有理数与数轴的讲义
第一讲《有理数》《数轴》
第一讲《有理数》《数轴》引言有理数是我们常见的一类数,包括整数和分数。
它们在数学中具有重要的地位,因为它们可以覆盖我们日常生活中的绝大部分数量关系。
在本讲中,我们将介绍有理数的定义、性质和表示方法,以及数轴的概念和使用方法。
一、有理数的定义和性质1.1 定义有理数是可以表示为两个整数的比值的数,其中分母不为零。
整数是有理数的特殊情况,可以看作分母为1的有理数。
有理数可以是正数、负数或零。
1.2 性质有理数有以下性质:•有理数的加法、减法和乘法运算仍然得到有理数。
•有理数的除法运算结果可能是有理数,也可能是无理数(不能表示为两个整数的比值)。
二、有理数的表示方法有理数可以用分数、整数或小数形式表示。
2.1 分数表示法分数是有理数最常见的表示形式,它由一个分子和一个分母组成,分子表示被分割的份数,分母表示总共的份数。
分数可以是正数、负数或零。
2.2 整数表示法整数是没有小数部分的有理数。
它可以是正整数、负整数或零。
2.3 小数表示法小数是有理数的一种特殊表示形式。
它可以有有限的数字部分和无限的循环部分,也可以是有限的数字部分。
三、数轴的概念和使用方法3.1 数轴的定义数轴是由一条直线和一个固定原点组成的图形,用来表示数的大小和位置关系。
原点通常表示零,正方向表示正数,负方向表示负数。
3.2 数轴的使用方法数轴可以用来表示有理数的位置和大小关系。
我们可以通过在数轴上画点、画线段等方式来表示有理数的位置。
数轴上两个数之间的距离,即两个数的差的绝对值,表示它们之间的差别大小。
有理数是我们日常生活中非常重要的数,它包括整数和分数。
有理数可以用分数、整数或小数形式表示,可以在数轴上表示它们的位置和大小关系。
了解和掌握有理数的定义、性质和表示方法,以及数轴的概念和使用方法,对我们的数学学习和实际应用都非常有帮助。
参考文献:•《数学教学参考书》•《高中数学学科教学大纲》。
2019年沪科版七年级数学上册第1章 有理数、数轴、相反数、绝对值讲义
2019年沪科版7(上)有理数——数轴、相反数、绝对值【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按定义分类:(2)按性质符号分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】1.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数. D .正整数和正分数统称正有理数.2.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)“0的相反数是0”是相反数定义的一部分,不能漏掉;(3)相反数是成对出现的,单独一个数不能说是相反数;(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为2.(1)如果a=-13,那么-a=______;(2) 如果-a=-5.4,那么a =______;(3) 如果-x=-6,那么x=______;(4) -x=9,那么x=______.3. -4的倒数的相反数是( )A .-4B .4C .-D . 4.填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数;(6)a 和 互为相反数.(7)______的相反数比它本身大, ______的相反数等于它本身.5. 已知21m -与172m -互为相反数,求m 的值.6.化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)}.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .41412.法则比较法:要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)|2.若|a ﹣1|=1﹣a ,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >13. 若a >3,则|6﹣2a|= (用含a 的代数式表示).4. 如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .5.化简||||x x x +的结果是 . 6. 比大小: (1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.7. 若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.8. 已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:.9. 已知|a -2|+|b -3|=0,求a -b 的值.10. 已知b 为正整数,且a 、b 满足,求的值.【练习】1、下列说法中,错误的个数有( ).①绝对值是它本身的数有两个:0和1②一个有理数的绝对值必为正数③0.5的倒数的相反数的绝对值是2④任何有理数的绝对值都不是负数A 、1个B 、2个C 、3个D 、4个2、在-(-2.5),3,0,-5,-0.25,中正整数有( ).A .1个B .2个C .3个D .4个3、在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .44、有理数a 在数轴上的位置如图所示:化简1+a 的结果是( )A 、b a +B 、1+-aC 、1-aD 、1--a5、若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是().12-A .a >bB .|a |>|b |C .-a <-bD .-a <|b |6、若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______. 7、若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.8、(1)当x =______时,|x -3|+1有最小值为_______;(2)当x =______时,2-|x -1|有最大值为________.9、已知|a|=4,|b|=2,且ab <0,则a +b =_________.10、若|m -n|=n -m ,且|m|=4,|n|=3,则m +n =_________.11、若x =8-,则=x ;若8-=-x ,则x = .12、若a a -=-,则=a .13、13=-x ,则=x .14、如果a <0,b >0且|a|<|b|,则a +b 0.15、已知|x +2|+(2y -3)²=0,求x +2y 的值.【思考题】求的最小值.。
专题 有理数的分类、数轴、相反数及绝对值(知识大串讲)(解析版)
专题01 有理数的分类、数轴、相反数及绝对值(知识大串讲)【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
考点2 有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数(:当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号)考点5 绝对值1.几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0,|a|=a 反之,|a|=a,则a≥0,|a|=﹣a,则a≦0a = 0,|a|=0a<0,|a|=‐a注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
第1讲 有理数的概念(数轴、相反数)
