第三章 三角形全章分节习题:基础型+拔高型

合集下载

北师七年级下册数学全等三角形的基础、判定、经典、精选拔高证明题

北师七年级下册数学全等三角形的基础、判定、经典、精选拔高证明题

七年级下册数学全等三角形的基础,判定,经典,精选证明题(一)全等三角形的基础1、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.2、如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.3、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.4、如图,在ΔABC中,AC=AB,AD是BC边上的中线。

求证:AD⊥BC,5、如图,已知AB=DE,BC=EF,AF=DC。

求证:∠EFD=∠BCA 6、如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。

(1)∠DBH=∠DAC;(2)ΔBDH≌ΔADC。

7、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

8、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.9、在△ABC中,,AB=AC, 在AB边上取点D,在AC延长线上了取点E ,使CE=BD , 连接DE交BC于点F,求证DF=EF .(二) 全等三角形的判定1.已知∠BAC=∠DAE,∠1=∠2,BD=CE,问ABD≌⊿ACE.吗?为什么?ADEBC122.已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

ADCEFB3.已知BE=CF,AB=CD,∠B=∠C.问AF=DE吗?ACDBEF4.已知AD=CB,∠A=∠C,AE=CF,问EB∥DF吗?说明理由。

BADFEC5.已知,M是AB的中点,∠1=∠2,MC=MD,问∠C=∠D吗?说明理由。

MABCD126.已知,AE=DF,BF=CE,AE∥DF,问AB=CD吗?说明理由。

DCFEAB7.已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。

ACDB12348.已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

三角形高的练习题

三角形高的练习题

三角形高的练习题一、基础练习题1. 已知边长为7cm和9cm的两个边,求该三角形的高。

解答:由垂直平分线相交于三角形的顶点,可以得到两个相等的直角三角形。

我们可以使用勾股定理来计算:设三角形的底边为7cm,高为h,斜边为9cm。

根据勾股定理:7² = h² + 9²解得:h² = 7² - 9² = 49 - 81 = -32由于h²为负数,所以该三角形不存在实数解,即无法构成三角形。

2. 已知等边三角形的边长为12cm,求其高。

解答:在等边三角形中,高、中线和垂直平分线重合,并且等边三角形的高同时也是它的中线和垂直平分线。

设等边三角形的边长为12cm,高为h。

根据勾股定理:(12/2)² = h² + 12²解得:36 = h² + 144化简得:h² = 36 - 144 = -108由于h²为负数,所以该等边三角形不存在实数解。

二、进阶练习题1. 已知三角形的底边长为10cm,高为6cm,求斜边的长度。

解答:根据勾股定理:底边² = 高² + 斜边²将已知数据代入方程,得到:10² = 6² + 斜边²化简得:100 = 36 + 斜边²解得:斜边² = 100 - 36 = 64开方得:斜边≈8所以,斜边的长度约为8cm。

2. 已知三角形的底边为20cm,斜边为26cm,求其高。

解答:根据勾股定理:底边² = 高² + 斜边²将已知数据代入方程,得到:20² = 高² + 26²化简得:400 = 高² + 676解得:高² = 400 - 676 = -276由于高²为负数,所以该三角形不存在实数解。

配套PPT课件:第三章中档题目强化练——三角函数、解三角形

配套PPT课件:第三章中档题目强化练——三角函数、解三角形
此时 f(x)=2cos 2x,在0,π2上为减函数,故选 B. 答案 B
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
5.已知函数 f(x)= 3sin 2x+cos 2x-m 在0,π2上有两个零
点,则 m 的取值范围是
(B )
A.(1,2)
B.[1,2)
C.(1,2]
知道当 y2=m 在[1,2)上移动时,两个函数有两个交点.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
6.已知△ABC 的面积为 23,AC= 3,∠ABC=π3,则△ABC 的周长等于__3_+___3__.
解析 S=12acsin∠ABC= 23,得 ac=2;

根据余弦定理 cos∠ABC=a2+2ca2c-b2,得 a2+c2=5. ②
由①②可求得 a+c=3,则三角形周长可求.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
7.函数 y=tan2x+π6的对称中心为__-__1_π2_+__k_4π_,__0_(_k_∈__Z_)__.
解析 ∵y=tan x(x≠π2+kπ,k∈Z)的对称中心为k2π,0 (k∈Z),
数学 浙(理)
中档题目强化练——三角函数、 解三角形
第三章 三角函数、解三角形
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
A组 专项基础训练
1
2
3
4
5
6

初二数学《三角形》拔高题精选

初二数学《三角形》拔高题精选
10. 如图 10-1, 在四边形 ABCD 中, E 是 AB 的中点, AD BC ,设 S DDCE = a ,则
B E A
图 10-1
C
S
D
S四边形ABCD 为?
分析:延长CE 与 DA ,可得一对全等三角形, 至此四边形的面积问题已成功转化为了三角形 的组合的面积问题.
解 : 如图10 - 2所示, 延长CE 与DA交于点G . AD BC \ AGE = BCE ì ï AGE = BCE , ï ï 在DAGE 和DBCE中, ï í AEG = BEC , ï ï AE = BE , ï ï î \ DAGE ≌DBCE ( AAS ) G \ S四边形ABCD = S DCGD = 2S DDCE = 2a.
C
图 3-1
B C
B
图 3-2
评注: “倍长中线”是一种常用 的辅助线,其目的是为了构造出 全等三角形,将分散的条件集中 到一个三角形中去.
4.如图 4-1,DABC 中,A = 60 ,ACB 的平分线CD 和 ABC 的平分线 BE 交 于点G .求证:GE = GD . 分析:在题目条件中出现角平分线时,我们常从角平分线上一点向角的两边作 垂线,可得到一对全等三角形,在本题中也是如此.
A
E B C
图 6-2
F D
\ B = CDF \ ADC + B = ADC + CDF = 180 ②当AB = AD且B = 90时, 显然D + B = 180 ( 证明略 ) .
7.如图 7,已知 AB CD , AD BC , AC 与 BD 交于点O , AE ^ BD 于点 E ,CF ^ BD 于点 F ,那么图中全等的三角形有 分析:在此图中全等的三角形如下: 对.

