x )′=3x 2e cos x -x 3e cos x sin x .18.已知函数()()1e xf x x =-.(1)求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形面积;(2)过点(),0A a 作曲线()1e xy x =-的切线,若切线有且仅有1条,求实数a 的值.【解析】(1)()()1e e e x x xf x x x =--=-',令1x =,()1e f '=-,()10f =,故曲线()y f x =在点()()1,1f 处19.已知等比数列n a 的前n 项和为n S ,且满足123112a a a -=,430S =,数列{}nb 满足:11b =,1231111123n n b b b b b n+++++=-,(*n N ∈) (1)求数列{}n a ,{}n b 的通项公式; (2)设数列{}n c 的通项()()131nn n n c a b =+-+,求数列{}n c 的前n 项和n T .【解析】(1)123112a a a -=,2111112a a q a q∴-=,220q q ∴--=, 2q ∴=或1q =-, 当1q =-时,40S =不符合,舍去, 当2q =时,()()4411411121530112a q a S a q--====--,12a ∴=,1222n nn a -∴=⋅=,,1231111123n n b b b b b n+++++=- ① 12311111231n n b b b b b n -∴++++=--, ② 2,*n n N ≥∈,∴①-②11n n n b b b n +=-,11n n b b n n+∴=+ 2,*n n N ≥∈,当1n =时,1211b b =-=,22b ∴=,21121b b ∴==,n b n ⎧⎫⎨⎬⎩⎭是常数列,1n b n ∴=,n b n ∴=. (2)()()()()1312131nnn n n n c a b n =+-+=+-+,∴当n 为偶数时,()()()()()()212471013323112n n T n n -⎡⎤=+-++-+++--++⎣⎦-1132232222n n n n ++=-++⋅=+- 当n 为奇数时,()()11339212231=2222n n n n n n T T c n n n +-=+=+--+-+--, 11392,22322,2n n n n n T n n ++⎧--⎪⎪∴=⎨⎪+-⎪⎩为奇数为偶数(或()1351321244n n n T n +⎛⎫=++⋅-- ⎪⎝⎭)21.已知函数f (x )=13x 3-12ax 2+(a -1)x +1,a 为实数. (1)当a ≤2时,讨论f (x )的单调性;(2)若f (x )在区间[1,5]上单调递减,求实数a 的取值范围.解析 (1)根据题意知f (x )定义域为R ,f ′(x )=x 2-ax +a -1=(x -1)[x -(a -1)], 当a =2时,f ′(x )=(x -1)2≥0,f (x )在R 上单调递增; 当a <2时,a -1<1,由f ′(x )>0得x >1或x <a -1, 由f ′(x )<0得a -1<x <1.∴f (x )在(-∞,a -1)与(1,+∞)上单调递增,在(a -1,1)上单调递减. 综上所述,当a =2时,f (x )在R 上单调递增;当a <2时,f (x )在(-∞,a -1)与(1,+∞)上单调递增,在(a -1,1)上单调递减. (2)由已知得f ′(x )=x 2-ax +a -1≤0在区间[1,5]上恒成立, ∴a (x -1)≥x 2-1在区间[1,5]上恒成立. 当x =1时,a ∈R ;当1<x ≤5时,a ≥x +1.而函数y =x +1在(1,5]上单调递增,当x =5时,y max =6, 则a ≥6. 综上,a ≥6.22. 已知抛物线C :()220x py p =>,F 为抛物线C 的焦点,()0,1M x 是抛物线C 上点,且2MF =;(1)求抛物线C 的方程;(2)过平面上一动点(),2P m m -作抛物线C 的两条切线P A ,PB (其中A ,B 为切点),求11AF BF+的最大值.【小问1详解】依题意得:=122p MF +=,∴2p =,∴24p =,所求抛物线2C 的方程为24x y =; 【小问2详解】抛物线2C 的方程为24x y =,即24x y =∴'2xy =,设()11,A x y ,()22,B x y ,(),2P m m -则切线P A ,PB 的斜率分别为12x ,22x .所以切线P A :()1112x y y x x -=-,∴211122x x y x y =-+,又2114x y =,11220y x x y ∴-+=,同理可得切线PB 的方程为22220y x x y -+=,因为切线P A ,PB 均过点(),2P m m -,所以112240y mx m -+-=,222240y mx m -+-=,所以()11,x y ,()22,x y 为方程2240y mx m -+-=的两组解.所以直线AB 的方程为2240y mx m -+-=. 联立方程222404y mx m x y -+-=⎧⎨=⎩,消去x 整理得()()2222420y m m y m --++-=,∴()()()222222442480m m m m m m ∆=-+--=-+≥,∴m R ∈.∴21224y y m m +=-+,()2122y y m =-由抛物线定义可知11AF y =+,21BF y =+,所以11AF BF AF BF AF BF++=,∵()()()121212111AF BF y y y y y y =++=+++2269m m =-+, ∴2223+112612+2692269m AF BF m m AF BF AF BF m m m m +-+===+-+-+,令32m t R +=∈,∴原式2111154545222621221222t t t t t +=+=++=-++-≤,即原式的最大值56+.。
2022-2023学年四川省内江市高二年级下册学期第一次月考数学(文)试题【含答案】
2022-2023学年四川省内江市高二下学期第一次月考数学(文)试题一、单选题1.命题“”的否定是( )20,10x x ∃>->A .B .20,10x x ∃≤->20,10x x ∃>-≤C .D .20,10x x ∀>-≤20,10x x ∀≤->【答案】C【分析】由特称命题的否定是全称命题即可得出答案.【详解】命题“”的否定是:.20,10x x ∃>->20,10x x ∀>-≤故选:C.2.椭圆的离心率是( )22124x y +=A B C D 【答案】A【分析】根据题意求,再求离心率即可.,,a b c【详解】由题意可得:y 轴上,则2,a b ==c ==故椭圆的离心率是22124x y +=c e a =故选:A.3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”R x ∃∈2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC A B >sin sin A B >【答案】A【分析】若为假命题,则p ,q 都是假命题,A 正确,“这棵树真高”不是命题,B 错误,否定是:p q ∨“,”,C 错误,充分必要条件,D 错误,得到答案.R x ∀∈2230x x ++≥【详解】对选项A :若为假命题,则p ,q 都是假命题,正确;p q ∨对选项B :“这棵树真高”不是命题,错误;对选项C :命题“使得”的否定是:“,”,错误;R x ∃∈2230x x ++<R x ∀∈2230x x ++≥对选项D :,则,,故,充分性;若,则A B >a b >22a b R R >sin sin A B >sin sin A B >,,则,必要性,故是充分必要条件,错误.2sin 2sin R A R B ⋅>⋅a b >A B >故选:A4.在如图所示的正方体中,异面直线与所成角的大小为( )1111ABCD A B C D -1A B 1B CA .30°B .45°C .60°D .90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接,,如图,1A D DB因为正方体中,11//A D B C 所以就是与所成的角,1BA D ∠1A B 1B C 在中,.1BA D 11A D A B BD ==∴.160BA D ∠=︒故选:C5.已知双曲线的两条渐近线相互垂直,焦距为,则该双曲线的虚轴长为()222210,0x y a b a b -=>>12( )A .B .C .D .6【答案】B【分析】分析可得,求出的值,即可得出双曲线的虚轴长.b a =b 【详解】双曲线的渐近线方程为,()222210,0x y a b a b -=>>b y x a =±由题意可知,可得,所以,,则1b ba a -⋅=-b a =6c ===b =因此,该双曲线的虚轴长为2b =故选:B.6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是( )2y mx =+2219x y n +=A .B .C .D .(]0,4()4,9[)4,9[)()4,99,∞⋃+【答案】C【分析】由题得直线所过定点在椭圆上或椭圆内,代入椭圆得到不等式,再结合椭圆焦点在()0,2轴上即可.x 【详解】直线恒过定点,若直线与椭圆总有公共点,2y mx =+()0,2则定点在椭圆上或椭圆内,,解得或,()0,241n ∴≤4n ≥0n <又表示焦点在轴上的椭圆,故,,2219x y n += x 09n <<[)4,9n ∴∈故选:C.7.已知,分别为双曲线的左、右焦点,为双曲线右支上一点,满足,1F 2F 22145x y -=M 12MF MF ⊥则的面积为( )12F MF △A .B .CD .510【答案】A 【分析】由可以求得M 在以原点为圆心,焦距为直径的圆周上,写出圆的方程,与双曲12MF MF ⊥线的方程联立求得M 的坐标,进而得到所求面积.【详解】设双曲线的焦距为,则.2c 2459c =+=因为,所以为圆与双曲线的交点.12MF MF ⊥M 229x y +=联立,解得,22229145x y x y ⎧+=⎪⎨-=⎪⎩53y =±所以的面积为.12F MF △156523⨯⨯=故选:A.【点睛】本题考查与双曲线有关的三角形面积最值问题,利用轨迹方程法是十分有效和简洁的解法.8.已知椭圆的左、右焦点分别为,过坐标原点的直线交于两点,2222:1(0)x y E a b a b +=>>12,F F E ,P Q 且,且,则椭圆的标准方程为( )22PF F Q⊥2224,6PF Q S PF F Q =+= E A .B .22143x y +=22154x y +=C .D .22194x y +=22195x y +=【答案】C【分析】根据椭圆的定义可求,结合三角形的面积可求,进而可得答案.3a =c 【详解】如图,连接,由椭圆的对称性得四边形为平行四边形,11,PF QF 12PFQF 所以,得.222126PF F Q PF PF a +=+==3a =又因为,所以四边形为矩形,设,22PF F Q ⊥12PFQF 22,==PF m QF n 则,所以得或;2142PF QS mn == 6,8,m n mn +=⎧⎨=⎩ 42m n =⎧⎨=⎩24m n =⎧⎨=⎩则,12F F =2224c b ac ==-=椭圆的标准方程为.E 22194x y +=故选:C.9.当双曲线的焦距取得最小值时,双曲线M 的渐近线方程为222:1(20)26x y M m m m -=-≤<+( )A .y =B .y =xC .y =±2xD .y =±x12【答案】C【解析】求得关于的函数表达式,并利用配方法和二次函数的性质得到取得最小值时的值,2c m m 进而得到双曲线的标准方程,根据标准方程即可得出渐近线方程【详解】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为,所以渐近线方程为y =±2x .2214y x -=故选:C .【点睛】本题考查双曲线的标准方程与几何性质,属基础题,掌握双曲线的基本量的关系是,,a b c 关键.由双曲线的方程:的渐近线可以统一由得出.22(0,0)Ax By AB λλ+=<≠220Ax By +=10.已知,是椭圆C 的两个焦点,P 为C 上一点,,若C ,则1F 2F 122PF PF =( )12F PF ∠=A .B .C .D .150︒120︒90︒60︒【答案】B【分析】根据椭圆的定义,结合余弦定理、椭圆离心率的公式进行求解即可.【详解】解:记,,由,及,得,,又由余弦定11r PF =22r PF =122r r =122r r a +=143r a =223r a=理知,得.2221212122cos 4r r r r F PF c +-⋅∠=222122016cos 499a a F PF c -⋅∠=由,从而,∴.c e a ==2279c a =2212168cos 99a a F PF ⋅∠=-121cos 2F PF ∠=-∵,∴.120180F PF ︒<∠<︒12120F PF ∠=︒故选:B11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆组成的曲线22221y x a b +=0y ≥0a b >>()2220x y b y +=<如图2所示,曲线交轴的负半轴于点,交轴的正半轴于点,点是半圆上任意一点,C C x A y G M 当点的坐标为时,的面积最大,则半椭圆的方程是()M 12⎫-⎪⎪⎭AGM A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥【答案】D【分析】由点在半圆上,可求,然后求出G ,A ,根据已知的面积最大的条12M ⎫-⎪⎪⎭b AGM 件可知,,即,代入可求,进而可求椭圆方程OM AG ⊥1OM AGk k ⋅=-a 【详解】由点在半圆上,所以,12M ⎫-⎪⎪⎭b=(0,),(,0)G a A b -要使的面积最大,可平行移动AG ,当AG 与半圆相切于时,M 到直线AG 的AGM 12M ⎫-⎪⎪⎭距离最大, 此时,即,OM AG ⊥1OM AGk k ⋅=-又,OM AG ak k b ===1,a a b =-∴==所以半椭圆的方程为()22421033x y y +=≥故选:D12.已知,为椭圆与双曲线的公共焦点,1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>是它们的一个公共点,且,,分别为曲线,的离心率,则的最小值为M 12π3F MF ∠=1e 2e 1C 2C 12e e ( )ABC .1D .12【答案】A【分析】由题可得,在中,由余弦定理得112212MF a a MF a a =+⎧⎨=-⎩12MF F △,结合基本不等式得,即可解决.2221212122cos3F F MF MF MF MF π=+-⋅⋅222121243c a a a =+≥【详解】由题知,,为椭圆与双曲线的1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>公共焦点,是它们的一个公共点,且,,分别为曲线,的离心率,M 123F MF π∠=1e 2e 1C 2C 假设,12MF MF >所以由椭圆,双曲线定义得,解得,12112222MF MF a MF MF a +=⎧⎨-=⎩112212MF a a MF a a =+⎧⎨=-⎩所以在中,,由余弦定理得12MF F △122F F c =,即222121212π2cos3F F MF MF MF MF =+-⋅⋅,()()()()22212121212π42cos3c a a a a a a a a =++--+⋅-化简得,2221243=+c a a 因为,222121243c a a a =+≥所以,212c a a ≥=12≥e e 当且仅当时,取等号,12a =故选:A二、填空题13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点2241x y +=1F 构成的的周长为__________2F 【答案】4【分析】先将椭圆的方程化为标准形式,求得半长轴的值,然后利用椭圆的定义进行转化即可求a 得.【详解】解:椭圆方程可化为,显然焦点在y 轴上,,22114x y +=1a =根据椭圆定义,121222AF AF a BF BF a+=+=,所以的周长为.2ABF 121244AF AF BF BF a +++==故答案为4.14.若命题“,”为假命题,则a 的取值范围是______.x ∀∈R 210ax ax ++≥【答案】(,0)(4,)-∞+∞ 【分析】先求得命题为真时的等价条件,取补集即可得到为假命题时的参数取值范围.【详解】当时,命题为“,”,该命题为真命题,不满足题意;0a =x ∀∈R 10≥当时,命题,可得到,解得,0a ≠R x ∀∈210ax ax ++≥2Δ400a a a ⎧=-≤⎨>⎩04a <≤故若命题“,”是假命题,则R x ∀∈210ax ax ++≥(,0)(4,)a ∈-∞+∞ 故答案为:(,0)(4,)-∞+∞ 15.已知椭圆C :,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,点A 的坐2212516x y +=1F 2F 标为(2,1),则的范围为_____.1PA PF +【答案】[10【分析】利用椭圆定义可得,再根据三角形三边长的关系可知,当共线时即1210PF PF =-2,,A P F 可取得最值.1PA PF +【详解】由椭圆标准方程可知,5,3a c ==12(3,0),(3,0)F F -又点P 在椭圆上,根据椭圆定义可得,所以12210PF PF a +==1210PF PF =-所以1210PA PF PA PF +=+-易知,当且仅当三点共线时等号成立;222AF PA PF AF -≤-≤2,,A P F=10+即的范围为.1PA PF +[10+故答案为:[1016.己知,是双曲线C 的两个焦点,P为C 上一点,且,,若1F 2F 1260F PF ∠=︒()121PF PF λλ=>C ,则的值为______.λ【答案】3【分析】根据双曲线的定义及条件,表示出,结合余弦定理求解即可.12,PF PF 【详解】由及双曲线的定义可得,12(1)PF PF λλ=>122(1)2PF PF PF aλ-=-=所以,,因为,在中,221aPF λ=-121a PF λλ=-1260F PF ∠=︒12F PF △由余弦定理可得,222222442242cos 60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----即,所以,2222(1)(1)c a λλλ-=-+2222217(1)4c e a λλλ-+===-即,解得或(舍去).231030λλ-+=3λ=13λ=故答案为:3三、解答题17.已知,,其中m >0.2:7100p x x -+<22430q :x mx m -+<(1)若m =4且为真,求x 的取值范围;p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝【答案】(1)()4,5(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)解不等式得到,,由为真得到两命题均为真,从而求出:25p x <<q :412x <<p q ∧的取值范围;x (2)由是的充分不必要条件,得到是的充分不必要条件,从而得到不等式组,求出实q ⌝p ⌝p q数m 的取值范围.【详解】(1),解得:,故,27100x x -+<25x <<:25p x <<当时,,解得:,故,4m =216480x x +<-412x <<q :412x <<因为为真,所以均为真,p q ∧,p q 所以与同时成立,:25p x <<q :412x <<故与求交集得:,25x <<412x <<45x <<故的取值范围时;x ()4,5(2)因为,,解得:,0m >22430x mx m -+<3m x m <<故,:3q m x m <<因为是的充分不必要条件,所以是的充分不必要条件,q ⌝p ⌝p q即,但,:25:3p x q m x m <<⇒<<:3q m x m <<⇒:25p x <<故或,0235m m <≤⎧⎨>⎩0235m m <<⎧⎨≥⎩解得:,523m ≤≤故实数m 的取值范围是5,23⎡⎤⎢⎥⎣⎦18.求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -【答案】(1)或22195x y+=22195y x +=(2)22168x y -=【分析】(1)根据题意求出、、的值,对椭圆焦点的位置进行分类讨论,可得出椭圆的标准a b c 方程;(2)设所求双曲线方程为,将点的坐标代入所求双曲线的方程,求出的值,()22043y x λλ-=≠M λ即可得出所求双曲线的标准方程.【详解】(1)解:由题意可知.23b c a b ⎧=⎪⎪=⎨⎪⎪=⎩32a b c =⎧⎪=⎨⎪=⎩若椭圆的焦点在轴上,椭圆的标准方程为,x 22195x y +=若椭圆的焦点在轴上,椭圆的标准方程为.y 22195y x +=综上所述,所求椭圆的标准方程为或.22195x y +=22195y x +=(2)解:设所求双曲线方程为,()22043y x λλ-=≠将点代入所求双曲线方程得,()3,2-()2223243λ-=-=-所以双曲线方程为,即.22243y x -=-22168x y -=19.已知直棱柱的底面ABCD 为菱形,且,为1111ABCD A B C D-2AB AD BD ===1AA =E 的中点.11B D (1)证明:平面;//AE 1BDC (2)求三棱锥的体积.1E BDC -【答案】(1)证明见解析(2)1【分析】(1)根据平行四边形的判定定理和性质,结合菱形的性质、线面平行的判定定理进行证明即可;(2)根据菱形的性质、直棱柱的性质,结合线面垂直的判定定理、三棱锥的体积公式进行求解即可.【详解】(1)连接AC 交BD 于点,连接,F 1C F 在直四棱柱中,,1111ABCD A B C D -11//AA CC 11=AA CC 所以四边形为平行四边形,即,,11AA C C 11//AC A C 11=AC A C 又因为底面ABCD 为菱形,所以点为AC 的中点,F 点为的中点,即点为的中点,所以,,E 11B D E 11A C 1//C E AF 1C E AF =即四边形为平行四边形,所以,1AFC E 1//AE C F 因为平面,平面,,所以平面;1C F ⊂1BDC AE ⊄1BDC //AE 1BDC (2)在直棱柱中平面,平面,1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 所以,111BB A C ⊥又因为上底面为菱形,所以,1111D C B A 1111B D A C ⊥因为平面,1111111,,B D BB B B D BB =⊂ 11BB D D 所以平面,11A C ⊥11BB D D 因为在中,,ABD △2AB AD BD ===且点为BD 的中点,所以,即FAF ==1C E =所以.11111121332E BDC C BDE BDE V V S C E --==⋅=⨯⨯=△20.已知椭圆E :.()222210x y a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直线l 与椭圆E 交()2,1M 于A ,B 两点,求AB 的长度.【答案】(1)221168x y +=【分析】(1)由待定系数法求椭圆方程.(2)运用韦达定理及弦长公式可求得结果.