有理数的概念(数轴、相反数)要点一、正数与负数大于0的数,叫做正数; 像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数. 要点二、有理数的分类1.有理数:整数与分数统称为有理数. 2.有理数的分类:(1)有理数按性质分类: (2)有理数按符号分类⎧⎧⎫⎪⎪⎬⎨⎪⎭⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数负整数正分数分数负分数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正整数正有理数正分数有理数零(既不是正数,也不是负数)负整数负有理数负分数 【注】注意以下几个概念的区分:非负数:正数和零;非正数:负数和零;非负整数:正整数和零;非正整数:负整数和零;非负有理数:正有理数和零;非正有理数:负有理数和零.要点三、数轴:规定了原点、正方向和单位长度的直线叫做数轴.要点四、相反数:只有符号不同的两个数互为相反数;0的相反数是0.类型一、正数和负数(1)仔细思考以下各对量: ①胜二局与负三局; ②气温为3C -︒与气温升高30C ︒; ③盈利5万元与亏损5万元; ④增加10%与减少20%. 其中具有相反意义的量有( ) A .1对 B .2对 C .3对 D .4对(2)①我国现采用国际通用的公历纪年法,如果我们把公元2017年记作+2017年,那么,处于公元前500年的春秋战国时期可表示为___________.②如果80m 表示向东走80m ,那么60m -表示________________.③A ,B 两地海拔高度分别是120米,10-米,则B 地比A 地低________米.(3)某饮料公司生产的一种瓶装饮料外包装上印有“60030(ml)±”字样,请问“60030(ml)±”是什么含义?质检局对该产品抽查5瓶,容量分别为603ml ,611ml ,589ml ,573ml ,627ml ,问抽查产品的容量是否合格?知识导航典题精练例题1举一反三:【变式1】一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是( ) A .50.0千克 B .50.3千克 C .49.7千克 D .49.1千克【变式2】(1)如果节约16吨水记作+16吨,则浪费6吨水记作__________.(2)在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作___________.类型二、有理数的概念及分类(1)下列说法错误的是( ) A .0既不是正数也不是负数B .正整数和负整数统称整数C .整数和分数统称有理数D .正有理数包括正整数和正分数(2)把下列各数分别填在所属分类里:5-,0, 3.14-,32, 2.4-,227,327,π, 5.5-,2.4,311-,3.14159,34-,2003①正数:{ }; ②负数:{ }; ③非负整数:{ }; ④分数:{ }; ⑤非正有理数:{ };举一反三:【变式1】判断题:(1)0是自然数,也是偶数.( ) (2)0既可以看作是正数,也可以看成是负数.( ) (3)整数又叫自然数.( ) (4)非负数就是正数,非正数就是负数.( )例题2【变式2】下列四种说法,正确的是( ).(A)所有的正数都是整数(B)不是正数的数一定是负数(C)正有理数包括整数和分数 (D)0不是最小的有理数【变式3】下列说法正确的是()A.在有理数中,零的意义仅仅表示没有B.正有理数和负有理数组成全体有理数C.0.5既不是整数,也不是分数,因而它不是有理数D.零既不是正数,也不是负数【变式4】把下列各数填入表示它所在的大括号:.-24,3,2.008,10-3,114,0,()--2,3.14,||--4.正有理数:{ } 非负整数:{ } 负分数:{ }类型三、数轴(1)下面图形是数轴的是()A.B.C.D.(2)如图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_______.(3)已知:点A在数轴上的位置如图所示,点B也在数轴上,且A、B两点之间的距离是2,则点B表示的数是______.(4)在数轴上标出下列各数:0, 4.2,132,2,+7,113,并用“<”连接.举一反三:【变式】(1)如图,表示数轴正确的是()A.B.C.D.(2)已知点A,点B在数轴上,点A表示数为-2,A、B两点的距离为5,则点B表示的数是________.(3)在数轴上标出下列各数,并用“<”比较它们的大小:-3,+1,122,.-15,5.例题3(4)已知,a b 为有理数,在数轴上的位置如图所示,则a 1,b1,0,1的大小关系为_______________.(1)一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,则这个点表示的数是__________.(2)一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫的起始位置所表示的数是________.(3)数轴上的点A 对应的数是1-,一只蚂蚁从A 点出发沿着数轴向右以每秒3个单位长度的速度爬行至B 点后,用2秒的时间吃光了B 点处的蜜糖,又沿原路以原速度返回A 点,共用去6秒,则蚂蚁爬行的路程是几个单位长度?B 点与A 点的距离是多少个单位长度?B 点对应的数是多少?举一反三:【变式】(1)点A 在数轴上距原点为3个单位,且位于原点左侧,若将A 向右移动4个单位,再向左移动2个单位,这时A 点表示的数是________.(2)一只小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在-2的位置,则小虫的起始位置所表示的数是( ) A .-4 B .4 C .2 D .0类型、相反数(1)2017-的相反数是________,2017与________互为相反数.(2)已知有理数a 、b 在数轴上表示如图,则a 、b 、a -、b -的大小,正确的是( ) A .a b a b -<-<< B .a b b a <-<<-C .b a a b -<<-< D .a b b a <<-<-(3)下列说法正确的是( ) A .一个数的相反数一定是负数 B .π和.-314互为相反数 C .所有的有理数都有相反数 D .13和31互为相反数例题4例题5举一反三:【变式1】我们可以用字母表示数,比如a 、b 都能代表一个数,在一个数的前面添上“-”号,就得到这个数的相反数.(1)5的相反数是_______;13的相反数是_______,0的相反数是_______,数a 的相反数是________;(2)5-的相反数是_______,12-的相反数是________,4-的相反数是________;数a -的相反数是________;(3)(2)--的相反数是________;(5)+-的相反数是________,数()a -+的相反数是________,数()a --的相反数是_______;()a b ---与________互为相反数.【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等. A. 0个 B.1个 C.2个 D.3个或更多化简下列各数中的符号.(1)123⎛⎫-- ⎪⎝⎭ (2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)举一反三:【变式1】如果a <0,化简下列各数的符号,并说出是正数还是负数 ①()a -+; ②()a --; ③[()]a -+-; ④[()]a ---; ⑤{[()]}a -+--; ⑥{{{{{[()]}}}}}a -----+--【变式2】(1)37与________互为相反数;a 1-2是________的相反数.(2)()--2的相反数是________;b +4是________的相反数.(3){[()]}--+-4=________;{[()]}----5与________互为相反数.例题6一、选择题1.如图所示,在数轴上点A 表示的数可能是( )A .1.5 B.-1.5 C.-2.6 D.2.62.从原点开始向右移动3个单位,再向左移动1个单位后到达A 点,则A 点表示的数是( ). A.3 B.4 C.2 D.-23.关于数“0”,以下各种说法中,错误的是 ( ) A .0是整数 B .0是偶数C .0是正整数D .0既不是正数也不是负数 4.下列说法中:(1)0是最小的自然数;(2)0是最小的正数;(3)0是最大的负整数;(4)0属于整数集合;(5)0既非正数也非负数.正确的是( ) A .(1)(2)(4) B .(4)(5) C .(1)(4)(5) D .(1)(2)(5) 5.