八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案

八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案

《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

人教版八年级数学上册《三角形的高、中线与角平分线》拔高练习(1)

人教版八年级数学上册《三角形的高、中线与角平分线》拔高练习(1)

《三角形的高、中线与角平分线》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN2.(5分)在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.3.(5分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形4.(5分)三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点5.(5分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.7.(5分)三角形的三条高线的交点在三角形的一个顶点上,则此三角形是.8.(5分)如图,△ABC中,AB>AC,AD是中线,AB=10,AD=7,∠CAD=45°,则BC=.9.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于.10.(5分)如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.12.(10分)我们知道,三角形三条高所在直线交于一点.规定:三角形三条高所在直线的交点叫做这个三角形的垂心.如图,AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G.(1)图中哪两个不共顶点的锐角一定相等?请写出一组:.(2)点G是△的垂心.(3)点A是△的垂心.13.(10分)已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.14.(10分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.15.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.《三角形的高、中线与角平分线》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN【分析】三角形一边的中点与此边所对顶点的连线叫做三角形的中线,逐一判断各选项即可.【解答】解:由图可得,F是BC的中点,根据三角形中线的定义,可知线段AF是△ABC的中线,故选:C.【点评】本题主要考查了三角形中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2.(5分)在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.【点评】考查了三角形的高的概念,能够正确作三角形一边上的高.3.(5分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【分析】直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;作出一个直角三角形的高线进行判断,就可以得到.【解答】解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.【点评】本题主要考查了三角形的高的概念,钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.4.(5分)三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点【分析】根据三角形的高线的定义分情况讨论高线的交点,即可得解.【解答】解:锐角三角形,三角形三条高的交点在三角形内部,直角三角形,三角形三条高的交点在三角形直角顶点,钝角三角形,三角形三条高的交点在三角形外部,故选:D.【点评】本题考查了三角形的高线,熟记三种三角形的高线的交点的位置是解题的关键.5.(5分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=45°.【分析】在三角形中,三内角之和等于180°,锐角三角形三个高交于一点.【解答】解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.【点评】考查三角形中,三条边的高交于一点,且内角和为180°.7.(5分)三角形的三条高线的交点在三角形的一个顶点上,则此三角形是直角三角形.【分析】根据直角三角形的高的交点是直角顶点解答.【解答】解:∵三角形的三条高线的交点在三角形的一个顶点上,∴此三角形是直角三角形.故答案为:直角三角形.【点评】本题考查了三角形的高,锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.8.(5分)如图,△ABC中,AB>AC,AD是中线,AB=10,AD=7,∠CAD=45°,则BC=2.【分析】作DH⊥AC于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,作CH⊥AD于H,如图,先证明△ADB≌△EDC得到EC=AB=10,再利用△AEF为等腰直角三角形计算出AF=EF=7,则根据勾股定理可计算出CF=,从而得到AC =6,接着利用△ACH为等腰直角三角形得到AH=CH=6,然后利用勾股定理计算出CD,从而得到BC的长.