专题(七) 四边形的有关计算与证明
中考数学二轮复习拔高训练卷专题7四边形附解析
中考数学二轮复习拔高训练卷专题7 四边形一、单选题(共15题;共45分)1.一个凸多边形的内角和比它的外角和的3 倍还多180°,则这个多边形是()A. 九边形B. 八边形C. 七边形D. 六边形2.下列命题中,真命题是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形不一定是平行四边形D. 对角线互相垂直平分且相等的四边形一定是正方形3.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为( )A. 11SB. 10SC. 9SD. 8S4.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中不正确的是()A. B. C. D.5.如图,在平行四边形ABCD和平行四边形BEFG中,AB=AD,BG=BE,点A,B,E在同一直线上,P是线段DF的中点,连接PG、PC,若∠ABC=∠BEF=60°,则=( )A. B. C. D.6.如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥AC∥HG,EH∥BD∥FG ,则四边形EFGH的周长是()A. B. 13 C. D.7.如图,四边形ABCD中,AC=BD,顺次连结四边形各边中点得到的图形是()A. 菱形B. 矩形C. 正方形D. 以上都不对8.边长为5的菱形ABCD按如图所示放置在数轴上,其中A点表示数﹣2,C点表示数6,则BD=()A. 4B. 6C. 8D. 109.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A. 75°B. 65°C. 55°D. 50°10.如图,菱形ABCD的周长为40cm,对角线AC,BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD= cm;④AC= cm;⑤S菱形ABCD=80cm,正确的有()A. ①②④⑤B. ①②③④C. ①③④⑤D. ①②③⑤11.如图,四边形ABCD是正方形,直线L1、L2、L3,若L1与L2的距离为5,L2与L3的距离7,则正方形ABCD的面积等于()A. 70B. 74C. 144D. 14812.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A. 9B. 8C. 15D. 14.513.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A. 30B. 20C. 60D. 4014.如图,在正方形ABCD中,点E是BC延长线上的一点,且AC=EC,连接AE,交CD于点F,若AB=1,则线段DF的长是()A. B. C. 2﹣ D. ﹣115.如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°, ②OC=OE,③tan∠OCD = ,④中,正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(共5题;共15分)16.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结果是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________°.17.□ABCD中对角线AC和BD交于点O,AC=12,BD=10,AB=m,则m取值范围是________.18.如图,在矩形ABCD中,AB=4,AD=8,将矩形ABCD折叠使点D和点B重合,折痕为EF,则DE=________.19.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.20.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线,将这10个正方形分成面积相等的两部分,则该直线的解析式为________。
专题七:四边形与中考
第十九章四边形一、课程学习目标1、平行四边形的性质,平行四边形的判别条件。
2、矩形、菱形、正方形的概念及性质、判别条件。
3、平行四边形、矩形、菱形、正方形的关系。
4、平行四边形是矩形、菱形、正方形的条件的应用。
5、梯形、直角梯形的定义及应用。
6、等腰梯形的定义性质及判别方法的应用。
二、本章知识结构图三、知识要点———基本运用———经典例题———跟踪练习19.1 平行四边形(一)知识要点1、平行四边形的性质(1)平行四边形对边______;对角______;角平分线______;对称。
(2)平行四边形两个邻角的平分线互相______,两个对角的平分线互相______。
(填“平行”或“垂直”)(3)平行四边形的面积公式____________________。
2、平行四边形的判定(1)定义法:________________________。
(2)边:________________________或_______________________。
(3)角:________________________。
(4)对角线:________________________。
3、三角形的中位线定理: 。
4、两平行线间的距离: 。
5、常作的辅助线: 。
(二)基本运用1、平行四边形ABCD 中,若∠A +∠C =130 o ,则∠D 的度数是 .2、ABCD 中,∠B =30°,AB =4 cm ,BC =8 cm ,则四边形ABCD 的面积是_____.3、平行四边形ABCD 的周长是18,△ABC 的周长是14,则对角线AC 的长是 .4、如图,在平行四边形ABCD 中,DB =DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE = 度.5、平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4 B. 3:4:4:3C. 3:3:4:4D. 3:4:3:4 6、在平行四边形ABCD 中,60B ∠=,那么下列各式中,不能..成立的是( ) A .60D ∠= B .120A ∠=C .180CD ∠+∠= D .180C A ∠+∠=7、如图,剪两张对边平行的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A 、 AB =CD ,AD =BC B 、∠DAE+∠BCD =180° C 、 ∠ABC =∠ADC ,∠BAD =∠BCD D 、AB =BC8、如图,如果直线 l 1 ∥l 2,那么△ABC 的面积和△DBC 的面积是相等的,你能说出理由吗?你还能在这两条平行线之间画出其他与△ABC 面积相等的三角形吗?A BD C EBC D第7题 A9、(2011•安徽)如图,D 是△ABC 内一点,BD⊥CD,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )10、如图,平行四边形ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB 。
中考数学专题测试-四边形的证明与计算(答案解析)
【考点分析】一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)
九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(一)1.综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.2.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒.(1)当x=1时,S△AQE=平方厘米;当x=时,S△AQE=平方厘米.(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围.(3)若△AQE的面积为平方厘米,直接写出x值.3.如图,在平行四边形ABCD中,∠BAD的平分线交C于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.4.如图1,正方形ABCD沿GF折叠,使B落在CD边上点E处,连接BE,BH.(1)求∠HBE的度數;(2)若BH与GF交于点O,连接OE,判断△BOE的形状,说明理由;(3)在(2)的条件下,作EQ⊥AB于点Q,连接OQ,若AG=2,CE=3,求△OQR 的面积.5.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.6.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.7.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.8.已知,在平行四边形ABCD中,点F是AB上一点,连接DF交对角线AC于E,连接BE.(1)如图1,若∠EBC=∠EFA,EC平分∠DEB,求证:平行四边形ABCD是菱形;(2)如图2,对角线AC与BD相交于点O,当点F是AB的中点时,直接写出与△ADF 面积相等的三角形(不包括以AD为边的三角形).9.如图,四边形ABCD是平行四边形,∠BAC=90°,AB=AC,点H为边AB的中点,点E在CH的延长线上,且AE⊥BE.点F在线段AE上,且BF⊥CE,垂足为G.(1)若BF=AF,且EF=3,BE=4,求AD的长;(2)求证:BF+2EH=CE.10.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,则线段AE与DF的关系是;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(3)如图2,连接AC,当△ACE为等腰三角形时,请你求出CE:CD的值.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.2.解:(1)①∵E为CD的中点,∴DE=1,∵动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,∴当x=1时,AQ=1,∴S△AQE=×AQ×AD=×1×2=1,②∵AQ=,∴点Q在AB上,∴S△AQE=×AQ×AD=;故答案为:①1;②.(2)根据题意,得,解得:.∴x的取值范围是.(3)①当点Q在AB上,∵S△AQE=×x×2=,∴x=,②当点Q在BC上时,∵S△AQE=S梯形ABCE﹣S△ABQ﹣S△CQE=×2×(x﹣2)﹣×1×(4﹣x)=.∴x=,③当点Q在CD上时,∵S△AQE=,∴x=.综合以上可得x=或或.3.证明:(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)△BDG是等边三角形,理由如下:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°,由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD===26,∴DM=BD=13.4.解:(1)如图1中,过点E作EN⊥AB于N,过点B作BM⊥EA′于M.由翻折可知,∠ABF=∠FEA′=90°,FB=FE,∴∠FBE=∠FEB,∴∠EBN=∠BEM,∵∠ENB=∠BME=90°,BE=EB,∴△ENB≌△BME(AAS),∴EN=BM,∵四边形ABCD是正方形,∴∠NBC=∠C=∠A=∠ENB=90°,AB=BC,∴AB=BM=BC,∵BH=BH,BE=BE,∴Rt△BAH≌Rt△BMH(HL),Rt△BME≌Rt△BCE,∴∠ABH=∠MBH,∠EBM=∠EBC,∴∠HBE=∠MBH+∠EBM=∠ABC=45°.