一个数的相反数是非负数,则这个数一定是( ) A.正数 B.负数 C.非正数 D.非负数 6.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是( )A. ①②B. ②③C. ③④D. ②④ 7.-(-2)=( ) A.-2B. 2C.±2D.4二、填空题1.不大于4的正整数的个数为 .2.已知数轴上有A ,B 两点,A ,B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是 .3. 既不是正数,也不是负数的有理数是 .4.如图所示,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为 .5.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.6.已知x 与y 互为相反数,y 与z 互为相反数,又2z =,则z x y -+= .7. 已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为 .8.一种零件的长度在图纸上是(03.002.010+-)毫米,表示这种零件的标准尺寸是 毫米,加工要求最大不超过 毫米,最小不小于 毫米.课堂巩固三、解答题9.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米. (1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?10.把下列各数填在相应的大括号内: 1.2-,3,1,41,0,-14.3,101-,6.20,25-,1056,-7.正分数集合:{ …}; 非负数集合:{ …};正整数集合:{ …}; 负整数集合:{ …}.11.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭12.若a 与b 互为相反数,c 与d 互为倒数,m 是最大的负整数.求代数式的值.13.在数轴上有三个点A ,B ,C 如图所示,请回答:(1)将B 点向左移动3个单位长度后,三个点表示的数谁最小? (2)与A 点相距3个单位长度的点所表示的数是什么?(3)将C 点左移6个单位长度后,这时B 点表示的数比C 点表示的数大多少?。
有理数之正数、负数及数轴
有理数之正数、负数及数轴本讲要点:1、理解有理数的概念,会用正数和负数表示相反意义的量,懂得有理数不仅可分为正数、零和负数,还可以分为整数(包括正整数、零和负整数)和分数(包括正分数和负分数)。
2、有理数:凡能写成pq(p、q均为整数,且0p≠)形式的数,一定都是有理数。
3、有理数是有限小数或无限循环小数。
理解数轴的概念。
【重点与难点】1、正数与负数的意义及有理数的分类方法;2、对负数意义的理解;3、数轴是一条直线,可以向两端无限延伸;数轴的三要素原点、正方向和单位长度缺一不可;在数轴上,表示的两个数,右边的数总比左边的数大【典型例题分析】例1.把下列各数-1、3.7、+3、125-、23、0、-84、93、300%。
填在相应的大括号内:正数集合:{…}整数集合:{…}分数集合:{…}负分数集合:{…}解:正数集合:3.7、+3、23、93、300%;整数集合:-1、+3、0、-84、93、300%;分数集合:3.7、125-、23。
负分数集合:125-注:明确93、300% 属于整数;3.7属于分数。
例2.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能写出第2002个数是什么吗?⑴-1,1,1,-1,-1,1,1,-1,,,…。
⑵2,-4,-6,8,10,-12,-14,16, , , …。
解:⑴ -1,1,1;第2002个数是1。
由于题中符号有规律,四个数一个周期,要确定一个数必须首先确定其符号; ⑵ 18、-20、-22;第2002个数是-4004。
同⑴也是符号出现四个数为一个循环。
注:在做题过程中,注意观察数与数之间的关系(包括符号),整体有什么规律。
例3.填空:甲、乙两人同时从A 地出发,如果甲向南走48m 记为+48m ,则乙向北走32m 记为 ;这时甲、乙两人相距 m 。
解: -32m , 80m 例4:选择题:⑴下面说法中正确的是:( )A .正数和负数统称为有理数B 。
专题02 有理数与数轴(解析版)-2024小升初数学暑假衔接讲义
专题02有理数与数轴1.知道有理数的定义;会判断一个数是否为有理数;会对有理数进行分类;2.能正确地画出数轴,掌握数轴的三要素;3.能将已知数在数轴上表示出来,能指出数轴上的点所表示的数及数轴上点的运动;4.初步感受数形结合、分类讨论的思想。
题型探究题型1、有理数的相关概念辨析 (4)题型2、有理数的分类 (5)题型3、有理数中的新定义集合 (8)题型4、数轴的三要素及其画法 (10)题型5、用数轴上的点与有理数的关系 (12)题型6、数轴上两点之间的距离 (14)题型7、数轴上的动点问题 (16)培优精练A组(能力提升) (18)B组(培优拓展) (23)【思考1】我们在小学和上一节已经学习过那些数?这些数能否写成分数的形式呢?【思考2】请读出右侧温度计的读数。
【思考3】在一条东西向的马路上,有一个汽车站,汽车站东3m和2.5m处分别有一棵柳树和一棵杨树,汽车站西3m和1.8m处分别有一棵槐树和一根电线杆。
试画图表示这一情景。
【课外作业】查阅收集有关有理数的历史资料,然后给大家讲一讲有理数的来历和发展。
1.有理数的相关概念1)整数:正整数、0、负整数统称为整数。
2)分数:正分数、负分数统称为分数。
正分数:像13,43,0.24,50%等这样的数叫作正分数;负分数:像56-,12-,-3.56等这样的数叫作负分数;有限小数和无限循环小数可以化为分数,所以它们也是分数。
3)有理数:可以写成分数形式的数称为有理数,即有理数都可以表示为qp(p、q均为整数,且p不为0)。
正有理数:可以写成正分数的形式的数为正有理数;负有理数:可以写成负分数的形式的数为负有理数;整数和分数统称为有理数。
注意:在定义有理数时,我们说整数可以写作是分母为1的分数,但是切记整数一般情况下并不是分数。
4)有理数的两种分类:5)常用数学概念的含义1)正整数:既是正数,又是整数2)负整数:既是负数,又是整数3)正分数:既是正数,又是分数4)负分数:既是负数,又是分数5)非正数:负数和06)非负数:正数和07)非正整数:负整数和08)非负整数:正整数和02.数轴1)数轴定义:在数学中,可以用一条直线上的点表示数,它满足以下要求:①原点:在直线上任取一个点表示数0,这个点叫做原点;原点是数轴的基准点.②正方向:通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向.③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;-,….从原点向左,用类似的方法依次表示1-,2-,3像这样,规定了原点、正方向、单位长度的直线叫做数轴。
第一讲 有理数的概念和数轴
(3)一个跳蚤在一条直线上,从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右 跳3个单位,第4次向左跳4个单位,依此规律跳下去,当它跳第2015次落下时,则落点处离O点的距 离为__________.(用单位表示).
练习3-1.(1)数轴上点A表示的数是−1,点B到点A的距离为2个单位,则B点表示的数是__________.
有个.
例2.有理数 在数轴上的位置如图所示,则 的值( )
A.大于0 B.小于0 C.小于 D.大于
(2)有理数 在数轴上的位置如图,则下面的关系式中正确的个数为( )
① ;② ;③ ;④ ;⑤ ;⑥ ;
A.2个 B.3个 C.4个 D. 5个
练习2-1.在数轴上A、B两点表示的数分别为 ,且点A在点B的左边,下列结论一定正确的是( )
A. B. C. D.
练习2-2.数a、b在数轴上位置如图,下列结论正确的有______________(填序号).
① ;② ;③ ;④ ;⑤ ;
例3.(1)数轴上一对应的数是3的点A,沿着数轴某一方向移动了5个单位,则此时点A所对应的数为__________.
