《2.4.2平面向量数量积的坐标表示、模、夹角》说课稿

合集下载

2.4.2《平面向量数量积的坐标表示、模、夹角》教学案1

2.4.2《平面向量数量积的坐标表示、模、夹角》教学案1

2.4.2《平面向量数量积的坐标表示、模、夹角》教学案一、教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.二、教学目标1、知识与技能:掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

2、过程与方法:通过用坐标表示平面向量数量积的有关运算,揭示几何图形与代数运算之间的内在联系,明确数学是研究数与形有机结合的学科。

3、情感态度与价值观:能用所学知识解决有关综合问题。

三、重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.四、教学设想(一)导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.(二)推进新课、新知探究、提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.2°向量模的坐标表示若a =(x ,y ),则|a |2=x 2+y 2,或|a |=22y x +.如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么 a =(x 2-x 1,y 2-y 1),|a |=.)()(212212y y x x -+-3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cosθ=222221212121||||y x y x y y x x b a b a +∙++=∙讨论结果:略.(三)应用示例例1 已知A (1,2),B (2,3),C (-2,5),试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A (1,2),B (2,3),C (-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明. ∵=(2-1,3-2)=(1,1),AC =(-2-1,5-2) =(-3,3), ∴AB ·AC =1×(-3)+1×3=0. ∴⊥.∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.在△ABC 中,=(2,3),=(1,k ),且△ABC 的一个内角为直角,求k 的值. 解:由于题设中未指明哪一个角为直角,故需分别讨论.若∠A =90°,则⊥,所以·=0.于是2×1+3k =0.故k =32-. 同理可求,若∠B =90°时,k 的值为311; 若∠C =90°时,k 的值为2133±. 故所求k 的值为32-或311或2133±. 例2 (1)已知三点A (2,-2),B (5,1),C (1,4),求∠BAC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a ·b =x 1x 2+y 1y 2和模|a |=2121y x +,|b |=2222y x +的积,其比值就是这两个向量夹角的余弦值,即cosθ=222221212121||||y x y x y y x x b a b a +∙++=∙.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)=(5,1)-(2,-2)=(3,3), =(1,4)-(2,-2)=(-1,6), ∴·AC =3×(-1)+ 3×6=15. 又∵|AB |=2233+=32,||=226)1(+-=37,∴cos ∠BAC =.74745372315||||=∙=∙AC AB (2)a ·b =3×(-5)+0×5=-15,|a |=3,|b |=52.设a 与b 的夹角为θ,则cosθ=.2225315||||-=⨯-=∙b a b a 又∵0≤θ≤π,∴θ=43π. 点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.设a =(5,-7),b =(-6,-4),求a ·b 及a 、b 间的夹角θ.(精确到1°解:a ·b =5×(-6)+(-7)×(-4)=-30+28=-2.|a |=74)7(522=-+,|b |=52)4()6(22=-+- 由计算器得cosθ=52742⨯-≈-0.03. 利用计算器中得θ≈92°.例3 已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a .活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆, 应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a ·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练. 解:(1)设a =(x ,y ),由|a |=3且a ⊥b ,得⎩⎨⎧=+==+,032,9||222x x a y x 解得⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧=-=,13136,1313913136,13139y x y x 或 ∴a =或)13136,13139(-a =.13136,13139- (2)设a =(x ,y ),由|a |=3且a ∥b ,得⎩⎨⎧=-==+.023,9||222y x a y x 解得⎪⎪⎩⎪⎪⎨⎧==13139,13136y x 或⎪⎪⎩⎪⎪⎨⎧-=-=.13139,13136y x ∴a =或)13139,13136(a =)13139,13136(--. 点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.变式训练求证:一次函数y =2x -3的图象(直线l 1)与一次函数y =21 x 的图象(直线l 2)互相垂直. 解:在l 1:y =2x -3中,令x =1得y =-1;令x =2得y =1,即在l 1上取两点A (1,-1),B (2,1). 同理,在直线l 2上取两点C (-2,1),D (-4,2),于是:=(2,1)-(1,-1)=(2-1,1+1)=(1, 2),CD =(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1). 由向量的数量积的坐标表示,可得AB ·CD =1×(-2)+1×2=0, ∴AB ⊥,即l 1⊥l 2.(四)课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.(五)作业。