(2)结论:△BOE是等腰直角三角形.理由:如图2中,由翻折的旋转可知,FG垂直平分线段BE,∴∠OBE=∠OEB=45°,∴OB=OE,∠BOE=90°,∴△BOE是等腰直角三角形.(3)如图3中,过点O作OM⊥EQ于M,ON⊥AB于N,过点G作GJ⊥BC于J.∵∠A=∠ABJ=∠BJG=90°,∴四边形ABJG是矩形,∴AG=BJ=2,AB=GJ=BC,∵FG⊥BE,∴∠EBC+∠BFG=90°,∠BFG+∠JGF=90°,∴∠CBE=∠JGF,∵∠C=∠GJF=90°,BC=GJ,∴△GJF≌△BCE(AAS),∴FJ=CE=3,∴BF=EF=5,CF==4,∴BC=BF+CF=9,∴BE===3,∴OB=OE=3,∵EQ⊥AB,∴∠ONB=∠OME=∠OMQ=∠MQN=90°,∴四边形MQNO是矩形,∴∠MON=∠BOE=90°,∴∠BON=∠EOM,∴△ONB≌△OME(AAS),∴ON=OM,∴四边形MQNO是正方形,设OM=OM=NQ=MQ=x,∵∠C=∠CBQ=∠BQE=90°,∴四边形BCEQ是矩形,∴BQ=EC=3,EQ=BC=9,在Rt△BON中,则有x2+(x+3)2=(3)2,解得x=3或﹣6(舍弃),∴OM=QM=3,EM=BN=6,∵∠BQR=∠OMR=90°,∠BRQ=∠ORM,BQ=OM=3,∴△BQR≌△OMR(AAS),∴QR=MR=∴S△OQR=•QR•OM=××3=.5.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=AD cos∠A=4×=2,∴BD===2.6.解:(1)∵正方形ABCD的面积是8,∴BC=CD==2,∴BD=×2=4.∵四边形ABCD为正方形,∴∠DCO=∠BCO=∠CDO=∠MBN=45°,∵CM平分∠ACD,∴∠DCM=∠MCO=22.5°,∴∠BMC=∠CDO+∠DCM=45°+22.5°=67.5°.∵MN⊥CM,∴∠CMN=90°,∴∠BMN=90°﹣67.5°=22.5°,∴∠BMN的度数为22..5°.(2)∵∠MCO=22.5°,∠BCO=45°,∴∠BCM=∠BCO+∠MCO=67.5°,又∵∠BMC=67.5°,∴∠BCM=∠BMC,∴BM=BC=CD=2,∴DM=BD﹣BM=4﹣2.∵∠DCM=22.5°,∠BMN=22.5°,∴∠DCM=∠BMN.∴在△DCM和△BMN中,,∴△DCM≌△BMN(ASA),∴BN=DM=4﹣2,∴BN的长为4﹣2.7.解:(1)∵点D坐标是(,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=,BD=BC﹣CD=,∵将矩形沿直线DE折叠,∴DF=CD=,∴BF===2,∴AF=6﹣2=4,∴点F(4,4).(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=﹣x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(,6),∵DJ=JE,∴J(,),∵PJ=JF,∴P(﹣,3).(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(,),M(,),M′(,),当点M落在x轴上时,=0,解得m=﹣,当点M′落在X轴上时,=0,解得m=﹣9,∴满足条件的点N的坐标为(﹣,)或(﹣9,﹣17).8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠EFA,∵∠EBC=∠EFA,∴∠EBC=∠EDC,∵EC平分∠DEB,∴∠DCE=∠BCE,在△CED和△CEB中,,∴△CED≌△CEB(AAS),∴CD=CB,∵四边形ABCD为平行四边形,∴平行四边形ABCD为菱形;(2)解:与△ADF面积相等的三角形(不包括以AD为边的三角形)为△AOB、△BOC、△COD、△DFB;理由如下:∵四边形ABCD是平行四边形,∴OA=OB,OC=OD,∴△AOB的面积=△BOC的面积=△COD的面积=△ABD的面积,∵点F是AB的中点,∴△ADF的面积=△DFB的面积=△ABD的面积,∴△AOB的面积=△BOC的面积=△COD的面积=△DFB的面积=△ADF的面积.9.解:(1)∵AE⊥BE.EF=3,BE=4,∴BF=,∵BF=AF,∴AF=5,∴AE=3+5=8,∴AB,∵∠BAC=90°,AB=AC,∴BC=,∵四边形ABCD是平行四边形,∴AD=BC=4;(2)在CH上截取HM=HE,连接BM和AM,如图,∵BE⊥AE,∴∠AEB=90°,∵点H为边AB的中点,∴EH=AH=BH=MH,∴四边形AEBM是矩形,∴∠EAM=90°,∵∠BAC=90°,∴∠BAF=∠CAM,∵BF⊥CE,∴∠EGB=90°,∴∠EBG+∠BEG=90°,∵∠EBG+∠BFE=90°,∴∠BEG=∠BFE,∵矩形AEBM中,BE∥AM,∴∠BEG=∠AMH,∴∠BFE=∠AMH,∴∠AFB=∠AMC,∵AB=AC,∴△ABF≌△ACM(AAS),∴BF=CM,∵CM+EM=CE,EM=EH+MH=2EH,∴BF+2EH=CE.10.解:(1)结论:AE=DF,AE⊥DF,理由:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;故答案为:AE=DF,AE⊥DF.(2)成立.理由如下:如图2中,∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3)有两种情况:①如图3﹣1中,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=.②如图3﹣2中,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2,即CE:CD=或2.。
备战2022-2023学年中考数学知识点解答题专题培优集训(四边形的计算与证明)
备战2023年中考数学知识点解答题专题培优集训(四边形的计算与证明)1. 如图,菱形ABCD的边长为10,对角线AC=16,E,F分别是边CD,BC的中点,连接EF并延长与AB的延长线相交于点G,求EG的长。
2. 如图1,在矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C.设B,P两点间的距离为x,PA-PE=y,图2是点P运动时y随x变化的关系图象,求BC的长。
3. 如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=3,∠C=60°,求菱形ABCD的面积.4. 如图,菱形ABCD的对角线AC,BD相交于点O,点E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.5. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=13AD,连接BE交AC于点M.(1)求AM的长;(2)tan∠MBO的值为________.6. 如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF;(2)若AB=42,AE=2,求四边形BEDF的周长.7. 如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.(1)求证:△ABE≌△DCF;(2)求证:四边形AEFD是平行四边形.8. 如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cos B=45,求BF和AD的长.9.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC 所在的直线绕点O顺时针旋转角α(0°<α<120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.10. 如图,在矩形ABCD中,E,F分别是线段AD,BC上的点,O是EF与BD的交点.若将△BED沿直线BD折叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB·AD=33,求EF·BD的值.11.如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=23,求线段BG的长度.12. 四边形ABCD为矩形,E是AB延长线上的一点.(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;(2)若AB=AD,F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△DGF 是等腰直角三角形.13.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD的中点,连接BG,分别与CE,CF交于M,N 两点.若BM=BE,MG=1。
南昌市中考数学专题题型复习06:四边形有关的计算与证明
南昌市中考数学专题题型复习06:四边形有关的计算与证明姓名:________ 班级:________ 成绩:________一、解答题 (共12题;共71分)1. (10分)如图,已知AB=AC,AD=AE,BE与CD相交于O,求证:△ABE≌△ACD.2. (5分)(2017·绿园模拟) 如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC 的延长线于点E.若点F是AE的中点,求证:BF⊥AF.3. (5分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果AC=4,求DE的长.4. (6分) (2018八下·瑶海期中) 如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.5. (5分)如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)6. (5分) (2020九上·岐山期末) 如图,在菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连接BE、CF求证:BE=CF。
7. (5分)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.8. (5分)(2017·吴忠模拟) 如图,在正方形ABCD中,点E、F在对角线BD上,且BE=EF=FD,连接AF,AE,CE,CF,请你判断四边形AECF的形状,并证明你的结论.9. (10分) (2015八下·嵊州期中) 如图,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,点P和Q同时从D、B出发,P由D向C运动,速度为每秒1cm,点Q由B向A运动,速度为每秒3cm,试求几秒后,P、Q和梯形ABCD 的两个顶点所形成的四边形是平行四边形?10. (5分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.11. (5分)(2016·鄞州模拟) 如图,在平行四边形ABCD中,对角线AC,BD并于点O,经过点O的直线交AB于E,交CD于F.(1)求证:OE=OF.(2)连接DE,BF,则EF与BD满足什么条件时,四边形DEBF是矩形?请说明理由.12. (5分) (2016九上·长春期中) 如图,四边形OABC是平行四边形,点A,B,C在⊙O上,P为上一点,连接AP,CP,求∠P的度数.二、综合题 (共27题;共278分)13. (10分)(2018·沧州模拟) 如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.14. (10分)(2015·宁波模拟) 【试题背景】已知:l ∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3 ,且d1 =d3 = 1,d2 = 2 .我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.(1)【探究1】如图1,正方形ABCD为“格线四边形”,BE L于点E,BE的反向延长线交直线k于点F.求正方形ABCD的边长.(2)【探究2】矩形ABCD为“格线四边形”,其长:宽 = 2 :1 ,求矩形ABCD的宽(3)【探究3】如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,于点E,∠AFD=90°,直线DF分别交直线l、k于点G、M.求证:EC=DF.(4)【拓展】如图3,l ∥k,等边三角形ABC的顶点A、B分别落在直线l、k上,于点B,且AB=4 ,∠ACD=90°,直线CD分别交直线l、k于点G、M,点D、E分别是线段GM、BM上的动点,且始终保持AD=AE,于点H.猜想:DH在什么范围内,BC∥DE?直接写出结论。