(2)一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫 的起始位置所表示的数是( )
A.4030 B.-4030 C.0 D.2015
(2)若 ,则 这六个字母中, 与 为相反数的一定有( )
A.1个 B.2个 C.3个 D.4个
练习4-1.(1)下面说法正确的是( )
A.正数和负数互为相反数 B.相反数等于它本身的数只有0
C. 的相反数是负数 D.若两个数互为相反数,则它们异号
浙教初一数学讲义:第一讲 有理数的分类、数轴、相反数
第一讲有理数的分类、数轴、相反数一、知识结构·有理数的分类1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数·数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
七年级数学上册专题01_有理数的分类及数轴(知识点串讲)(解析版)
专题01 有理数的分类及数轴知识点一有理数分类有理数(概念理解)按照整数和分数的分类【注意】0既不是正数也不是负数。
按正数、负数、和零的关系分类有理数分类注意事项:1.无限不循环的小数不是有理数,比如:圆周率。
2.无限循环的小数是有理数,比如:0.6666666…3.如200%,6/3能约分成整数的数不能算做分数知识点二数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度(重点)画数轴步骤:画直线-取原点-规定正方向-单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
✓数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数. ✓实心点表示包括本数,空心点表示不包括本数。
考查题型考查题型一 正负数在实际生活中的应用典例1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -【答案】C【解析】详解:若向东走2m 记作+2m ,则向西走3m 记作-3m ,故选:C .变式1-1.如果+20%表示增加20%,那么﹣6%表示( )A .增加14%B .增加6%C .减少6%D .减少26% 【答案】C【解析】试题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.故选C .变式1-2四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是( )A .+10B .﹣20C .﹣3D .+5【答案】C【分析】质量偏差越少越好,最符合规定的是﹣3.【详解】最符合规定的是﹣3.故选C.【点睛】本题主要考查负数的意义.变式1-3.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置( )A .在书店B .在花店C .在学校D .不在上述地方 【答案】C【分析】由题意知,可看作书店为原点,花店位于书店西边100米处,即-100米,学校位于书店东边50米处,即+50米,解答出即可.【详解】根据题意:小明从书店沿街向东走了20米,接着又向西走了–30米,即向东走了50米,而学校位于书店东边50米处,故此时小明的位置在学校.故选C .【点睛】本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解题的关键在于对正负坐标的理解.考查题型二有理数的分类典例2.把下列各数填入它所在的数集的括号里.﹣12,+5,﹣6.3,0,﹣1213,245,6.9,﹣7,210,0.031,﹣43,﹣10%正数集合:{…}整数集合:{…}非负数集合:{…}负分数集合:{…}.【解析】正数集合:{+5,245,6.9,210,0.031 …};整数集合:{+5,0,﹣7,210,﹣43 …};非负数集合:{+5,0,245,6.9,210,0.031 …};负分数集合:{﹣12,﹣6.3,﹣1213,﹣10% …}.【答案】故答案为{+5,245,6.9,210,0.031…};{+5,0,﹣7,210,﹣43…};{+5,0,245,6.9,210,0.031 …};{﹣12,﹣6.3,﹣1213,﹣10%…}.变式2-1.所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101正数集合:{ …};负数集合:{ …};分数集合:{ …};非负数集合:{ …}.【答案】3.14,+72,0.618;-2.5,-2,-0.6,-0.101,-2.5,3.14,-0.6,0.618,-0.101,3.14,+72,0.618,0.【详解】正数集合:{3.14,+72,0.618,…};负数集合:{-2.5,-2,-0.6,-0.101,…};分数集合:{-2.5,3.14,-0.6,0.618,-0.101,…};非负数集合:{3.14,+72,0.618,0,…}.变式2-2.(1)如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在的数集的圈里;2016,﹣15%,﹣0.618,712,﹣9,﹣23,0,3.14,﹣72(2)上图中,这两个圈的重叠部分表示什么数的集合?(3)列式并计算:在(1)的数据中,求最大的数与最小的数的和.【答案】(1)见解析;(2)负分数集合;(3)1944【详解】解:(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合;-,(3)最大数是2016,最小数是72+-=.∴最大的数与最小的数之和2016(72)1944考查题型三数轴的三要素及画法典例3.下列数轴画正确的是()A.B.C.D.【答案】C【详解】试题分析:A、没有单位长度,故错误;B、没有正方向,故错误;C、原点、正方向、单位长度都符合数轴的条件,故正确;D、数轴的左边单位长度的表示有错误.故选C.变式3-1.下列图中数轴画法不正确...的有().(1)(2)(3)(4)(5)A.2个B.3个C.4个D.5个【答案】C【详解】解:(1)没有正方向,数轴画法不正确;(2)单位不统一,数轴画法不正确;(3)缺少单位长度,数轴画法不正确;(4)单位不统一,数轴画法不正确;(5)符合数轴的定义,数轴画法正确.故选:C.变式3-2.下列各图表示数轴正确的是()A.B.C.D.【答案】C【详解】各图表示数轴正确的是:.故选C.考查题型四用数轴上的点表示有理数典例4.(2020·德州市期末)如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5 B.﹣2.5 C.﹣0.5 D.0.5【答案】C【详解】解:由数轴可知小手遮挡住的点在-1和0之间,而选项中的数只有-0.5在-1和0之间,所以小手遮挡住的点表示的数可能是-0.5.故选C.变式4-1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.-1【答案】D【详解】解:数轴上蝴蝶所在点表示的数可能为-1,故选D.【点睛】本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.变式4-2.如图,25的倒数在数轴上表示的点位于下列两个点之间( )A.点E和点F B.点F和点G C.点F和点G D.点G和点H 【答案】D【解析】详解:25的倒数是52,∴52在G和H之间,故选D.变式4-3.若|a|=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧【答案】B【详解】∵|a|=-a,∴a一定是非正数,∴实数a在数轴上的对应点一定在原点或原点左侧.故选B.考查题型五利用数轴表示有理数的大小典例5.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C【解析】试题分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,变式5-1.,在数轴上位置如图所示,则,,,的大小顺序是( )A.B.C.D.【答案】D【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.变式5-2.