【详解】(1)由题意知,,,设椭圆E 的方程为.e =a=b c =222212x y b b +=将点的坐标代入得:,,所以椭圆E 的方程为.P 28b =216a=221168x y +=(2)由(1)知,椭圆E 的右焦点为,上顶点为,所以直线m 斜率为(0,,1k ==-由因为直线l 与直线m 平行,所以直线l 的斜率为,1-所以直线l 的方程为,即,()12y x -=--30x y +-=联立,可得,2211683x y y x ⎧+=⎪⎨⎪=-+⎩231220x x -+=,,,1200∆=>124x x +=1223x x =.==21.已知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于,两点,使为线段的中点,如果存在,()1,1N S T N ST 求出其方程;如果不存在,说明理由;(2)直线:与双曲线有唯一的公共点,过点且与垂直的直线分别交轴、l ()2y kx m k =+≠±M M l x 轴于,两点.当点运动时,求点的轨迹方程.y ()0,0A x ()00,B y M 00(,)P x y 【答案】(1)不能,理由见解析;(2),.22100125x y -=0y ≠【分析】(1)设出直线的方程,与双曲线方程联立,由判别式及给定中点坐标计算判断作答.ST (2)联立直线与双曲线的方程,由给定条件得到,求出的坐标及过点与直线l ()2244m k =-M M 垂直的直线方程,即可求解作答.l 【详解】(1)点不能是线段的中点,N ST 假定过点能作一条直线与双曲线交于,两点,使为线段的中点,()1,1N S T N ST 显然,直线的斜率存在,设直线的方程为,即,ST ST ()11y n x -=-1y nx n =-+而双曲线渐近线的斜率为,即,221416x y -=2±2n ≠±由得,则有,解得,2211416y nx n x y =-+⎧⎪⎨-=⎪⎩()22242(1)(1)160n x n n x n -+----=2(1)14n n n --=-4n =此时,即方程组无解,22224(1)4(4)[(1)16]4169412250n n n n '∆=----+=⨯⨯-⨯⨯<所以过点不能作一条直线与双曲线交于,两点,使为线段的中点.()1,1N S T N ST (2)依题意,由消去y 整理得,221416x y y kx m ⎧-=⎪⎨⎪=+⎩()()22242160k x kmx m ---+=因为,且是双曲线与直线唯一的公共点,2k ≠±M l 则有,即,点M 的横坐标为,()()222Δ(2)44160km k m =-+-+=()2244m k =-244km kkm =--点,,过点与直线垂直的直线为,416(,)k M m m --0km ≠M l 1614()k y x m k m +=-+因此,,,,020k x m =-020y m =-2222002224164(4)110025x y k k m m m --=-==00y ≠所以点的轨迹方程为,.00(,)P x y 22100125x y -=0y ≠22.已知椭圆:上的点到左、右焦点,的距离之和为4.C ()222210x y a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F (1)求椭圆的方程.C (2)若在椭圆上存在两点,,使得直线与均与圆相切,问:C P Q AP AQ ()222322x y r ⎛⎫-+-= ⎪⎝⎭()0r >直线的斜率是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.PQ 【答案】(1)22143x y +=(2)是定值,定值为12【分析】(1)由椭圆的定义结合性质得出椭圆的方程.C (2)根据直线与圆的位置关系得出,将直线的方程代入椭圆的方程,由韦达定理得21k k =-AP C 出坐标,进而由斜率公式得出直线的斜率为定值.,P Q PQ 【详解】(1)由题可知,所以.24a =2a =将点的坐标代入方程,得A 31,2⎛⎫⎪⎝⎭22214x y b +=23b =所以椭圆的方程为.C 22143x y +=(2)由题易知点在圆外,且直线与的斜率均存在.A ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭AP AQ 设直线的方程为,直线的方程是AP ()1312y k x -=-AQ ()2312y k x -=-由直线与圆相切,AP ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭r=r=.=21k k =-将直线的方程代入椭圆的方程,AP C 可得.()()222111113443241230k x k k x k k ++-+--=设,.因为点也是直线与椭圆的交点,(),P P P x y (),Q Q Q x y 31,2A ⎛⎫ ⎪⎝⎭AP 所以,21121412334P k k x k --=+1132P P y k x k =+-因为,所以,21k k =-21121412334Q k k x k +-=+1132Q Q y k x k =-++所以直线的斜率PQ Q P PQ Q Py y k x x -=-()112Q P Q Pk x x k x x -++=-22111111221122111122114123412323434412341233434k k k k k k k k k k k k k k ⎛⎫+----++ ⎪++⎝⎭=+----++()()22111118623424k k k k k --++=12=。
陕西省2022届高三下学期教学质量检测(二)文科数学试题(1)
一、单选题二、多选题1. ( )A.B.C .0D .12. 已知集合,,则( )A.B.C.D.3. 如图所示是一个几何体的三视图,则这个几何体外接球的表面积为A.B.C.D.4. 图(1)是由正方形和正三角形组合而成的平面图形,将三角形沿折起,使得平面平面,如图(2),则异面直线与所成角的大小为()A.B.C.D.5. 已知抛物线的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,是直线与抛物线的一个交点,若,则直线的方程为( )A.B.C.D.6. 已知集合,若中只有一个元素,则实数的值为( )A .0B .0或C .0或2D .27. 已知函数在区间上的最小值恰为,则所有满足条件的的积属于区间( )A.B.C.D.8. 赣南脐橙果大形正,橙红鲜艳,肉质脆嫩,营养价值高.快递运输过程中脐橙损失的新鲜度y 与采摘后的时间t 之间满足函数关系式:为了保证从采摘到邮寄到客户手中新鲜度不低于,则脐橙从采摘到邮寄到客户手中的时间不能超过( )(参考数据:)A .20小时B .25小时C .28小时D .35小时9. 已知,是椭圆:()与双曲线:()的公共焦点,,分别是与的离心率,陕西省2022届高三下学期教学质量检测(二)文科数学试题(1)陕西省2022届高三下学期教学质量检测(二)文科数学试题(1)三、填空题四、解答题且是与的一个公共点,满足,则下列结论中正确的是( )A.B.C .的最大值为D .的最大值为10. 已知某种袋装食品每袋质量(单位:g )X ~N (500,16).,,,则下面结论正确的是( )A.B.C .随机抽取10000袋这种食品,袋装质量在区间(492,504]的约8186袋D .随机抽取10000袋这种食品,袋装质量小于488 g 的不多于14袋11.已知数列满足,对任意都有是数列中的项,则( )A.B.C.D.12. 如图,是连接河岸与的一座古桥,因保护古迹与发展的需要,现规划建一座新桥,同时设立一个圆形保护区.规划要求:①新桥与河岸垂直;②保护区的边界为一个圆,该圆与相切,且圆心在线段上;③古桥两端和到该圆上任意一点的距离均不少于.经测量,点分别位于点正北方向、正东方向处,.根据图中所给的平面直角坐标系,下列结论中,正确的是( )A .新桥的长为B .圆心可以在点处C .圆心到点的距离至多为D .当长为时,圆形保护区的面积最大13. 已知数列为公差不为零的等差数列,其前项和为,且,,成等比数列,,则__________.14.设函数,给出下列四个结论:①;②在上单调递增;③的值域为;④在上的所有零点之和为,则正确结论的序号为______.15. 高斯函数又称为取整函数,符号表示不超过的最大整数.设是关于的方程的实数根,,.则:(1)__________;(2)__________.16.已知抛物线的焦点与椭圆的右焦点重合,椭圆的长轴长为.(1)求椭圆的方程;(2)过点且斜率为的直线交椭圆于两点,交抛物线于两点,请问是否存在实常数,使为定值?若存在,求出的值;若不存在,说明理由.17. 某学校为普及垃圾分类知识,增强学生的垃圾分类意识,在全校范围内举办了垃圾分类知识竞赛.通过选拔,仅有甲、乙两名选手进入决赛.决赛分为必答和抢答两个环节,必答环节规则:先从题库中随机选出5道题让选手作答,选手答对的题目数记为,如果,则在题库中再选1道题回答,若答对,则进入抢答环节,该轮答题结束;若,则直接进入抢答环节,其他情况下选手均不能进入抢答环节.已知甲、乙两名选手答对每道题目的概率分别为,,且两名选手每道题是否答对互不影响.(1)求甲选手进入抢答环节的概率.(2)假设两名选手均进入抢答环节,且在抢答环节中,比赛采用积分制,选手是否抢到试题是等可能的,最后分数高的获得冠军.抢答环节共3道题,每题10分,答对得10分,答错自己不得分,对方得10分(抢到的选手必须作答),记甲同学的得分为(单位:分),求的分布列及数学期望.18. 如图(1),已知边长为2的菱形ABCD中,沿对角线BD将其翻折,使,设此时AC的中点为O,如图(2).(1)求证:点O是点D在平面上的射影;(2)求点A到平面BCD的距离.19. 某温室大棚规定,一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工作作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,)近似地满足函数关系,其中,b为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);(2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值.20. 已知数列的前n项和为,且.(1)求的通项公式;(2)记,求数列的前项和.21. 设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为,N为线段AC的中点,证明:.。
2020学年山东省济宁市高二下学期期末考试数学试题(解析版)
2020学年山东省济宁市高二下学期期末考试数学试题一、 单选题1. 已知集合{}2{0,1,2,3,4},|560A B x x x ==-+>,则A B =I ( )A .{0,1}B .{4}C .{0,1,4}D .{0,1,2,3,4}【答案】 C【解析】解一元二次不等式求得集合B ,由此求得两个集合的交集. 【详解】由()()256320x x x x -+=-->,解得2x <,或3x >,故{}0,1,4A B =I .故选C. 【点睛】本小题主要考查两个集合交集的运算,考查一元二次不等式的解法,属于基础题.2.计算52752C 3A +的值是( ) A .72 B .102 C .5070 D .5100【答案】B【解析】根据组合数和排列数计算公式,计算出表达式的值. 【详解】依题意,原式227576232354426010221C A ⨯=+=⨯+⨯⨯=+=⨯,故选B. 【点睛】本小题主要考查组合数和排列数的计算,属于基础题.3.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A .a c b <<B .a b c <<C .b c a <<D .c b a <<【答案】A【解析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A. 【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4.5(12)(1)x x ++的展开式中3x 的系数为( ) A .5 B .10 C .20 D .30【答案】D【解析】根据乘法分配律和二项式展开式的通项公式,列式求得3x 的系数. 【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有3x 的为()3322335512102030C x x C x x x ⋅+⋅=+=,故展开式中3x 的系数为30,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.5.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率X 服从正态分布2(0.98)N σ,,且(0.97)0.005P X <=,则(0.970.99)P X <<=( )A .0.96B .0.97C .0.98D .0.99【答案】D【解析】根据正态分布的对称性,求得指定区间的概率. 【详解】由于0.98μ=,故(0.970.99)12(0.97)0.99P X P X <<=-⨯<=,故选D. 【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.6.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【解析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 7.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是( ) A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值 D .()f x 有最大值2,最小值75【答案】A【解析】试题分析:()2132()11x f x f x x x +==+⇒--在[)8,4--上是减函数()f x 有最大值5(8)3f -=,无最小值,故选A.【考点】函数的单调性.8.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若()22()f a f a ->,则实数a 的取值范围是( ) A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞UD .(,2)(1,)-∞-+∞U【答案】A【解析】代入特殊值对选项进行验证排除,由此得出正确选项. 【详解】若0a =,()()()20212,00,120f f f -===>符合题意,由此排除C,D 两个选项.若1a =,则()()2211f f -=不符合题意,排除B 选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.9.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式5(31)x -的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .115B .215 C .15D .415【答案】B【解析】先求得二项式5(31)x -的展开式的各项系数之和为32.然后利用列举法求得在05:一共6个数字中任选两个,和为4的概率,由此得出正确选项. 【详解】令1x =代入5(31)x -得5232=,即二项式5(31)x -的展开式的各项系数之和为32.从0,1,2,3,4,5中任取两个不同的数字方法有:01,02,03,04,05,12,13,14,15,23,24,25,34,35,45共15种,其中和为36324-=的有04,13共两种,所以恰好使该图形为“和谐图形”的概率为215,故选B. 【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.10.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。
2022-2023学年四川省内江市高二年级下册学期第一次月考数学(文)试题(二)
内江六中2022—2023学年(下)高24届第一次月考文科数学试题考试时间:120分钟 满分:150分第Ⅰ卷 选择题(满分60分)一、单选题(本大题共12小题,共60分。
在每小题列出的选项中,选出符合题目的一项)1.命题“,”的否定是( )0x ∃>210x ->A .,B .,0x ∃≤210x ->0x ∃>210x -≤C .,D .,0x ∀>210x -≤0x ∀≤210x ->2.椭圆的离心率是( )22124x y +=ABCD3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”x ∃∈R 2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC △A B >sin sin A B >4.在如图所示的正方体中,异面直线与所成角的大小为(1111ABCD A B C D -1A B 1B C )A .30°B .45°C .60°D .90°5.己知双曲线的两条渐近线相互垂直,焦距为12,则该双曲线()222210,0x y a ba b -=>>的虚轴长为( )A .6B .C .D .6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是2y mx =+2219x y n +=( )A .B .C .D .(]0,4()4,9[)4,9[)()4,99,+∞7.己知,分别为双曲线的左、右焦点,M 为双曲线右支上一点,满足1F 2F 22145x y -=,则的面积为( )12MF MF ⊥12F MF △A .5B .10C D.8.己知椭圆的左、右焦点分别为,,过坐标原点的直线()2222:10x y E a b a b +=>>1F 2F 交E 于P ,Q 两点,且,且,,则椭圆E 的标准22PF F Q ⊥24PF Q S =△226PF F Q +=方程为( )A .B .C .D .22143x y +=22154x y +=22194x y +=22195x y +=9.当双曲线的焦距取得最小值时,双曲线M 的渐近线()222:12026x y M m m m-=-≤<+方程为()A .B .C .D .y =y x =±2y x=±12y x=±10.己知,是椭圆C 的两个焦点,P 为C 上一点,,若C 的离心率为1F 2F 122PF PF =,则( )12F PF ∠=A .150°B .120°C .90°D .60°11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆22221y x a b +=0y ≥0a b >>组成的曲线G 如图2所示,曲线G 交x 轴的负半轴于点A ,交y 轴的()2220x y b y +=<正半轴于点C ,点M 是半圆上任意一点,当点M 的坐标为时,的面12⎫-⎪⎪⎭ACM △积最大,则半椭圆的方程是()A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥12.已知,为椭圆与双曲线1F 2F ()221112211:10x y C a b a b +=>>的公共焦点,M 是它们的一个公共点,且,()222222222:10,0x y C a b a b -=>>12π3F MF ∠=,的离心率,则的最小值为( )1e 2e 1C 2C 12e e A B C .1D .12第Ⅱ卷(非选择题)二、填空题(本大题共4小题,共20分)13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的2241x y +=1F 另一个焦点构成的的周长为__________.2F 14.若命题“,”为假命题,则a 的取值范围是__________.x ∀∈R 210ax ax ++≥15.己知椭圆,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,22:12516x y C +=1F 2F 点A 的坐标为,则的范围为__________.()2,11PA PF +16.己知,是双曲线C 的两个焦点,P 为C 上一点,且,1F 2F 1260F PF ∠=︒,若C ,则的值为__________.()121PF PF λλ=>λ三、解答题(本大题共6小题,共70分)17.(本题满分10分)己知,,其中.2:7100p x x -+<22:430q x mx m -+<0m >(1)若且为真,求x的取值范围;4m =p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝18.(本题满分12分)求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -19.(本题满分12分)己知直棱柱的底面ABCD 为菱形,且,1111ABCD A B C D -2AB AD BD ===E 为的中点.1AA =11B D(1)证明:平面;AE ∥1BDC (2)求三棱锥的体积.1E BDC -20.(本题满分12分)己知椭圆,且过点.()2222:10x y E a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直()2,1M 线l 与椭圆E 交于A ,B 两点,求AB 的长度.21.(本题满分12分)己知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于S ,T 两点,使N 为线段ST 的中点,()1,1N 如果存在,求出其方程;如果不存在,说明理由;(2)直线与双曲线有唯一的公共点M ,过点M 且与l 垂直的直线():2l y kx m k =+≠±分别交x 轴、y 轴于,两点,当点M 运动时,求点的轨迹方()0,0A x ()00,B y ()00,P x y 程.22.(本题满分12分)己知椭圆上的点到左、右焦点,的距离之和为()2222:10x y C a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F 4.(1)求椭圆C 的方程.(2)若在椭圆C 上存在两点P ,Q ,使得直线AP 与AQ 均与圆相切,问:直线PQ 的斜率是否为定值?若是定值,请求()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭出该定值;若不是定值,请说明理由.内江六中2022—2023学年(下)高24届第一次月考文科数学试题答案一、单选题(本大题共12小题,共60.0分。
高二文科数学期末复习卷(必修二+选修1-1前两章)