高中数学 必修四 教案:2.4.2 平面向量数量积的坐标表示、模、夹角

高中数学  必修四   教案:2.4.2  平面向量数量积的坐标表示、模、夹角

2.4.2 平面向量数量积的坐标表示、模、夹角(一)导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.(二)推进新课、新知探究、提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.2°向量模的坐标表示若a =(x,y),则|a |2=x 2+y 2,或|a |=22y x +.如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么a =(x 2-x 1,y 2-y 1),|a |=.)()(212212y y x x -+-3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得 cosθ=222221212121||||y x y x y y x x b a b a +∙++=∙讨论结果:略(三)应用示例例1 已知A(1,2),B(2,3),C(-2,5),试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明. ∵=(2-1,3-2)=(1,1),=(-2-1,5-2)=(-3,3),∴·=1×(-3)+1×3=0. ∴⊥.∴△ABC 是直角三角形.变式训练在△ABC 中,=(2,3),=(1,k),且△ABC 的一个内角为直角,求k 的值.解:由于题设中未指明哪一个角为直角,故需分别讨论.若∠A=90°,则⊥,所以·=0.于是2×1+3k=0.故k=32-. 同理可求,若∠B=90°时,k 的值为311; 若∠C=90°时,k 的值为2133±. 故所求k 的值为32-或311或2133±. 例2 (1)已知三点A(2,-2),B(5,1),C(1,4),求∠BAC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a ·b =x 1x 2+y 1y 2和模|a |=2121y x +,|b |=2222y x +的积,其比值就是这两个向量夹角的余弦值,即cosθ=222221212121||||y x y x y y x x b a b a +∙++=∙.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)=(5,1)-(2,-2)=(3,3), =(1,4)-(2,-2)=(-1,6), ∴·=3×(-1)+3×6=15.又∵|AB |=2233+=32,|AC |=226)1(+-=37,∴cos ∠BAC=.74745372315||||=∙=∙AC AB(2)a ·b =3×(-5)+0×5=-15,|a |=3,|b |=52.设a 与b 的夹角为θ,则 cosθ=.2225315||||-=⨯-=∙b a b a 又∵0≤θ≤π,∴θ=43π. 变式训练设a =(5,-7),b =(-6,-4),求a ·b 及a 、b 间的夹角θ.(精确到解:a ·b =5×(-6)+(-7)×(-4)=-30+28=-2.|a |=74)7(522=-+,|b |=52)4()6(22=-+- 由计算器得cosθ=52742⨯-≈-0.03.利用计算器中得θ≈92°.例3 已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a.活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a ·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练.解:(1)设a =(x,y),由|a |=3且a ⊥b ,得⎩⎨⎧=+==+,032,9||222x x a y x 解得⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧=-=,13136,1313913136,13139y x y x 或∴a =或)13136,13139(-a =.13136,13139- (2)设a =(x,y),由|a |=3且a ∥b ,得⎩⎨⎧=-==+.023,9||222y x a y x解得⎪⎪⎩⎪⎪⎨⎧==13139,13136y x 或⎪⎪⎩⎪⎪⎨⎧-=-=.13139,13136y x∴a =或)13139,13136(a =)13139,13136(--. 变式训练求证:一次函数y=2x-3的图象(直线l 1)与一次函数y=21-x 的图象(直线l 2)互相垂直. 解:在l 1:y=2x-3中,令x=1得y=-1;令x=2得y=1,即在l 1上取两点A(1,-1),B(2,1). 同理,在直线l 2上取两点C(-2,1),D(-4,2),于是: AB =(2,1)-(1,-1)=(2-1,1+1)=(1, 2),=(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).由向量的数量积的坐标表示,可得·=1×(-2)+1×2=0, ∴AB ⊥CD ,即l 1⊥l 2.。

高中数学 2.4.2《平面向量数量积的坐标表示、模、夹角1》教案人教版必修4

高中数学 2.4.2《平面向量数量积的坐标表示、模、夹角1》教案人教版必修4

2.4.2平面向量数量积的坐标表示、模、夹角一、教学目标1.知识与技能:掌握平面向量的数量积坐标运算及应用2.过程与方法:(1)通过平面向量数量积的坐标运算,体会向量的代数性和几何性;(2)从具体应用体会向量数量积的作用3.情感、态度与价值观:学会对待不同问题用不同的方法分析的态度二、教学重点、难点重点:向量垂直的坐标表示的充要条件,及向量的长度、距离和夹角公式难点:条件和公式的应用三、教学方法用学过的知识带动学生探求新知识四、教学过程教学环节教学内容师生互动设计意图复习引入平面向量基本定理及向量的坐标表示向量数量积的定义及性质、运算率学生思考回答上节课内容温故知新定义形成向量具有几何性和代数性,上节课根据向量的几何性定义出了数量积的运算,并掌握了运算率及性质。