【解答】解:作DH⊥AC于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,作CH⊥AD于H,如图,∵AD是中线,∴BD=CD,在△ADB和△EDC中,∴△ADB≌△EDC(SAS),∴EC=AB=10,在RtAEF中,∵∠DAC=45°,AE=14,∴AF=EF=AE=7,在Rt△CEF中,CF==,∴AC=AF﹣CF=6,在Rt△ACH中,∵∠HAC=45°,∴AH=CH=AC=6,∴DH=AD﹣AH=1,在Rt△CDH中,CD==,∴BC=2CD=2.故答案为2.【点评】本题考查了三角形的角平分线、中线和高:熟练掌握三角形高、中线的定义;构造等腰直角三角形是解决此题的关键.9.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于5+3或5+5.【分析】分两种情况讨论:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+3或5+5.【解答】解:如图所示,Rt△ABC中,CD⊥AB,CD=AB=,设BC=a,AC=b,则,解得a+b=5,或a+b=﹣5(舍去),∴△AB长度周长为5+5;如图所示,Rt△ABC中,AC=BC,设BC=a,AC=b,则,解得,∴△AB长度周长为3+5;综上所述,该三角形的周长为5+3或5+5.故答案为:5+3或5+5.【点评】本题主要考查了三角形的高线以及勾股定理的运用,解决问题给的关键是利用勾股定理进行推算.10.(5分)如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是2.【分析】根据三角形中线的定义可得AD=CD,然后求出△ABD和△BCD的周长差=AB ﹣BC,代入数据进行计算即可得解.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长差=(AB+AD+BD)﹣(BC+CD+BD),=AB+AD+BD﹣BC﹣CD﹣BD,=AB﹣BC,∵AB=8,BC=6,∴△ABD和△BCD的周长差=8﹣6=2.答:△ABD和△BCD的周长差为2.故答案为:2【点评】本题考查了三角形的中线的定义,是基础题,数据概念并求出△ABD和△BCD 的周长差=AB﹣BC是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.【分析】依据DE∥AC,DF∥AB,即可得到∠ADE=∠DAF,∠ADF=∠EAD,再根据∠ADE=∠ADF,即可得出∠DAF=∠EAD,进而得到AD是∠BAC的角平分线.【解答】解:AD是△ABC的角平分线.理由:∵DE∥AC,DF∥AB,∴∠ADE=∠DAF,∠ADF=∠EAD,又∵∠ADE=∠ADF,∴∠DAF=∠EAD,又∵∠DAF+∠EAD=∠BAC,∴AD是∠BAC的角平分线.【点评】本题主要考查了角平分线的定义以及平行线的性质,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.12.(10分)我们知道,三角形三条高所在直线交于一点.规定:三角形三条高所在直线的交点叫做这个三角形的垂心.如图,AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G.(1)图中哪两个不共顶点的锐角一定相等?请写出一组:∠ABE=∠ACF或∠BAD=∠BCF或∠CAD=∠CBE.(2)点G是△ABC的垂心.(3)点A是△BCG的垂心.【分析】(1)依据BE⊥AC,CF⊥AB,可得∠ABE+∠BAE=∠ACF+∠CAF=90°,即可得到∠ABE=∠ACF;(2)三角形三条高所在直线的交点叫做这个三角形的垂心,据此进行判断;(3)三角形三条高所在直线的交点叫做这个三角形的垂心,据此进行判断.【解答】解:(1)∵BE⊥AC,CF⊥AB,∴∠ABE+∠BAE=∠ACF+∠CAF=90°,∴∠ABE=∠ACF,同理可得,∠BAD=∠BCF,∠CAD=∠CBE,故答案为:∠ABE=∠ACF或∠BAD=∠BCF或∠CAD=∠CBE;(2)∵AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G,∴点G是△ABC的垂心,故答案为:△ABC;(3)∵AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BF,CE交于点A,∴点A是△BCG的垂心,故答案为:△BCG.【点评】本题主要考查了三角形的角平分线高线以及中线,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.13.(10分)已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【分析】分高AD在△ABC内部和外部两种情况讨论求解即可.【解答】解:①如图1,当高AD在△ABC的内部时,∠BAC=∠BAD+∠CAD=70°+20°=90°;②如图2,当高AD在△ABC的外部时,∠BAC=∠BAD﹣∠CAD=70°﹣20°=50°,综上所述,∠BAC的度数为90°或50°.【点评】本题考查了三角形的高线,难点在于要分情况讨论.14.(10分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.【分析】根据中线的定义知CD=BD.结合三角形周长公式知AC﹣AB=5cm;又AC+AB =11cm.易求AC的长度.【解答】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.【点评】本题考查了三角形的角平分线、中线和高.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.15.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.。