高二数学期末考试模拟测试卷一、选择题1.已知不重合的两直线1l 与2l 对应的斜率分别为1k 与2k ,则“21k k =”是“1l ∥2l ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不是充分也不是必要条件210,则实数m 的值是( ) A .16- B .4 C .16 D .813.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A.π D4.已知实数0,0,0><>c b a ,则直线0=-+c by ax 通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.若M N 、为两个定点且||6MN =,动点P 满足PM PN 0⋅=u u u r u u u r,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线6.“1x >”是“210x ->”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7表示双曲线,则实数k 的取值范围是( ) A .1k < B .13k << C .3k > D .1k <或3k >8.已知A(1,0),B(2,a),C(a ,1),若A ,B ,C 三点共线,则实数a 的值为( ) A .2 B .-2 C .D .9.已知21,F F 为双曲线222=-y x 的左,右焦点,点P 在该双曲线上,且212PF PF =,则21cos PF F ∠=( )A.41 B. 53 C. 43 D. 54 10.设曲线C 的方程为(x-2)2+(y+1)2=9,直线l 的方程为x-3y+2=0,则曲线C 上到直线l 的距离为71010的点的个数为( ) A.1 B.2 C.3 D.4 11.在正方体中,M 是棱的中点,点O 为底面ABCD 的中心,P 为棱A 1B 1上任一点,则异面直线OP 与AM 所成的角的大小为( ) A .B .C .D .12.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 为切点,若四边形PACB 的最小面积是2,则k 的值为( ). A .4 B .3 C .2 D.2 二、填空题 13.命题“4,2>++∈∀x x R x ”的否定是 .14.若原点在直线上的射影为(2,1)A -,则的方程为____________________. 15.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是 .16.已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆于A ,B 两点,且2F ∆AB 是等腰直角三角形,则椭圆的离心率是 .三、解答题17.命题p : 关于x 的不等式2240x ax ++>,对一切x R ∈恒成立; 命题q : 函数()(32)x f x a =-在R 上是增函数.若p 或q 为真, p 且q 为假,求实数a 的取值范围.18.(本小题满分12分)在平面直角坐标系中,有三个点的坐标分别是(4,0),(0,6),(1,2)A B C -. (1)证明:A ,B ,C 三点不共线;(2)求过A ,B 的中点且与直线20x y +-=平行的直线方程; (3)求过C 且与AB 所在的直线垂直的直线方程. 19.(本小题满分14分) 已知圆心C 在x 轴上的圆过点(2,2)A 和(4,0)B . (1)求圆C 的方程;(2)求过点(4,6)M 且与圆C 相切的直线方程;(3)已知线段PQ 的端点Q 的坐标为(3,5),端点P 在圆C 上运动,求线段PQ 的中点N 的轨迹. 20.(本小题满分14分)如图6,已知点C 是圆心为O 半径为1的半圆弧上从点A 数起的第一个三等分点,AB 是直径,1CD =,直线CD ⊥平面ABC .(1)证明:AC BD ⊥;(2)在DB 上是否存在一点M ,使得OM ∥平面DAC ,若存在,请确定点M 的位置,并证明之;若不存在,请说明理由; (3)求点C 到平面ABD 的距离. 21.(本小题满分14分)已知椭圆C 的两个焦点的坐标分别为E (1,0)-,F (1,0),并且经过点(22,23),M 、N 为椭圆C 上关于x 轴对称的不同两点. (1)求椭圆C 的标准方程;u u u u r u u u r(3)若12(,0),(,0)A x B x 为x 轴上两点,且122x x =,试判断直线,MA NB 的交点P 是否在椭圆C 上,并证明你的结论.22.如图,在三棱锥ABC S -中,⊥SA 底面ABC ,ο90=∠ABC ,且AB SA =, 点M 是SB 的中点,SC AN ⊥且交SC 于点N . (1)求证:⊥SC 平面AMN ;(2)当1AB BC ==时,求三棱锥SAN M -的体积.SCB AMN23.已知椭圆C :2222x y a b+=1(a>b>0),点A 、B 分别是椭圆C 的左顶点和上顶点,直线AB 与圆G :x 2+y 2=24c (c 是椭圆的半焦距)相离,P 是直线AB 上一动点,过点P 作圆G 的两切线,切点分别为M 、N.(1)若椭圆C 经过两点421,3⎛⎫ ⎪ ⎪⎝⎭、33,13⎛⎫⎪ ⎪⎝⎭,求椭圆C 的方程; (2)当c 为定值时,求证:直线MN 经过一定点E ,并求OP uuu r ·OE uuu r的值(O 是坐标原点);(3)若存在点P 使得△PMN 为正三角形,试求椭圆离心率的取值范围..参考答案1.A 【解析】试题分析:前提是两条不重合的直线,所以当12k k =时,有12//l l ,但当12//l l 时,却得不到12k k =,因为当两条直线平行但斜率不存在时,谈不上斜率的问题,如直线1x =与直线2x =平行,却得不出直线的斜率,故“12k k =”是“12//l l ”的充分不必要条件,选A.考点:1.充分必要条件;2.两直线平行的条件. 2.C 【解析】,可得229,(0)a b m m ==>,而210c =,所以由222c a b =+可得2952516m m +==⇒=,故选C.考点:双曲线的定义及其标准方程. 3.C 【解析】1的圆柱,所以C.考点:1.三视图;2.空间几何体的结构特征;3.空间几何体的侧面积. 4.C 【解析】试题分析:由0ax by c +-=得因为0,0,0a b c ><>,所以直线0ax by c +-=通过一、三、四象限,选C. 考点:确定直线位置的几何要素.5.A 【解析】试题分析:当P 与点M N 、•不重合时,由PM PN 0⋅=u u u r u u u r可知PM PN ⊥,即90MPN ∠=︒,而点M N 、•为定点,所以动点P 的轨迹是以MN 为直径的圆(除点M N 、•外),而当P 与点M N 、•重合时,显然满足PM PN 0⋅=u u u r u u u r,综上可知,动点P 的轨迹是圆,选A.考点:动点的轨迹问题. 6.A 【解析】试题分析:由210x ->可以解得1x <-或1x >,所以“1x >”是“210x ->”的充分不本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
上海市七宝 2021-2022学年高二下学期期末考试数学试卷
七宝中学2021学年第二学期高二年级期末考试数学试卷出卷人 卜照泽 审卷人 尹赵 本场考试时间120分钟,满分150分.一、填空题(本大题共12小题,满分54分,第16题每题4分,712题每题5分)1. 在5(1的展开式中,2x 的系数为 .(用数字作答)2. 将5个人排成一排,若甲和乙须排在在一起,则有 种不同的排法.(用数字作答)3. 某校有高一、高二、高三三个年级,其人数之比为2:2:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,现从所抽取样本中选两人做问卷调查,至少有一个是高一学生的概率为 .4. 已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m ,n 的比值mn= .5. 抗击疫情期间,小志参与了社区志愿者工作.现在要对服务时长排名前20%的志愿者进行表彰.该社区的志愿者服务时长(单位:小时)如下:186.0 102.0 22.0 64.0 36.0 68.0 106.0 126.0 110.0 210.0 124.0 226.0 154.0 230.0 58.0 162.0 70.0 162.0 166.0 16.0 根据以上数据,该社区志愿者服务时长的第80百分位数是 .(精确到0.1) 6.某学校从4名男生和2名女生中任选3人作为参加两会的志愿者,设随机变量X 表示所选3人中女生的人数,则()1P X ≤= .7. 某新能源汽车销售公司统计了某款汽车行驶里程x (单位:万千米)对应维修保养费用y (单位:万元)的四组数据,这四组数据如下表:若用最小二乘法求得回归直线方程为ˆ0.58yx b =+,则估计该款汽车行驶里程为6万千米时的维修保养费是 .8. 新冠肺炎疫情发生后,我国加紧研发新型冠状病毒疫苗,某医药研究所成立疫苗研发项目,组建甲、乙两个疫苗研发小组,且两个小组独立开展研发工作.已知甲小组研发成功的概率为23,乙小组研发成功的概率为12.在疫苗研发成功的情况下,是由甲小组研发成功的概率为 .9.小强对重力加速度做n 次实验,若以每次实验的平均值作为重力加速度的估值,已知估值的误差290,n N n ⎛⎫⎪⎝∆⎭~,为使误差n ∆在()0.5.0.5−内的概率不小于0.6827 ,小强至少需要做 次实验.(参考数据:若()2,X N μσ~,()0.6827P X μσμσ−≤≤+=) 10. 设随机变量X ,Y 满足:31Y X =−,()2,XB p ,若()519P X ≥=,则[]D Y = . 11. 设随机事件A 、B ,己知()0.4P A =,()0.3P B A =,()0.2P B A =,则()P B = . 12.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为1p 、2p 、3p ,且3210p p p >>>.记该棋手连胜两盘且在第二盘与甲、乙、丙比赛的概率分别为p 甲、p 乙、p 丙,则p 甲、p 乙、p 丙的大小关系为 .二、选择题:(本大题共4小题,每题5分,满分20分)13. 在进行n 次重复试验中,事件A 发生的频率为mn,当n 很大时,事件A 发生的概率()P A 与mn的关系是 ( )A .()P A mn≈ B .()m P A n < C .()m P A n > D .()m P A n =14.若二项式1()2n x −展开式中所有项的系数之和为n a ,所有项的系数绝对值之和为n b ,二项式系数之和为n c ,则下列结论不成立的是 ( )A .n n n a b c <<B .103n n n n b a a b +≥C .对任意,1N n n ∈≥均有n n n a b c +≤D .存在,1N n n ∈≥使得n n n a b c +>15. 由于疫情各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为 ( )附:()()()()()22n ad bc K a b c d a c b d −=++++,其中n a b c d =+++.A .130 16.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1n i i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==−∑.命题1:若1(1,2,,)i p i n n==,则()H X 随着n 的增大而增大;命题2:若2n m =,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +−==+=,则()()H X H Y ≤.则以下结论正确的是 ( ) A .命题1正确,命题2错误 B .命题1错误,命题2正确 C .两个命题都错误 D .两个命题都正确 三、解答题(本大题共5题,满分76分)17. (本题满分14分,第1小题6分,第2小题8分) 求满足下列方程组的正整数的解: (1)32228n n P P =;(2)112311n n n nn n n n C C C C +−−+++−=+.18.(本题满分14分,第1小题6分,第2小题8分) 已知()(31),,1N n f x x n n =−∈≥.(1)若()f x 的二项展开式中只有第7项的二项式系数最大,求展开式中2x 的系数; (2)若2023n =,且()2023220230122023(31)f x x a a x a x a x =−=++++,求012023a a a +++.19.(本题满分14分,第1小题7分,第2小题7分)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m 名学生进行体育测试.根据体育测试得到了这m 名学生的各项平均成绩(满分100分),按照以下区间分为7组:[)30,40,[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,并得到频率分布直方图(如).已知测试平均成绩在区间[)30,60内的有20人.(1)求m 的值及中位数n ;(2)若该校学生测试平均成绩小于n ,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?20. (本题满分16分,第1小题4分,第2小题6分,第3小题6分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.设每场比赛双方获胜的概率都为12.经抽签,甲、乙首先比赛,丙轮空.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.21. (本题满分18分,第1小题4分,第2小题6分,第3小题8分)2022年冬奥会刚刚结束,比赛涉及到的各项运动让人们津津乐道.高山滑雪(Alpine Skiing)是以滑雪板、雪鞋、固定器和滑雪杖为主要用具,从山上向山下,沿着旗门设定的赛道滑下的雪上竞速运动项目.冬季奥运会高山滑雪设男子项目、女子项目、混合项目.其中,男子项目设滑降、回转、大回转、超级大回转、全能5个小项,其中回转和大回转属技术项目.现有90名运动员参加该项目的比赛,组委会根据报名人数制定如下比赛规则:根据第一轮比赛的成绩,排名在前30位的运动员进入胜者组,直接进入第二轮比赛,排名在后60位的运动员进入败者组进行一场加赛,加赛排名在前10位的运动员从败者组复活,进入第二轮比赛.现已知每位参赛运动员水平相当.(1)求每位运动员进入胜者组的概率,及每位败者组运动员复活的概率;(2)从所有参赛的运动员中随机抽取5人,设这5人中进入胜者组的人数为X,求X的分布列和数学期望;(3)从败者组中选取10人,其中最有可能有多少人能复活?试用你所学过的数学和统计学理论进行分析.。
【解析版】数学高二下期末阶段练习(课后培优)(1)
一、选择题1.已知函数()()sin f x A x ωϕ=+(A 、ω、ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )A .()()()220f f f -<<B .()()()220f f f <-<C .()()()202f f f -<<D .()()()022f f f <-<2.已知向量a 、b 、c 满足a b c +=,且::1:1:2a b c =a 、b 夹角为( ) A .4π B .34π C .2π D .23π 3.将函数sin()cos()22y x x ϕϕ=++的图象沿x 轴向右平移8π个单位后,得到一个偶函数的图象,则ϕ的取值不可能是( )A .54π-B .4π-C .4π D .34π 4.非零向量a b ,满足:a b a -=,()0a a b ⋅-=,则a b -与b 夹角的大小为 A .135° B .120° C .60° D .45°5.已知P (14,1),Q (54,-1)分别是函数()()cos f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图象上相邻的最高点和最低点,则ωϕ-=( ) A .54π-B .54πC .-34π D .34π 6.已知a R ∈,则“cos 02πα⎛⎫+> ⎪⎝⎭”是“α是第三象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.函数()sin()A f x x ωϕ=+(0,)2πωϕ><的部分图象如图所示,则()f π=( )A .4B .23C .2D .38.已知函数()(0,0)y sin x ωθθπω=+<为偶函数,其图象与直线1y =的某两个交点横坐标为1x 、2x ,若21x x -的最小值为π,则( ) A .2,2πωθ==B .1,22==πωθ C .1,24==πωθ D .2,4==πωθ9.将函数y =2sin (ωx +π6)(ω>0)的图象向右移2π3个单位后,所得图象关于y 轴对称,则ω的最小值为 A .2 B .1 C .12 D .1410.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c 的最大值是( ) A .1B .2C .D .11.已知角6πα-的顶点在原点,始边与x 轴正半轴重合,终边过点()5,12P -, 则7cos 12πα⎛⎫+= ⎪⎝⎭( ) A .17226-B .7226-C .226D .22612.已知4sin 5α,并且α是第二象限的角,那么tan()απ+的值等于 A .43-B .34-C .34D .4313.已知f (x )=A sin(ωx+θ)(ω>0),若两个不等的实数x 1,x 2∈()2A x f x ⎧⎫=⎨⎬⎩⎭,且|x 1-x 2|min =π,则f (x )的最小正周期是( ) A .3πB .2πC .πD .π214.已知tan 3a =,则21cos sin 22a a +=() A .25-B .3C .3-D .2515.设0002012tan15cos 22,,21tan 15a b c ===+,则有( ) A .c a b <<B .a b c <<C .b c a <<D .a c b <<二、填空题16.已知24sin 225θ=,02πθ⎛⎫<< ⎪⎝⎭4πθ⎛⎫- ⎪⎝⎭的值为_______________.17.已知向量a ,b 满足1a =,且()2a a b b -==,则向量a 与b 的夹角是__________.18.已知角θ的终边上的一点P 的坐标为()3,4,则cos 21sin 2θθ=+________________.19.函数()211sinsin (0)222x f x x ωωω=+->,若函数()f x 在区间x ∈(),2ππ内没有零点,则实数ω的取值范围是_____20.三棱锥V-ABC 的底面ABC 与侧面VAB 都是边长为a 的正三角形,则棱VC 的长度的取值范围是_________.21.在矩形ABCD 中, 3AB =, 1AD =,若M , N 分别在边BC , CD 上运动(包括端点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是__________.22.设(1,3,2)a =-,(2,+1,1)b m n =-,且a //b ,则实数m n -=_____.23.为得到函数2y sin x =的图象,要将函数24y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移至少__________个单位. 24.已知已知sin π3()25α+=,α∈π(0,)2,则sin(π+α)等于__________25.已知向量()()121a b m =-=,,,,若向量a b +与a 垂直,则m =______. 三、解答题26.已知点(2,0)A -,(1,9)B ,(,)C m n ,O 是原点. (1)若点,,A B C 三点共线,求m 与n 满足的关系式; (2)若AOC ∆的面积等于3,且AC BC ⊥,求向量OC . 27.已知4a =,3b =,()()23261a b a b -⋅+=. (1)求向量a 与b 的夹角θ;(2)若()1c ta t b =+-,且0b c ⋅=,求实数t 的值及c . 28.已知函数()2sin 22cos 6f x x x π⎛⎫=-- ⎪⎝⎭. (1)求函数()f x 的单调增区间; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 29.已知圆.(1)求过点(3,0)Q 的圆C 的切线l 的方程;(2)如图,(1,0),A M 定点为圆C 上一动点,点P 在AM 上,点N 在CM 上,且满足2,0,AM AP NP AM =⋅=求N 点的轨迹.30.如图所示,函数()2cos (,0.0)2y x x R πωθωθ=+∈>≤≤的图象与y 轴交于点()0,3,且该函数的最小正周期为π.(1)求θ和ω的值; (2)已知点πA ,02⎛⎫⎪⎝⎭,点P 是该函数图象上一点,点00(,)Q x y 是PA 的中点,当003,,22y x ππ⎡⎤=∈⎢⎥⎣⎦时,求0x 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.C3.C4.A5.B6.B7.A8.A9.B10.C11.B12.A13.A14.D15.A二、填空题16.【解析】【分析】由三角函数的基本关系式和正弦的倍角公式求得再由两角差的余弦函数的公式即可求解【详解】由即则又由所以又由【点睛】本题主要考查了三角函数的基本关系式以及正弦的倍角公式和两角差的余弦公式的17.【解析】【分析】先根据条件得再根据向量夹角公式求结果【详解】因为且所以因此【点睛】求平面向量夹角方法:一是夹角公式;二是坐标公式;三是几何方法从图形判断角的大小18.【解析】分析:由角的终边上的一点的坐标为求出的值利用将的值代入即可得结果详解:角的终边上的一点的坐标为那么故答案为点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式属于中档题给值求值问题求19.【解析】分析:先化简函数f(x)再求得再根据函数在区间内没有零点得到不等式组最后解不等式组即得w的范围详解:由题得f(x)=因为所以当或时f(x)在内无零点由前一式得即由k=0得K取其它整数时无解同20.【解析】分析:设的中点为连接由余弦定理可得利用三角函数的有界性可得结果详解:设的中点为连接则是二面角的平面角可得在三角形中由余弦定理可得即的取值范围是为故答案为点睛:本题主要考查空间两点的距离余弦定21.19【解析】设则也即是化简得到其中故填点睛:向量数量积的计算有3个基本的思路:(1)基底法:如果题设中有一组不共线的向量它们的模长和夹角已知则其余的向量可以用基底向量去表示数量积也就可以通过基底向量22.8【解析】由题意得23.【解析】函数的解析式:则要将函数的图象向右平移至少个单位点睛:由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0ω>0)(x∈R)的图象要特别注意:当周期变换和相位变换的先后顺序24.【解析】由题意得25.【解析】利用平面向量的加法公式可得:由平面向量垂直的充要条件可得:解方程可得:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】依题意得,函数f (x )的周期为π, ∵ω>0,∴ω=2ππ=2.又∵当x=23π 时,函数f (x )取得最小值, ∴2×23π +φ=2kπ+32π ,k ∈Z ,可解得:φ=2kπ+6π,k ∈Z , ∴f (x )=Asin (2x+2kπ+6π)=Asin (2x+6π). ∴f (﹣2)=Asin (﹣4+6π)=Asin (6π﹣4+2π)>0. f (2)=Asin (4+6π)<0, f (0)=Asin 6π=Asin 56π>0, 又∵32π>6π﹣4+2π>56π>2π,而f (x )=Asinx 在区间(2π,32π)是单调递减的,∴f (2)<f (﹣2)<f (0). 故选:B .2.C解析:C 【解析】 【分析】对等式a b c +=两边平方,利用平面向量数量积的运算律和定义得出0a b ⋅=,由此可求出a 、b 的夹角. 【详解】等式a b c +=两边平方得2222a a b b c +⋅+=,即2222cos a b b c a θ+⋅+=,又::1:1:a b c =0a b ⋅=,a b ∴⊥,因此,a 、b 夹角为2π,故选:C. 