那么这一定义如何由它的代数性反映出来?那么向量数量积的性质如何由它的坐标表示出来?结论:已知两个非零向量),(11yxa=ρ,),(22yxb=ρ教师引导学生,从向量的坐标出发,根据数量积的定义推导出数量积的坐标运算。

从而很容易推导出三个公式和一个条件让学生自己联系旧知识推导新内容,体会自己创作的乐趣则ba ϖρ⋅2121yy x x +=从中总结出三个公式(向量的长度、距离、夹角公式)及一个条件(向量垂直的充要条件)向量的长度、距离和夹角公式(1)设),(y x a =ϖ,则222||y x a +=ρ或22||y x a +=ρ(长度公式)(2)如果表示向量a ϖ的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=ρ(距离公式)(3) co s=||||b a b a ⋅⋅ρρρ222221212121y x y x y y x x +++=(πθ≤≤0)(夹角公式) 向量垂直的充要条件设),(11y x a =ρ,),(22y x b =ρ, 则b a ϖρ⊥ ⇔02121=+y y x x定义深化对于从前的射影的概念,我们进行重新的认识 向量在轴上的正射影: 作图学生主导发现问题,教师引导提出和解决问题注意:射影是可正可负可为零的教学中,学生不太容易理解的,也不经常用到的概念,变作例题形式有利于加深印象定义:|br|cos叫做向量br在ar所在轴上的正射影正射影也是一个数量,不是向量;当为锐角时正射影为正值;当为钝角时正射影为负值;当为直角时正射影为0;当 = 0时正射影为|br|;当 = 180时正射影为|br|挖掘向量在轴上的正射影的定义,和我们这两节的向量数量积有什么关系?(或找出其本质)练习:P108 例1应用举例例1.已知ar=(3,-1),br=(1,-2),求a br rg,|ar|,|br|,<ar,br>例2.求证菱形的两条对角线互相垂直.练习.已知点A(1,2),B(2,3),C(-2,5),求证AB AC⊥u u u r u u u r例3.已知点A(1,2),B(3,4),C(5,0),求BAC∠的正弦值练习.已知ar=(3,4),求:(1)ar的单位向量;(2)与ar垂直的单位向量;(3)与ar平行的单位向量主要体会向量代数运算的方便和简便,以及几何性质的直观熟练准确的运用向量数量积进行运算,并对某些结论性的内容有所了解课堂小结 1.数量积的定义、性质、运算率2.几种特殊情况的讨论(注意事项)教师提出问题:向量的运算已经接触到了加法、减法、数乘及数量积的运算,那么它们的区别和联系是什么?尤其是数乘和数量积的运算,同是乘法,有何区别?主要学生总结,教师不做过多引导让学生掌握最主要的内容;让大多数学生知道还有某些注意事项作业1、看书总结平面向量数量积的注意事项(分别从定义、运算率、性质、与数乘的区别总结)2、总结一些你认为很有用的式子(可以从例题、习题总结)3、 P115练习B---2(1)(2)、3练习A---1(1)(2)习题A---2习题B---4注意:1、找向量夹角时,向量必须同起点;2、定义中注意垂直时数量积为0;3、两个向量的数量积称为内积,写成a b;符号“·”在向量运算中既不能省略,也不能用“×”4、数量积不满足结合率和消去率:在实数中,若a0,且a b=0,则b=0;但是在数量积中,若a0,且a b=0,不能推出b=0因为其中cos有可能为0已知实数a、b、c(b0),则ab=bc a=c但是a b = b c a = c在实数中,有(a b)c = a(b c),但是(a b)c a(b c)5、两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定。

2..4..2平面向量数量积的坐标表示、模、夹角(教、教案)

2..4..2平面向量数量积的坐标表示、模、夹角(教、教案)