人教版八年级数学上册《三角形全等的判定》拔高练习

人教版八年级数学上册《三角形全等的判定》拔高练习

《三角形全等的判定》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F 2.(5分)如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 3.(5分)如图,已知∠CAB=∠DBA,添加下列某条件,未必能判定△ABC≌BAD的是()A.AC=BD B.AD=BC C.∠l=∠2D.∠C=∠D 4.(5分)如图,在△P AB中,P A=PB,D、E、F分别是边P A,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°5.(5分)如图,已知AD∥BC,那么添加下列一个条件后,仍无法确定△ABC≌△CDA的是()A.∠B=∠D B.AB∥DC C.AB=CD D.BC=AD二、填空题(本大题共5小题,共25.0分)6.(5分)如图,已知AB=CB,要使△ABD≌△CBD,则可以添加的一个条件是.7.(5分)如图,AB=AC,点D在AB上,点E在AC上,DC,EB交于点F,请添加一个条件.使△ADC≌△AEB(填一个即可)8.(5分)如图,已知AE=AD,要直接利用AAS证明△ABE≌△ACD,应添加的条件是.9.(5分)根据下列条件:①AB=3,AC=4,AC=8;②∠A=60°,∠B=45°,AB=4;③AB=5,BC=3,∠A=30°;④AB=3,BC=4,AC=5,其中能画出唯一三角形是(填序号).10.(5分)两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②△ABD ≌△CBD;③AO=CO=AC;④四边形ABCD的面积=AC×BD,其中,正确的结论有.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,点D在线段BC上,∠B=∠ADB,∠BAD=∠CAE,∠C=∠E.求证:AC=AE.12.(10分)如图,AF=BE,AC∥BD,CE∥DF,求证:CE=DF.13.(10分)如图,已知点B,E,C,F在一条直线上,BE=CF,AC∥DE,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若BF=14,EC=4,求BC的长.14.(10分)如图,点E、A、C在同一直线上,AB∥CD,∠B=∠E,AC=CD 求证:(1)∠BAC=∠ECD;(2)BC=ED.15.(10分)(1)如图1,四边形ABCD中,∠A=∠B=90°,∠ADC,∠BCD的角平分线交于AB边上的点E,求证:①CD=AD+BC;②E是AB的中点;(2)如图2,(1)中的条件“∠A=∠B=90°”改为“条件AD∥BC”,其他条件不变,(1)中的结论是否都依然成立?请什么理由.《三角形全等的判定》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F【分析】根据全等三角形的判定定理,结合各选项的条件进行判断即可.【解答】解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(5分)如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且∠ABC=∠DEF,∴当AC=DF时,满足SSA,无法判定△ABC≌△DEF,故B不能;当AB=DE时,满足SAS,可以判定△ABC≌△DEF,故B可以;当∠ACB=∠F时,满足ASA,可以判定△ABC≌△DEF,故C可以;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故D可以;故选:B.【点评】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.3.(5分)如图,已知∠CAB=∠DBA,添加下列某条件,未必能判定△ABC≌BAD的是()A.AC=BD B.AD=BC C.∠l=∠2D.∠C=∠D【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【解答】解:A、∵AC=BD,∠CAB=∠DBA,AB=AB,∴根据SAS能推出△ABC≌△BAD,故本选项错误;B、根据AD=BC和已知不能推出△ABC≌△BAD,故本选项正确;C、∵∠CAB=∠DBA,AB=AB,∠1=∠2,∴根据ASA能推出△ABC≌△BAD,故本选项错误;D、∵∠C=∠D,∠CAB=∠DBA,AB=AB,∴根据AAS能推出△ABC≌△BAD,故本选项错误;故选:B.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.(5分)如图,在△P AB中,P A=PB,D、E、F分别是边P A,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【解答】解:∵P A=PB,∴∠A=∠B,在△ADF和△BFE中,,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=34°,∴∠P=180°﹣∠A﹣∠B=112°,故选:A.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.5.(5分)如图,已知AD∥BC,那么添加下列一个条件后,仍无法确定△ABC≌△CDA的是()A.∠B=∠D B.AB∥DC C.AB=CD D.BC=AD【分析】根据全等三角形的判定的方法进行解答即可.【解答】解:A、∵AD∥BC,∴∠DAC=∠BCA,由得出△ABC≌△CDA,不符合题意;B、∵AD∥BC,∴∠DAC=∠BCA,∵AB∥DC,∴∠BAC=∠DCA,由得出△ABC≌△CDA,不符合题意;C、由AB=CD,AC=CA,∠DAC=∠BCA无法得出△ABC≌△CDA,符合题意;D、∵AD∥BC,∴∠DAC=∠BCA,由得出△ABC≌△CDA,不符合题意;故选:C.【点评】此题主要考查了全等三角形的判定,关键是由已知得到两个已知条件,再根据全等三角形的判定找出能使△ABC≌△CDA的另一个条件.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,已知AB=CB,要使△ABD≌△CBD,则可以添加的一个条件是∠ABD =∠CBD或AD=CD.【分析】判定全等三角形时需要添加什么条件,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边.【解答】解:①添加∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②添加AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.(答案不唯一)【点评】本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.7.