【点睛】本题考查平面向量夹角的计算,同时也考查平面向量数量积的运算律以及平面向量数量积的定义,考查计算能力,属于中等题.3.C解析:C 【解析】试题分析:()1sin()cos()sin 2222y x x x ϕϕϕ=++=+将其向右平移8π个单位后得到:11sin 2sin 22824y x x ππϕϕ⎛⎫⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若为偶函数必有:()42k k Z ππϕπ-=+∈,解得:()34k k Z πϕπ=+∈,当0k =时,D 正确,1k =-时,B 正确,当2k =-时,A 正确,综上,C 错误. 考点:1.函数的图像变换;2.函数的奇偶性.4.A解析:A 【解析】 【分析】先化简()0a a b ⋅-=得2=a a b ⋅,再化简a b a -=得2b a =,最后求a b -与b 的夹角. 【详解】因为()0a a b ⋅-=,所以220=a a b a a b -⋅=∴⋅,,因为a b a -=,所以2222a a a b b =-⋅+, 整理可得22b a b =⋅, 所以有2b a =,设a b -与b 的夹角为θ,则()2cos a b b a b b a b ba bθ-⋅⋅-===-222222||a a =-, 又0180θ︒≤≤︒,所以135θ=︒, 故选A . 【点睛】本题主要考查数量积的运算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.B解析:B 【解析】【分析】由点P,Q 两点可以求出函数的周期,进而求出ω,再将点P 或点Q 的坐标代入,求得ϕ,即求出ωϕ-. 【详解】 因为512244πω⎛⎫-=⎪⎝⎭,所以ωπ=,把1,14P ⎛⎫ ⎪⎝⎭的坐标代入方程()cos y x πϕ=+,得 ()24k k Z ϕππ=-+∈,因为2πϕ<,所以5,44ππϕωϕ=--=,故选B . 【点睛】本题主要考查利用三角函数的性质求其解析式.6.B解析:B 【解析】 【分析】 先化简“cos 02πα⎛⎫+> ⎪⎝⎭”,再利用充要条件的定义判断. 【详解】 因为cos 02πα⎛⎫+> ⎪⎝⎭,所以-sin 0,sin 0,ααα>∴<∴是第三、四象限和y 轴负半轴上的角.α是第三、四象限和y 轴负半轴上的角不能推出α是第三象限角,α是第三象限角一定能推出α是第三、四象限和y 轴负半轴上的角,所以“cos 02πα⎛⎫+>⎪⎝⎭”是“α是第三象限角”的必要非充分条件. 故答案为:B. 【点睛】(1)本题主要考查充要条件的判断和诱导公式,考查三角函数的值的符号,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 判定充要条件常用的方法有定义法、集合法、转化法.7.A解析:A 【解析】试题分析:根据题意,由于函数()sin()A f x x ωϕ=+(0,)2πωϕ><,那么根据图像可知周期为2π,w=4,然后当x=6π,y=2,代入解析式中得到22sin(4)6πϕ=⨯+,6πϕ=-,则可知()f π=4,故答案为A.考点:三角函数图像点评:主要是考查了根据图像求解析式,然后得到函数值的求解,属于基础题.8.A解析:A 【解析】分析:首先根据12x x -的最小值是函数的最小正周期,求得ω的值,根据函数是偶函数,求得θ的值,从而求得正确的选项.详解:由已知函数sin()(0)y x ωθθπ=+<<为偶函数,可得2πθ=,因为函数sin()(0)y x ωθθπ=+<<的最大值为1,所以21x x -的最小值为函数的一个周期,所以其周期为T π=,即2=ππω,所以=2ω,故选A.点睛:该题考查的是有关三角函数的有关问题,涉及到的知识点有函数的最小正周期的求法,偶函数的定义,诱导公式的应用,正确使用公式是解题的关键,属于简单题目.9.B解析:B 【解析】 将函数y =2sin (ωx +π6)(ω>0)的图象向右移2π3个单位后,可得y =2sin (ωx –2π3ω+π6)的图象,再根据所得图象关于y 轴对称,∴–2π3ω+π6=kπ+π2,k ∈Z ,即ω=–31–22k ,∴当k =–1时,ω取得最小值为1,故选B . 10.C解析:C 【解析】 【分析】 【详解】 试题分析:由于垂直,不妨设,,,则,,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C .考点:平面向量数量积的运算.11.B解析:B【解析】分析:利用三角函数的定义求得66cos sin ππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 结果,进而利用两角和的余弦函数公式即可计算得解.详解:由三角函数的定义可得512,613613cos sin ππαα⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, 则773cos cos cos 12661264ππππππααα⎛⎫⎛⎫⎛⎫+=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭33=cos cos sin sin 6464ππππαα⎛⎫⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭512=1313⎛⎛⎫--= ⎪ ⎝⎭⎝⎭ 点睛:本题考查任意角的三角函数的定义,两角和与差的余弦函数公式,考查了计算能力和转化思想,属于基础题.12.A解析:A 【解析】 【分析】由诱导公式可得()tan tan παα+=,由角的正弦值和角所在的象限,求出角的余弦值,然后,正弦值除以余弦值得正切值.即可得到答案 【详解】 ∵4sin 5α=,并且α是第二象限的角,,35cos α∴-= , ∴tanα=43-,则么()4tan tan 3παα+==-. 故选A . 【点睛】本题考查给值求值问题.掌握同角三角函数的基本关系式和诱导公式,并会运用它们进行简单的三角函数式的化简、求值及恒等式证明.13.A解析:A 【解析】 【分析】 由题意可得123ππω⨯=,求得ω的值,可得()f x 的最小正周期是2πω的值 【详解】由题意可得()1sin 2x ωθ+=的解为两个不等的实数1x ,2x且123ππω⨯=,求得23ω= 故()f x 的最小正周期是23ππω=故选A 【点睛】本题主要考查了的是三角函数的周期性及其图象,解题的关键根据正弦函数的图象求出ω的值,属于基础题14.D解析:D 【解析】 【分析】根据正弦的倍角公式和三角函数的基本关系式,化为齐次式,即可求解,得到答案. 【详解】由题意,可得222221cos sin cos cos sin 2cos sin cos 2cos sin a a a a a a a a a a++=+=+221tan 1321tan 135a a ++===++,故选D .【点睛】 本题主要考查了正弦的倍角公式,以及三角函数的基本关系式的化简、求值,着重考查了推理与运算能力,属于基础题.15.A解析:A 【解析】 【分析】利用两角差的正弦公式化简a ,分子分母同乘以2cos 15结合二倍角的正弦公式化简b ,利用降幂公式化简c ,从而可得结果. 【详解】()sin 302sin28a =︒-︒=︒ ,222sin15cos15sin 30cos 15cos 15b ==+sin28a >=sin25sin28,c a b a c ==︒<︒=∴>>,故选A.【点睛】本题主要考查二倍角的正弦公式、二倍角的余弦公式,两角差的正弦公式,意在考查综合运用所学知识解答问题的能力,属于中档题.二、填空题16.【解析】【分析】由三角函数的基本关系式和正弦的倍角公式求得再由两角差的余弦函数的公式即可求解【详解】由即则又由所以又由【点睛】本题主要考查了三角函数的基本关系式以及正弦的倍角公式和两角差的余弦公式的解析:75【解析】 【分析】由三角函数的基本关系式和正弦的倍角公式,求得249(cos sin )25θθ+=,再由两角差的余弦函数的公式,即可求解. 【详解】 由24sin 225θ=,即242sin cos 25θθ=, 则2222449(cos sin )cos 2sin cos sin 12525θθθθθθ+=++=+=, 又由02πθ<<,所以cos 0,sin 0θθ>>,7cos()cos sin 45πθθθ-=+=.【点睛】本题主要考查了三角函数的基本关系式,以及正弦的倍角公式和两角差的余弦公式的化简、求值,着重考查了推理与运算能力,属于基础题.17.【解析】【分析】先根据条件得再根据向量夹角公式求结果【详解】因为且所以因此【点睛】求平面向量夹角方法:一是夹角公式;二是坐标公式;三是几何方法从图形判断角的大小 解析:120︒【解析】 【分析】先根据条件得a b ⋅,再根据向量夹角公式求结果. 【详解】因为1a =,且()2a a b ⋅-=,所以2-2,121,a a b a b ⋅=∴⋅=-=- 因此112πcos ,,1223a b a b a b a b⋅-===-∴=⨯⋅. 【点睛】求平面向量夹角方法:一是夹角公式cos a b a bθ⋅=⋅;二是坐标公式cos θ=;三是几何方法,从图形判断角的大小.18.【解析】分析:由角的终边上的一点的坐标为求出的值利用将的值代入即可得结果详解:角的终边上的一点的坐标为那么故答案为点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式属于中档题给值求值问题求解析:17-【解析】分析:由角θ的终边上的一点P 的坐标为()3,4,求出,cos sin θθ的值,利用2cos 212sin 1212cos sin sin θθθθθ-=++,将,cos sin θθ的值代入即可得结果. 详解:角θ的终边上的一点P 的坐标为()3,4,43,cos 55y x sin r r θθ∴====, 那么216712cos 212sin 1252543491212cos 7125525sin sin θθθθθ-⨯--====-+++⨯⨯,故答案为17-. 点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式,属于中档题.给值求值问题,求值时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.19.【解析】分析:先化简函数f(x)再求得再根据函数在区间内没有零点得到不等式组最后解不等式组即得w 的范围详解:由题得f(x)=因为所以当或时f(x)在内无零点由前一式得即由k=0得K 取其它整数时无解同解析:][1150,,848⎛⎤⋃ ⎥⎝⎦【解析】分析:先化简函数f(x) )24wx π=-,再求得(,2),444wx w w πππππ-∈--再根据函数()f x 在区间x ∈ (),2ππ内没有零点得到不等式组,最后解不等式组即得w 的范围. 详解:由题得f(x)=1cos 1111sin sin cos )222224wx wx wx wx wx π-+-=-=-, 因为x ∈ (),2ππ,所以(,2),444wx w w πππππ-∈--当(,2)(2,2),44w w k k k z πππππππ--⊆+∈或(,2)(2,2),44w w k k k z πππππππ--⊆-∈时,f(x)在(),2ππ内无零点,由前一式得24,224k w w k πππππππ⎧≤-⎪⎪⎨⎪-≤+⎪⎩即152,48k w k +≤≤+由k=0得1548w ≤≤, K 取其它整数时无解,同理,由后一式,解得1(0,]8w ∈, 综上,w 的取值范围是][1150,,848⎛⎤⋃ ⎥⎝⎦. 点睛:(1)本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题的关键有两点,其一是分析得到当(,2)(2,2),44w w k k k z πππππππ--⊆+∈或(,2)(2,2),44w w k k k z πππππππ--⊆-∈时,f(x)在(),2ππ内无零点,其二是进一步转化得到不等式组解不等式组. 20.【解析】分析:设的中点为连接由余弦定理可得利用三角函数的有界性可得结果详解:设的中点为连接则是二面角的平面角可得在三角形中由余弦定理可得即的取值范围是为故答案为点睛:本题主要考查空间两点的距离余弦定解析:)【解析】分析:设AB 的中点为D ,连接,,VD CD VC ,由余弦定理可得22233cos 22VC a a VDC =-∠,利用三角函数的有界性可得结果. 详解:设AB 的中点为D , 连接,,VD CD VC,则VD VC ==VDC ∠是二面角V AB C --的平面角, 可得0,1cos 1VDC VDC π<∠<-<∠<,在三角形VDC 中由余弦定理可得,2222cos VC VDC ⎫⎫=+-∠⎪⎪⎪⎪⎝⎭⎝⎭ 2233cos 22a a VDC =-∠22030VC a VC <<⇒<<,即VC的取值范围是(),为故答案为().点睛:本题主要考查空间两点的距离、余弦定理的应用,意在考查空间想象能力、数形结合思想的应用,属于中档题.21.19【解析】设则也即是化简得到其中故填点睛:向量数量积的计算有3个基本的思路:(1)基底法:如果题设中有一组不共线的向量它们的模长和夹角已知则其余的向量可以用基底向量去表示数量积也就可以通过基底向量解析:[1,9] 【解析】设,BM BC CN CD λλ==,则()()··AM AN AB BM AD DN =++,也即是()()··1AM AN AB BC AD DC λλ⎡⎤=++-⎣⎦,化简得到·98AM AN λ=-,其中[]0,1λ∈,故[]·1,9AM AN ∈,填[]1,9.点睛:向量数量积的计算有3个基本的思路:(1)基底法:如果题设中有一组不共线的向量,它们的模长和夹角已知,则其余的向量可以用基底向量去表示,数量积也就可以通过基底向量间的运算去考虑;(2)坐标法:建立合适的坐标系,把数量积的计算归结为坐标的运算;(2)靠边靠角转化:如果已知某些边和角,那么我们在计算数量积时尽量往这些已知的边和角去转化.22.8【解析】由题意得解析:8 【解析】 由题意得2115,3,8132m n m n m n +-==∴==--=- 23.【解析】函数的解析式:则要将函数的图象向右平移至少个单位点睛:由y =sinx 的图象利用图象变换作函数y =Asin(ωx +φ)(A >0ω>0)(x ∈R)的图象要特别注意:当周期变换和相位变换的先后顺序解析:8π 【解析】 函数的解析式:sin 2sin 248y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭. 则要将函数24y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移至少8π个单位. 点睛:由y =sin x 的图象,利用图象变换作函数y =A sin(ωx +φ)(A >0,ω>0)(x ∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再平移变换,平移的量是ϕω个单位.24.【解析】由题意得解析:4-5【解析】 由题意得3π44cos ,(0,)sin ,sin(π)sin 5255ααααα=∈∴=+=-=- 25.【解析】利用平面向量的加法公式可得:由平面向量垂直的充要条件可得:解方程可得: 解析:7【解析】利用平面向量的加法公式可得:()1,3a b m +=-+,由平面向量垂直的充要条件可得:()()()()1,31,2160a b a m m +⋅=-+⋅-=--++=, 解方程可得:7m =.三、解答题 26.(1)360n m --=(2)()4,3OC =或()5,3OC =- 【解析】 【分析】(1)由题意结合三点共线的充分必要条件确定m ,n 满足的关系式即可; (2)由题意首先求得n 的值,然后求解m 的值即可确定向量的坐标. 【详解】(1)()3,9AB =,()2,AC m n =+, 由点A ,B ,C 三点共线,知AB ∥AC , 所以()3920n m -+=,即360n m --=; (2)由△AOC 的面积是3,得1232n ⨯⨯=,3n =±, 由AC BC ⊥,得0AC BC ⋅=,所以()()2,1,90m n m n +⋅--=,即22920m n m n ++--=, 当3n =时,2200m m +-=, 解得4m =或5m =-, 当3n =-时,2340m m ++=,方程没有实数根, 所以()4,3OC =或()5,3OC =-. 【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.27.(1)23πθ=;(2)35t =,c =63. 【解析】 【分析】(1)由向量的数量积,代值计算即可; (2)由数量积为0,代入计算即可. 【详解】(1)因为()()23261a b a b -⋅+= 故2244361a a b cos b θ-⋅-=解得:12cos θ=-因为[]0,θπ∈,所以23πθ=. (2)0b c ⋅= 则()()10b ta t b ⋅+-=()210ta b t b ⋅+-=化简得:159t = 解得:35t = 此时3255c a b =+ 23255a b ⎫+⎪⎭ 224122525a b a b ++⋅【点睛】本题考查向量数量积的运算,属基础题.28.(1)()π5ππ,π1212k k k Z ⎡⎤-+∈⎢⎥⎣⎦;(2)512⎡⎤-⎢⎥⎣⎦.【解析】 【分析】 化简()f x 解析式.(1)根据三角函数单调区间的求法,求得函数()f x 的单调增区间;(2)根据三角函数值域的求法,求得函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【详解】 依题意()()ππsin 2cos cos 2sin 1cos 266f x x x x =--+33sin 2cos 2122x x =--π3sin 213x ⎛⎫=-- ⎪⎝⎭.(1)由πππ2π22π232k x k -+≤-≤+,解得π5πππ1212k x k -≤≤+,所以()f x 的单调增区间为()π5ππ,π1212k k k Z ⎡⎤-+∈⎢⎥⎣⎦. (2)由于π02x ≤≤,所以ππ2π2333x -≤-≤,所以π53sin 21,3132x ⎛⎫⎡⎤--∈-- ⎪⎢⎥⎝⎭⎣⎦.所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为5,312⎡⎤--⎢⎥⎣⎦. 【点睛】本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查三角函数值域的求法,考查运算求解能力,属于基础题.29.(1),(2)【解析】 【分析】 【详解】(1)由题意知所求的切线斜率存在,设其方程为,即; 由得,解得, 从而所求的切线方程为,.(2)∴NP 为AM 的垂直平分线,∴|NA|=|NM|. 又∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆. 且椭圆长轴长为焦距2c=2.∴点N 的轨迹是方程为30.(1)πθ6=.ω2=.(2)023x π=,或034x π=. 【解析】试题分析:(1)由三角函数图象与y 轴交于点(3可得3cos 2θ=,则6πθ=.由最小正周期公式可得2ω=.(2)由题意结合中点坐标公式可得点P 的坐标为0232x π⎛-⎝.代入三角函数式可得053cos 46x π⎛⎫-= ⎪⎝⎭,结合角的范围求解三角方程可得023x π=,或034x π=. 试题解析:(1)将0,3x y ==()2cos y x ωθ=+中,得3cos θ=, 因为02πθ≤≤,所以6πθ=.由已知T π=,且0ω>,得222T ππωπ===. (2)因为点()00,0,,2A Q x y π⎛⎫⎪⎝⎭是PA 的中点, 03y =P 的坐标为0232x π⎛- ⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,且02x ππ≤≤,所以053cos 462x π⎛⎫-= ⎪⎝⎭,且075194666x πππ≤-≤, 从而得0511466x ππ-=,或0513466x ππ-=,即023x π=,或034x π=.。
西城区2023-2024学年第一学期期末高二数学试题及答案
北京市西城区2023—2024学年度第一学期期末试卷高二数学 2024.1本试卷共5页,共150分.考试时长120分钟.考生务必将答案写在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线3410x y -+=不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线26x y =的焦点到其准线的距离等于( ) A.32B.3C.6D.8 3.在空间直角坐标系O xyz -中,点()4,2,8A -到平面xOz 的距离与其到平面yOz 的距离的比值等于( ) A.14 B.12C.2D.4 4.在312x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为( ) A.3 B.6 C.9 D.125.在正四面体ABCD 中,棱AB 与底面BCD 所成角的正弦值为( )C.136.已知直线,a b 和平面α,且b α⊂,则“直线a ∥直线b ”是“直线a ∥平面α”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.设,A B 为双曲线2222:1(0,0)x y E a b a b-=>>的左、右顶点,M 为双曲线E 上一点,且AMB 为等腰三角形,顶角为120,则双曲线E 的一条渐近线方程是( )A.y x =B.2y x =C.y =D.y =8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有( )A.12种B.24种C.32种D.36种9.如图,在长方体1111ABCD A B C D -中,13,4,AB BC CC E ===为棱11B C 的中点,P 为四边形11BCC B 内(含边界)的一个动点.且DP BE ⊥,则动点P 的轨迹长度为( )A.5B.C.10.在直角坐标系xOy 内,圆22:(2)(2)1C x y -+-=,若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣B.44⎡--⎣C.22⎡--+⎣D.2⎡-+⎣第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.过点()2,3A -且与直线30x y ++=平行的直线方程为__________.12.在4(21)x +的展开式中,所有项的系数和等于__________.(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于__________.14.若方程22124x y m m+=+-m 的取值范围是__________;若此方程表示的曲线为椭圆,则实数m 的取值范围是__________.15.如图,在正方体1111ABCD A B C D -中,2,AB E =为棱1BB 的中点,F 为棱1CC (含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得1B F ∥平面1A ED ;①不存在符合条件的点F ,使得BF DE ⊥;①异面直线1A D 与1EC 所成角的余弦值为5; ①三棱锥1F A DE -的体积的取值范围是2,23⎡⎤⎢⎥⎣⎦. 其中所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(本小题15分)如图,在直三棱柱111ABC A B C -中,1,3,4BA BC BC AB AA ⊥===.(1)证明:直线1AB ⊥平面1A BC ;(2)求二面角1B CA A --的余弦值.18.(本小题15分)已知C 经过点()1,3A 和()5,1B ,且圆心C 在直线10x y -+=上.(1)求C 的方程;(2)设动直线l 与C 相切于点M ,点()8,0N .