2021年中考数学真题分类汇编--四边形:命题、四边形中的计算与证明(压轴题)(学生版)
中考真题分类汇编(四边形)----命题、四边形中的计算与证明(压轴题)一、选择题1. (2021•湖南省衡阳市)下列命题是真命题的是( ) A .正六边形的外角和大于正五边形的外角和 B .正六边形的每一个内角为120°C .有一个角是60°的三角形是等边三角形D .对角线相等的四边形是矩形2. (2021•怀化市)以下说法错误的是( ) A .多边形的内角大于任何一个外角 B .任意多边形的外角和是360° C .正六边形是中心对称图形 D .圆内接四边形的对角互补3. (2021•岳阳市) 下列命题是真命题的是( ) A. 五边形内角和是720︒ B. 三角形的任意两边之和大于第三边 C. 内错角相等 D. 三角形的重心是这个三角形的三条角平分线的交点4. (2021•四川省达州市)以下命题是假命题的是( ) A .的算术平方根是2B .有两边相等的三角形是等腰三角形C .一组数据:3,﹣1,1,1,2,4的中位数是1.5D .过直线外一点有且只有一条直线与已知直线平行 5. (2021•四川省广元市)下列命题中,真命题是( ) A. 1122xx-=B. 对角线互相垂直的四边形是菱形C. 顺次连接矩形各边中点的四边形是正方形D. 已知抛物线245y x x =--,当15x -<<时,0y < 6. (2021•四川省凉山州)下列命题中,假命题是( ) A. 直角三角形斜边上的中线等于斜边的一半B. 等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C. 若AB BC =,则点B 是线段AC 的中点D. 三角形三条边的垂直平分线的交点叫做这个三角形的外心 7. (2021•泸州市)下列命题是真命题的是( ) A. 对角线相等的四边形是平行四边形 B. 对角线互相平分且相等的四边形是矩形 C. 对角线互相垂直的四边形是菱形 D. 对角线互相垂直平分的四边形是正方形 8. (2021•遂宁市)下列说法正确的是( ) A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式D. 若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4 9. (2021•绥化市)下列命题是假命题的是( ) A. 任意一个三角形中,三角形两边的差小于第三边B. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半C. 如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等D. 一组对边平行且相等的四边形是平行四边形10. (2021•呼和浩特市)以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分②A ,B ,C ,D ,E ,F 六个足球队进行单循环赛,若A ,B ,C ,D ,E 分别赛了5,4,3,2,1场,则由此可知,还没有与B 队比赛的球队可能是D 队③两个正六边形一定位似④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有( ) A .1个B .2个C .3个D .4个11. (2021•内蒙古包头市)下列命题正确的是( ) A. 在函数12y x=-中,当0x >时,y 随x 的增大而减小 B. 若0a <,则11a a +>- C. 垂直于半径的直线是圆的切线 D. 各边相等的圆内接四边形是正方形12. (2021•黑龙江省龙东地区)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在BC 的延长线上,连接DE ,点F 是DE 的中点,连接OF 交CD 于点G ,连接CF ,若4CE =,6OF =.则下列结论:①2GF =;②2OD OG =;③1tan 2CDE ∠=;④90ODF OCF ∠=∠=︒;⑤点D 到CF 的距离为855.其中正确的结论是( )A. ①②③④B. ①③④C. ①②③⑤D. ①②④⑤13.(2021•山东省泰安市)如图,在矩形ABCD 中,AB =5,BC =5,点P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .B .C .D .314. (2021•四川省南充市)如图,在矩形ABCD 中,AB =15,BC =20,把边AB 沿对角线BD 平移,点A ′,B ′分别对应点A ,B 给出下列结论: ①顺次连接点A ′,B ′,C ,D 的图形是平行四边形; ②点C 到它关于直线AA ′的对称点的距离为48; ③A ′C ﹣B ′C 的最大值为15; ④A ′C +B ′C 的最小值为9.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二.填空题1. (2021•江苏省无锡市)下列命题中,正确命题的个数为 . ①所有的正方形都相似 ②所有的菱形都相似 ③边长相等的两个菱形都相似 ④对角线相等的两个矩形都相似2.(2021•四川省广元市)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:①AP PF =;②DE BF EF +=;③2PB PD BF -=;④AEFS为定值;⑤APGPEFG S S=四边形.以上结论正确的有________(填入正确的序号即可).3. (2021•遂宁市)如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:①ABF DBE ∠=∠;②ABF DBE ∽;③AF BD ⊥;④22BG BH BD =;⑤若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)4. (2021•天津市)如图,正方形ABCD 的边长为4,对角线,AC BD 相交于点O ,点E ,F 分别在,BC CD 的延长线上,且2,1CE DF ==,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为________.5. (2021•湖南省张家界市) 如图,在正方形ABCD 外取一点E ,连接DE ,AE ,CE ,过点D 作DE 的垂线交AE 于点P ,若1==DP DE ,6=PC .下列结论:①CED APD ∆≅∆;②CE AE ⊥;③点C 到直线DE 的距离为3;④225ABCD +=正方形S ,其中正确结论的序号为 .6. (2021•福建省)如图,在矩形ABCD 中,AB =4,AD =5,点E ,F 分别是边AB ,BC 上的动点,点E 不与A ,B 重合,且EF =AB ,G 是五边形AEFCD 内满足GE =GF 且∠EGF =90°的点.现给出以下结论: ①∠GEB 与∠GFB 一定互补; ②点G 到边AB ,BC 的距离一定相等; ③点G 到边AD ,DC 的距离可能相等; ④点G 到边AB 的距离的最大值为2.其中正确的是 .(写出所有正确结论的序号)D AB CEF7. (2021•广西贺州市)如图.在边长为6的正方形ABCD 中,点E ,F 分别在BC ,CD 上,3BC BE =且BE CF =,AE BF ⊥,垂足为G ,O 是对角线BD 的中点,连接OG 、则OG 的长为________.8.(2021•湖北省黄石市) 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且45EAF ∠=︒,AE 交BD 于M 点,AF 交BD 于N 点. (1)若正方形的边长为2,则CEF △的周长是______.(2)下列结论:①222BM DN MN +=;②若F 是CD 的中点,则tan 2AEF ∠=;③连接MF ,则AMF 为等腰直角三角形.其中正确结论的序号是______(把你认为所有正确的都填上).三、解答题1. (2021•辽宁省本溪市)在▱ABCD 中,=BAD α,DE 平分ADC ∠,交对角线AC 于点G ,交射线AB 于点E ,将线段EB 绕点E 顺时针旋转12α得线段EP .(1)如图1,当=120α︒时,连接AP ,请直接写出线段AP 和线段AC 的数量关系; (2)如图2,当=90α︒时,过点B 作BF EP ⊥于点,连接AF ,请写出线段AF ,AB ,AD 之间的数量关系,并说明理由;(3)当=120α︒时,连接AP ,若1=2BE AB ,请直接写出APE 与CDG 面积的比值.2. (2021•宿迁市)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周. (1)如图①,连接BG 、CF ,求CFBG的值; (2)当正方形AEFG 旋转至图②位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE =6,请直接写出线段QN 扫过的面积.3. (2021•山东省临沂市)如图,已知正方形ABCD ,点E 是BC 边上一点,将△ABE 沿直线AE 折叠,点B 落在F 处,连接BF 并延长,与∠DAF 的平分线相交于点H ,与AE ,CD 分别相交于点G ,M ,连接HC . (1)求证:AG =GH ;(2)若AB =3,BE =1,求点D 到直线BH 的距离;(3)当点E 在BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?4.(2021•陕西省)问题提出(1)如图1,在▱ABCD中,∠A=45°,AD=6,E是AD的中点,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,∠A=∠B=∠C=90°,AB=800m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离,请说明理由.5.