2.4.2平面向量数量积地坐标表示、模、夹角一、教材分析本课地地位及作用:平面向量数量积地坐标表示,就是运用坐标这一量化工具表达向量地数量积运算,为研究平面中地距离、垂直、角度等问题提供了全新地手段.它把向量地数量积与坐标运算两个知识点紧密联系起来,是全章重点之一.二.教学目标1.学会用平面向量数量积地坐标表达式,会进行数量积地运算.理解掌握向量地模、夹角等公式.能根据公式解决两个向量地夹角、垂直等问题.2.<1)通出问题,把问题地求解与探究贯穿整堂课,学生在自主探究中发现了结论<2)通过对向量平行与垂直地充要条件地坐标表示地类比,教给了学生类比联想地记忆方法.3.经历根据平面向量数量积地意义探究其坐标表示地过程,体验在此基础上探究发现向量地模、夹角等重要地度量公式地成功乐趣,培养学生地探究能力、创新精神、三、教学重点难点重点:平面向量数量积地坐标表示.难点:向量数量积地坐标表示地应用.四、学情分析此之前学生已学习了平面向量地坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示地,应用起来不太方便,如何用坐标这一最基本、最常用地工具来表示数量积,使之应用更方便,就是摆在学生面前地一个亟待解决地问题.因此,本节内容地学习是学生认知发展和知识构建地一个合情、合理地“生长点”.所以,本节课采取以学生自主完成为主,教师查漏补缺地教学方法.因此结合中学生地认知结构特点和学生实际.我将本节教学目标确定为:1、理解掌握平面向量数量积地坐标表达式,会进行数量积地运算.理解掌握向量地模、夹角等公式.能根据公式解决两个向量地夹角、垂直等问题2、经历根据平面向量数量积地意义探究其坐标表示地过程,体验在此基础上探究发现向量地模、夹角等重要地度量公式地成功乐趣,培养学生地探究能力、创新精神.五、教学方法1.实验法:多媒体、实物投影仪.2.学案导学:见后面地学案.3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习.六、课前准备1.学生地学习准备:预习学案.2.教师地教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案.七、课时安排:1课时八、教学过程(一>预习检查、总结疑惑检查落实了学生地预习情况并了解了学生地疑惑,使教学具有了针对性.<二)情景导入、展示目标.创设问题情景,引出新课⑴a与b地数量积地定义?⑵向量地运算有几种?应怎样计算?出示学习目标:1、理解掌握平面向量数量积地坐标表示、向量地夹角、模地公式.2、两个向量垂直地坐标表示3、运用两个向量地数量积地坐标表示初步解决处理有关长度垂直地几个问题.<三)合作探究,精讲点拨探究一:已知两个非零向量a=(x1,x2>,b=(x2,y2>,怎样用a与b 地坐标表示数量积a·b呢?a·b=(x1,y1>·(x2,y2>=(x1i+y1j>·(x2i+y2j>=x1x2i2+x1y2i·j+x2y1 i·j+y1y2j2=x1x2+y1y2即:两个向量地数量积等于它们对应坐标地乘积地和师生:学生回答提出地问题,教师点评学生:合作探索提出地问题.教师:巡视辅导学生,解决遇到地困难,估计学生对正交单位基向量i,j地运算可能有困难,点拨学:i2=1,j2=1,i·j=0师生:学生展示探究结果,教师给予点评设计意图:回顾平面向量数量积地意义,为探究数量积地坐标表示做好准备.创设情境激发学生地学习兴趣,出示学习目标使学生了解本课地任务问题引领,培养学生地探索研究能力探究二:探索发现向量地模地坐标表达式若a=(x,y>,如何计算向量地模|a|呢?若A(x1,x2>,B(x2,y2>,如何计算向量AB地模两点A、B间地距离呢?教师提出问题学生:独立思考探究合作交流让学生展示探究地结论,教师总结设计意图:在向量数量积地坐标表示基础上,探索发现向量地模例1、如图,以原点和A(5, 2>为顶点作等腰直角△OAB,使∠B = 90︒,求点B和向量地坐标.解:设B点坐标(x,y>,则= (x,y>,= (x-5,y-2>∵⊥∴x(x-5> + y(y-2> = 0即:x2 + y2-5x- 2y = 0又∵|| = || ∴x2 + y2 = (x-5>2 + (y-2>2即:10x + 4y = 29由∴B点坐标或;=或评述:用向量地垂直关系地坐标表示作为此题地突破点.变式:已知探究三:向量夹角、垂直、坐标表示设a,b都是非零向量,a=(x1,y1>,b(x2,y2>,如何判定a⊥b或计算a与b地夹角<a,b>呢?1、向量夹角地坐标表示2、a⊥b<=>a·b=0<=>x1x2+y1y2=03、a∥b <=>X1y2-x2y1=0学生:独立思考、探究,合作交流,师生:让学生展示探究地结论,教师总结提醒学生a⊥b与a∥b坐标表达式地不同设计意图:在向量数量积地坐标表示基础上两向量垂直,两向量夹角地坐标表达式例2在△ABC中,=(2, 3>,=(1,k>,且△ABC地一个内角为直角,求k值.