若点P 在直线l 上,且PM PN =,求动点P的轨迹方程.19.(本小题15分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),四个顶点构成的四边形面积等于12.设圆22(1)25x y -+=的圆心为,M P 为此圆上一点.(1)求椭圆C 的离心率;(2)记线段MP 与椭圆C 的交点为Q ,求PQ 的取值范围.20.(本小题15分)如图,在四棱锥P ABCD -中,AD ⊥平面,PAB AB ∥,DC E 为棱PB 的中点,平面DCE 与棱PA 相交于点F ,且22PA AB AD CD ====,再从下列两个条件中选择一个作为已知. 条件①:PB BD =;条件①:PA BC ⊥.(1)求证:AB ∥EF ;(2)求点P 到平面DCEF 的距离;(3)已知点M 在棱PC 上,直线BM 与平面DCEF 所成角的正弦值为23,求PM PC的值.设椭圆2222:1(0)x y C a b a b+=>>左、右焦点分别为12,F F ,过1F 的直线与椭圆C 相交于,A B 两点.已知椭圆C 的离心率为21,2ABF 的周长为8. (1)求椭圆C 的方程;(2)判断x 轴上是否存在一点M ,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线?若存在,求点M 的坐标;若不存在,说明理由.北京市西城区2023—2024学年度第一学期期末试卷高二数学参考答案 2024.1一、选择题:本大题共10小题,每小题4分,共40分1.D2.B3.B4.D5.B6.D7.A8.C9.B 10.A二、填空题:本大题共5小题,每小题5分,共25分11.10x y ++= 12.81 13.414.()(),24,∞∞−−⋃+;()()2,11,4−⋃ 15.①②④注:第14题第一问3分,第二问2分;第15题全部选对得5分,有两个选对且无错选得3分,有一个选对且无错选得2分,其他得0分.三、解答题:本大题共6小题,共85分.其他正确解答过程,请参照评分标准给分. 16.(本小题10分)解:(1)从6男4女共10名志愿者中,选出3人参加社会实践活动,选择方法数为310C 120=种.(2)从10名志愿者中选2男1女,选择方法数共有2164C C 60=种,故从10名志愿者中选2男1女,且分别从事经济、文化和民生方面的问卷调查工作的选派方法数为213643C C A 360=种.17.(本小题15分)解:(1)在直三棱柱111ABC A B C −中,因为1AA ⊥.平面,ABC BC ⊂平面ABC ,所以1AA BC ⊥.又因为1,BA BC BA AA A ⊥⋂=,所以BC ⊥平面11AA B B ,所以1BC AB ⊥.由14AB AA ==,得四边形11AA B B 为正方形.所以11AB A B ⊥.又因为1BC A B B ⋂=,所以1AB ⊥平面1A BC .(2)因为1BB ⊥平面,ABC BA BC ⊥,所以1,,BA BC BB 两两互相垂直,故以B 为原点,1,,BA BC BB 的方向分别为x 轴、y .轴、z 轴正方向,建立如图所示的空间直角坐标系.则()()()()114,0,0,0,3,0,4,0,4,0,0,4A C A B .所以()()14,3,0,0,0,4AC AA =−=.设平面1A AC 的法向量为(),,m x y z =,则10,0,m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即430,40.x y z −+=⎧⎨=⎩ 令3x =,则4,0y z ==.于是()3,4,0m =.由(1)可知:()14,0,4AB =−是平面1A BC 的一个法向量.因为11112cos ,1042||AB mAB m AB m ⋅−===−⨯, 由图可知二面角1B CA A −−的平面角为锐角,所以二面角1B CA A −−的余弦值为10. 18.(本小题15分)解:(1)由题意,设C 的圆心(),1C a a +,半径为r , 则222222(1)(31),(5)(11).a a r a a r ⎧−+−−=⎨−+−−=⎩ 解得:5,5.a r =⎧⎨=⎩所以C 的方程为22(5)(6)25x y −+−=.(2)由平面几何,知PMC 为直角三角形,且PM MC ⊥,所以222||||||PM MC PC +=.由PM PN =,得222||||||PN MC PC +=.设(),P x y ,则2222(8)25(5)(6)x y x y −++=−+−.即36140x y −−=,经检验符合题意.所以动点P 的轨迹方程为36140x y −−=.19.(本小题15分)解:(1)由题意,得222212,c ab a b c ===+,所以3,2a b ==,所以椭圆C 的离心率c e a ==. (2)由题意,得5PQ MP MQ MQ =−=−.设()11,Q x y ,则2211194x y +=.所以MQ ===. 因为[]13,3x ∈−,所以当195x =时,min ||MQ =;当13x =−时,max ||4MQ =.所以PQ 的取值范围为1,5⎡−⎢⎣⎦. 20.(本小题15分)解:选择条件①:(1)因为AB ∥,DC AB ⊄平面,DCEF DC ⊂平面DCEF ,所以AB ∥平面DCEF .又因为AB ⊂平面PAB ,平面PAB ⋂平面DCEF EF =,所以AB ∥EF .(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥.又因为,22PB BD PA AB AD CD ====,所以PAB DAB ≅.因此90PAB DAB ∠∠==,即,,AB AD AP 两两垂直.如图,以A 为原点,,,AB AD AP 的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,所以()()()()0,2,0,1,2,0,0,0,2,2,0,0D C P B .由(1),得AB ∥EF ,且E 为棱PB 的中点,所以点F 为棱PA 的中点.()()1,0,1,0,0,1E F ,故()()()0,0,1,0,2,1,1,0,0FP DF CD ==−=−.设平面DCEF 的一个法向量为(),,n x y z =,则20,0,DF n y z CD n x ⎧⋅=−+=⎪⎨⋅=−=⎪⎩ 取1y =,则0,2x z ==,即()0,1,2n =.所以点P 到平面DCEF 的距离255FP n d n ⋅==. (3)设[],0,1PM PCλλ=∈, 则()()1,2,2,2,2PM PC λλλλλ==−=−.所以()2,2,22BM BP PM λλλ=+=−−.设直线BM 与平面DCEF 所成角为θ,所以||sin |cos ,|||||BM n BMn BM n θ⋅=<>== 23=. 化简,得29610λλ−+=,解得13λ=, 即13PM PC =. 选择条件②:(1)与上述解法相同,略.(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥,又因为,PA BC BC ⊥与AD 相交,所以PA ⊥平面ABCD . 所以PA AB ⊥.即,,AB AD AP 两两垂直.以下与上述解法相同,略.21.(本小题15分)解:(1)由题意,得22248,1,2,a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩ 解得2,1.a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. (2)假设x 轴上存在一点()0,0M x 符合题意.由题意,设直线()()()()1122:10,,,,AB y k x k A x y B x y =+≠.联立方程()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩消去y , 得()22223484120k x k x k +++−=. 所以221212228412,3434k k x x x x k k−+=−=++. 由题意,知直线AM 的斜率存在,且为()11101010AM k x y k x x x x +−==−−, 同理,直线BM 的斜率为()22202010BM k x y k x x x x +−==−−. 所以()()12102011AM BM k x k x k k x x x x +++=+−− ()()()()12120120102022k x x x x x x x x x x x x ⎡⎤++−+−⎣⎦=−−. 因为1MF 为AMB 的一条内角平分线,所以0AM BM k k +=.所以()()1212010220k x x x x x x x x ⎡⎤++−+−=⎣⎦.因为上式要对任意非零的实数k 都成立, 所以2220022241288220343434k k k x x k k k−⨯−+⨯−=+++, 解得04x =−.故x 轴上存在一点()4,0M −,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线.。
福建省厦门外国语学校石狮分校、泉港区第一中学2021-2022学年高二下学期期末联考数学试题
“厦门外国语学校石狮分校、泉港区第一中学”两校联考2021—2022学年“厦门外国语学校石狮分校、泉港区第一中学”两校联考2021—2022学年下学期期末高二数学考试卷第I 卷 选择题部分(共60分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.设复数z 满足(1i)2i z −=−,则||z =( ) A .12B2C D .22.设2sin 7cos 7a =,22cos32sin 3222b =−,cos 75c =,则( ) A .a b c<<B .b c a <<C .b a c <<D .c a b <<3.函数()()2e xf x x x =−的图象大致是( )4.某工厂的烟囱如图所示,底部为A ,顶部为B ,相距为l 的点C ,D 与点A 在同一水平线上,用高为h 的测角工具在C ,D 位置测得烟囱顶部B 在1C 和1D 处的仰角分别为α,β.其中1C ,1D 和A 在同一条水平线上,1A 在AB 上,则烟囱的高AB =( ) A .()sin cos sin l h αββα+− B .()cos cos sin l h αββα+− C .()cos sin sin l h αββα+− D .()sin sin sin l h αββα+− 5.已知函数()()⎪⎭⎫ ⎝⎛π<ϕ>ωϕ+ω=2,0,sin x x f ,其图像相邻两条对称轴之间的距离为2π,且函数⎪⎭⎫⎝⎛π+12x f 是偶函数,下列判断正确的是( )“厦门外国语学校石狮分校、泉港区第一中学”两校联考2021—2022学年A.函数()x f 的最小正周期为π2B.函数()x f 的图像关于点⎪⎭⎫⎝⎛π0,127对称 C.函数()x f 的图像关于直线127π−=x 对称 D.函数()x f 在⎥⎦⎤⎢⎣⎡ππ,43上单调递增 6.某同学用收集到的6组数据对,制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l 的方程为ˆˆˆy bx a =+,相关系数为r .现给出以下3个结论,其中正确结论的序号是( )①0r >;②直线l 恰过点D ;③ˆ1b>. A .①② B .①③ C .②③ D .①②③ 7.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP =( )A. 1D. 8. 已知实数b a ,满足R c b a a ∈=−−,0ln 522,则()()22c b c a ++−的最小值为( )A.21 B.22 C.223 D.29“厦门外国语学校石狮分校、泉港区第一中学”两校联考2021—2022学年二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.已知向量(1,sin ),(cos ,2)a b θθ==,则下列命题正确的是( ) A .存在θ,使得 //ab B .当tan 2θ=−时,a 与b 垂直 C .对任意θ,都有||||a b ≠D .当3a b ⋅=−时,tan θ=10.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn nz i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .22z z = B .当1r =,3πθ=时,31z = C .当1r =,3πθ=时,12z =D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数11.甲箱中有3个白球和3个黑球,乙箱中有2个白球和4个黑球.先从甲箱中随机取出一球放入乙箱中,再从乙箱中随机取出一球.以12,A A 分别表示从甲箱中取出的是白球和黑球的事件,以12,B B 分别表示从乙箱中取出的球是白球和黑球的事件,则下列结论正确的是( ) A .事件1A 与事件2A 互斥 B .事件1B 与事件2A 相互独立 C .()1257P B A =D .()2914PB =12.已知函数()2sin sin 2f x x x +,则下列结论正确的是( ) A .π不是函数()f x 的周期B .函数()f x 在[π−,π]上有4个零点C .函数()f x的图象关于(π对称D .函数()f x“厦门外国语学校石狮分校、泉港区第一中学”两校联考2021—2022学年第II 卷 非选择题部分(共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.312x x ⎛⎫+− ⎪⎝⎭展开式中的常数项为________.14. 甲、乙两人进行羽毛球单打比赛,假定甲每局获胜的概率都是34,各局比赛结果相互独立且没有平局,则在“三局两胜制”的比赛中,甲获胜的概率为__________.15.已知P 是等边三角形ABC所在平面内一点,且AB =1BP =,则AP CP ⋅的最大值是_________.16. 在ABC ∆中内角,,A B C 的对边分别为,,a b c ,若2cos c a B a −=,则BA=________; cos b A aa b+的取值范围为______________. 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在OAB 中,已知P 为线段AB 上一点,3BP PA = (1)若OP xOA yOB =+,求实数x ,y 的值;(2)若||4OA =,||2OB =,且OA 与OB 的夹角为60︒,求OP AB ⋅的值.18.设函数()()()π3πsin cos sin 3πcos π22f x x x x x ⎡⎤⎛⎫⎛⎫=++−⋅++−⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦.(1)求函数()f x 单调递减区间;(2)求函数()()π6g x f x f x ⎛⎫=++ ⎪⎝⎭在区间π0,2⎡⎤⎢⎥⎣⎦上的最值.“厦门外国语学校石狮分校、泉港区第一中学”两校联考2021—2022学年19.冰墩墩是2022年北京冬奥会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,深受广大民众的喜爱,一时成为火爆的商品.某调查机构随机抽取100人,对是否有意向购买冰墩墩进行调查,结果如下表:(1) 若以年龄40岁为分界线,由以上统计数据完成下面的2×2列联表,并判断是否有99.9%的把握认为是否有意向购买冰墩墩与人的年龄有关;(2)若从年龄在[)60,70的被调查人群中随机选出3人进行调查,设这3人中有意向购买集个冰墩墩的人数为X ,求X 的分布列和数学期望.附:()()()()()22n ad bc K a b c d a c b d −=++++,n a b c d =+++.20.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且()()sin sin sin 6b a b c A B C S −+++=.(1)求角B 的大小;(2)若7b =,求ABC ∆周长的取值范围.“厦门外国语学校石狮分校、泉港区第一中学”两校联考2021—2022学年21.某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试.现对测试数据进行分析,得到如图所示的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表); (2)经计算第(1)问中样本标准差S 的近似值为50,根据大量的测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ(用样本平均数x 和标准差s 分别作为μσ、的近似值),现任取一辆汽车,求它的单次最大续航里程[]250,400X ∈的概率; (参考数据:若随机变量()2,XN μσ,则()0.6827P X μσμσ−+≈,()()220.9545,330.9973)P X P X μσμσμσμσ−+≈−+≈(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上(方格图上依次标有数字0、1、2、3、……、20)移动,若遥控车最终停在“胜利大本营”(第19格),则可获得购车优惠券3万元;若遥控车最终停在“微笑大本营”(第20格),则没有任何优优惠券.已知硬币出现 正、反面的概率都是12,遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次:若掷出正面,遥控车向前移动一格(从k 到1)k +;若掷出反面,遥控车向前移动两格(从k 到2k +),直到遥控车移到“胜利大本营”或“微笑大本营”时,游戏结束.设遥控车移到第()119n n 格的概率为n P ,试证明{}1n n P P −−是等比数列,并求参与游戏一次的顾客获得优惠券全额的期望值(精确到0.1万元).22.已知函数()()()21sin cos 2f x x ax x x a x a =−+−−∈R . (1)讨论函数()f x 的单调性; (2)当5012a π≤≤时,证明:()0f x ≥.2 1.414≈6 2.449≈)。
(完整word版)高二数学期末考试试题及其答案
禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷、选择题:本大题共 12个小题,每小题 5分,共60分.1. (5分)已知集合 M={1, 2, 3}, N={2, 3, 4},则下列式子正确的是( A. M?NB. N?MC. MAN={2, 3} D. M U N={1 , 4}C.向左平移单位B.向右平移单位 ……冗、,D.向右平移亏单位7 .下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量 x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,若求出y关于x 的线性回归方程为 ? 0.7x 0.35 ,那么表中t 的值为B. 3.158 .已知 f (x) = (x — m) (x — n) +2,并且 m, n, a, 3的大小关系可能是(2.已知向量 a=(-b l)f 正⑵ -3),则 2%-b 等于() A. (4, - 5) B. (—4, 5) C. (0, T) D. (0, 1) 3.在区间(1, 7)上任取一个数,这个数在区间 5, 8)上的概率为4.要得到函数B-i7Ty=sin (4x-F-)的图象,只需将函数y=sin4x 的图象 5.已知两条直线m, n,两个平面鹏 8给出下面四个命题:①m H n, m± a? n± a ② a// & m? a, n?仅 m // n @ aJ & m " n, m± ? n± 3 其中正确命题的序号是 A.①③B.②④C.①④D.②③ 6.执行如图所以的程序框图,如果输入 a=5 ,那么输出 n=(A. 2B. 3C. 4D. 5A.向左平移 ,单位x 3 4 5 6y 2.5 t 4 4.5A. 3 a 、 D. 4.53是方程f (x ) =0的两根,则实数A. a< mvnv 3 B- m< a< 3< n C. m< a< n< 3 D. a< mv 3< n 9 .已知某锥体的三视图(单位: cm )如图所示,则该锥体的体积为( )10 .在等月ABC 中,/BAC=90°, AB=AC=2,同=2而I,菽=3凝,则前■刘的值为()Dy11 .已知一个三角形的三边长分别是 5, 5, 6, 一只蚂蚁在其内部爬行, 若不考虑蚂蚁的大小,13.若直线 2X + (m+1) y+4=0 与直线 mX+3y+4=0 平行,则 m=y<l15 .若变量x 、y 满足约束条件 y+y>口 ,则z=x-2y 的最大值为bkx 3,x 016 .已知函数f X 1k,若方程f f X 2 0恰有三个实数根,则实数k 的-,x 02取值范围是三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17 .在△ ABC 中,a, b, c 分别为内角 A, B, C 的对边,2bsinB= (2a+c) sinA+ (2c+a) sinC. (I) 求B 的大小;(n) 若 b=" A=T\求^ ABC 的面积.r . ..-18 .已知:a 、b 、c是同一平面上的三个向量,其中a=(l, 2).A. 2cm 3B. 4cm 3C. 6cm 3D . 8cm 3B.则某时刻该蚂蚁距离三角形的三个顶点的距离均超过 2的概率是(B. 1-C. 1 -12.已知函数f (x )= ,X 1 , X 2 , X 3, X 4, X 5 是方程 f (x) =m 的五个不等的实数根,则 X 1+X 2+X 3+X 4+X 5的取值范围是(A. (0,同 B .(一兀,兀) C. (lg ,兀 1) D. ( 为 10)二、填空题(每题 5分,,茜分20分)14.已知sinOL IcosCl①若|C 1=2 j5,且c // a,求C的坐标.… .. 5②右|b |=——,且a +2 b与2 a -b垂直,求a,与b的夹角219.设S n是等差数列{a n}的前n项和,已知S3=6, a4=4.(1)求数列{a n}的通项公式;(2) 若bn=3 — 3 %,求证:—+---+ , , •+ ——<—.b L b2 L 420为了了解某省各景点在大众中的熟知度,随机对15〜65岁的人群抽样了n人,回答问题15 25 35 45 55 e5 学龄(1)分别求出a,b,x,y的值;(2)从第2, 3, 4组回答正确的人中用分层抽样的方法抽取6人,求第2, 3, 4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.在三柱ABC-A i B i C i中,△ ABC是边长为2的正三角形,侧面BB i C i C是矩形,D、E分别是线段BB i、AC i的中点.(i)求证:DE//平面A i B i C i;(2)若平面ABC,平面BB i C i C, BB i=4 ,求三棱锥A- DCE的体积.22.已知圆C: x2+y2+2x- 3=0.(i)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A (xi, yi)、B (X2, y2)两点, 求证:1 :工为定值;町K2(3)斜率为i的直线m与圆C相交于D、E两点,求直线m的方程,使^ CDE的面积最大.禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷参考答案选择题(每小题分,共分) 1 2 3 4 5 6 7 8 9 10 11 12 CBCBCBABAACD、填空题(每小题 5分,共12分),、M A TV - n 2n 兀 兀 n 解:A =——,,C =兀- =———4 q 3 3 2••,|b=V3, B =-^-JbsinC V5 ^/218.解:①设 c (x, y) • •• c // a 且|C |二2 J52x y 0•• 2 2 x 2 y 2 202 c =(2,4)或 c =(-2, -4).13.-3 14. — 15. 3 16.1,17 (I)解::2bsinB= (2a+c) sinA+ (2c+a) sinC,由正弦定理得, 2b 2= (2a+c) a+ (2c+a) c, 化简彳导,a 2+c 2B=2TT...sinC=sin (2L 』)=、3 「 JT由正弦定理得,SliTT-COS-^-COS-SLIT^ bI sinC sinBcsinBsin号X 炳乂配yXsin-TT 3^/3b 2+ac=0.・•.△ABC 的面积②「( a+2b ) ± (2a-b),( a+2b) (2a-b) =0,-r -to- -► —*■• -2a 2+3a b-2 b 2=0• •.2|a |2+3| a | b||cos -2|b |2=02X 5+3X v -'5 X — cos -2X - =0, cos = -1 2 4打九 2k Tt, 长[0,兀]「. 0 =Tt.9 CL— 2520解:(1)由频率表中第 4组数据可知,第 4组总人数为 —再结合频率分布直方图可知n ----------- 1000.025 10a 100 0.01 10 0.5 519.解:(1)设公差为 d,则解得=1-a n =n. (2)证明:b n =3—3 、=3n+1— 3n=2?3n,0.36 (1分)•}是等比数列.,q1b 100 0.03 10 0.9 2乙x 180.9, y — 0,220 15(2)因为第2, 3, 4组回答正确的人数共有 54人,所以利用分层抽样在 54人中抽取6人,每组分别抽取的人数为:(3)设第2组2人为:A 1, A 2;第3组3人为:B 1, B 2, B 3;第4组1人为:C 1 .则从6人中随机抽取2人的所有可能的结果为:(A1,A 2), (A 1,B 1), (A 1,B 2), (A 1,B 3), (A 1C1),(A 2,B 1), (A 2, B 2), (A 2,B 3), (A2,C I ), (B I ,B2), (B I ,B3), (B 1,C 1), (B 2,B 3), (B2,C I ), (B 3,C I )共15个基本事件,其中恰好没有第3组人共3个基本事件, ……,一,…— …31,所抽取的人中恰好没有第 3组人的概率是:P - -155贝U 由EF 是△ AA 1C 1的中位线得 EF // AA 1, 又 DB 1//AA 1, DB 1卷AA 1 所以 EF // DB 1, EF = DB 1所以DE //平面A 1B 1C 1(n)解:因为E 是 AC 1 的中点,所以 V A DCE =V D ACE =2过A 作AH ,BC 于H 因为平面平面 ABC ,平面BB 1C 1C,所以AHL 平面BB 1C 1C,所以 V A DCE =V D —ACE =「5二「7 (4)第2组:18 54 2人;第3组:27 54 3人;第4组:9 54…(8分)21. (1)证明:取棱A i C i 的中点F,连接EF 、B 1F…(10分)…(12分)故四边形DEFB 1是平行四边形,从而 DE// B1FEF122.解:(1)圆 C: x 2+y 2+2x-3=0,配方得(x+1) 2+y 2=4,则圆心C 的坐标为(-1,0),圆的半径长为 2;(2)设直线l 的方程为y=kx,联立方程组工卜了 +2x3=。
人教A版高中数学选修一高二下学期第一阶段考试(期中)(文)试题.docx
2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是A.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函17(,),2ia bi ab R i i+=+∈-ab数3()f x x =的极值点.以上推理中A .大前提错误B .小前提错误C .推理形式错误D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )A.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为A.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( ) A .都不大于2- B .都不小于2- C .至少有一个不大于2- D .至少有一个不小于2- 7.在一次实验中,测得的四组值分别为,,,,则与的线性 回归方程可能是( )A .B .C .D .(,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-8. 设0a >b >,则()211a ab a a b ++-的最小值是( ) A .1 B .2 C .3D .49.若1322i ω=-+,则等于421ωω++=( ) A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( ) A .16 B .8 C .4 D .非上述情况11.设,且,若,则必有( )A .B .C .D . 12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为A.(,0)-∞B.(0,)+∞C.4(,)-∞eD.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<,AD =,则∠CAD 的弧度数为 .15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____. 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R = .三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17. (本小题满分l0分)如图,,,,A B C D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(Ⅰ)若11,32EC ED EB EA ==,求DCAB的值; (Ⅱ)若2EF FA FB =⋅,证明://EF CD .18.(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A 等(优秀),在[60,80)的学生可取得B 等(良好),在[40,60)的学生可取得C 等(合格),在不到40分的学生只能取得D 等(不合格),为研究这次考试成绩优秀是否与性别有关,现23按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀 数学成绩不优秀 合计男生 a=12 b= 女生 c= d=34 合计n=100附:.P (k 2≥k 0) 0.15 0.10 0.05 0.01k 0 2.0722.7063.841 6.63519.(本小题满分l2分)设函数()|21||4|f x x x =+--.(1)解不等式()0f x >;(2)若()3|4|f x x m +->对一切实数x 均成立,求m 的取值范围.20.(本小题满分l2分)设函数2()f x ax bx c =++且(1)2af =-,322.a c b >> (1)试用反证法证明:0a > (2)证明:33.4b a -<<-21.(本小题满分l2分)在以直角坐标原点O 为极点,x 轴的非负半轴为极轴的极坐标系下,曲线1C 的方程是1ρ=,将1C 向上平移1个单位得到曲线2C .(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若曲线1C 的切线交曲线2C 于不同两点,M N ,切点为T ,求||||TM TN ⋅的取值范围.22.(本小题满分l2分)已知函数1()ln (0,)f x a x a a R x=+≠∈ (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(Ⅱ)若在区间[1,]e 上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是 CA.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函 数3()f x x =的极值点.以上推理中 A A .大前提错误 B .小前提错误 C .推理形式错误 D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )CA.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )D17(,),2ia bi ab R i i+=+∈-abA .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为 BA.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( )c A .都不大于2- B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-7.在一次实验中,测得的四组值分别为,,,,则与的线性回归方程可能是( )A .B .C .D .解析:A 线性回归直线一定过样本中心点,故选A .8. 设0a >b >,则()211a ab a a b ++-的最小值是 (A )1 (B )2 (C )3 (D )49.若1322i ω=-+,则等于421ωω++=( )D A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( )B (,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-()2.5,3.5A .16B .8C .4D .非上述情况11.设,且,若,则必有( )AA .B .C .D .12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为 BA.(,0)-∞B.(0,)+∞C.4(,)-∞e D.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .2 AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,AD =,则∠CAD 的弧度数为 . 15.15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____.)2(116422≥=-x y x 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<23512π类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R= . 2222a b c ++三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分l0分)如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若,求的值;(Ⅱ)若EF 2=FA•FB,证明:EF∥CD.【解答】解:(Ⅰ)∵A,B ,C ,D 四点共圆, ∴∠ECD=∠EAB,∠EDC=∠B∴△EDC∽△EBA,可得,∴,即∴(Ⅱ)∵EF2=FA•FB,∴,又∵∠EFA=∠BFE,∴△FAE∽△FEB,可得∠FEA=∠EBF,又∵A,B,C,D四点共圆,∴∠EDC=∠EBF,∴∠FEA=∠EDC,∴EF∥CD.18(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ)请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀数学成绩不优秀合计男生a=12 b=女生c= d=34合计n=100附:.P(k2≥k0)0.15 0.10 0.05 0.01k0 2.072 2.706 3.841 6.635解:(Ⅰ)抽取的100名学生中,本次考试成绩不合格的有x人,根据题意得x=100×[1﹣10×(0.006+0.012×2+0.018+0.024+0.026)]=2.…(2分)据此估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数为(人).…(4分)(Ⅱ)根据已知条件得2×2列联表如下:数学成绩优秀数学成绩不优秀合计男生a=12 b=48 60女生c=6 d=34 40合计18 82 n=100 …(10分)∵,所以,没有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”.…(12分)19.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.【解答】解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当且仅当﹣≤x≤4时,取等号,所以,f(x)+3|x﹣4|的最小值为9,故m<9.20.(本小题满分l2分)设函数f(x)=ax2+bx+c且f(1)=﹣,3a>2c>2b.(1)试用反证法证明:a>0(2)证明:﹣3<.【解答】证明:(1)假设a≤0,∵3a>2c>2b,∴3a≤0,2c<0<,2b<0,将上述不等式相加得3a+2c+2b<0,∵f(1)=﹣,∴3a+2c+2b=0,这与3a+2c+2b<0矛盾,∴假设不成立,∴a>0;(2)∵f(1)=a+b+c=﹣,∴c=﹣a﹣b∴3a>2c=﹣3a﹣2b,∴3a>﹣b,∵2c>2b,∴﹣3a>4b;∵a>0,∴﹣3<<﹣.21.(本小题满分l2分)在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.【解答】解:(I)曲线C1的方程是ρ=1,即ρ2=1,化为x2+y2=1,将C1向上平移1个单位得到曲线C2:x2+(y﹣1)2=1,展开为x2+y2﹣2y=0.则曲线C2的极坐标方程为ρ2﹣2ρsinθ=0,即ρ=2sinθ.(II)设T(cosθ,sinθ),θ∈[0,π].切线的参数方程为:(t为参数),代入C2的方程化为:t2+2t[cos(θ﹣α)﹣sinα]+1﹣2sinθ=0,∴t1t2=1﹣2sinθ,∴|TM|•|TN|=|t1t2|=|1﹣2sinθ|∈[0,1],∴|TM|•|TN|的取值范围是[0,1].22.(本小题满分l2分)已知函数f(x)=+alnx(a≠0,a∈R)(Ⅰ)若a=1,求函数f(x)的极值和单调区间;(Ⅱ)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.【解答】解:(I)因为,(2分)当a=1,,令f'(x)=0,得x=1,(3分)又f(x)的定义域为(0,+∞),f'(x),f(x)随x的变化情况如下表:x (0,1) 1 (1,+∞)f'(x)﹣0 +f(x)↘极小值↗所以x=1时,f(x)的极小值为1.(5分)f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);(6分)(II)因为,且a≠0,令f'(x)=0,得到,若在区间[1,e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1,e]上的最小值小于0即可.(7分)(1)当a<0时,f'(x)<0对x∈(0,+∞)成立,所以,f(x)在区间[1,e]上单调递减,故f(x)在区间[1,e]上的最小值为,由,得,即(9分)(2)当a>0时,①若,则f'(x)≤0对x∈[1,e]成立,所以f(x)在区间[1,e]上单调递减,所以,f(x)在区间[1,e]上的最小值为,显然,f(x)在区间[1,e]上的最小值小于0不成立(11分)②若,即1>时,则有xf'(x)﹣0 +f(x)↘极小值↗所以f(x)在区间[1,e]上的最小值为,由,得1﹣lna<0,解得a>e,即a∈(e,+∞)舍去;当0<<1,即a>1,即有f(x)在[1,e]递增,可得f(1)取得最小值,且为1,f(1)>0,不成立.综上,由(1)(2)可知a<﹣符合题意.(14分)…。
(必考题)数学高二下期末经典测试题(含答案解析)(1)
一、选择题1.函数()sin()(0,0,)2f x A x A πωφωφ=+>><的部分图象如图所示,若将()f x 图象向左平移4π个单位后得到()g x 图象,则()g x 的解析式为( )A .2()2sin(2)3g x x π=+ B .5()2sin(2)6g x x π=- C .()2sin(2)6g x x π=+D .()2sin(2)3g x x π=-2.已知A (1,0,0),B (0,﹣1,1),OA OB λ+与OB (O 为坐标原点)的夹角为30°,则λ的值为( ) A .66B .66±C .62D .62±3.已知sin cos 1sin cos 2αααα-=+,则cos2α的值为( )A .45-B .35C .35D .45 4.在边长为3的等边ABC ∆中,点M 满足BM 2MA =,则CM CA ⋅=( ) A 3B .3C .6 D .1525.非零向量a b ,满足:a b a -=,()0a a b ⋅-=,则a b -与b 夹角的大小为 A .135° B .120° C .60° D .45°6.函数()sin()A f x x ωϕ=+(0,)2πωϕ><的部分图象如图所示,则()f π=( )A .4B .23C .2D .37.设奇函数()()()()sin 3cos 0f x x x ωφωφω=+-+>在[]1,1x ∈-内有9个零点,则ω的取值范围为( )A .[)4,5ππB .[]4,5ππC .11,54ππ⎡⎤⎢⎥⎣⎦D .11,54ππ⎛⎤ ⎥⎝⎦8.已知函数()()sin 0,0,2f x A x A πωϕωϕ=+>>≤⎛⎫⎪⎝⎭的部分图象如图所示,则函数()y f x =的表达式是( )A .()2sin 12f x x π⎛⎫=+⎪⎝⎭B .()2sin 23f x x π⎛⎫=+⎪⎝⎭C .()22sin 23f x x π⎛⎫=- ⎪⎝⎭D .()2sin 23f x x π⎛⎫=- ⎪⎝⎭9.已知函数()sin 3cos f x x x =+,将函数()f x 的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 10.若()2sin sinsin777n n S n N πππ︒=+++∈,则在中,正数的个数是( ) A .16B .72C .86D .10011.已知函数2()3cos cos f x x x x =+,则( ) A .()f x 的图象关于直线6x π=对称B .()f x 的最大值为2C .()f x 的最小值为1-D .()f x 的图象关于点(,0)12π-对称12.已知向量(2,0)OB =,向量(2,2)OC =,向量(2cos ,2sin )CA αα=,则向量OA 与向量OB 的夹角的取值范围是( ).A .π0,4⎡⎤⎢⎥⎣⎦B .π5π,412⎡⎤⎢⎥⎣⎦C .5ππ,122⎡⎤⎢⎥⎣⎦ D .π5π,1212⎡⎤⎢⎥⎣⎦ 13.已知f (x )=A sin(ωx+θ)(ω>0),若两个不等的实数x 1,x 2∈()2A x f x ⎧⎫=⎨⎬⎩⎭,且|x 1-x 2|min =π,则f (x )的最小正周期是( ) A .3πB .2πC .πD .π214.若向量a ,b 满足2a b ==,a 与b 的夹角为60,则a b +等于( ) A .223+B .23C .4D .1215.已知tan 24πα⎛⎫+=- ⎪⎝⎭,则sin 2α=( )A .310B .35 C .65-D .125-二、填空题16.已知θ为钝角,1sin()43πθ+=,则cos2θ=______. 17.已知1tan 43πα⎛⎫-=- ⎪⎝⎭,则2sin sin()cos()απαπα--+的值为__________. 18.实数x ,y 满足223412x y +=,则23x y +的最大值______. 19.如图在ABC 中,AC BC =,2C π∠=,点O 是ABC 外一点,4OA =,2OB =则平面四边形OACB 面积的最大值是___________.20.已知角α的终边上一点)3,1A-,则()sin tan 2παπα⎛⎫-++= ⎪⎝⎭__________.21.已知ABC ∆中角,,A B C 满足2sin sin sin B A C =且2sin cos cos 1242C Cπ+=,则sin A =__________.22.仔细阅读下面三个函数性质:(1)对任意实数x ∈R ,存在常数(0)p p ≠,使得1()2f x p f x p ⎛⎫-=+ ⎪⎝⎭. (2)对任意实数x ∈R ,存在常数(0)M M >,使得|()|f x M ≤. (3)对任意实数x ∈R ,存在常数,使得()()0f a x f a x -++=.请写出能同时满足以上三个性质的函数(不能为常函数)的解析式__________.(写出一个即可)23.将函数e x y =的图像上所有点的横坐标变为原来的一半,再向右平移2个单位,所得函数的解析式为__________. 24.已知1tan 43πα⎛⎫-= ⎪⎝⎭,则()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭的值为__________. 25.若()1sin 3πα-=,且2παπ≤≤,则cos α的值为__________. 三、解答题26.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22222230a c b ac +-+=. (1)求cos B 的值; (2)求sin 24B π⎛⎫+⎪⎝⎭的值. 27.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos (cos cos )C a B b A c +=.(1)求C ;(2)若c =,ABC 的面积为ABC 的周长.28.在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫-⎪⎝⎭. (1)求()f x 的解析式; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 29.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭在一个周期内的图像经过点,412π⎛⎫ ⎪⎝⎭和点5,412π⎛⎫- ⎪⎝⎭,且()f x 的图像有一条对称轴为12x π=. (1)求()f x 的解析式及最小正周期; (2)求()f x 的单调递增区间.30.已知定义在R 上的函数()()()sin 0,0f x A x x A ωϕ=+>>的图象如图所示(1)求函数()f x 的解析式; (2)写出函数()f x 的单调递增区间(3)设不相等的实数,()12,0,x x π∈,且()()122f x f x ==-,求12x x +的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.C 3.A 4.D 5.A 6.A 7.A 8.D 9.A 10.C11.A12.D13.A14.B15.B二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;17.