(2021•湖北省宜昌市)如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB'E'F′,B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K.E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC 是正方形; (2)如图2,当点Q 和点D 重合时. ①求证:GC =DC ;②若OK =1,CO =2,求线段GP 的长;(3)如图3,若BM ∥F ′B ′交GP 于点M ,tan ∠G =,求的值.6. (2021•广东省)如题24图,在四边形ABCD 中,AB CD ∥,AB CD ≠,90ABC ∠=︒,点E 、F 分别在线段BC 、AD 上,且EF CD ∥,AB AF =,CD DE =. (1)求证:CF FB ⊥;(2)求证:以AD 为直径的圆与BC 相切;(3)若2EF =,120DFE ∠=︒,求ADE △的面积.7. (2021•四川省广元市)如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE∽;(2)如图2,连接AE,点P、M、N分别为线段AC、AE、EF的中点,连接PM、MN、PN.求PMN∠的度数及MNPM的值;(3)在(2)的条件下,若2BC=,直接写出PMN面积的最大值.8.(2021•浙江省嘉兴市)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.9.(2021•浙江省绍兴市)如图,矩形ABCD中,AB=4,点F是对角线BD上一动点,∠ADB=30°.连结EF(1)若EF⊥BD,求DF的长;(2)若PE⊥BD,求DF的长;(3)直线PE交BD于点Q,若△DEQ是锐角三角形,求DF长的取值范围.10.(2021•浙江省温州市)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧)(1)求证:四边形AECF是平行四边形;(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时11.(2021•湖北省荆门市)如图,点E是正方形ABCD的边BC上的动点,∠AEF=90°,且EF=AE,FH⊥BH.(1)求证:BE=CH;(2)若AB=3,BE=x,用x表示DF的长.12.(2021•海南省)如图1,在正方形ABCD中,点E是边BC上一点,且点E不与点B、C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF;(2)如图2,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF 于点G,连接HB,HC.①求证:HD=HB;②若DK•HC=,求HE的长.13.(2021•广西玉林市)如图,在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,OB=OD,过点O作EF⊥BD,分别交AB、DC于点E,F,连接DE,BF.(1)求证:四边形DEBF是菱形:(2)设AD∥EF,AD+AB=12,BD=4,求AF的长.14. (2021•广西贺州市)如图,在四边形ABCD 中,//AD BC ,90C ∠=︒,12ADB ABD BDC ∠=∠=∠,DE 交BC 于点E ,过点E 作EF BD ⊥,垂足为F ,且EF EC =.(1)求证:四边形ABED 是菱形; (2)若4=AD ,求BED 的面积.15. (2021•江苏省无锡市)已知四边形ABCD 是边长为1的正方形,点E 是射线BC 上的动点,以AE 为直角边在直线BC 的上方作等腰直角三角形AEF ,∠AEF =90°,设BE =m .(1)如图,若点E 在线段BC 上运动,EF 交CD 于点P ,AF 交CD 于点Q ,连结CF , ①当m =时,求线段CF 的长;②在△PQE 中,设边QE 上的高为h ,请用含m 的代数式表示h ,并求h 的最大值;(2)设过BC 的中点且垂直于BC 的直线被等腰直角三角形AEF 截得的线段长为y ,请直接写出y 与m 的关系式.16. (2021•齐齐哈尔市)综合与实践数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD 折叠,使边AB 、AD 都落在对角线AC 上,展开得折痕AE 、AF ,连接EF ,如图1.(1)EAF ∠=_________︒,写出图中两个等腰三角形:_________(不需要添加字母); 转一转:将图1中的EAF ∠绕点A 旋转,使它的两边分别交边BC 、CD 于点P 、Q ,连接PQ ,如图2.(2)线段BP 、PQ 、DQ 之间的数量关系为_________;(3)连接正方形对角线BD ,若图2中的PAQ ∠的边AP 、AQ 分别交对角线BD 于点M 、点N .如图3,则CQ BM=________; 剪一剪:将图3中的正方形纸片沿对角线BD 剪开,如图4.(4)求证:222BM DN MN +=.17. (2021•深圳)在正方形ABCD 中,等腰直角AEF △,90AFE ∠=︒,连接CE ,H 为CE 中点,连接BH 、BF 、HF ,发现BF BH和HBF ∠为定值.(1)①BF BH =__________;②HBF ∠=__________. ③小明为了证明①②,连接AC 交BD 于O ,连接OH ,证明了OH AF 和BA BO的关系,请你按他的思路证明①②. (2)小明又用三个相似三角形(两个大三角形全等)摆出如图2,BD EA k AD FA ==,BDA EAF θ∠=∠=(090θ︒<<︒)求①FD HD=__________(用k 的代数式表示) ②FH HD=__________(用k 、θ的代数式表示) 18. (2021•浙江省衢州卷)【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).。
2023中考数学专题复习——第七章 四边形
2023中考专题复习——第七章四边形时间:45分钟满分:80分一、选择题(每题4分,共32分)1.下列各组条件中,不能判断一个四边形是平行四边形的是() A.两组对边分别平行的四边形B.两组对角分别相等的四边形C.两条对角线互相平分的四边形D.一组对边平行另一组对边相等的四边形2.如图,在△ABC中,∠A=90°,点M,N分别为边AB和AC的中点,若AB =2,AC=4,则MN的长度为()A.2 3 B. 3 C.2 5 D. 5(第2题)(第3题)3.如图,在▱ABCD中,连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=()A.80°B.100°C.120°D.140°4.如图,四边形ABCD是菱形,其中A,B两点的坐标分别为A(0,3),B(4,0),则点D的坐标为()A.(0,1) B.(0,-1)C.(0,2) D.(0,-2)(第4题)(第5题)5.如图,在正方形ABCD的外侧作等边三角形CDE,连接AE,则∠DAE的度数是()A.15°B.20°C.12.5°D.10°6.如图,在矩形ABCD中,AB=4,BC=8,对角线AC,BD相交于点O,过点O作OE⊥AC交AD于点E,则DE的长是()A.3 B.5 C.2.4 D.2.5(第6题)(第7题)7.如图,在▱ABCD中,AB=BC=5,对角线BD=8,则▱ABCD的面积为() A.20 B.24 C.40 D.488.将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C. △BEF的面积D. △AEH的面积(第8题)(第9题)二、填空题(每题4分,共16分)9.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有________条.10.在平面直角坐标系xOy中,已知点A(2,0),B(5,4),若四边形OABC是平行四边形,则▱OABC的周长等于________.11.如图,在Rt△ABC中,AC=3,BC=4,点D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E,F,则线段EF的最小值为________.(第11题)(第12题)12.如图,四边形ABCD是菱形,点E,F分别在边AB,AD上,且AE=DF,连接BF与DE相交于点G,已知AF=2DF,若FG =3,则GB=________.三、解答题(共32分)13.(8分)如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,且BE=DF,AF=CE.求证:四边形ABCD为平行四边形.(第13题)14.(24分)如图,已知在矩形ABCD中,点M,N分别是边AD,BC的中点,点P,Q分别是边BM,DN的中点.(1)求证:BM∥DN;(2)求证:四边形MPNQ是菱形;(3)当矩形ABCD的边AB与AD满足什么数量关系时,四边形MPNQ为正方形?请说明理由.3(第14题)答案一、1.D 2.D 3.C 4.D 5.A 6.A7.B8.C二、9.410.1411.12 512. 63点拨:如图,过点F作FP∥AB,交DE于点P,则△DFP∽△DAE.∵AF=2DF,∴FPAE=DFDA=13.∵四边形ABCD是菱形,∴AB=AD.∵AE=DF,∴BE=AF,∴BE=2AE,∴FPBE=FP2AE=16.∵FP∥AB,∴△FPG∽△BEG,∴GFGB=FPBE=16,∴GB=6GF=6 3.(第12题)三、13.证明:∵AF=CE,∴AF-EF=CE-EF,即AE=CF.∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.∵BE=DF,∴△ABE≌△CDF.∴AB=CD,∠BAE=∠DCF.∴AB∥CD.∴四边形ABCD为平行四边形.14.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC.∵点M,N分别为边AD,BC的中点,∴DM=BN,∴四边形DMBN是平行四边形.∴BM∥DN.(2)证明:由(1)可知四边形DMBN是平行四边形,∴BM=DN,BM∥DN.5∵点P,Q分别为边BM,DN的中点,∴MP=NQ.∴四边形MPNQ是平行四边形.如图,连接MN.(第14题)由(1)可知AD∥BC,AD=BC.∵点M,N分别为边AD,BC的中点,∴DM=CN,∴四边形DMNC是平行四边形.由题可知∠C=90°,∴四边形DMNC是矩形,∴∠DMN=∠C=90°.∵点Q是边DN的中点,∴MQ=NQ,∴四边形MPNQ是菱形.(3)解:当矩形ABCD的边AB与AD满足AB=12AD时,四边形MPNQ为正方形.理由:∵AB=12AD,点M是边AD的中点,∴AB=AM.易得矩形ABNM是正方形.∵P为正方形ABNM对角线BM的中点,∴∠NPM=90°.由(2)知四边形MPNQ是菱形,∴四边形MPNQ是正方形.。
中考二轮复习 数学 题型七 与四边形有关的证明与计算 课件
7.(2020·荆州)如图,在矩形ABCD中,AB=20, 点E是BC边上的一点.将△ABE沿着AE折叠, 点B刚好落在CD边上点G处.点F在DG上, 将△ADF沿着AF折叠,点D刚好落在AG上点H处, 此时S△GFH∶S△AFH=2∶3. (1)求证:△EGC∽△GFH; (2)求AD的长; (3)∵四边形ABCD是平行四边形, ∴AD=CB,AD∥BC,∴∠ADO=∠CBD,∴∠ADE=∠CBF. 又∵DE=BF,∴△ADE≌△CBF(SAS); (2)解:当BD平分∠ABC时,四边形AFCE是菱形. 理由:∵BD平分∠ABC,∴∠ABD=∠CBD.∵∠ADB=∠CBD, ∴∠ABD=∠ADB,∴AB=AD, ∴平行四边形ABCD是菱形.∴AC⊥BD,∴AC⊥EF. ∵DE=BF,OB=OD,∴OE=OF.又∵OA=OC, ∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形.
4.(2020·云南)如图,四边形ABCD是菱形,点H为对角线AC的中点, 点E在AB的延长线上,CE⊥AB,垂足为点E, 点F在AD的延长线上,CF⊥AD,垂足为点F. (1)若∠BAD=60°,求证:四边形CEHF是菱形; (2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.