解:当A = 90︒时,⋅= 0,∴2×1 +3×k = 0 ∴k =当B = 90︒时,⋅= 0,=-= (1-2,k-3> =(-1,k-3>∴2×(-1> +3×(k-3> = 0 ∴k =当C= 90︒时,⋅= 0,∴-1 + k(k-3> = 0 ∴k=评述:熟练应用向量地夹角公式.变式:已知,当k为何值时,<1)垂直?<2)平行吗?平行时它们是同向还是反向?<四)反思总结,当堂检测.教师组织学生反思总结本节课地主要内容,并进行当堂检测.设计意图:引导学生构建知识网络并对所学内容进行简单地反馈纠正.<课堂实录)<五)发导学案、布置预习.我们已经学习数量积地坐标运算.模.夹角.下节学习平面向量应用举例这节课后大家可以先预习这一部分,着重体会向量是一种处理几何问题.物理问题地工具增强应用意识提高解题能力九、板书设计具备一定地数学思维能力和处理向量问题地方法地现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线地原则,为此,我通过精心设置地一个个问题,激发学生地求知欲,积极地鼓励学生地参与,给学生独立思考地空间,鼓励学生自主探索,最终在教师地指导下去探索发现问题,解决问题.在教学中,我适时地对学生学习过程给予评价,适当地评价,可以培养学生地自信心,合作交流地意识,更进一步地激发了学生地学习兴趣,让他们体验成功地喜悦.2.教学手段:利用多媒体辅助教学,可以加大一堂课地信息容量,极大提高学生地学习兴趣.十一、学案设计(见下页>2.4.2平面向量数量积地坐标表示、模、夹角课前预习学案一、预习目标:预习平面向量数量积地坐标表达式,会进行数量积地运算.了解向量地模、夹角等公式.二、预习内容:1.平面向量数量积<内积)地坐标表示2.引入向量地数量积地坐标表示,我们得到下面一些重要结论:(1>向量模地坐标表示:能表示单位向量地模吗?(2>平面上两点间地距离公式:向量a地起点和终点坐标分别为A(x1,y1>,B(x2,y2>AB=(3>两向量地夹角公式cos =3. 向量垂直地判定<坐标表示)4.向量平行地判定<坐标表示)三、提出疑惑同学们,通过你地自主学习,你还有哪些疑惑,请把它填在下面地表格中课内探究学案一、学习目标学会用平面向量数量积地坐标表达式,会进行数量积地运算.掌握两个向量共线、垂直地几何判断,会证明两向量垂直,以及能解决一些简单问题.学习重难点:平面向量数量积及运算规律.平面向量数量积地应用二、学习过程<一)创设问题情景,引出新课a与b地数量积地定义?⑵向量地运算有几种?应怎样计算?<二)合作探究,精讲点拨探究一:已知两个非零向量a=(x1,x2>,b=(x2,y2>,怎样用a与b 地坐标表示数量积a·b呢?a·b=(x1,y1>·(x2,y2>=(x1i+y1j>·(x2i+y2j>=x1x2i2+x1y2i·j+x2y·j+y1y2j2=x1x2+y1y21i教师:巡视辅导学生,解决遇到地困难,估计学生对正交单位基向量i,j地运算可能有困难,点拨学生:i2=1,j2=1,i·j=0探究二:探索发现向量地模地坐标表达式若a=(x,y>,如何计算向量地模|a|呢?若A(x1,x2>,B(x2,y2>,如何计算向量AB地模两点A、B间地距离呢?例1、如图,以原点和A(5, 2>为顶点作等腰直角△OAB,使∠B = 90︒,求点B和向量地坐标.变式:已知探究三:向量夹角、垂直、坐标表示设a,b都是非零向量,a=(x1,y1>,b(x2,y2>,如何判定a⊥b或计算a与b地夹角<a,b>呢?1、向量夹角地坐标表示2、a⊥b<=> <=>x1x2+y1y2=03、a∥b <=>X1y2-x2y1=0例2在△ABC中,=(2, 3>,=(1,k>,且△ABC地一个内角为直角,求k值.变式:已知,当k为何值时,<1)垂直?<2)平行吗?平行时它们是同向还是反向?<三)反思总结(四>当堂检测1.已知|a|=1,|b|=,且(a-b>与a垂直,则a与b地夹角是< )A.60°B.30°C.135°D.45°2.已知|a|=2,|b|=1,a与b之间地夹角为,那么向量m=a-4b地模为< )A.2B.2C.6D.123、a=(5,-7>,b=(-6,-4>,求a与b地数量积4、设a=(2,1>,b=(1,3>,求a·b及a与b地夹角5、已知向量a=(-2,-1>,b=(λ,1>若a与b地夹角为钝角,则λ取值范围是多少?课后练习与提高1.已知则< )A.23B.57C.63D.832.已知则夹角地余弦为< )A. B. C. D.3.则__________.4.已知则__________.5.则______________6.与垂直地单位向量是__________A. B.D.7.则方向上地投影为_________8.A(1,2>,B(2,3>,C(2,0>所以为( >A.直角三角形B.锐角三角形C.钝角三角形D.不等边三角形9.已知A(1,0>,B(5,-2>,C(8,4>,D.(4.6>则四边形ABCD为< )A.正方形B.菱形C.梯形D. 矩形10.已知点A<1,2),B(4,-1>,问在y轴上找点C,使∠ABC=90º若不能,说明理由;若能,求C坐标.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