【解析】【分析】先根据已知求出最后化简代入的值得解【详解】由题得由题得=故答案为【点睛】本题主要考查差角的正切和同角的商数关系平方关系意在考查学生对这些知识的理解掌握水平和分析推理能力18.【解析】分析:根据题意设则有进而分析可得由三角函数的性质分析可得答案详解:根据题意实数xy满足即设则又由则即的最大值5;故答案为:5点睛:本题考查三角函数的化简求值关键是用三角函数表示xy19.【解析】分析:利用余弦定理设设AC=BC=m则由余弦定理把m表示出来利用四边形OACB面积为S=转化为三角形函数问题求解最值详解:△ABC为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m则由余20.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力21.【解析】分析:先化简得到再化简得到详解:因为所以1-所以因为所以所以A+B=所以因为sinA>0所以故答案为点睛:本题主要考查三角化简和诱导公式意在考查学生对这些知识的掌握水平和基本的计算能力22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:23.【解析】分析:根据图像平移规律确定函数解析式详解:点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟练掌握无论是哪种变形切记每一个变换总是对字母而言24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题25.【解析】由题意得三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】根据函数的图象求出函数()f x 的解析式,再根据图象的平移变换得到()g x 的解析式即可. 【详解】 由图象可知,A =2,541264T πππ=-=, 2T ππω∴==,2ω∴=,又当512x π=时,52sin(2)212πφ⨯+=, 即5sin()16πφ+=, 2πφ<, 3πφ∴=-,故()sin()f x x π=-223,将()f x 图象向左平移4π个单位后得到()g x , ∴ ()2sin[2()]2sin(2)436g x x x πππ=+-=+,故选:C 【点睛】本题主要考查了正弦型函数的图象与性质,图象的变换,属于中档题.2.C解析:C 【解析】 【分析】运用向量的坐标运算及夹角公式直接求解即可. 【详解】解:(1,0,0)(0,,)(1,,)OA OB λλλλλ+=+-=-,∴2||12,||2OA OB OB λλ+=+=,()2OA OB OB λλ+=,∴cos302λ︒=, ∴4λ=,则0λ>,∴2λ=. 故选:C . 【点睛】本题考查空间向量的坐标运算,考查运算求解能力,属于基础题.3.A解析:A 【解析】 ∵sin cos 1sin cos 2αααα-=+,∴tan α11tan α3tan α12-==+,.∴cos2α=222222cos sin 1tan 4cos sin 1tan 5αααααα--==-++ 故选A4.D解析:D 【解析】 【分析】结合题意线性表示向量CM ,然后计算出结果 【详解】 依题意得:121211215)333333333232CM CA CB CA CA CB CA CA CA ⋅=+⋅=⋅+⋅=⨯⨯⨯+⨯⨯=(,故选D .【点睛】本题考查了向量之间的线性表示,然后求向量点乘的结果,较为简单5.A解析:A 【解析】 【分析】先化简()0a a b ⋅-=得2=a a b ⋅,再化简a b a -=得2b a =,最后求a b -与b 的夹角. 【详解】因为()0a a b ⋅-=,所以220=a a b a a b -⋅=∴⋅,,因为a b a -=,所以2222a a a b b =-⋅+, 整理可得22b a b =⋅, 所以有2b a =,设a b -与b 的夹角为θ,则()2cos a b b a b b a b ba bθ-⋅⋅-===-222222||a a =-, 又0180θ︒≤≤︒,所以135θ=︒, 故选A . 【点睛】本题主要考查数量积的运算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.A解析:A【解析】试题分析:根据题意,由于函数()sin()A f x x ωϕ=+(0,)2πωϕ><,那么根据图像可知周期为2π,w=4,然后当x=6π,y=2,代入解析式中得到22sin(4)6πϕ=⨯+,6πϕ=-,则可知()f π=4,故答案为A.考点:三角函数图像点评:主要是考查了根据图像求解析式,然后得到函数值的求解,属于基础题.7.A解析:A 【解析】f (x )=sin (ωx+φ(ωx+φ)=2[12sin (ωx+φ(ωx+φ)] =2[cos3πsin (ωx+φ)﹣sin 3πcos (ωx+φ)]=2sin (ωx+φ﹣3π) ∵函数f (x )为奇函数,∴f (0)=2sin (φ﹣3π)=0,∴φ=3π+kπ,k ∈Z ∴f (x )=2sin (ωx+kπ),f (x )=0即sin (ωx+kπ)=0,ωx+kπ=mπ,m ∈Z ,解得,x=()m k πω-,设n=m ﹣k ,则n ∈Z ,∵A ∈[﹣1,1],∴﹣1≤x≤1,[]1,1n πω∈-,∴n ωωππ-≤≤, ∵A ∈[﹣1,1]中有9个元素,4545.ωπωππ∴≤<⇒≤< 故答案为A.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e 为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.8.D解析:D 【解析】 【分析】根据函数的最值求得A ,根据函数的周期求得ω,根据函数图像上一点的坐标求得ϕ,由此求得函数的解析式.由题图可知2A =,且11522122T πππ=-=即T π=,所以222T ππωπ===, 将点5,212π⎛⎫⎪⎝⎭的坐标代入函数()()2sin 2x x f ϕ=+, 得()5262k k ππϕπ+=+∈Z ,即()23k k πϕπ=-∈Z , 因为2πϕ≤,所以3πϕ=-,所以函数()f x 的表达式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.9.A解析:A 【解析】 【分析】利用函数的平移变换得π2sin 3y x m ⎛⎫=++ ⎪⎝⎭,再根所图象关于y 轴对称,得到角的终边落在y 轴上,即π2π3πm k +=+,k Z ∈,即可得答案. 【详解】()sin 2s πin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭,将函数()f x 的图象向左平移m 个单位长度后,得到函数π2sin 3y x m ⎛⎫=++⎪⎝⎭的图象, 又所得到的图象关于y 轴对称,所以π2π3πm k +=+,k Z ∈, 即ππ6m k =+,k Z ∈, 又0m >,所以当0k =时,m 的最小值为π6. 故选:A. 【点睛】本题考查三角函图象的变换、偶函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.10.C【解析】 【分析】 【详解】 令7πα=,则7n n πα=,当1≤n≤14时,画出角序列n α终边如图,其终边两两关于x 轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k 时,Sn>0, 而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.11.A解析:A 【解析】 【分析】利用三角函数恒等变换的公式,化简求得函数的解析式,再根据三角函数的图象与性质,逐项判定,即可求解. 【详解】 由题意,函数23111()3cos cos 2cos 2sin(2)2262f x x x x x x x π=+=++=++, 当6x π=时,113()sin(2)sin 6662222f ππππ=⨯++=+=,所以6x π=函数()f x 的对称轴,故A 正确;由sin(2)[1,1]6x π+∈-,所以函数()f x 的最大值为32,最小值为12-,所以B 、C 不正确; 又由12x π=时,131()sin(2)612622f πππ=⨯++=+,所以(,0)12π-不是函数()f x 的对称中心,故D 不正确, 故选A . 【点睛】本题主要考查了三角恒等变换的公式的应用,以及函数sin()y A wx b ϕ=++的图象与性质的应用,着重考查了推理与运算能力,属于基础题.12.D解析:D 【解析】 不妨设(0,0)O∵(2,2)OC =,(2cos ,2sin )CA αα=. ∴(2,2)C 、(22,22sin )A cos αα++. ∴点A 在以(2,2)为圆心半径为2的圆上. ∴OA 与OB 的夹角为直线OA 的倾斜角. 设:OA l y kx = ∴22121k d r k -=≤=+.即2410k k -+≤,则[23,23]k ∈-+. 又∵π23tan12-=,523tanπ12+=. ∴OA 、OB 夹角[23,23]θ∈-+.故选D .13.A解析:A 【解析】 【分析】 由题意可得123ππω⨯=,求得ω的值,可得()f x 的最小正周期是2πω的值 【详解】由题意可得()1sin 2x ωθ+=的解为两个不等的实数1x ,2x 且123ππω⨯=,求得23ω= 故()f x 的最小正周期是23ππω=故选A 【点睛】本题主要考查了的是三角函数的周期性及其图象,解题的关键根据正弦函数的图象求出ω的值,属于基础题14.B解析:B 【解析】 【分析】将a b +平方后再开方去计算模长,注意使用数量积公式. 【详解】因为2222cos 6044412a b a a b b +=+︒+=++=,所以23a b +=, 故选:B. 【点睛】本题考查向量的模长计算,难度一般.对于计算xa yb +这种形式的模长,可通过先平方再开方的方法去计算模长.15.B解析:B 【解析】 【分析】 根据tan 24πα⎛⎫+=- ⎪⎝⎭求得tan 3α=,2222sin cos 2tan sin 2sin cos tan 1ααααααα==++即可求解. 【详解】 由题:tan 24πα⎛⎫+=- ⎪⎝⎭, tan 121tan αα+=--,解得tan 3α=,2222sin cos 2tan 63sin 2sin cos tan 1105ααααααα====++. 故选:B 【点睛】此题考查三角恒等变换,涉及二倍角公式与同角三角函数的关系,合理构造齐次式可以降低解题难度.二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;解析:9-【解析】 【分析】将2θ改写成2()42ππθ+-的形式,利用二倍角公式计算cos2θ的值,代入相关数值.【详解】因为cos2cos[2()]sin[2()]424πππθθθ=+-=+,所以cos 22sin()cos()44ππθθθ=++; 因为1sin()043πθ+=>且θ为钝角,所以()4πθ+是第二象限角,则cos()43πθ+==-,故cos 22sin()cos()449ππθθθ=++=-. 【点睛】(1)常见的二倍角公式:sin 22sin cos ααα=,2222cos 2cos sin 2cos 112sin ααααα=-=-=- ;(2)常用的角的配凑:()ααββ=-+,()ααββ=+-;2()()ααβαβ=++- ,2()()βαβαβ=+--.17.【解析】【分析】先根据已知求出最后化简代入的值得解【详解】由题得由题得=故答案为【点睛】本题主要考查差角的正切和同角的商数关系平方关系意在考查学生对这些知识的理解掌握水平和分析推理能力解析:35【解析】 【分析】先根据已知求出tan α,最后化简2sin sin()cos()απαπα--+,代入tan α的值得解. 【详解】 由题得tan 111,tan 1+tan 32ααα-=-∴=.由题得22222sin +sin cos sin sin()cos()=sin +sin cos =sin +cos ααααπαπαααααα--+ =2211tan tan 3421tan 1514ααα++==++. 故答案为35【点睛】本题主要考查差角的正切和同角的商数关系平方关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.【解析】分析:根据题意设则有进而分析可得由三角函数的性质分析可得答案详解:根据题意实数xy 满足即设则又由则即的最大值5;故答案为:5点睛:本题考查三角函数的化简求值关键是用三角函数表示xy解析:【解析】分析:根据题意,设2cos x θ=,y θ=,则有24cos 3sin x θθ+=+,进而分析可得()25sin x θα+=+,由三角函数的性质分析可得答案.详解:根据题意,实数x ,y 满足223412x y +=,即22143x y +=,设2cos x θ=,y θ=,则()24cos 3sin 5sin x θθθα=+=+,3tan 4α⎛⎫= ⎪⎝⎭, 又由()15sin 1θα-≤+≤,则525x -≤≤,即2x +的最大值5; 故答案为:5.点睛:本题考查三角函数的化简求值,关键是用三角函数表示x 、y .19.【解析】分析:利用余弦定理设设AC=BC=m 则由余弦定理把m 表示出来利用四边形OACB 面积为S=转化为三角形函数问题求解最值详解:△ABC 为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m 则由余解析:5+ 【解析】分析:利用余弦定理,设AOB α∠=,设AC=BC=m ,则AB =.由余弦定理把m 表示出来,利用四边形OACB 面积为S=24sin 4sin 2OACB ABC m S S αα∆∆=+=+.转化为三角形函数问题求解最值.详解:△ABC 为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m ,则AB =.由余弦定理,42+22﹣2m 2=16cos α,∴2108cos m α∴=-.108cos 4sin 4sin 4sin 4cos 52OACB ABC S S ααααα∆∆-∴=+=+=-+)554πα=-+≤.当34απ=时取到最大值5+.故答案为5+点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设AOB α∠=,再建立三角函数的模型.20.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力【解析】分析:先根据三角函数定义得cos ,tan αα,再根据诱导公式化简求值.详解:因为角α的终边上一点)1A -,,所以cos tanαα===, 因此()sin tan 2παπα⎛⎫-++⎪⎝⎭cos tanαα=+== 点睛:本题考查三角函数定义以及诱导公式,考查基本求解能力.21.【解析】分析:先化简得到再化简得到详解:因为所以1-所以因为所以所以A+B=所以因为sinA>0所以故答案为点睛:本题主要考查三角化简和诱导公式意在考查学生对这些知识的掌握水平和基本的计算能力解析:12【解析】 分析:先化简2sincos cos 1242C C π+=得到2C π=,再化简2sin sin sin B A C =得到sin A =详解:因为2sincos cos 1242C C π+=,所以1-2cos 1222C C +=,所以cos(cos 0,cos 0(cos =222222C C C C -=∴=舍)或, 因为0C π<<,所以2C π=,所以A+B=2π.2sin sin sin B A C =因为,所以22cos sin ,sin sin 10,sin A A A A A =∴+-=∴=因为sinA>0,所以1sin 2A =.. 点睛:本题主要考查三角化简和诱导公式,意在考查学生对这些知识的掌握水平和基本的计算能力.22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:解析:4()sin π3f x ⎛⎫= ⎪⎝⎭【解析】分析:由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数. 详解:由题目约束条件可得到()f x 的不同解析式.由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数()4sin π3f x ⎛⎫=⎪⎝⎭. 点睛:正余弦函数是周期有界函数,既有对称轴也有对称中心,是一类有特色得函数.23.【解析】分析:根据图像平移规律确定函数解析式详解:点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟练掌握无论是哪种变形切记每一个变换总是对字母而言 解析:24e x y -=【解析】分析:根据图像平移规律确定函数解析式. 详解:222(2)24e ee e xxx x y y y --=→=→==横坐标变为一半右移个单位点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言.24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题 解析:65【解析】 分析:由1tan 43πα⎛⎫-= ⎪⎝⎭可得tan 2α=,化简()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭,即可求得其值.详解:tan tantan 114tan ,tan 2,4tan 13tan tan 4παπαααπαα--⎛⎫-===∴= ⎪+⎝⎭+ 由()()22cos sin cos sin sin cos 2παπαπαααα⎛⎫+--+=+⎪⎝⎭22222sin sin cos tan tan 6.sin cos tan 15αααααααα++===++ 即答案为65. 点睛:本题考查三角函数的化简求值,考查了诱导公式及同角三角函数基本关系式的应用,是基础题.25.【解析】由题意得解析:3-【解析】由题意得()1sin sin ,[,],cos 32ππαααπα-==∈∴==三、解答题 26. (1)34-(2)16【解析】试题分析:(1)利用余弦定理表示出cosB ,将已知等式代入即可求出cosB 的值;(2)由cosB 可求出sin 2,cos 2B B 的值,然后利用两角和的余弦公式可得结果. 试题解析:(1)由22222230a c b ac +-+=,得22232a cb ac +-=-, 根据余弦定理得222332cos 224aca cb Bac ac -+-===-; (2)由3cos 4B =-,得sin B = ∴sin22sin cos BB B ==21cos22cos 18B B =-=,∴1sin 2sin2cos cos2sin 44428816B B B πππ⎫⎛⎫+=+=-+=⎪ ⎪⎪⎝⎭⎝⎭. 27.(1)3C π=(2)7+【解析】 【分析】(1)利用正弦定理,将2cos (cos cos )C a B b A c +=,转化为2cos (sin cos sin cos )sin C A B B A C +=,再利用两角和与差的三角的三角函数得到sin (2cos 1)0C C -=求解.(2)根据ABC 的面积为1sin 2ab C =12ab =,再利用余弦定理得()23a b ab =+-,求得+a b 即可. 【详解】(1)因为2cos (cos cos )C a B b A c +=, 所以2cos (sin cos sin cos )sin C A B B A C +=, 所以()2cos sin sin C A B C +=, 所以sin (2cos 1)0C C -=, 所以1cos 2C =, 又因为()0,C π∈, 所以3C π=.(2)因为ABC 的面积为所以1sin 2ab C = 所以12ab =.由余弦定理得:若2222cos c a b ab C =+-,()23a b ab =+- 所以7a b +=所以ABC 的周长7【点睛】本题主要考查正弦定理、余弦定理和两角和与差的三角函数的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.28.(1)()2sin(2)6f x x π=+ (2)[-1,2] 【解析】试题分析:根据正弦型函数图象特点,先分析出函数的振幅和周期,最低点为2,23M π⎛⎫- ⎪⎝⎭,得2A =,周期T π=,则2==2T πω,又函数图象过2,23M π⎛⎫- ⎪⎝⎭,代入得42sin 23πϕ⎛⎫+=- ⎪⎝⎭,故1126k k Z πϕπ=-+∈,,又0,2πϕ⎛⎫∈ ⎪⎝⎭,从而确定6πϕ=,得到()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,再求其单调增区间. (2)分析72,636x πππ⎡⎤+∈⎢⎥⎣⎦,结合正弦函数图象,可知当262x ππ+=,即6x π=时,()f x 取得最大值2;当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-. 试题解析:(1)依题意,由最低点为2,23M π⎛⎫-⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-. 点睛:本题考查了三角函数的图象和性质,重点对求函数解析式,单调性,最值进行考查,属于中档题.解决正弦型函数解析式的问题,一定要熟练掌握求函数周期,半周期的方法及特殊值的应用,特别是求函数的初相时,要注意特殊点的应用及初相的条件,求函数值域要结合正弦函数图象,不要只求两个端点的函数值.29.(1)()4sin 34f x x π⎛⎫=+ ⎪⎝⎭,23π;(2)22,()43123k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z .【解析】【分析】(1)由函数的图象经过点412,π⎛⎫ ⎪⎝⎭且f (x )的图象有一条对称轴为直线12x π=, 可得最大值A ,且能得周期并求得ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)利用正弦函数的单调性求得f (x )的单调递增区间.【详解】(1)函数f (x )=A sin (ωx +ϕ)(A >0,ω>0,2πϕ<)在一个周期内的图象经过点412,π⎛⎫ ⎪⎝⎭,5412π⎛⎫- ⎪⎝⎭,,且f (x )的图象有一条对称轴为直线12x π=, 故最大值A =4,且5212123T πππ=-=, ∴2T 3π=, ∴ω2Tπ==3. 所以()4sin(3)f x x ϕ=+.因为()f x 的图象经过点,412π⎛⎫⎪⎝⎭,所以44sin 312πϕ⎛⎫=⨯+ ⎪⎝⎭, 所以24k ϕπ=+π,k Z ∈. 因为||2ϕπ<,所以4πϕ=, 所以()4sin 34f x x π⎛⎫=+ ⎪⎝⎭. (2)因为()4sin 34f x x π⎛⎫=+⎪⎝⎭,所以232242k x k πππππ-+≤+≤+,k Z ∈, 所以2243123k k x ππππ-+≤≤+,k Z ∈, 即()f x 的单调递增区间为22,()43123k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z . 【点睛】本题主要考查由函数y =A sin (ωx +ϕ)的性质求解析式,通常由函数的最大值求出A ,由周期求出ω,由五点法作图求出ϕ的值,考查了正弦型函数的单调性问题,属于基础题.30.(1)()=4sin 23f x x π⎛⎫+ ⎪⎝⎭;(2)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(3)76π; 【解析】【分析】(1)根据函数的最值可得A ,周期可得ω,代入最高点的坐标可得ϕ,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用()2f x =-在(0,)x π∈内的解就是1x 和2x ,即可得到结果.【详解】(1)由函数()f x 的图象可得4A =, 又因为函数的周期72()1212T πππ=-=,所以22πωπ==, 因为函数的图象经过点(,4)12P π,即4sin(2)412πϕ⨯+=, 所以2,62k k Z ππϕπ+=+∈,即2,3k k Z πϕπ=+∈, 所以()4sin(22)4sin(2)33f x x k x πππ=++=+. (2)由222,232k x k k Z πππππ-≤+≤+∈, 可得5,1212k x k k Z ππππ-≤≤+∈, 可得函数()f x 的单调递增区间为:5[,],1212k k k Z ππππ-+∈, (3)因为(0,)x π∈,所以72(,)333x πππ+∈, 又因为()2f x =-可得1sin(2)32x π+=-, 所以7236x ππ+=或11236x ππ+=, 解得512x π=或34x π=,、 因为12x x ≠且()12,0,x x π∈,12()()2f x f x ==-, 所以1253147124126x x ππππ+=+==. 【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.。