(1)证明:∵四边形 ABCD 是菱形,∠BAD=60°, ∴∠BAC=∠DAC=30°.∵CE⊥AB,CF⊥AD,∴CE=CF, ∵H 为对角线 AC 的中点,∴EH=FH=12 AC.∵∠CAE=30°,
5.(2020·内江节选)如图,正方形 ABCD 中,P 是对角线 AC 上的一个 动点(不与 A,C 重合),连接 BP.将 BP 绕点 B 顺时针旋转 90°到 BQ, 连接 QP 交 BC 于点 E,QP 延长线与边 AD 交于点 F. (1)连接 CQ,求证:CQ=AP;
中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解
中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解类型之一 以平行四边形为背景的计算与证明【经典母题】已知:如图Z11-1,在▱ABCD 中,AC 是对角线,BE⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:BE =DF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAE =∠DCF .又∵BE ⊥AC ,DF ⊥AC ,∴∠AEB =∠CFD ,∵AB =CD ,∴Rt △AEB ≌Rt △CFD ,∴BE =DF .【思想方法】 (1)平行四边形是一种特殊的四边形,它具有对边平行且相等,对角线互相平分的性质,根据平行四边形的性质可以解决一些有关的计算或证明问题;(2)平行四边形的判定有四种方法:两组对边平行;两组对边分别相等;一组对边平行且相等;对角线互相平分.【中考变形】1.[2016·益阳]如图Z11-2,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF ,CE .求证:AF =CE .证明:∵四边形ABCD 是平行四边形,∴AD =BC ,∠ADB =∠CBD .又∵AE ⊥BD ,CF ⊥BD , 图Z11-1图Z11-2∴∠AED =∠CFB ,AE ∥CF .∴△AED ≌△CFB (AAS ).∴AE =CF .∴四边形AECF 是平行四边形.∴AF =CE .2.[2016·黄冈]如图Z11-3,在▱ABCD 中,E ,F 分别为边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H .求证:AG =CH .证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠CFH ,∠EAG =∠FCH ,∵E ,F 分别为AD ,BC 边的中点,∴AE =DE =12AD ,CF =BF =12BC ,∵AD =BC ,∴AE =CF =DE =BF .∵DE ∥BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG =∠ADF ,∴∠AEG =∠CFH ,在△AEG 和△CFH 中,⎩⎪⎨⎪⎧∠EAG =∠FCH ,AE =CF ,∠AEG =∠CFH ,∴△AEG ≌△CFH (ASA ),∴AG =CH .【中考预测】[2016·义乌模拟]如图Z11-4,已知E ,F 分别是▱ABCD的边BC ,AD 上的点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)若四边形AECF 是菱形,且BC =10,∠BAC =90°,图Z11-3图Z11-4求BE的长.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如答图,∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,中考预测答图∴∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE =12BC=5.类型之二以矩形、菱形或正方形为背景的计算与证明【经典母题】如图Z11-5,在菱形ABCD中,E,F分别是BC,CD的中点,且AE⊥BC,AF⊥CD.求菱形各个内角的度数.图Z11-5 经典母题答图解:如答图,连结AC.∵四边形ABCD是菱形,AE⊥BC,AF⊥CD且E,F分别为BC,CD的中点,∴AC=AB=AD=BC=CD,∴△ABC,△ACD均为等边三角形,∴菱形ABCD 的四个内角度数分别为∠B =∠D =60°,∠BAD =∠BCD =120°.【思想方法】 要掌握矩形、菱形、正方形的性质和判定方法,采用类比法,比较它们的区别和联系.对于矩形的性质,重点从“四对”入手,即从对边、对角、对角线及对称轴入手;判定菱形可以从一般四边形入手,也可以从平行四边形入手;正方形既具有矩形的性质又具有菱形的性质.【中考变形】1.[2017·日照]如图Z11-6,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即__AD =BC __,可使四边形ABCD为矩形.请加以证明.解:(1)证明:在△DCA 和△EAC 中,⎩⎪⎨⎪⎧DC =EA ,AD =CE ,AC =CA ,∴△DCA ≌△EAC (SSS );(2)添加AD =BC ,可使四边形ABCD 为矩形.理由如下:∵AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形,∵CE ⊥AE ,∴∠E =90°,由(1)得△DCA ≌△EAC ,∴∠D =∠E =90°,∴四边形ABCD 为矩形.故答案为AD =BC (答案不唯一).2.[2017·白银]如图Z11-7,矩形ABCD 中,AB =6,BC=4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; 图Z11-6图Z11-7(2)当四边形BEDF 是菱形时,求EF 的长.解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF ,在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO =FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则 DE =x ,AE =6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,∵BD =AD 2+AB 2=213,∴OB =12BD =13,∵BD ⊥EF ,∴OE =BE 2-OB 2=2133,∴EF =2EO =4133.3.[2017·盐城]如图Z11-8,矩形ABCD 中,∠ABD ,∠CDB 的平分线BE ,DF 分别交边AD ,BC 于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当∠ABE 为多少度时,四边形BEDF 是菱形?请说明理由.解:(1)证明:∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC ,∴∠ABD =∠CDB ,∵BE 平分∠ABD ,DF 平分∠BDC ,∴∠EBD =12∠ABD ,∠FDB =12∠BDC ,图Z11-8∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,理由:∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.4.[2016·株洲]如图Z11-9,在正方形ABCD中,BC=3,E,F分别是CB,CD延长线上的点,DF=BE,连结AE,AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.解:(1)证明:正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE中,AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE(SAS);(2)在Rt△ABE中,∵AB=BC=3,BE=1,∴AE=10,ED=CD2+CE2=5,∵S△AED=12ED·AH=12AD·BA=92,图Z11-9∴AH =95, 在Rt △AHD 中,DH =AD 2-AH 2=125,∴EH =ED -DH =135,∴tan ∠AED =AH EH =913.5.[2017·上海]已知:如图Z11-10,四边形ABCD 中,AD∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD,DE =DE ,EA =EC ,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形;(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.图Z11-106.如图Z11-11,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.图Z11-11中考变形6答图解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA,∵AE=DH=BF,∴BE=AH,∴△AEH≌△BFE(SAS),∴EH=FE,∠AHE=∠BEF,同理,FE=GF=HG,∴EH=FE=GF=HG,∴四边形EFGH是菱形,∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴四边形EFGH是正方形;(2)直线EG经过正方形ABCD的中心.理由:如答图,连结BD交EG于点O.∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∴∠EBD=∠GDB,∵AE=CG,∴BE=DG,∵∠EOB=∠GOD,∴△EOB≌△GOD(AAS),∴BO=DO,即O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)设AE=DH=x,则AH=8-x,在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,∵S四边形EFGH=EH·EF=EH2,∴四边形EFGH面积的最小值为32 cm2.【中考预测】如图Z11-12,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连结DF.图Z11-12(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使∠EFD=∠BCD,并说明理由.解:(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD,∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠CBF+∠BCD=∠CDF+∠EFD,∴∠EFD=∠BCD.。
专题7 平行四边形培优方案
1 / 13平行四边形【知识详解】1.多边形(1)多边形:在平面内,由不在同一条直线上的若干条相等(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。
(2)多边形的内角:多边形相邻两边组成的角叫做多边形的内角。
(3)多边形的外角:多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。
(4)多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
从n 边形的一个顶点出发可以画3-n 条对角线,把n 分成了2-n 个三角形; n 边形共有2)3(-n n 条对角线. (5)正多边形:各边相等,各内角也相等的多边形叫做正多边形。
(6)多边形的内角和:n 边形的内角和为:(n-2)·180º (7)多边形的外角和:任意多边形的外角和360º(8)镶嵌平面:用一些形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地把平面的一部分完全覆盖,这就是平面图形的镶嵌。
注意:各种图形拼接后要既无缝隙,又不重叠。
要用正多边形镶嵌成一个平面的关键是看:这种正多边形的一个内角的倍数是否是360°。
2.平行四边形及其性质性质:1.(边)两组对边分别平行且相等.2. (角) 两组对角分别相等.邻角互补3.(线)对角线互相平分.4.(对称性)中心对称--对称中心为对角线交点. 推论1:夹在两条平行线间的平行线段相等。
推论2:夹在两条平行线间的垂线段相等。
夹在两条平行线间的垂线段的长度叫做平行线之间的距离。
由推论2可知两条平行线间的距离处处相等。
3.平行四边形的判断从边看: ①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形.从对角线看:对角线互相平分的四边形是平行四边形. (从角看:两组对角分别相等的四边形是平行四边形.)考点一:多边形的内角、外角【典型例题1】有一张长方形的桌面,它的四个内角和为360°,现在锯掉它的一个角,剩下残余桌面所有的内角和是多少?有几种情况?【相似题】1.下列命题:①多边形的外角和小于内角和;②三角形的内角和等于外角和;③多边形的外角和是指这个多边形所有外角之和;④四边形的内角和等于它的外角和.其中正确的有()A. 0个B. 1个C.2个D.3个2如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米3.一个多边形的边数增加2条,则它的内角和增加()A.180°B.90°C.360°D.540°4. 一个多边形除1个内角外,其余各内角和为2570,则这个内角的度数为()50B.105C.120D.130A.5. 在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,那么这个多边形的边数是()A.4 B.6 C.8 D.106.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°7.若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。
中考数学解答题之四边形的有关证明与计算
考点 4
平行四边形、特殊的平行四边形
【例 4】 (梅州)如图,在△ABC 中,点 P 是边 AC 上的一个动点,过点 P 作直线 MN∥BC,设 MN 交∠BCA 的平分线于 点 E,交∠BCA 的外角平分线于点 F. (1)求证:PE=PF; (2)当点 P 在边 AC 上运动时,四边形 BCFE 可能是菱形吗?说明理由; (3)若在 AC 边上存在点 P,使四边形 AECF 是正方形,且 AP 3 = .求此时∠A 的大小. BC 2 A E P F
重点、难点
2.线角的证明与计算. 难点:证明与计算的综合运用
考点及考试要求
会解决中考之第 20 或 21 题---有关于四边形的有关证明与计算(以及三角形)
教学内容
【考点链接】
一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。
中考数学压轴题重难点突破七 与特殊四边形有关的证明与计算(动态探究问题)
(2)在 AB 上取 AF=EC,连接 EF, 由(1)同理可得∠CEP=∠FAE, ∵AF=EC,AE=EP, ∴△FAE≌△CEP(SAS),∴∠ECP=∠AFE, ∵AF=EC,AB=BC,∴BF=BE, ∴∠BEF=∠BFE=45°,∴∠AFE=135°, ∴∠ECP=135°,∴∠DCP=45°.
【模型应用】 (2)如图②,F 是 DE 延长线上一点,FB⊥BE,EF 交 AB 于点 G. Ⅰ)判断△FBG 的形状并说明理由; Ⅱ)若 G 为 AB 的中点,且 AB=4,求 AF 的长;
(2)解:Ⅰ)△FBG 为等腰三角形,理由: ∵四边形 ABCD 是正方形,∴∠GAD=90°, ∴∠AGD+∠ADG=90°,由(1)知△ABE≌△ADE, ∴∠ADG=∠EBG,∴∠AGD+∠EBG=90°, ∵FB⊥BE,∴∠FBG+∠EBG=90°, ∴∠AGD=∠FBG,∵∠AGD=∠FGB, ∴∠FBG=∠FGB,∴FG=FB, ∴△FBG 是等腰三角形.
FH AD ∴GH=AG=2,∴FH=2GH=2, 在 Rt△AHF 中,AF= AH2+FH2= 13.
【模型迁移】 (3)如图③,F 是 DE 延长线上一点,FB⊥BE,EF 交 AB 于点 G,BE=BF. 求证:GE=( 2-1)DE.
(3)证明:∵FB⊥BE,∴∠FBE=90°, 在 Rt△EBF 中,BE=BF,∴EF= 2BE, 由(1)知 BE=DE,由(2)知 FG=BF, ∴GE=EF-FG= 2BE-BE= 2DE-DE=( 2-1)DE.