(5分)如图,AB=AC,点D在AB上,点E在AC上,DC,EB交于点F,请添加一个条件AD=AE.使△ADC≌△AEB(填一个即可)【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件一组对应角相等或AD=AE即可.【解答】解:添加条件:AD=AE,在△ABE和△ACD中,,∴△ADC≌△AEB(SAS),故答案为:AD=AE.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.8.(5分)如图,已知AE=AD,要直接利用AAS证明△ABE≌△ACD,应添加的条件是∠B=∠C.【分析】根据AAS证明△ABE≌△ACD即可.【解答】解:添加的条件是∠B=∠C,在△ABE与△ACD中,∴△ABE≌△ACD(AAS),故答案为:∠B=∠C.【点评】本题考查全等三角形的判定,解题的关键是正确找出条件证明全等三角形,本题属于基础题型.9.(5分)根据下列条件:①AB=3,AC=4,AC=8;②∠A=60°,∠B=45°,AB=4;③AB=5,BC=3,∠A=30°;④AB=3,BC=4,AC=5,其中能画出唯一三角形是②④(填序号).【分析】根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:①∵3+4<8,∴根据AB=3,BC=4,AB=8不能画出三角形,故本选项错误;②根据∠A=60°,∠B=30°,AB=4,符合全等三角形的判定定理ASA,即能画出唯一三角形,故本选项正确;③根据AB=5,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;④根据AB=3,BC=4,AC=5,符合全等三角形的判定定理SSS,即能画出唯一三角形,故本选项正确;故答案为:②④.【点评】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.(5分)两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②△ABD ≌△CBD;③AO=CO=AC;④四边形ABCD的面积=AC×BD,其中,正确的结论有①②③④.【分析】由题意可得BD是AC的垂直平分线,可得AO=CO=AC,AC⊥BC,根据“SSS”可证△ABD≌△CBD,由三角形的面积公式可得S四边形ABCD=2××AO×BD=×AC ×BD.【解答】解:∵AB=CB,AD=CD,∴BD是AC的垂直平分线,∴AO=CO=AC,AC⊥BC,故①③正确,∵AB=BC,AD=CD,BD=BD∴△ABD≌△CBD(SAS)故②正确∵S四边形ABCD=2S△ABD,∴S四边形ABCD=2××AO×BD=×AC×BD故④正确故答案为:①②③④【点评】本题考查了全等三角形的判定与性质,线段垂直平分线的性质,熟练运用全等三角形的性质解决问题是本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,点D在线段BC上,∠B=∠ADB,∠BAD=∠CAE,∠C=∠E.求证:AC=AE.【分析】欲证明AC=AE,只要证明△ABC≌△ADE(AAS)即可.【解答】证明:∵∠B=∠ADB,∴AB=AD,∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS),∴AC=AE.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.12.(10分)如图,AF=BE,AC∥BD,CE∥DF,求证:CE=DF.【分析】只要证明△AEC≌△BFD(ASA)即可解决问题.【解答】证明:∵AC∥BD,CE∥DF,∴∠A=∠B,∠CEA=∠DFB,∵AF=BE,∴AF+EF=BE+EF,∴AE=BF.在△AEC和△BFD中,∴△AEC≌△BFD(ASA),∴CE=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(10分)如图,已知点B,E,C,F在一条直线上,BE=CF,AC∥DE,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若BF=14,EC=4,求BC的长.【分析】(1)根据AAS证明△ABC≌△DFE即可解决问题.(2)求出BE的长即可解决问题.【解答】(1)证明:∵AC∥DE,∴∠ACB=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(AAS).(2)解:∵BF=14,EC=4,∴BE+CF=14﹣4=10,∵BE=CF,∴BE=CF=5,∴BC=BE+EC=5+4=9.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.14.(10分)如图,点E、A、C在同一直线上,AB∥CD,∠B=∠E,AC=CD 求证:(1)∠BAC=∠ECD;(2)BC=ED.【分析】(1)利用平行线的性质即可证明.(2)证明△BAC≌△ECD(AAS)即可解决问题.【解答】证明:(1)∵AB∥CD,∴∠BAC=∠ECD,(2)在△BAC和△ECD中,,∴△BAC≌△ECD(AAS),∴BC=DE.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(10分)(1)如图1,四边形ABCD中,∠A=∠B=90°,∠ADC,∠BCD的角平分线交于AB边上的点E,求证:①CD=AD+BC;②E是AB的中点;(2)如图2,(1)中的条件“∠A=∠B=90°”改为“条件AD∥BC”,其他条件不变,(1)中的结论是否都依然成立?请什么理由.【分析】(1)如图1﹣1中,过点E作EF⊥CD于点F.利用角平分线的性质定理可得AE=EB.利用全等三角形的性质证明AAD=DF,CB=CF即可.(2)结论仍然成立.如图2中,在CD上截取DF=DA,连接EF,利用全等三角形的性质证明即可.【解答】(1)证明:如图1﹣1中,过点E作EF⊥CD于点F.∵ED,EC分别平分∠ADC,∠BCD,且∠A=∠B=90°,∴EF=AE=BE,即E是AB中点,在Rt△AED和Rt△FED中,,∴Rt△AED≌Rt△FED(HL),∴AD=FD,同法可得:BC=CF,∴CD=DF+CF=AD+BC.(2)解:结论仍然成立.理由如下:如图2中,在CD上截取DF=DA,连接EF,在△EAD和△EFD中,,∴△EAD≌△EFD(SAS),∴EA=EF,∠DAE=∠DFE,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠EBC=∠EFC,在△EBC和△EFC中,,∴△EBC≌△EFC(ASA),∴EB=EF,BC=FC,∴CD=DF+FC=AD+BC.【点评】本题考查角平分线的性质定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