人教A版高中数学选修一期末考试.docx
高中数学学习材料马鸣风萧萧*整理制作武汉外国语学校2014—2015学年度上学期期末考试高二数学(文) 试题考试时间:2015年2月3日上午10:20-12:20 满分:150分一、选择题:(每小题5分,共50分)1. 已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( )A .()p q ⌝∨B .p q ∨C .p q ∧D .()()p q ⌝∧⌝2. 对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p == 3. 质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间[0,1]上的概率为( )A. 14B. 13C. 12 D .以上都不对 4. “102x x -≥+”是“(1)(2)0x x -+≥”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5. 从某高中随机选取5名高二男生,其身高和体重的数据如下表所示: 身高x (cm) 160 165 170 175 180 体重y (kg)6366707274根据上表可得线性回归方程y ^=0.56x +a ^,据此模型预报身高为172 cm 的高三男生的体重为 ( ) A .70.09 kgB .70.12 kgC .70.55 kgD .71.05 kg6. 从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是 ( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有二个红球7. 双曲线9322=-x y 的渐近线方程为 ( )A .30x y ±=B .30x y ±=C .30x y ±=D .30x y ±=8. 执行如图所示的程序框图,输出的T =( ) A .29 B .44 C .52 D .629. 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .433B .233C .3D .210.设函数223()cos 4sin 3(),| t |1,2x f x x t t t x R =++-∈≤其中将()f x 的最小值记为()g t ,则函数()g t 的单调递增区间为( )A .1(,]3-∞-和[1,)+∞ B.1[1,]3-- C.1[,)3+∞ D.1[,1]3-二、填空题。
青海省海东市第一中学2022届高考模拟(二)数学(文)试题(1)
一、单选题二、多选题1. 正方体中,M是的中点,则直线DM 与的位置关系是( )A .异面垂直B .相交垂直C .异面不垂直D .相交不垂直2.随着我国新冠疫情防控形势的逐渐好转,某企业开始复工复产.经统计,年月份到月份的月产量(单位:吨)逐月增加,且各月的产量成等差数列,其中月份的产量为吨,月份的产量为吨,则月到月这四个月的产量之和为( )A.吨B.吨C.吨D.吨3. 已知,则( ).A .1B.C.D.4.函数的图象向右平移个单位长度后,与函数的图象重合,则( )A.B.C.D.5. 已知函数的导函数为,且满足,则( )A.B.C.D .6. 2019年9月1日兰州地铁一号线正式开通,两位同学同时去乘坐地铁,一列地铁有节车厢,两人进入车厢的方法数共有( )A.种B.种C.种D.种7.已知,则( )A .3B .5C.D.8. 若,则( )A .3B.C .2D .49. 在平面直角坐标系中,抛物线的焦点为,准线为,为抛物线上一点,,为垂足.若直线的斜率,则下列结论正确的是()A.准线方程为B.焦点坐标C.点的坐标为D.的长为310. “杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献;某杂交水稻种植研究所调查某地杂交水稻的特定时期幼苗株高,得出株高(单位:cm)服从正态分布,且的幼苗株高指标值符合优质种植标准,其中幼苗株高不低于即为合格种植标准,研究所采集了1000株互不影响生长的水稻幼苗株高样本,则下列说法正确的是( )附:参考数据与公式:若,则,,.A.幼苗株高优质种植标准约为青海省海东市第一中学2022届高考模拟(二)数学(文)试题(1)青海省海东市第一中学2022届高考模拟(二)数学(文)试题(1)三、填空题四、解答题B .此地杂交水稻合格率约为0.97725C .采集样本中,株高指标合格数量依然服从正态分布D .采集样本中,株高指标合格数量最有可能是978株11. 某质量指标的测量结果服从正态分布,则在一次测量中( )A .该质量指标大于80的概率为0.5B .越大,该质量指标落在的概率越大C .该质量指标小于60与大于100的概率相等D.该质量指标落在与落在的概率相等12. 已知数列均为等比数列,则下列结论中一定正确的有( )A.数列是等比数列B .数列是等比数列C .数列是等差数列D .数列是等差数列13. 盒中有四张形状与大小均相同的卡片,分别写着数字1,2,3,4.每次不放回地从盒中随机取出一张卡片,直到取出的所有卡片上数字之积大于10为止.设此时取出的所有卡片上数字之和为,则______,______.14. 已知,,若对任意都成立,则的取值范围是______.15. 杭州第19届亚运会于2023年9月23日至10月8日举办,杭州亚运会竞赛项目设置为40个大项,61个分项,481个小项,并增设电子竞技、霹雳舞两个竞赛项目.现有甲、乙、丙、丁、戊5名志愿者到乒乓球、电子竞技、霹雳舞三个项目志愿服务,其中每个项目至少一名志愿者,甲必须在霹雳舞项目,则不同的志愿服务方案共有______种(用数字作答).16. 2017年诺贝尔奖陆续揭晓,北京时间10月2日17:30首先公布了生理学和医学奖,获奖者分别是三位美国科学家霍尔(Jeffrey C.Hall )、罗斯巴什(Michael Rosbash )和杨(Michael W.Young ),以表彰他们“发现控制生理节律的分子机制”,通过他们的研究成果发现,人类每天睡眠时间在7-9小时为最佳状态,从某大学随机挑选了100名学生(男生、女生各50名)做睡眠时间统计调查,调查结果如下:睡眠时间(小时)男生561212852女生261812102请根据上面表格回答下面问题:(1)请分别估计出该校男生和女生的睡眠平均时间(以表格中的频率代替总体的概率);(2)若从全校(人数较多,且男女人数相当)睡眠最佳状态的人群中随机选出人进行深度睡眠时间测试,记选出的女生人数为,求的期望17. 某中学组织一支“邹鹰”志愿者服务队,带领同学们利用周末的时间深入居民小区开展一些社会公益活动.现从参加了环境保护和社会援助这两项社会公益活动的志愿者中,随机抽取男生80人,女生120人进行问卷调查(假设每人只参加环境保护和社会援助中的一项),整理数据后得到如下统计表:女生男生合计环境保护8040120社会援助404080合计12080200(1)能否有99%的把握认为学生参加社会公益活动所选取的项目与学生性别有关?(2)从本校随机抽取的120名参与了问卷调查的女生中用分层抽样的方法,从参加环境保护和社会援助的同学中抽取6人开座谈会,现从这6人(假设所有的人年龄不同)中随机抽取参加环境保护和社会援助的同学各1人,试求抽取的6人中参加社会援助的年龄最大的同学被选中且参加环境保护的年龄最大的同学未被选中的概率.附:,其中.0.0250.0100.0050.0015.0246.6357.87910.82818. 已知函数有一个大于1的零点.(1)求实数a的取值范围;(2)证明:对任意的,都有恒成立.19. 如图,平面四边形中,,为的中点,,,现将四边形沿翻折到四边形的位置,使得二面角的大小为120° ,连接,为的中点.(1)证明:平面;(2)若点在平面内的射影为,求二面角的余弦值.20. 为了加强食品安全监管,某县市场监管局计划添购一批食品检测仪器,符合这次采购要求的检测仪器只有甲、乙两种型号,下表是该县市场监管局以往使用甲、乙两种型号检测仪器的使用年限及数量统计表.使用年限1年2年3年4年合计甲型号检测仪器数287320量/台乙型号检测仪器数396220量/台以频率估计概率.(1)分别从以往使用的甲、乙两种检测仪器中各随机抽取一台,求甲型号检测仪器的使用年限比乙型号检测仪器的使用年限恰好多1年的概率;(2)若该县市场监管局购买甲、乙两种型号检测仪器各2台,记2年后仍可使用的检测仪器的台数为,求的分布列与数学期望.21. 影响身高的因素主要有以下凡点:第一、遗传,遗传基因直接影响人种、身高,第二、睡眠,身高的增长非常依赖于睡眠的质量,睡眠的时间有保障,晚上分泌的生长激素可以很好地作用于人体的骨骼,使人体增高.第三、营养,营养物质特别是蛋白质、钙、铁等要补充充分,为孩子增长身体提供原料、第四、运动,运动影响儿童身高非常明显,运动可以直接促进生长激素的分泌,使生长激素在夜晚增大分泌,促进食欲,还能保证健康的睡眠等等,对于长高有很大帮助.高中学生由于学业压力,缺少睡眠与运动等原因,导致身高偏矮;但同时也会由于营养增加与遗传等原因,导致身高偏高,某市教育局为督促各学校保证学生充足的睡眠、合理的营养搭配和体育锻炼时间,减轻学生学习压力,准备对各校男生身高指数进行抽查,并制定了身高指数档次及所对应得分如下表:档次偏矮正常偏高超高男生身高指数(单位:)学生得分50708090某校为迎接检查,学期初通过调查统计得到该校高三男生身高指数服从正态分布,并调整睡眠时间、合理的营养搭配和体育锻炼.6月中旬,教育局聘请第三方机构抽查的该校高三30名男生的身高指数频数分布表如下:档次偏矮正常偏高超高男生身高指数(单位:)人数39126(1)试求学校调整前高三男生身高指数的偏矮率、正常率、偏高率、超高率;(2)请你从偏高率、超高率、男生身高指数平均得分三个角度评价学校采取揹施的效果.附:参考数据与公式:若,则①;②;③.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宣威五中2018年春季学期期末检测试卷高二文科数学考试时间:120分钟注意事项:1、答题前填写好自己的姓名、班级、考号等信息;2、请将答案正确填写在答题卡上。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知集合{}22M=1,1,x N y y x x ⎧⎫≥==-⎨⎬⎩⎭则M N = ( )A .(]2-∞,B .(]01,C .(]02,D .[]01,2. 已知复数11iz =+,则z 的虚部为( )A .12iB .12i -C .12D .12-3. 已知张老师家一星期的总开支分布如图所示,一星期的食品开支如图所示,则张老师家一星期的鸡蛋开支占总开支的百分比为( )A .30%B. 10%C .3%D .不能确定4. 正项等比数列{}n a 中, n S 为其前n 项和,若3239S a a +=,则公比为( )A .12B .13C .14D .185. 为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是( )A .0.3B .0.4C .0.6D .0.76. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等。
下图是源于其思想的一个程序框图,若输入的,a b 分别为8,2,则输出的n =( )A .5B .4C .5D .27. 已知0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为2,则双曲线2C 的渐近线方程为( )A0y =B.0x ±= C .20x y ±=D .20x y ±=8.已知曲线;sin 22C y x x =-,则下列结论正确的是( ) A. 把C 向左平移512π个单位长度,得到的曲线关于原点对称 B. 把C 向右平移512π个单位长度,得到的曲线关于y 轴对称C. 把C 向左平移3π个单位长度,得到的曲线关于原点对称D. 把C 向右平移6π个单位长度,得到的曲线关于x 轴对称9. 如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,沿AE ,AF ,EF 把正方形折成一个四面体,使B ,C ,D 三点重合,重合后的点记为P ,点P 在△AEF 内的射影为O . 则下列说法正确的是( ) A .O 是△AEF 的垂心 B .O 是△AEF 的内心D .O 是△AEF 的重心C .O 是△AEF 的外心10. 若动圆C 过定点A (4,0),且在y 轴上截得弦MN 的长为8,则动圆圆心C 的轨迹方程是( )A. 221412x y -=B. 221(2)412x y x -=> C.28y x =D.28(0)y x x =≠11. 在平面直角坐标系中,O 为坐标原点,,0OB OC OD OB OC OD ==++=,(1,1)A 则AD OB ⋅的取值范围()A .11⎡⎤-⎣⎦B .1122⎡--+⎢⎣C .1122⎡-+⎢⎣D .1⎡⎣12. 已知函数2()()f x f x x +-=,当(0,)x ∈+∞时,()f x x '>.若(1)(1)2f a f a a +--≥,则实数a 的取值范围是( )A .[)0,+∞B .[)1,+∞C .(],0-∞D .(],1-∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13. 已知实数,x y 满足02042x y x y ≤≤≤≤≤⎧⎪⎨⎪⎩,则2x y -的最大值为__________14. 已知函数2log (1),1(){310,1x x x f x x -<=-≥,若()1f x =-,则x =__________15. 在Rt ABC ∆中, 90,60,1C B BC ∠=︒∠=︒=,以AC 为轴将Rt ABC ∆旋转一周,所得几何体的外接球的表面积为__________ 16. 已知数列{}n a 中, 0n a >,12a =,114n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =__________三、解答题:(共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知等差数列{}n a 的首项11a =,公差1d =,前n 项和为n S ,且1n nb S =. (1)求数列{}n b 的通项公式; (2)求证:1232n b b b b ++++<.18. A 药店计划从甲,乙两家药厂选择一家购买100件某种中药材,为此A 药店从这两家药厂提供的100件该种中药材中随机各抽取10件,以抽取的10件中药材的质量(单位:克》作为样本.样本数据的茎叶图如图所示.己知A 药店根据中药材的质量(单位:克)的往定性选择药厂 Ⅰ. 根据样本数据,A 药店应选择心家药厂购买中药材?Ⅱ. 若将抽取的样本分布近似看作总体分布,药店与所选药厂商定中药材的购买价格如下表:(1)估计A 药店所购买的100件中药材的总质量;(2)若A 药店所购买的100件中药材的总费用不超过7000元.求a 的最大值.19. 如图,四棱锥P ABCD -中,底面ABCD 为矩形,点E 在线段PA 上. //PC 平面BDE (1)求证: AE PE =(2)若PAD ∆是等边三角形,2AB AD =,平面PAD ⊥平面ABCD ,四棱锥P ABCD -的体积为,求点E 到平面PCD 的距离.20. 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1 +y 2的值及直线AB 的斜率.21. 已知函数(),x e af x a R x-=∈ (1)若0a =,求函数在点(1,(1))f 处的切线方程;(2)若()f x 在定义域内无极值点,求实数a 的取值范围; (3)求证:当01,0a x <时, ()1f x >恒成立22. 己知过点(),0P m 的直线l的参数方程是212x m t y t ⎧⎪=+⎨=⎪⎪⎪⎩ (t 为参数),以平面直角坐标系的原点为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于,A B 两点,且2PA PB ⋅=,求实数m 的值·宣威五中2018年春季学期期末检测参考答案高二 文科数学一、选择题二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上. 13.三、解答题:(共70分,解答应写出文字说明、证明过程或演算步骤) 17.(1)因为数列{}n a 是首项11a =,公差1d =的等差数列所以由等差数列的前n 项和公式得,数列{}n a 前n 项和为21122n S n n =+由1n n b S =,得2(1)n b n n =+(2)由(Ⅰ)知222(1)1n b n n n n ==-++所以123222222222212233411n b b b b n n n ++++=-+-+-++-=-++又201n >+,所以1232n b b b b ++++<18.(1)x 甲15=,S 甲244.4=,S 乙226.8=,所以选择乙厂的中药材 (2)①从乙药厂所抽取的每件中药材的质量的平均值为1(791112121718212122)1510x =+++++++++=, 故A 药店所购买的100件中药材的总质量的估计值为100151500⨯=克 ②乙药厂所提供的每件中药材的质量15n <的概率为50.5,152010n =≤≤的概率为20.210=,20n >的概率为30.310=则A 药店所购买的100件中药材的总费用为100(500.50.21000.3)a ⨯⨯++⨯ 依题意得100(500.50.21000.3)7000a ⨯⨯++⨯≤ 解得75a ≤所以a 的最大值为7519.(1)证明.连接AC ,设AC BD O ⋂=.连接EO .因为ABCD 为矩形. 所以O 为AC 的中点因为PC 平面BDE ,PC ⊂平面PAC 平面PAC ⋂面BDE EO =. 所以PC EO因为O 为AC 的中点,所以E 为PA 的中点. 所以AE PE =(2)设AD a =.则PA PD a ==,2AB a =.作PF AD ⊥于F ,则2PF =, 因为平面PAD ⊥平面ABCD . 平面PAD ⋂平面ABCD AD =, 所以PF ⊥平面ABCD .所以2311233P ABCD ABCD V S PF a -=⨯=⨯==解得3a =,因为ABCD 为矩形,所以CD AD ⊥.因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,所以CD ⊥平面PAD ; 设点E 到平面PCD 的距离为h ,则E PCD C PDE V V --=.因为1136922PCD S PD CD ∆=⨯=⨯⨯=,11922PDE PAD S S ∆∆===所以4PDE PCD S CD h S ∆∆⨯==所以点E 到平面PCD的距离为420.(1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p×1,解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB ,则k PA =y1-2x1-1(x 1≠1),k PB =y2-2x2-1(x 2≠1),∵PA 与PB 的斜率存在且倾斜角互补,∴k PA =-k PB . 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y21=4x 1,① y22=4x 2,② ∴y1-214y21-1=-y2-214y22-1, ∴y 1+2=-(y 2+2). ∴y 1+y 2=-4.由①-②得,y21-y22=4(x 1-x 2), ∴k AB =y1-y2x1-x2=4y1+y2=-1.21.(1)2(1)(),'(),(1),'(1)0x xe x ef x f x f e f x x -====,所求切线方程为y e =(2)由题意知2(1)'()x e x af x x -+=令()(1),(0)xg x e x a x =-+≠,则'()xg x e x =⋅ 当0x <时, '()0g x <,()g x 在(,0)-∞上单调递减, 当0x >时, '()0g x >,()g x 在(0,)+∞上单调递增, 又(0)1g a =-∵()f x 在定义域内无极值点1a ∴>又当1a =时, ()f x 在(,0)-∞和(0,)+∞上都单调递增也满足题意 所以1a ≥(3)证明: 2(1)'()x e x af x x-+= 令()(1)xg x e x a =-+,由1可知()g x 在(0,)+∞上单调递增,又(0)10(1)0g a g a =-<⎧⎨=>⎩所以'()f x 存在唯一的零点0(0,1)x ∈,故()f x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增0()()f x f x ∴≥由00(1)0xe x a -+=知00()1x f x e=>即当01,0a x <时, ()1f x >恒成立 22.(1)消去参数t ,可得直线l的普通方程为x m =+,即0x m -=因为2cos p θ=,所以22cos p p θ=可得C 的直角坐标方程为222x y x +=,即2220x x y -+=(2)把12x m y t ⎧⎪=+⎨=⎪⎪⎪⎩代入得2220x x y -+=,得2220t t m m ++-=由0∆>,得13m -<<设点,A B 对应的参数为12,t t ,则2122t t m m ⋅=-因为122PA AB t t ⋅=⋅=,所以222m m -=±解得1m =±因为13m -<<,所以1m =±23.(1)当1,0a b ==时,由()31f x x ≥+得211x +≥所以112x +≥,解得32x ≤-或12x ≥- 所以不等式的解集为31,,22⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭(2)因为52,()232,352,3x a b x a b f x x a x b x a b a x b x a b x --+<-=++-=-+⎧⎪⎪⎪⎨+-≤≤+->⎪⎪⎪⎩所以函数()f x 在,3b ⎛⎫-∞ ⎪⎝⎭上为减函数,在,3b ⎛⎫+∞⎪⎝⎭上为增函数 所以当3bx =时,函数()f x 取得最小值为2233b b f a ⎛⎫=+= ⎪⎝⎭因为0,0a b >>,所以33a b +=。