(2017·厦门市期中)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【答案】D【解析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.故选D.变式5-3.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是( )A.m<-1B.n>3C.m<-n D.m>-n【答案】D【详解】由数轴可得,-1<m<0<2<n<3,故选项A错误,选项B错误,∴m>-n,故选项C错误,选项D正确,故选D.考查题型六数轴上的动点问题典例6.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是()A.m B.n C.p D.q【答案】B【详解】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m ,q ,p ,n 的点重合.2019÷4=504...3,故-2016与n 点重合. 故选B.变式6-1.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为( )A .﹣2B .﹣6C .﹣3 或﹣5D .无法确定【答案】C【分析】分两种情况讨论:把表示﹣4的点向左移动1个单位长度或向右移动1个单位长度,然后根据数轴表示数的方法可分别得到所得到的对应点表示的数.【详解】把表示﹣4的点向左移动1个单位长度为-5,向右移动1个单位长度为-3.故选C .【点睛】本题考查了数轴:数轴的三要素(正方向、原点和单位长度);数轴上原点左边的点表示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分类讨论的思想.变式6-2.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A 与表示1的点重合,滚动一周后到达点B ,点B 表示的数是( )A .﹣2πB .1﹣2πC .﹣πD .1﹣π【答案】B 【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴AB 之间的距离为圆的周长=2π,A 点在数轴上表示1的点的左边.∴A 点对应的数是1﹣2π.故选B .变式6-3.已知数轴上的三点A 、B 、C ,分别表示有理数a 、1、﹣1,那么|a+1|表示为( )A .A 、B 两点间的距离B .A 、C 两点间的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和【答案】B 【详解】试题分析:因为1(1)a a +=--,所以1a +表示A 点与C 点之间的距离,故选B。
北师大版七年级上册数学第二章:有理数及运算讲义(二)2.2数轴(无答案)
第二章:有理数(二)2.2数轴1.数轴(1)定义:规定了原点、正方向和单位长度的直线叫做数轴,如图.①数轴有三要素:原点、正方向、单位长度,三者缺一不可;②原点的选定,单位长度大小的确定,都是根据实际需要“规定”的.通常取向右的方向为正方向. (2)数轴的画法画一条数轴的步骤可概括为:一画、二定、三选、四标. ①画直线:就是先画一条直线,一般画成水平的直线;②定原点:通常原点选在你所画直线居中的位置,若问题中负数的个数较多时,原点选得靠右些;正数的个数较多时,原点选得靠左些.③选正方向:通常取原点向右的方向为正方向,并选取适当的长度为单位长度,将表示刻度的点用短竖线表示.④标数:在数轴上依次标出1,2,3,4,0,-1,-2,-3,-4等各点,相应的数0,±1,±2,…写在数轴的下方;将需要在数轴上表示出的数或字母写在数轴的上方,相应的点表示为实心小圆点.要是在数轴上用到30,那得标多少单位啊! 适当的长度有两层含义:①可取实际1 cm 作为一个单位长度,也可以取2 cm 或其他实际数据作为一个单位长度; ②一个单位长度可表示1,也可表示10或更多!如图所示就能做到啦!【例1】四位同学画数轴如下图所示,你认为正确的是( ) A .B .C .D .2.有理数与数轴上的点的关系任何一个有理数都可以用数轴上的一个点来表示,即每个有理数都对应数轴上的一个点.(1)表示正数的点都在原点的右侧;(2)表示负数的点都在原点的左侧;(3)表示0的点就是原点. 【思考】数轴上是否只能表示有理数?能不能表示无理数,比如π?【例2】画出数轴并在数轴上标出表示下列有理数的点并用“<”将这些数连起来: 1.5, —2, 2, —2.5, 92, 23, 0;【例3】在数轴上表示下列各点,并写出这些点所对应的数. (1)在原点的左侧,距离原点3个单位长度; (2) 在原点的右侧,距离原点3个单位长度; (3) 在原点的左侧,距离原点0.5个单位长度; (4) 在原点的右侧,距离原点0.5个单位长度.【例4】如图,分别指出数轴上A 、B 、C 、D 、E 各点所表示的数.点技巧 “数形结合”思想(1)根据已知数在数轴上标出对应点,分三步:①画数轴;②确定点,并用实心小圆点描出;③标数,即在实心小圆点的上方标出所表示的数.(2)根据数轴上的点读数,原点表示0,原点向右为正数,原点向左为负数.都体现了“数形结合”的思想.3.利用数轴比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,负数小于0,正数大于负数.(3)多个有理数比较大小:①把各个数在数轴上表示出来;②根据各数在数轴上的顺序,用“<”或“>”连接.析规律 两个有理数比较大小的方法 分情况比较:①若两数同号(都为正数或都为负数),数轴上左边的数<右边的数; ②若两数异号,则正数>0>负数.【例5】比较下列这组数的大小,并用“<”连接起来.-412,12,1,-2, 3, 0,-0.5.【例6】 有理数a ,b 在数轴上的位置如图所示,试用“=”“>”或“<”填空:a __________0,b __________0,a __________b .4.数轴上点的移动(1)相对于原点的移动:从原点向右a (a >0)个单位长度,则表示的数是a ;从原点向左a (a >0)个单位长度,则表示的数是-a .(2)两个相对点的移动:点A 相对于点B 向右移动或向左移动一定的距离,最后表示的数要看点A 移动结束时对应点距离原点的距离和位置.【例7】一探险队要沿着一东西走向的河流进行考察,第一天沿河岸向上游走了5 km ,第二天又向上游走了4.3 km ,第三天开始计划有变,向下游走了4.8 km ,第四天又向下游走了3 km ,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?5.利用数轴求数轴上的点表示的数在数学里,数与形是密切联系的,数轴的引进使有理数与直线上的点联系了起来,利用数轴可以比较容易地写出数轴上某区域中的整数、正整数、负整数等.如,写出大于-5而小于3的所有整数.可以先画出数轴,在数轴上标出-5与3这两个点,再在这两个点之间找出满足题意的整数-4,-3,-2,-1,0,1,2即可.DC BA 【例8】小红做题时,不小心把墨水洒在了数轴上,如图所示,请根据图中的数值,写出墨迹盖住的所有整数.【题组训练】:1.如图所示,正确的数轴是( )2.若a ,b ,c 在数轴上的位置如图所示,则a ,b ,c 所表示的数是( ) A . a ,b ,c 均为正数 B .a ,b ,c 均为负数 C . a ,b 是正数,c 是负数 D .a ,b 是负数,c 是正数3.数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-24.若有理数m >n ,在数轴上点M 表示数m ,点N 表示数n ,则( ) A .点M 在点N 的右边 B .点M 在点N 的左边 C .点M 在原点右边,点N 在原点左边 D .点M 和点N 都在原点右边5.将一刻度尺沿着数轴的正方向正放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的6.3-和x ,则( )A 、109<<xB 、 1110<<xC 、 1211<<xD 、 1312<<x6.A 、B 两点在数轴上,点A 表示的数是2,若线段AB 的长为3,则点B 所表示的数为______7.数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画一条长为2013cm 的线段AB ,则线段AB 盖住的整点的个数是 。