类型二:与特殊四边形有关的证明与计算(动态探究问题) (省卷 2021T27,2019T27,2015T27,2014T27;兰州 2021T27)
(2022·兰州)综合与实践 【问题情境】数学活动课上,老师出示了一个问题:如图①,在正方形 ABCD 中,E 是 BC 的中点,AE⊥EP,EP 与正方形的外角∠DCG 的平分线交 于 P 点.试猜想 AE 与 EP 的数量关系,并加以证明; 【思考尝试】(1)同学们发现,取 AB 的中点 F,连接 EF 可以解决这个问 题.请在图①中补全图形,解答老师提出的问题;
中考数学几何模型专题专题七—四边形
专题七 四边形 模型31 中点四边形模型模型展现 基础模型已知:点E ,F ,G ,H 分别是四边形ABCD 的边AB ,BC ,CD ,DA 的中点结论1:四边形EFGH 是平行四边形;结论2:C 四边形EFCH = AC +BD ; 结论3:S 四边形EFGH =21S 四边形ABCD 怎么用? 1.找模型题中已知四边形四条边的中点 2.用模型顺次连接各条边的中点及连接已知四边形的对角线解题 满分技法中点四边形模型实质考查的是中位线的判定及性质. 拓展延伸已知△ABC ,D ,E ,F 分别是边AB ,BC ,AC 的中点,则△DEF 是△ABC 的中点三角形.△DEF 与△ABC 的关系:△C △DEF =21C △ABC △S △DEF = 41S △ABC结论分析结论1:四边形EFGH 是平行四边形证明:由题图可知四边形ABCD 被AC 分成两个三角形,△E ,F 分别是AB ,BC 的中点,△EF 为△ABC 的中位线,同理HG 为△ACD 的中位线,△EF//AC ,EF=21AC ,HG//AC ,HG=21AC ,△EF//HG ,且EF=HG , △四边形EFGH 是平行四边形; 结论2:C 四边形EFCH = AC +BD 证明:△四边形EFGH 是平行四边形,△EF=GH ,FG=EH ,△四边形EFGH 的周长为2(EF+FG ). △EF ,FG 分别是△ABC 和△BCD 的中位线,△EF=21AC ,FG=21BD ,△四边形EFGH 的周长为2(EF+FG )=AC+BD ; 结论3:S 四边形EFGH =21S 四边形ABCD 证明:EF 为△ABC 的中位线,GF 为△BCD 的中位线, HG 为△ACD 的中位线,EH 为△ABD 的中位线,△S △BEF =41S △ABC ,s △CGF =41S △BCD , S △DHG =41S △ACD , S △AHE =41S △ABD ,△S △ABC +S △BCD +S △ACD +S △ABD =2S 四边形ABCD ,△S 四边形EFGH =S 四边形ABCD -(S △BEF +S △CGF +S △DHG +S △AHE )=S 四边形ABCD -41S 四边形ABCD =21S 四边形ABCD模型拓展巧学巧记1.任意四边形的中点四边形都是平行四边形;2.对角线相等的四边形的中点四边形是菱形;对角线互相的垂直的四边形中点四边形是矩形;对角线相等且互相垂直的四边形的中点四边形是正方形,典例小试例1顺次连接菱形四条边的中点(画出草图,本题即可迎刃而解啦)所得的四边形是()A.矩形B.菱形C.正方形D.以上都不对考什么?菱形的性质和矩形的判定例2若顺次连接四边形四条边的中点所得的四边形是矩形,(一定是找导致这个结果的最根本原因)则原四边形()A.一定是矩形B.一定是菱形C.对角线一定互相垂直D.对角线一定相等考什么?矩形的判定思路点拨对角线互相垂直的四边形的中点四边形是矩形,但中点四边形是矩形的四边形不一定都是菱形,例3如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点(点拔:矩形中点四边形).若AB=4,AD=6,则图中阴影部分(先判断阴影部分的形状)的面积为;周长为.考什么?矩形的中点四边形,菱形的周长公式及勾股定理思路点拨可通过中点四边形与原四边形的面积、周长关系直接求得,也可以先判断中点四边形的形状,再根据中点四边形的面积、周长公式计算,灵活运用,哪种方法简单用哪种.例4如图,在四边形ABCD中,AC=BD=4(对角线相等),E,F,G,H分别为边AB,BC,CD,DA的中点(顺次连接四条边的中点,判断四边形EFGH的形状).则EG2+EH2(遇到线段的平方和,考虑利用勾股定理转化求解)的值为.考什么?中位线的性质,菱形的判定和勾股定理.实战实演1.顺次连接下列四边形各边中点所构成的四边形中为正方形的是( ) △平行四边形;△矩形;△菱形;△正方形;△对角线互相垂直且相等的边形 A .△△ B .△△ C .△△ D .△△2.如图,已知菱形A 1B 1C 1D 1的面积为2,顺次连接菱形各边的中点得到四边形A 2B 2C 2D 2,记为第1次操作,再顺次连接四边形A 2B 2C 2D 2各边的中点得到四边形A 3B 3C 3D 3,记为第2次操作,…,依次类推,则操作2022次后得到的四边形的面积为 ( )A .(21)2020B .(21)2021C . (41)1011D .(41)20223.如图,已知EF 为△ABC 的中位线,点D 是△BAC 内一点,且在BC 下方,连接BD ,CD ,G ,H 分别是CD ,BD 的中点,连接 AD ,EH ,GH ,FG ,AD 与BC 交于点P . (1)求证:四边形EFGH 为平行四边形;(2)当AD 和BC 满足什么关系时,四边形EFCH 为矩形? 并说明理由; (3)若AB =AC =6,△BAC =600,BD =CD ,当四边形EFCH 为正方形时.求PD 的长.模型32 “十字架”模型模型展现基础模型怎么用?1.找模型在正方形中存在互相垂直的线段,且端点在正方形的边上,看起来像“十字架”2.用模型根据等角(同角)的余角相等,再结合正方形的性质证明两条线段所在三角形全等巧学巧记正方形中的十字架模型,垂直一定相等,但相等不一定垂直.结论分析结论1:若AE⊥BF ,则AE=BF证明:△四边形ABCD为正方形,∴AB= DA, ∠BAF=∠ADE= 90°,△AE⊥BF , ∴∠AGB=90°,∴∠ABF+∠BAG= 90°,△ ∠BAG+∠DAE=90°, ∴∠ABF= ∠DAE.在△ABF和△DAE中,BAF ADE BA ADABF DAE ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABF △△DAE ( ASA ), ∴AE =BF .满分技法对于结论2,可通过HL 证明全等;其他情形的结论均可通过全等或构造全等证明,因此遇到“十字架”模型试题,第一步则考虑用全等. 模型拓展拓展1拓展2满分技法“十字架”模型解题的关键是寻找(构造)两条“十字架线”所在的直角三角形,再利用余角代换证明一组角相等,从而得到全等(正方形中)或相似(矩形中). 结论分析针对拓展1中的结论进行证明,过程如下: 证明: △四边形ABCD 为矩形,∴∠EDC = ∠A = 90°,∴ ∠ADB +∠BDC = 90°,△CE ⊥BD ,∴ ∠DCE +∠BDC = 90°, ∴ ∠DCE =∠ADB , ∴ △DCE △△ADB ,∴CE CD=DB DA拓展延伸拓展2中结论的证明方法同样是证明EF和GH所在两个三角形相似.可考虑平移线段或作垂线(如图△△).典例小试例1如图,在正方形ABCD中,E,F分别是CD,AD边上的点,BE△CF于点G(提示:正方形中遇垂直,知相等,BE=CF),若AB=4,AF= 1,则BE的长(提示:利用勾股定理,先求CF的长)为.考什么?正方形的性质,全等三角形的判定与性质,勾股定理例2如图,正方形ABCD中,点E为BC边上一点,连接AE,作AE的垂直平分线交AB于点G(提示:可知AE=GF ,构造CF为斜边的直角三角形),交CD于点F,若DF=2,BG=4,则AE的长(提示:先求BE的长,可利用垂直平分线的性质连接GE)为.考什么?正方形的性质,垂直平分线的性质及勾股定理思路点拨若互相垂直的两条线段所在三角形不明显,可考虑作平行或者垂直构造.例3如图,在Rt△ACB中(提示:由直角三角形和BD⊥CE可想到构造矩形), ∠ACB=90°,AC=4,BC=3,点D为AC中点, 连接BD, 过点C作CE△BD交AB于点E,交BD于点F(提示:再延长CE交矩形边于一点,此时十字模型必自现),则CE 的长为.考什么?直角三角形的性质,矩形的判定,相似三角形的判定及性质思路点拨遇见直角三角形中存在互相垂直的两条线段时,可考虑构造矩形或正方形,再结合“十字架”模型的特点解题.实战实演1.如图,在正方形ABCD中,点E,F分别是AD, CD边上的点,且AE=DF ,连接BE,AF交于点M ,N是BF的中点,若AB=10,AE=4,则MN的长为.2.如图,在矩形ABCD中,32BCAB=,点F,G分别为AB,CD上的点,将矩形ABCD沿FG折叠,使点A落在BC边的点E处,点D的对应点为P,PE交CD于点H,连接AE交FG于点O,若tan∠CGP=34, GF=,则CE的长为.例2 如图,在四边形ABCD中,△A+△C= 180°(提示:对角和为180°,且未知角平分线,则考虑相似三角形) ,AD:CD=2:3(提示:有线段比例关系,也会考虑相似三角形),且AB=4,BC=5,△ABD的面积为2,则△BCD的面积为__________.考什么?相似三角形的判定与性质,三角形的面积计算公式例3 如图,在矩形ABCD中,E是AD的中点,连接BE,CE ,连接AC交BE于点F ,连接DF,若AC△BE(提示:由垂直可知△CFE+△CDE= 180° .考虑相似三角形) ,tan△ADF=31(提示:由正切值可知相似比) ,AD=13,则EF的长为__________.考什么?矩形的性质,相似三角形的判定与性质,解直角三角形及勾股定理的应用实战实演1.如图,在等边△ABC中,D为BC边的中点,点E,F分别是.AB,AC边上的点,且△EDF= 120°,若△BDE=45° , DF=6,则BE的长为__________.2.