三角形基础知识及习题

三角形基础知识及习题

三角形基础知识及习题三角形是几何学中最基本的图形之一,其基础知识对于学习几何学和解决几何问题至关重要。

本文将介绍三角形的基本定义、分类和性质,并提供一些习题供读者练习。

一、三角形的定义和分类1. 定义:三角形是由三条线段(边)所围成的图形。

三角形的三个顶点(角)和三个边缘(边)都相互连接。

2. 分类:根据三个角的大小,三角形可以分为三种类型:a. 锐角三角形:三个角都小于90度。

b. 直角三角形:其中一个角为90度。

c. 钝角三角形:其中一个角大于90度。

二、三角形的性质1. 角度和:三角形的三个角的角度和总是等于180度。

无论三角形是锐角、直角还是钝角三角形,其内角之和都是180度。

2. 边长关系:a. 等边三角形:三个边的长度都相等。

b. 等腰三角形:两个边的长度相等。

c. 直角三角形:满足毕达哥拉斯定理,即两直角边的平方和等于斜边的平方。

3. 角度关系:a. 锐角三角形:三个角都是锐角。

b. 直角三角形:其中一个角是直角。

c. 钝角三角形:其中一个角是钝角。

三、三角形的习题下面是几个关于三角形的习题,供读者练习运用三角形的基础知识与技巧。

1. 题目:已知三角形的两边长分别为5厘米和8厘米,夹角为60度,求第三条边的长度。

解法:利用余弦定理,可以得到第三条边的长度:c^2 = a^2 + b^2 - 2abcosC。

带入数值计算得到c≈7.53厘米。

2. 题目:在直角三角形ABC中,AB = 3厘米,BC = 4厘米,求AC的长度。

解法:根据毕达哥拉斯定理,可以得到AC的长度:AC^2 =AB^2 + BC^2。

带入数值计算得到AC = 5厘米。

3. 题目:已知三角形的两边长分别为6厘米和8厘米,以及夹角为30度,求第三条边的长度。

解法:利用正弦定理,可以得到第三条边的长度:a/sinA = b/sinB = c/sinC。

带入数值计算得到第三条边的长度约为7.61厘米。

4. 题目:在锐角三角形ABC中,AB = 7厘米,BC = 9厘米,夹角为45度,求角度C的大小。

三角形培优训练100题集锦(一)2024

三角形培优训练100题集锦(一)2024

三角形培优训练100题集锦(一)【引言概述】三角形是数学中的一个重要几何概念,对于学生的数学培优训练具有重要意义。

本文整理了一份包含一百道三角形相关题目的训练集锦,旨在帮助学生系统地掌握三角形的性质、定理和计算方法,提高解题能力。

以下将从五个大点来阐述这份题集的内容。

【大点1:三角形基础知识】1. 三角形的定义及分类2. 三角形内角和的性质3. 三角形边长关系:三角不等式定理4. 三角形的周长和面积计算公式5. 三角形的特殊点:重心、垂心、外心、内心、费马点等【大点2:三角形的相似与全等】1. 相似三角形的性质2. 判定三角形相似的方法3. 三角形的全等的条件4. 利用相似三角形或全等三角形解题的方法5. 实际问题中的应用:测量、定位、相似比例等【大点3:三角形的角与线段关系】1. 角的平分线与垂直平分线的特点2. 三角形的角平分线定理3. 三垂线定理与垂心定理4. 外角与内角的关系5. 角与弧的关系及其应用:圆周角、弦切角、弧度制等【大点4:三角形的特殊性质与定理】1. 等腰三角形的性质与判定2. 直角三角形的性质与判定3. 正三角形的性质及计算4. 等边三角形的性质及计算5. 锐角三角形和钝角三角形的性质及判定【大点5:三角形的应用问题】1. 三角形的角度测量与边长测量2. 三角形在建筑工程中的应用:测量高度、角度与距离3. 三角形在地理学中的应用:测量地底深度、地图测量等4. 三角形在航空航天领域的应用:导航、角度计算等5. 三角形在日常生活中的应用:地理问题、旅行导航、地震角度计算等【总结】通过对本文中所整理的三角形培优训练100题集锦的学习,同学们将能够掌握三角形的基础知识,灵活运用三角形的相似与全等等性质和定理,熟练解决三角形的角与线段关系问题,理解各种特殊三角形的性质,并能够应用三角形的知识解决实际问题。

这将为学生的数学学习和思维能力的提高提供坚实的基础。

苏科版八上第三章小结

苏科版八上第三章小结

多做练习
通过多做练习题,可以 加深对知识点的理解和 记忆,提高解题能力和 应试技巧。在做题过程 中,要注意总结解题方 法和思路,以及常见题
型的解题技巧。
建立知识体系
将所学知识进行归纳总 结,建立知识体系。可 以通过制作思维导图、 整理笔记等方式,将知 识点串联起来,形成完
整的知识框架。
积极参与课堂讨论
速度是矢量,有大小和方向; 速率是标量,只有大小。
加速度与速度
加速度表示速度变化的快慢, 速度表示位置变化的快慢。
动能与势能
动能是由于物体运动而具有的 能量,势能是由于物体位置而 具有的能量。
解题技巧总结
01
02
03
建立数学模型
根据题意建立数学模型, 将实际问题转化为数学问 题,便于求解。
灵活运用公式
题目
解析
若关于$x$的分式方程 $frac{x}{x - 2} - 2 = frac{k}{x 2}$有增根,则其增根是____, $k$的值为____.
分式方程的最简公分母为$x 2$,所以增根是$x = 2$。将$x = 2$代入原方程,得到$- 2 = frac{k}{0}$,解得$k = 0$。
如果一个三角形有一个角是直角,则这个三角形是直角三角形。
三角形的边与角的关系定理
03
在三角形中,大边对大角,小边对小角。
02
典型例题解析
基础题目解析
01
02
03
04
题目
若$x = 3$是关于$x$的方程 $2x - a = 5$的解,则$a$的值 为____.
解析
将$x = 3$代入方程$2x - a = 5$中,得到$2 times 3 - a = 5$,解得$a = 1$。

四年级三角形专题训练

四年级三角形专题训练

四年级三角形专题训练一、三角形的认识基础题。

1. 由三条()围成的图形(每相邻两条线段的端点相连)叫做三角形。

- 答案:线段。

- 解析:三角形的定义就是由三条线段首尾顺次相接围成的封闭图形。

2. 三角形有()条边,()个角,()个顶点。

- 答案:3,3,3。

- 解析:这是三角形的基本特征,三条边、三个角和三个顶点。

3. 从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的()。

- 答案:高。

- 解析:这是三角形高的定义,三角形的高是从一个顶点向对边作的垂线段。

4. 一个三角形有()条高。

- 答案:3。

- 解析:因为三角形有三个顶点,过每个顶点都可以作对边的高,所以一个三角形有3条高。

二、三角形的分类题。

5. 三角形按角分类可以分为()三角形、()三角形和()三角形。

- 答案:锐角、直角、钝角。

- 解析:锐角三角形是三个角都是锐角(小于90°)的三角形;直角三角形是有一个角是直角(等于90°)的三角形;钝角三角形是有一个角是钝角(大于90°小于180°)的三角形。