《数轴与有理数》知识要点
《数轴与有理数》知识要点1、利用数轴上的点表示有理数通过具有原点、正方向和单位长度的直线建立数轴,从而使所有有理数在数轴上都能找到它们的对应点,这样把有理数的一些问题直观形象化,达到快速、有效解决问题的目的。
例如:有理数的分类,原点右侧的点表示有理数为正有理数,左侧的点表示的有理数为负有理数,通过数轴可直观反映出正、负有理数所在的范围。
原点右边的点表示的数比0大,所以正数通常表示为0>a ,类似的有负数表示为0<a非负数表示为0≥a ,非正数表示为0≤a 。
再如,一些特殊的有理数可由数轴直接观察到。
最小的正整数为1,最大的负整数为-1,没有最大或最小的有理数,最小的自然数为0等。
如:大于-3且小于2的整数有:-2、-1、0、1。
2、相反数与绝对值的几何定义引入数轴后,使抽象的数变成了具体的点,为我们的研究和应用带来了极大的方便。
在数轴上原点的两旁离开原点距离相等的两个点所表示的数叫做互为相反数(注:0的相反数为0),由此在数轴上可直接观察到-3的相反数为3;a 的相反数为a -,相反数为本身的数只有0。
一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作a ,观察可知55=-,00=。
正数的绝对值等于其本身,负数的绝对值为它的相反数。
总结得到:⎪⎩⎪⎨⎧-=a a a 0000 a a a = 可知:任何一个数的绝对值总是非负数,即0≥a 。
绝对值为本身的数为非负数;绝对值最小的数是0。
从数轴上观察可知,绝对值为一个正数的有两个,如2=a ,则2±=a 。
注意:从数轴上正负两个方向考虑。
绝对值不小于5的整数有:-5、-4、-3、-2、-1、0、1、2、3、4、5; 距离-3两个单位长度的点有两个:-1、-5。
b a =,有两种可能,即b a =或b a -=(即a 、b 互为相反数)。
3、利用数轴比较有理数的大小由于数轴的某些点与有理数是一一对应关系,即所有的有理数都可以在数轴上找到一个点与之相对应,而数轴上的点表示的数,右边表示的数比左边的大,因此,可以直观准确地比较数的大小,如20 、12-- 、3121--。
第二讲—有理数与数轴
第二讲、有理数与数轴一、学法建议:1、初次接触数轴,自己一定要动手去画一画,原点、正方向和单位长度,数轴三要素一个都不能少。
2、在做数轴上与某一点相距N 个单位的问题时自己要亲自动手画一画,而且要多思考是否需要分类讨论。
3、处理周期问题时,自己要善于观察,勤于思考,培养自己的数学逻辑推理能力。
4、比较大小时掌握特殊值法等一些解题技巧和方法。
二、应该掌握的知识点:1、数轴:规定了原点、正方向和单位长度的直线叫做数轴;2、数轴三要素:原点、正方向、单位长度,三者缺一不可。
3、有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来。
BUT,数轴上的点不都代表有理数,如π。
4、数轴的作用:1):表示数:刻度在下,标数在上。
2):比较大小:另起一行,比较大小排序,保持数值原来形式不变。
3):计算:动点问题:左减右加。
4):相距问题:距离分左右,一定要讨论。
5、相反数&绝对值:6、折叠问题:中点公式:数轴上点A和点B所对应的数字分别为a、b,则AB的中点M所对应的数字m=.a+b27、数轴与方程思想:解决方法:结合数轴上各点之间的位置关系,用最小的数字表示其他数字。
(代数思想)8、周期问题:解决步骤:I、确定周期--找规律;II、确定总长--终点-起点;III、做除法找余数。
三、应掌握的题型:1、用数轴表示数、比较大小:在数轴上画出表示0,-|-4|,122,-3,-(−1)2013,-(−22)各数的点,并按从小到大的顺序从新排列。
考点:有理数的基本概念及运算和用数轴表示数字相结合综合考查。
分析:根据绝对值、乘方等相关概念对给出的数字进行化简再在数轴上表示出来,根据数轴上右侧的数大于左侧的数进行排序即可。
解答:-|-4|=-4,122=12×2=14,-(−1)2013=-(-1)=1,-(−22)=-(-2×2)=4将以上数字在数轴上表示出来如下:根据在数轴上,数字从左至右依次变大排序:-|-4|<-3<0<122<-(−1)2013<-(−22)点评:正确化简以上各式是解题的关键,在数轴上表示各数时注意刻度在下,标数在上,以及数轴的完整性,原点,单位长度和正方向不能少。
七年级上第02讲 有理数、数轴、相反数、绝对值 讲义+练习
3.绝对值的性质(1)任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即:
⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
3.掌握绝对值的概念,有理数大小比较法则;学会绝对值的计算,会比较两个或多个有理数的大小;体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学重点
1.让理解数轴.相反数.绝对值的概念;
2.着重理解绝对值的几何意义,并能利用其解决相关问题;
教学难点
让学生体会数轴的价值,初步理解数形结合,有助于学生完成从小学学习方式向中学学习方式的过渡
1.绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0。
可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=﹣a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)
【教学建议】
正数和负数,有理数,数轴,相反数,绝对值知识点
第一章:有理数(1.1正数和负数)知识点1.正数和负数的定义(1)正数:大于0的数叫正数。
(2)负数:在正数前加上符号:“-”(负号)的数叫做负数,小于0的数叫负数. 注意:比0大的数是正数。
正数前面有“+”号,人们习惯将“+”号省略,在正数前面加“-”号,就是负数,负数前面必须有“-”号。
3)“0”既不是正数,也不是负数。
( 0是正数和负数的分界)2. 正数负数是表示具有相反意义的量(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,习惯上把升、上、零上为正 ,而相反为负;(2)具有相反意义的量一定是具体的数量;(3)具有相反意义的量中的两个量必须是同类量.不是同类量不具有对此性;(例如:上升和下降,零上和零下)(4)具有相反意义的量是成对出现的,单独的个量不能成为具有相反意义的量;考试点:用正数和负数表示具有相反意义的量时要明确“基准"。
为了计算方便,常把高于平均数,标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示。
1.2.1 有理数有理数的有关概念1.整数:正整数0、负整数统称为整数,如-3,-2,2,0,1,2,3等。
,0.2,-1.25等。
2.分数:正分数负分数统称为分数,如2133.有理数:整数和分数统称为有理数。
(m,n是整数,m≠0)的形式任何一个有理数都可以写成nm4.部分常用的数的名称正整数:如1,2,3,...负整数:如-1,-2,-3,..正分数:形如nm(m,n是正整数)的数,例如12,23,157…负分数:形如- nm(m,n是正整数)的数,例如-0.5,-52非负数:正数和0;非正数:负数和0.●注意:引入负数之后,小学学过的奇数和偶数的范围相应地扩大了,奇数和偶数也可以是负数,如-6,-4,-2都是偶数,也可以写成2n(n为整数)的形式;-5,-3,-1都是奇数,可以写成2n-1(n为整数)或2n+1(n为整数)的形式。
2018年秋七年级数学上册 第2章 有理数 2.2 数轴讲义 (新版)华东师大版
A.3 个
B.2 个
C.1 个
D.无数个
9.在数轴上,点 A 表示-3,从点 A 出发沿数轴移动 4 个单位长度到达点
B,则点 B 表示的数是( D )
A.-7
B.1
C.4
D.-7 或 1
10.数轴上与表示-5 的点相距 2 个单位长度的点所表示的数是 -3或-7 .
11.数轴上到原点的距离小于 3 的整数的个数为 x,不大于 3 的整数的个数 为 y,等于 3 的整数的个数为 z,则 x+y+z= 14 .