如图,在Rt △ABC 中,△C =60° ,BD △AC 于点D ,以D 为顶点作△EDF =90° ,分别交AB ,BC 于点E ,F ,则DFDE 的值为__________. 3.如图,在平面直角坐标系中,A (-3,0),B 为y 轴正半轴上一点,C 为y 轴负半轴上一点,连接CA ,过点C 作CD △CA ,且使CD = CA ,连接BD ,若△ABD = 90°,则点B 的坐标为__________.4.如图,已知四边形ABCD 为正方形,点E 在对角线AC 上,连接DE ,过点E 作EF △DE ,交BC 于点F ,以DE ,EF 为邻边作矩形DEFG .(1)求证:ED =EF ;(2)连接CG ,若四边形DECG 的面积为9,求CE +CG 的值.模型34 含60°角的菱形基础模型怎么用?1. 找模型题中已知含60°(或120°)角的菱形2. 用模型含60°角的菱形常需要作辅助线,构造等边三角形或者直角三角形,利用特殊三角 形的性质或者解直角三角形求解结论分析结论:1. △ABD =△CBD =△BAE =△CAE = 30°;2. △ABC 和△ACD 均为等边三角形;3. S 菱形ABCD =22321BC BD AC =• 证明: △四边形ABCD 为菱形,△ABC = 60°,△△ABD =△CBD =30°(菱形的对角线平分对角) ,AB = BC = CD =AD (菱形的四条边相等),△△ABC 和△ACD 均为等边三角形(有一个内角为60°的等腰三角形是等边三角形).△AE △BC△△AEB =90°,△ △BAE = 30°△△ABD =△CBD = △BAE =△CAE = 30°.在Rt △ABE 中,,2323BC AB AE ==△S 菱形ABCD =AE BE BD AC •=•21(菱形面积公式), △S 菱形ABCD =22321BC BD AC =• 满分技法摸清含60°角的菱形中结论的来龙去脉,让此类问题变得和心算一样简单. △AE BC BD AC 21S 菱形ABCD •=•=(菱形面积公式) △2菱形ABCD BC 23BD AC 21S =•= 模型拓展满分技法此模型也可看成半角模型中的120°半角模型,不必惊讶, 很多模型之间都有联系,等学完这本书,你一定要好好总结噢!典例小试例1( 2021陕西)在菱形ABCD 中,△ABC =60°,连接AC ,BD线段比值遇见特殊角,锐角三角函数跑不了)的值为( )A .21B .22C .23D .33 例2 如图,四边形ABCD 为菱形,△ABC =120°,AC =34,(点拨:已知一条对角线,赶快作另一条对角线)则菱形ABCD 的面积是( )A .38B .12C .18D .163例3(2021南充)如图,在菱形ABCD 中,△A = 60°(点拨:根据60°菱形的性质先判断△DEF 的形状)点E ,F 分别在边AB ,BC 上,AE = BF =2, △DEF 的周长为36(点拨:结合AE 的长可想到过点D 作AB 边的垂线,再解直角三角形),则AD 的长为()A .6B .32C .13+D .132-实战实演1.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B ,D 在坐标轴上,若点A 的坐标为(0,1),△BAD =60°,则点C 的坐标为( )A .)2,2(-B .)2,3(-C .)3,3(-D .),(32-2.如图,已知菱形ABCD 的边长为6, △ABC = 120°,点M 是对角线AC 上的动点,则MA +MB +MD 的最小值是 ( )A .33B .333+C .36+D .363.如图,在菱形ABCD 中,AB =2,△B = 60°,过菱形的对角线交点O 分别作边AB ,BC 的垂线并延长,交各边于点E ,F ,G , H ,则四边形EFGH 的周长为 ________・4.如图△,已知在菱形ABCD 中,△ABC = 60°,点E 是边AB 上任意一点(端点除外),连接CE 交BD 于点P .(1)若CE △AB ,试判断线段PD 与PE 的数量关系,并说明理由;(2)如图△,作线段CE 的垂直平分线分别交BD ,CE 于点F ,G ,连接 EF .AF .△求证:AF = EF ;△求△CEF 的度数.。
专题七二次函数特殊四边形的存在性问题
设抛物线的对称轴与直线BC的交点为K,点P是抛物线对称轴上一点,点Q为y轴上一点,是否存在这样的点P和Q,使得四边形CKPQ是菱形?如果存在,请求出点P的坐标;
01
例题图⑤
02
【思维教练】先假设存在满足条件的点P,由于四边形CKPQ四个顶点顺序已确定,则CK为菱形的边,故利用KP=CK上下平移直线BC,与抛物线对称轴的交点即为所求点P.
例题解图①
如果点M在直线BC上,点N在抛物线上,是否存在这样的点M和N,使得以A,B,M,N为顶点的四边形是平行四边形?如果存在,请求出点N的坐标;
例题图④
【思维教练】先假设存在满足条件的点M、N,因为AB长度和位置确定,故需分AB作边还是对角线两种情况进行讨论:当AB为边时,则MN∥AB,且MN=AB,据此可求出点N的坐标;当AB为对角线时,则MN与AB互相平分,从而确定点N的坐标.
∵GH=OC=3, ∴GH=|n2-4n+3-(-n+3)|=|n2-3n|=3, 当n2-3n=3时, 解得n= ; 当n2-3n=-3时,方程无解; ∵当n= 时,n2-4n+3= ; 当n= 时,n2-4n+3= . 综上所述,存在这样的点G和H,使得以G,H,O,C为顶点的四边形是平行四边形,点H的坐标为( , )或( , ) ;
解:存在点M,N,使得以A,B,M,N为顶点的四边形是平行四边形. ①当AB为平行四边形的边时,需考虑点M和N的位置关系(即点M在点N的左边还是右边),如解图②, (ⅰ)当点M在点N的左边时,设点N的坐标为(m,m2-4m+3), 则点M的坐标为(m-2,-m+5),∵四边形ABNM是平行四边形, ∴m2-4m+3=-m+5,解得m= , 当m= 时,m2-4m+3= ; 当m= 时,m2-4m+3= . ∴点N的坐标为( , )或( , ) ;
专题训练(七) 有关平行四边形的计算问题
解:(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE.又 ∵CE=DE,∠BEC=∠FED,∴△BEC≌△FED,∴BE=FE.∵CE=DE,∴四 边形BDFC是平行四边形
(2)①BC=BD=3 时,由勾股定理得,AB= BD2-AD2 =2 2 ,S 四边形 BDFC=3× 2 2 =6 2 ;②BC=CD=3 时,过点 C 作 CG⊥AF 于点 G,则四边形 AGCB 是长方形,∴CG= CD2-DG2 = 32-22 = 5 ,S 四边形 BDFC=3× 5 =3 5 ; ③BD=CD 时,BC 边的中线应与 BC 垂直,则 BC=2AD=2,此时不成立,综上 所述,四边形 BDFC 的面积是 6 2 或 3 5
15.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连接AC, CE,使AB=AC.
(1)求证:△DBA≌△EAC; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
解:(1)证明:∵AB=AC,∴∠B=∠ACB.又∵四边形ABDE是平行四边形, ∴AE∥BD, AE=BD,∴∠ACB=∠CAE=∠B,∴△DBA≌△EAC(SAS)
类型之六 平移、对称在平行四边形中的运用 11.如图,在▱ABCD中,AC与BD相交于点E,∠AEB=45°,BD=2,将 △ABC沿AC所在直线翻折1Байду номын сангаас0°到其原来所在的同一平面内,若点B的落点记为 B′,则DB′的长为____.2
12.如图,△ACE 是以▱ABCD 的对角线 AC 为边的等边三角形,点 C 与点 E 关 于 x 轴对称,若点 E 的坐标是(7,-3 3 ),则点 D 的坐标是_(_5_,__0_) .
2020年中考备考数学专题复习--新疆 第2部分 题型2 四边形的相关证明与计算
正方形
1.如图,在 Rt△ABC 中,∠C=90°,AC=BC,D,E, F 分别是 AC,AB,BC 边上的中点.求证:四边形 CDEF 是正方形.
第 1 题图
证明:∵D,E,F 分别是 AC,AB,BC 边上的中点, ∴EF=CD=21AC,DE=CF=12BC, ∵AC=BC, ∴CD=DE=EF=CF, ∵∠C=90°, ∴四边形 CDEF 是正方形.
第 1 题图
(1)求证:四边形 AECD 是菱形;
证明:∵点 O 是 AC 的中点, ∴OA=OC, ∵CE∥AB, ∴∠DAO=∠ECO, 在△AOD 和△COE 中,
∠DAO=∠ECO, OA=OC, ∠AOD=∠COE. ∴△AOD≌△COE(ASA), ∴AD=CE, ∵CE∥AB, ∴四边形 AECD 是平行四边形, 又∵CD 是 Rt△ABC 斜边 AB 上的中线, ∴CD=AD, ∴四边形 AECD 是菱形.
3.如图,在▱ABCD 中,AE⊥BC,AF⊥CD,垂足分别 为 E,F,且 BE=DF.
第 3 题图
(1)求证:▱ABCD 是菱形;
证明:∵四边形 ABCD 是平行四边形, ∴∠B=∠D,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
∵BE=DF, ∴△AEB≌△AFD(ASA),
第3题答图
(2)若 AE=2,求 FC 的长. 解:设 EF=MF=x, ∵CM=AE=2,且 BC=6,∴BM=BC+CM=6+2=8, ∴BF=BM-MF=BM-EF=8-x, ∵EB=AB-AE=6-2=4. 在 Rt△EBF 中,由勾股定理得,EB2+BF2=EF2, 即 42+(8-x)2=x2, ∴解得 x=5,即 FM=5. ∴FC=FM-CM=5-2=3.