数学:2.4.2《平面向量数量积的坐标表示、模、夹角》教案 最新!!

数学:2.4.2《平面向量数量积的坐标表示、模、夹角》教案    最新!!
教学模式
教学过程
主要内容及板书
摘要与反思
一.复习旧知,探究引入
1.判断下列命题真假:
(1)若 ,则 中至少有一个为 ;
(2)若 ,且 ,则 ;
(3) ;
(4)若 ,且 ;
(5)若 ,坐标表示 是怎样呢?
由于 分别是x轴,y轴方向的单位向量,则 , ,
, .
(下面的推导由学生完成)
( ) (两种方法)
三.小结:
1.平面向量数量积的坐标公式;
2.向量长度(模)的公式及两点间的距离公式;
3.夹角的余弦公式;
4.向量垂直的坐标表示的条件,复习向量平行的坐标表示的条件.
作业
P119习题2.4 /5、9、10、11
后记
教学内容:§2.4.2平面向量数量积的坐标表示、模、夹角
教学目标
1.掌握平面向量数量积的坐标表示及向量长度的坐标表示公式,能用两向量的坐标求两向量的夹角;
2.掌握平面向量垂直的坐标表示的条件.
本节重点
平面向量数量积的坐标表示,平面向量垂直的坐标表示的条件
本节难点
平面向量数量积的坐标表示,平面向量垂直的坐标表示的充要条件的灵活应用
二.新课教学
1.数量积的坐标表示
已知 则 .
2.向量的长度、夹角、垂直的坐标表示
①设 ,则 , .
设 则


摘要与反思
主要内容及板书
3.例题选讲
例1.已知 试判断△ABC的形状,并给出证明.
(P118例5)
例2.设 求 及 间的夹角 (精确到 )
(P118例6)
练习:P119练习1,2,3
例3.已知向量 当 垂直时,求实数x的值.