6.在数轴上有三个点 A、B、C(如图),回答下列问题:
(1)将点 A 向右移动 4 个单位长度后,三个点所表示的数中,最小的数是多 少? (2)将点 C 向左移动 4 个单位长度后,三个点所表示的数中,最大的数是多 少? (3)怎样移动 A、B、C 中的其中两个点,才能使三个点表示的数相同?有几 种移动的方法? 解:(1)最小的数是点 B 所表示的数,为-5; (2)最大的数是点 A 所表示的数-1;
答:都不正确.(1)缺少原点;(2)单位长度不一致;(3)有两处错误:①缺少 正方向;②负数的排序错误,从原点依次向左应是-1,-2.
1.下列各图中,是数轴的是( D )
2.以下关于-23这个数在数轴上的位置的描述,其中正确的是( D )
A.在-3 的左边
B.在 3 的右边
C.在原点和-1 之间
D.在-1 的左边
在数轴上比较大小 在数轴上表示的两个数,右边的数总比左边的数大,即:正数都 大于 零,
负数都 小于 零,正数都 大于 负数.
自我诊断 2.某地连续四天每天的平均气温分别是:1℃、-1℃、0℃、2℃,
则平均气温中最低的是( A )
数轴与有理数的表示方法
数轴与有理数的表示方法数轴是一种用来表示有理数的图形工具。
有理数是可用整数比之分数形式来表示的数,包括正整数、负整数、零、正分数和负分数。
数轴是一条直线,上面以零为基准点,向右逐渐增大的点表示正数,向左逐渐减小的点表示负数。
在数轴上,任何一个点都对应着一个有理数,反之亦然。
使用数轴可以直观地表示和比较有理数的大小关系。
有理数的表示方法有分数形式、小数形式和整数形式。
下面将分别介绍这三种表示方法。
一、分数形式分数是用分子与分母表示的有理数形式。
其中,分子表示数的个数,分母表示该数的单位。
例如,1/2表示一个单位被分成两等份,取其中一个等份。
分数形式适用于有理数的表示,可以用来表示正分数、负分数和零。
在数轴上,正分数对应的点在零点的右侧,负分数对应的点在零点的左侧,而零对应的点就是零点本身。
二、小数形式小数是分数的一种特殊形式,它用十进制数表示。
在小数形式中,小数点后面的数字表示数的大小。
例如,0.5表示一个单位被分成十等份,取其中的五等份。
小数形式适用于有理数的近似表示,可以用来表示正小数、负小数和零。
在数轴上,正小数对应的点在零点的右侧,负小数对应的点在零点的左侧,而零对应的点就是零点本身。
三、整数形式整数是不带有小数部分的有理数形式,包括正整数和负整数。
在数轴上,正整数对应的点在零点的右侧,负整数对应的点在零点的左侧。
例如,2表示一个单位被分成两等份,取其中的两等份。
整数形式适用于有理数的精确表示,可以用来表示正整数、负整数和零。
在数轴上,正整数对应的点在零点的右侧,负整数对应的点在零点的左侧,而零对应的点就是零点本身。
通过数轴和这三种有理数的表示方法,我们可以更好地理解和运用有理数。
数轴的直观性帮助我们直接观察和比较数字的大小关系,而分数、小数和整数的不同形式则适用于不同的计算和应用场景。
有理数的分类和数轴(讲义2)
有理数的分类和数轴(讲义2)1、“温度降低-4℃”的意义是 ;“高度增加-160米”的意义是 ;“向南走-11米”的意义是 ;“收入-50元”的意义是 。
2、某粮店出售的三种品牌的面粉袋上,分别标有质量为(25士0.1 )kg 、(25士0.2)kg 、(25士0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差____________ kg 。
3、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )。
A. 在家B. 在学校C. 在书店D. 不在上述地方(一)知识点一:有理数的分类1、数的扩充:(1)数1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;(2)数,,8,+5.6,…叫做正分数;―,―,―3.5,…叫做负分数;思考并回答下列问题:①“0”是整数吗?是正数吗?是有理数吗?②“―2”是整数吗?是正数吗?是有理数吗?③自然数就是整数吗?是正数吗?是有理数吗?32415497762、进一步理解有理数概念的内涵:有理数是形如的数,其中m ,n 都是整数且n ≠0。
有理数的英文是rational number ,据说日本人在明治维新期间,翻译了大量的科学著作,那时他们只求快,错将rational 翻译成“有理的”,我国又从日本沿用过来,翻译成“有理数”。
事实上,rational 除了有“合理的”意思外,还有一个意思“能够写成两个整数之比”,而整数与分数是能写成两个整数之比的数的全部,所以取名“rational numner ”,正确的翻译应该是“可比数”。
3、有理数的分类:不同的分类标准可以将有理数进行不同的分类:①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:4、数的其它分类:非负数:正数和0统称非负数; 非正数:负数和0统称非正数;非负整数:正整数和0统称非负整数(即自然数); 非正整数:负整数和0统称非正整数。
数轴与有理数的关系
数轴与有理数的关系数轴是一种用来表示数值大小和相对位置关系的工具。
它是由一条直线和上面的标记组成的,标记上的数字代表在数轴上的位置。
而有理数则是数学中的一种数,包括正数、负数和零,可以用分数或整数来表示。
在数轴上,零通常被放置在中间位置,而正数则位于零的右侧,负数位于零的左侧。
这种位置关系可以用来表示有理数之间的大小关系。
让我们来看一些简单的例子。
例如,我们可以将数轴上的整数标记为0、1、2、3...,正数为1、2、3...,负数为-1、-2、-3...。
这样,我们就可以通过数轴上的位置来表示整数之间的大小关系。
除了整数,有理数还包括分数。
在数轴上,我们可以用一条虚线来表示分数。
例如,如果我们要表示分数1/2,我们可以在数轴上找到位置0和位置1之间的中点,将该点标记为1/2。
同样,我们可以用类似的方法来表示其他分数,如1/3、2/3、3/4等。
有理数还包括负数。
在数轴上,负数通常被表示为位于零的左侧的点。
例如,-1可以被标记在位置-1上,-2可以被标记在位置-2上,以此类推。
我们可以通过比较这些负数的位置来确定它们之间的大小关系。
数轴上的有理数之间的大小关系还可以通过距离来表示。
例如,两个有理数之间的距离越小,它们之间的大小关系就越接近。
通过测量数轴上两个有理数之间的距离,我们可以确定它们之间的相对大小。
除了表示有理数之间的大小关系,数轴还可以用来进行有理数的运算。
例如,我们可以将两个有理数相加、相减、相乘或相除,并在数轴上找到结果的位置。
通过在数轴上找到结果的位置,我们可以直观地理解运算的结果,并比较不同运算之间的大小关系。
总结起来,数轴是用来表示数值大小和相对位置关系的工具,而有理数则是可以用分数或整数来表示的数。
通过在数轴上标记有理数的位置,我们可以直观地理解有理数之间的大小关系,并进行有理数的运算。
数轴与有理数之间的关系帮助我们更好地理解和应用数学中的概念和知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的基本概念及数轴的表示
教学内容
1、认识正数与负数在生活中的应用与具有的意义。
2、理解和熟记什么是有理数和有理数的分类。
3、学习数轴的特点,有理数在数轴上的表示。
教学目标
1、初步理解有理数的基本概念,知道有理数的分类。
2、初步理解数轴的特点和数轴的三要素,有理数在数轴上的表示。
重点:1、正数和负数具有相反的意义
2、有理数的分类
3、数轴的画法,用数轴上的点表示有理数,
难点:1、表示具有相反意义的量是正数与负数最直接的重要应用
2、数轴的画法,
教学过程
一、认识正数和负数
1、什么是正数和负数
正数就是带有正号“+”的数(正号可以省略不写),是大于零的数;而负数是带有负号“—”的数(负数前的“—”号不能省略),是比零小的数。
如:正5可以表示为“+5”或者“5”,负5可以表示为“—5”。
例.如果向南走5米,记作+5米,那么向北走8米应记作______.