6. 一个三角形中最大的角是89°,这个三角形是()三角形。

- 答案:锐角。

- 解析:因为最大角是89°,小于90°,所以三个角都是锐角,这个三角形是锐角三角形。

7. 一个三角形中至少有()个锐角。

- 答案:2。

- 解析:直角三角形有2个锐角,钝角三角形也有2个锐角,锐角三角形有3个锐角,所以一个三角形至少有2个锐角。

8. 等腰三角形的两腰(),两个底角()。

- 答案:相等,相等。

- 解析:这是等腰三角形的重要特征,两腰长度相等,两底角的度数相等。

9. 等边三角形的三条边(),三个角也(),每个角都是()度。

- 答案:相等,相等,60。

- 解析:等边三角形是特殊的等腰三角形,它的三条边都相等,根据三角形内角和是180°,三个角相等,所以每个角都是180°÷3 = 60°。

《三角形》全章复习与巩固—巩固练习(基础)

《三角形》全章复习与巩固—巩固练习(基础)

《三角形》全章复习与巩固(基础)巩固练习一、选择题1.(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm2.如图所示的图形中,三角形的个数共有( )A.1个 B.2个 C.3个 D.4个3.一个多边形的对角线共有27条,则这个多边形的边数是()A.8 B.9 C.10 D. 114.已知三角形两边长分别为 4 cm和9 cm,则下列长度的四条线段中能作为第三边的是( )A.13 cm B.6 cm C.5 cm D.4 cm5.下列不能够镶嵌的正多边形组合是()A.正三角形与正六边形 B.正方形与正六边形C.正三角形与正方形 D.正五边形与正十边形6.下列说法不正确的是 ( )A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.(四川绵阳)王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再订上几根木条?( )A.0根 B.1根 C.2根 D.3根8.(2015•郑州模拟)如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A.110°B.115°C.120°D.130°二、填空题9.三角形的外角和等于它的内角和的倍;2013边形的外角和是.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.11.已知多边形的内角和为540°,则该多边形的边数为;这个多边形一共有条对角线.12. 一个多边形的每个外角都是18°,则这个多边形的内角和为.13.如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14. (2016•南京一模)如图,∠1+∠2+∠3+∠4+∠5=°.15.(2015春•南京校级月考)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=度.16.在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.三、解答题17.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.18.(2015春•丹江口市期末)如图,试求∠A+∠B+∠C+∠D+∠E的度数.19. 多边形内角和与某一个外角的度数总和是1350°,求多边形的边数.20.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3题图⑥⑤④③②①6题图BCE 第三章 三角形3.1 与三角形有关的线段3.1.1 三角形的边*基础知识1、下列长度的三条线段能组成三角形的是( ) A 、3,4,8 B 、5,6,11 C 、1,2,3 D 、5,6,102、如图,图中三角形的个数为( ) A 、4 B 、6 C 、8 D 、103、下列图形中具有稳定性的有( )个A 、2B 、3C 、4D 、54、等腰三角形两边长分别为3,7,则它的周长为( ) A 、13 B 、17 C 、13或17 D 、不能确定5、一个三角形有____条边,____个内角, _____个顶点,_____个外角。

6、如图,图中有_____个三角形, 把它们用符号分别表示为_______________________________________________________。

7、长为11,8,6,4的四根木条,选其中三根组成三角形,有____种选法,它们分别是_________________________________________.8、已知三角形的三边长分别为x,3,4,则x 的取值范围是__________. 9、若等腰三角形两边长分别为3,4,则它的周长为______________.16题图B10、△ABC 中,如果AB=8cm ,BC=5cm ,那么AC 的取值范围是________________. *能力提升11、等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为( )cm. A 、3 B 、8 C 、3或8 D 、以上答案均不对12、如果以4cm 长的线段为底组成一个等腰三角形,腰长x 的取值范围是( ) A 、x>4cm B 、x>2cm C 、x ≥4cm D 、x ≥2cm13、若三角形两边长分别为6cm,2cm,第三边长为偶数,则第三边长为( ) A 、2cm B 、4cm C 、6cm D 、8cm14、已知a,b,c 是三角形的三边长,化简|a-b+c|+|a-b-c|.15、两根木棒的长分别是7cm,10cm,要选择第三根木棒,将它们钉成一个三角形,第三根木棒的长有什么限制?说明理由.*探索研究16、如图,草原上有四口油井,位于四边形ABCD 的四个顶点上,现在要建立一个维修站H ,试问H 建在何处,才能使它到四口油井的距离之和HA+HB+HC+HD 最小,说明理由.2题图DC BACC CC4题图3题图FEBAC3.1.2 三角形的高、中线、与角平分线*基础知识1、下列说法错误的是( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点2、下列四个图形中,线段BE 是△ABC 的高的图形是( )3、如图,D,E 分别是△ABC 的边AC ,BC 的中点,则下列说法错误的是( ) A .DE 是△BCD 的中线 B. BD 是△ABC 的中线 C .AD=DC ,BE=EC D. ∠C 的对边是DE4、如图,(1)在△ABC 中,BC 边上的高是 ______; (2)在△AEC 中,AE 边上的高是 ______; (3)在△FEC 中,EC 边上的高是 ______;6题图7题图5题图DDF DE B CC BB C9题图E(4)若AB=CD=2cm,AE=3cm,则AEC S ∆= __________㎝2,CE=_________cm. 5、如图,BD=DE=EF=FC ,那么,AE 是 _____ 的中线。

6、如图,BD=12BC ,则BC 边上的中线为 ______,ABD S ∆=__________。

*能力提升7、如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S ∆= 42cm ,则S 阴影等于( )。