四边形与证明(经典难题)
第八部分图形与证明知识点的把握新的课程标准对图形与证明提出了如下要求:1。
了解证明的含义。
(1)理解证明的必要性;(2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论;(3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立;(4)通过具体的例子理解反例的作用,知道利用反例可以证明一个命题是错误的;(5)通过实例,体会反证法的含义;(6)掌握用综合法证明的格式,体会证明的过程要步步有据。
2。
掌握以下基本事实,作为证明的依据。
(1)一条直线截两条平行直线所得的同位角相等;(2)两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;(3)若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等;(4)全等三角形的对应边、对应角分别相等。
3。
利用2中的基本事实证明下列命题。
(1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行);(2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角);(3)直角三角形全等的判定定理;(4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心);(5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交于一点(外心);(6)三角形中位线定理;(7)等腰三角形、等边三角形、直角三角形的性质和判定定理;(8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。
4.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值。
命题方向经过对近几年各地的中考试题来看,直接考查本章知识的试题约占10%,普遍由圆结合其他的知识点进行考查.在主客观题中均有出现,往往是综合运用方程、函数、三角形、相似形等知识解决与圆有关的中考压轴题.除了考查几何图形的性质和应用外,还常常与应用问题、实际问题结合,对学生的探究能力和创新思维能力进行综合考查。
中考专题:图形的计算之四边形
中考专题:图形的计算之四边形(一)考点中考说明中涉及四边形计算的考点有:(1)会计算多边形的内角和和知道多边形的外角和;(2)运用平行四边形、矩形、菱形、正方形的概念和性质进行的计算;(3)利用三角形的全等、相似以及锐角三角函数等解决一些简单数学问题.(二)典型例题例1.若一个多边形的每一个外角都等于40°,则该多边形是____边形,内角和等于____°.(1) 若一个正多边形的内角和是其外角和的3倍,则这个多边形是______边形.(2) 如图1,菱形ABCD 中,AB =5,∠BCD =120°,则对角线AC 的长是( )A .20B .15C .10D .5(3) 菱形ABCD 中,若AC =8cm ,BD =6cm ,则AB 等于 cm ,面积等于______cm 2.(4) 如图2,E 、F 、G 、H 分别为正方形ABCD 的边AB ,BC ,CD ,DA 上的点,且AE =BF =CG =DH = 13AB ,则图中阴影部分的面积与正方形ABCD 的面积之比为( ) A.25 B.49 C.12 D.35(5) 如图3,把矩形OABC 放在直角坐标系中,OC 在x 轴上,OA 在y 轴上,且OC =2,OA =4,把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ’B ’C ’,则点B ’的坐标为( )A .(2,4)B .(-2,4)C .(4,2)D .(2,-4)例2. 如图,矩形ABCD 中,AB =4,BC =5,AF 平分∠DAE ,EF ⊥AE ,求CF .(三)巩固练习1.一只因损坏而倾斜的椅子,从背后看到的形状如图1,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是 ( )A.75ºB.115ºC.65ºD.105º2.如图2,平面上两个正方形与正五边形都有一条公共边,则∠α等于°.3.如图3,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_________cm.4.如图4,已知EF是梯形ABCD的中位线,△DEF的面积为4cm2,则梯形ABCD的面积为____ cm2.5.如图5,矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B’处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为________.6.如图6,矩形ABCD中,AB=4cm,AD=8cm,过对角线BD的中点O做BD的垂直平分线EF,分别交AD、BC于点E、F,则AE的长为______cm,EF的长为______cm.7.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.(四)历年考题1.(2012南京·6)如图1,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’F⊥CD时,CFFD的值为()A.3-12B.36C.23-16D.3+182.(2012南京·10)如图2,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=120°,则∠1+∠2+∠3+∠4=___________°.3.(2012南京·15)如图3,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE= cm.4.(2010徐州·12)若正多边形的一个外角是45°,则该正多边形的边数是_______.5.(2011南京·8)如图4,过正五边形ABCDE的顶点A作直线l∥CD,则∠1=_________.6.(2011南京·10)等腰梯形的腰长为5cm,周长是22cm,则它的中位线长为________cm.7.(2011南京·12)如图5,菱形ABCD的连长是2㎝,E是AB中点,且DE⊥AB,则菱形ABCD的面积为_________.8.(2010南京·5)如图6,在平面直角坐标系中,菱形OABC的顶点坐标是(3,4)则顶点A、B的坐标分别是()A.(4,0)(7,4)B.(4,0)(8,4)C.(5,0)(7,4)D.(5,0)(8,4)9.(2012无锡·6)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.910.(2012苏州·6)如图8,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A .4B .6C .8D .1011.(2012淮安·4)菱形ABCD 中,若对角线AC =8cm ,BD =6cm ,则边长AB = cm .12. (2012南通·8)如图9,矩形ABCD 的对角线AC =8cm ,∠AOD =120°,则AB 的长为 ( )A .3 cm B .2cm C .2 3 cm D . 4cm13. (2012镇江·10)如图11,E 是□ABCD 的边CD 上一点,连接AE 并延长交BC 的延长线于点F ,且AD =4,CE AB = 1 3,则CF 的长为 . 14. (2010连云港·24)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD 的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转,试解决下列问题:(1)画出四边形ABCD 旋转后的图形;(2)求点C 旋转过程中所经过的路径长;(3)设点B 旋转后的对应点为B ’,求tan ∠DAB ’ 的值.18. (2017浙江湖州第22题) (本小题10分)已知正方形CD AB 的对角线C A ,D B 相交于点O .(1)如图1,E ,G 分别是OB ,C O 上的点,C E 与DG 的延长线相交于点F .若DF C ⊥E ,求证:G OE =O ;(2)如图2,H 是C B 上的点,过点H 作C EH ⊥B ,交线段OB 于点E ,连结D H 交C E 于点F ,交C O 于点G .若G OE =O ,①求证:DG C ∠O =∠O E ;②当1AB =时,求C H 的长.。
初中三角形、四边形的有关计算证明(经典例题)
初中三角形、四边形的有关计算证明(经典例题)01考点、热点分析(1)掌握平行四边形对边相等、对角相等、对角线互相平分的性质,四边形是平行四边形的条件(一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形).了解中心对称图形及其基本性质;(2)掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件;(3)了解等腰梯形同一底上的两底角相等,两条对角线相等的性质,以及同一底上的两底角相等的梯形是等腰梯形的结论。
(4)进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。
(5)了解图形的全等,能利用全等图形进行简单的图案设计。
(6)经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。
(7)在分别给出两角夹边、两边夹角和三边的条件下,能够利用尺规作出三角形(会写已知、求作和作法,不要求证明)。
02知识点归纳03经典例题三角形内角和定理的证明例1.如图所示,把图(1)中的∠1撕下来,拼成如图(2)所示的图形,从中你能得到什么结论?请你证明你所得到的结论.点证:此题是让学生动手拼接,把∠1移至∠2,已知a∥b,根据两直线平行,同旁内角互补,得到“三角形三内角的和等于180°”的结论,由于此题剪拼的方法很多,证明的方法也很多,注意对学生的引导.探索三角形全等的条件例2.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是_________.【解析】由∠E=∠F,∠B=∠C,AE=AF,可判定△AEB≌△AFC,从而得∠EAB=∠FAC.∴∠1=∠2,又可证出△AEM≌△AFN.依此类推得①、②、③点评:注意已知条件与隐含条件相结合.全等三角形的应用例3.如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:(1)△AEF≌△BCD;(2)EF∥CD.(1)因为AE∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD,【解析】又因AE=BC,所以△AEF≌△BCD.(2)因为△AEF≌△BCD,所以∠EFA=∠CDB,所以EF∥CD.【点评】根据平行寻求全等的条件,由三角形全等的性质证两直线平行.利用平行四边形的性质求面积例4.如图,在□ABCD中,E为CD的中点,连结AE并延长交BC的延长线于点F,求证:S△ABF=S□ABCD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滚动小专题(七)四边形的有关计算与证明
四边形的有关计算与证明是历年中考的必考内容之一,通常结合三角形等知识综合考查,以计算题、证明题的形式出现,解答此类问题除熟练掌握四边形的性质和判定定理外,还须综合三角形等知识解题.
例(2014·邵阳)准备一张矩形纸片,按如图所示操作:
将△ABE沿BE翻折,使点A落在对角线BD上的M点;将△CDF沿DF翻折,使点C落在对角线BD上的N点.
(1)求证:四边形BFDE是平行四边形;
(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.
1.(2013·新疆)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别与BC、CD交于点E、F,EH ⊥AB于H.连接FH,求证:四边形CFHE是菱形.
2.(2014·济宁)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.
(1)求证:BF=DF;
(2)连接CF,请直接写出BE∶CF的值(不必写出计算过程).
3.(2014·凉山)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
4.(2014·舟山)已知:如图,在□ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连接BE ,
DF.
(1)求证:△DOE ≌△BOF.
(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由.
5.如图,点O 是线段AB 上的一点,OA=OC ,OD 平分∠AOC 交AC 于点D ,OF 平分∠COB ,CF ⊥OF 于点
F.
(1)求证:四边形CDOF 是矩形;
(2)当∠AOC 为多少度时,四边形CDOF 是正方形?并说明理由.
6.(2014·成都)如图,矩形ABCD 中,AD=2AB ,E 是AD 边上一点,DE=1n
AD(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和
EG.
(1)试判断四边形BFEG 的形状,并说明理由;
(2)当AB=a(a 为常数),n=3时,求FG 的长;
(3)记四边形BFEG 的面积为S 1,矩形ABCD 的面积为S 2,当
12S S = 1730时,求n 的值.(直接写出结果,不必写出解答过程)。