习题:
1.如果温度上升3℃记作+3℃,那么下降5℃记作____________.
2、表示具有相反意义的量是正数与负数最直接的重要应用。
在现实生活中,常见的具有相反意义的量,这些量的大小都可以用正数、负数或0表示。
一般情况,规定如下:
符号具有相反意义的量
+ 零上(温度)收入增加上升盈余……—零下(温度)支出减少下降亏损……
例:在测量兵乓球质量时,一只兵乓球超出标准质量0.01克的记作+0.01,那么—0.03克表示什么。
习题:
1.海拔高度是+1356m,表示________,海拔高度是-254m,表示______.
2.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准
尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米.
注意:0既不是正数也不是负数
二有理数的基本概念及分类
1、有理数:整数和分数统称有理数。
(1)按定义分
⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩
正整数整数零
负整数有理数正分数分数负分数
(2) 而按符号(正、负数来分)有如下分类:
⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩
正整数正有理数正分数有理数零负整数负有理数负分数 例:6.把下列各数分别填在相应的大括号里:
+9,-1,+3,312-,0,213-,-15,4
5,1.7. 正数:{ },
负数:{ }.
分数:{ },
整数:{ },
正有理数:{ },
负有理数:{ },
习题:
1、把下列各数分别填在相应集合中:
1,-0.20,5
13,325,-789,0,-23.13,0.618,-2008. 负数集合: { …};
非负数集合: { …};
非负整数集合:{
…};
二、认识数轴
1、数轴是这样的东西:规定了零点,正方向,单位长度的直线叫做数轴.
2、数轴的三要素:1、原点2、正方向
3、单位长度
3、数轴的定义:
规定了原点、正方向和单位长度的直线叫数轴.原点、正方向、单位长度称为数轴的三要素,这三者缺一不可,同时应该认识到,这三个要素都是规定的。
原点是数轴上有特殊意义的点,它相当于温度计中的零刻度线,正方向一般是规定为向右的方向,单位长度可视具体情况而定。
4、数轴的画法:
数轴的画法可分为四个步骤:(1)画一条水平的直线;(2)在这条直线上的适当位置取一点作为原点;(3)确定正方向,用箭头表示出来;(4)确定单位长度,用细短线画出,并对应地标注各数. 画好了数轴,就可以用数轴上的点表示有理数.正有理数用原点右边的点表示(在数轴上要画出实心的小圆点),负有理数用原点左边的点表示.所有的有理数都可以在数轴上找到它的对应点.
例:请你画一条数轴。
例:有理数在数轴上的表示
例:画数轴时常见的4种错误
下列所画数轴对不对?如果不对,指出错在那里?
(1)
(2)
(3)
(4)
习题:
1、下列图中为数轴是()
A. B. -202
C. -202
D. -202
2、判断题:
(1)直线就是数轴。
( )
(2)数轴就是直线。
( )
(3)任何一个有理数都可以用数轴上的点来表示。
( )
(4)数轴上到原点距离等于3的点所表示的数是+3。
( )
(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0。
( )
3、画一条数轴,在数轴上标出表示下列各数的点:3,-5,72 ,- 12
,0,-1.4,3.2 例1、把下列各数用数轴上的点表示出来,并用“<”号把它们连接起来:6,5.4-,
3-,0,25
,4。
数轴知识点总结:
数轴(直线) 结论:
三 原点
要
单位长度
素 正方向
1、所有的有理数都可以用数轴上的点来表示。
2、每一对相反数在数轴上对应的点分别在
3、原点的两侧,并且到原点的距离相等。
习题:1、在数轴上表示-212 和123 ,并根据数轴指出所有大于-212 而小于123
的整数。
2、在数轴上与-1相距3个单位长度的点有( )个,为( );长为3个单位长度的木条放在数轴上,最多能覆盖( )个整数点?
课后作业:
一、选择题
1.6,2005,212
,0,-3,+1,41 ,-6.8中,正整数和负分数共有…( ) A .3个 B .4个 C .5个 D .6个
2.某年度某国家有外债10亿美元,有内债10亿美元,应用数学知识来解释说明,下列说法合理的是( )
A.如果记外债为-10亿美元,则内债为+10亿美元
B.这个国家的内债、外债互相抵消
C.这个国家欠债共20亿美元
D.这个国家没有钱
3、数轴上与原点距离为3的点表示的是( )
A 、3
B 、-3
C 、±3
D 、6
一、 填空题:
1.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作_________________________.
2.如果把+210元表示收入210元,那么-60元表示______________. 3.粮食产量增产11%,记作+11%,则减产6%应记作______________. 4.如果向西走12米记作+12米,则向东走-120米表示的意义是___.
3.味精袋上标有“500±5克”字样中,+5表示_____________,-5表示____________.
4、数轴上原点左边的点表示 数,原点右边的点表示 数,
点表示0.
5、比5小的正整数有 ;比—5大的负整数有 .
6、—π的相反数是 ; 的相反数是0.
7、用“>”、“<”填空:
(1)9 -16;(2)—
157 —15
2;(3)0 —6 .
三、解答题:
1、一个点从数轴上表示—2的点开始,向右移动4个单位长度,再向左移动5个单位长度,说明这时这个点表示的数.
2、数轴上与原点相距3个单位长度的点有几个?它们表示的数各是什么?
3、在市场经济中,利润计算公式是:利润=销售收入-销售成本,小亮利用此公式计算爸爸经营的商店在某一天的利润为-25元,请问:-25元的利润是什么意义?。