A .22cm B. 12cm C.122cm D. 142cm 8、在△ABC 中,D 是BC 上的点,且BD ∶DC=2∶1,ACD S ∆=12,那么ABC S ∆等于( ).A .30 B. 36 C. 72 D. 249、如图,在△ABC 中,∠C=110°,∠B=20°,AE 是∠BAC 的平分线,求∠AEC 的度数。

10、在△ABC 中,AB=AC ,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm,求AD 的长。

11题图DBC12题图ABC12题图A BC12题图A BC*探索研究11、如图,在△ABC 中,D,E 分别是BC ,AD 的中点,ABC S ∆=42cm ,求ABE S ∆.12、如图,有一块三角形优良品种试验基地,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明)。

⑤④③②①4题图3.1.3 三角形的稳定性*基础知识1、下列图形中具有稳定性的是( )A.正方形B.长方形C.梯形D.直角三角形2、下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A. 3cm, 4cm, 8cmB. 8cm, 7cm, 15cmC. 13cm, 12cm, 20cmD. 5cm, 5cm, 11cm 3、不是利用三角形稳定性的是( )A 、自行车的三角形车架B 、三角形房架C 、照相机的三角架D 、矩形门框的斜拉条 4、下列图形具有稳定性的有( )A 、①②B 、②③④C 、④⑤D 、①②③④⑤5、如图,一扇窗户打开后用窗钩AB 可将其固定,这里所运用的几何原理是( ) A 、三角形的稳定性 B 、两点确定一条直线 C 、两点之间线段最短 D 、垂线段最短*能力提升6、判断题(正确的画“√”,错误的画“×”).7题图DC BA (1)三角形具有稳定性. ( ) (2)四边形不具有稳定性. ( )(3)三角形的稳定性在生产、生活中有广泛的应用,而四边形的不稳定性在生产、生活中没有应用. ( )(4)只要在四边形的木架上加钉一根木条,这个四边形就可以固定了. ( )7、木工师傅在做完门框后为防止变形,常像下图中所示的那样,钉上两条斜的木条,即图中的AB ,CD 两个木条,这是根据数学上什么原理?8、现有一把摇晃的椅子,你如何做才能将它修好?为什么?*探索研究9、要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n 边形木架呢?7题图DCB(3)2x ︒4x ︒3x ︒3x ︒(2)x ︒x ︒30︒(1)x ︒x ︒3.2 与三角形有关的角3.2.1 三角形的内角*基础知识1、若三角形三个内角的比为1∶2∶3,则这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、等腰三角形 D 、钝角三角形2、在△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A 、100° B 、120° C 、140° D 、160°3、已知△ABC 中,∠A=20°,∠B=∠C ,那么△ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、正三角形4、一个三角形至少有( )A 、一个锐角B 、两个锐角C 、一个钝角D 、一个直角5、在△ABC 中,若∠A=80°,∠C=20°,则∠B=____,若∠A=80°,∠B=∠C,则∠C=____。

6、已知△ABC 的三个内角的度数之比∠A ∶∠B ∶∠C=1∶3∶5,则∠B=____,∠C=____。

7、如图,在△ABC 中∠BAC=60°,∠B=45AD 是∠BAC 的平分线,则∠DAC=______, ∠ADB=_____。

8、已知等腰三角形的两个内角的度数之比为1∶2,则这个等腰三角形的顶角为_____。

9、求出下列图中x 的值。

12题图11题图DCBAD BC13题图CB14题图x ︒100︒CBA4321x=______ x=______ x=______*能力提升10、在△ABC 中,∠B ,∠C 的平分线交于点O , 若∠BOC=132°,则∠A=______. 11、如图,已知∠1=20°, ∠2=25°, ∠A=35°,则∠BDC 的度数为______. 12、如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,∠AFD=158°,则∠EDF=______ 13、在△ABC 中,∠A=12∠C=12∠ABC , BD 是∠ABC 的平分线,求∠A 及∠BDC 的度数.*探索研究14、如图,已知∠1=∠2,∠3=∠4. (1)若∠A=100°,求x 的值; (2)若∠A=n °,求x 的值.4题图BDC150︒50︒321140︒80︒13.2.2 三角形的外角*基础知识1、已知等腰三角形的一个外角是120°,则它是( ) A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形2、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A. 30°B. 60°C. 90°D. 120°3、 已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为( ). A. 90° B. 110° C. 100° D. 120°4、如图,下列说法错误的是( ) A 、∠B >∠ACDB 、∠B+∠ACB =180°-∠AC 、∠B+∠ACB <180°D 、∠HEC >∠B5、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ). A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定6、如图,若∠A=100°,∠B=45°,∠C=38°,则∠DFE 等于( ) A. 120° B. 115° C. 110° D. 105°7、如图,∠1=______.10题图CBD11题图DAC12题图BCD E8、如图,则∠1=______,∠2=______,∠3=______,9、已知等腰三角形的一个外角为150°,则它的底角为_______. 10、如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4, ∠BAC=63°,求∠DAC 的度数.*能力提升11、如图,飞机要从A 地飞往B 地,因受大风影响,一开始就偏离航线(AB)18°(即∠A=18°)飞到了C 地,已知∠ABC=10°,问飞机现在应以怎样的角度飞行才能到达B 处?(即求∠BCD 的度数)12、找一找五角星图案中外角等于两个内角和的关系,试着把它写下来。

相关文档
最新文档