2019人教高中数学必修四《2.4.2平面向量数量积的坐标表示、模、夹角》说课稿精品教育.doc

2019人教高中数学必修四《2.4.2平面向量数量积的坐标表示、模、夹角》说课稿精品教育.doc

《2.4.2平面向量数量积的坐标表示、模、夹角》说课稿尊敬的各位评委大家好:我说课的题目是《2.4.2平面向量数量积的坐标表示、模、夹角》,下面我从教材分析、学情分析、教学目标分析、教法学法分析、教学过程分析、教学媒体设计及教学评价设计六个方面对本节课的教学进行说明。

一、教材分析1、教材的地位和作用本节课是普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第二课时---平面向量数量积的坐标表示、模、夹角。

平面向量的数量积是继向量的线性运算之后的又一重要运算,平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。

它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

本节课是是在学生已经掌握了平面向量数量积的含义及运算律的基础上进行教学的,因此难度不大。

根据新课标的要求和学生的实际我确定本节课的重难点如下:2.教学重点、难点(1)教学重点1.掌握平面向量数量积的坐标表示方法;2.掌握向量垂直的坐标表示的条件及平面内两点间的距离公式;3.能用平面向量数量积的坐标表示解决有关长度、角度、垂直等几何问题. (2)教学难点用平面向量数量积的坐标表示解决有关长度、角度、垂直等几何问题.二、学情分析此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。

三、教学目标分析根据本节课的特点,结合新课程标准对本节课的教学要求和学生的认知规律,我从以下三个方面确定了以下教学目标:(1)知识与技能目标:⑴掌握平面向量数量积的坐标表达式,会进行平面向量数量积的运算;⑵掌握平面向量的模的坐标公式以及平面内两点间的距离公式;⑶掌握两个平面向量的夹角的坐标公式;⑷能用平面向量数量积的坐标公式判断两个平面向量的垂直关系;(2) 过程与方法目标:经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。

高中数学_2.4.2平面向量数量积的坐标表示模夹角教学设计学情分析教材分析课后反思

高中数学_2.4.2平面向量数量积的坐标表示模夹角教学设计学情分析教材分析课后反思

【教学设计】平面向量数量积的坐标表示、模、夹角_数学_高中__3704810004一、教学任务分析前面已经学习了学习了平面向量数量积概念、运算以及平面向量的坐标表示,本节课是对平面向量数量积从坐标表示方面的进一步研究, 是对前面所学知识的延续.教科书以推导平面向量数量积的坐标表示入手,进而研究平面向量的模、两非零向量垂直的坐标表示和夹角的坐标表示.二、教学重点、难点重点:平面向量数量积的坐标表示,模的坐标表示,垂直的坐标表示和夹角的坐标表示.难点:平面向量数量积的坐标表示的推导过程,平面向量数量积的坐标表示的应用.二、教学基本流程本节课是平面向量数量积的第二节课,与第一节课紧密联系,且主要以公式为主,因此我设计了以下顺序来安排本节课的教学:(一)复习回顾:主要复习上节课所学,并且本节课用到的知识;(二)引入新课:复习回顾向量加法、减法、数乘的坐标运算,从而引出数量积的坐标表示;(三)探究新知:探究平面向量数量积、模、垂直、夹角的坐标表示;(四)运用新知:运用所学知识解决相关问题;(五)课堂小结:回顾这节课主要学习了哪些知识,用到了哪些思想方法;(六)布置作业:课下巩固完善.三、学生课前准备因为本节课与上一节课紧密联系在一起,所以要求学生课前一定要复习好上一节课的内容:平面向量数量积的定义、运算律及性质.另外,本节课又是对坐标运算的继续加深,而且在推导平面向量数量积的坐标表示时用到了平面向量的坐标表示和运算,因此要求学生复习好平面向量的坐标表示和运算的内容.四、教学过程设计(一)复习回顾(课件上展示问题)1.平面向量数量积(内积)的定义;2.平面向量的数量积满足的运算律;3.设向量a 与b 都是非零向量,则________⊥⇔a b ;=a a 或=a . 学生活动:以上问题由学生回答,老师适当给以点评.(二)引入新课已知两个非零向量()()1122,,,x y x y =a =b ,则=+a b ;=-a b ;λ=a .提问学生回答,并给出问题:向量a 与b 的数量积⋅a b 能否也用坐标表示?这就是我们这节课要研究的问题:平面向量数量积的坐标表示、模、夹角.【设计意图】通过回顾平面向量数量积的定义和对有关性质运算题目的掌握,为探究数量积的坐标表示做好准备.另外,通过对向量的加、减、数乘的坐标运算的回顾,很自然的联想到数量积的坐标表示,从而创设情境激发学生的学习兴趣.(三)探究新知探究1:平面向量数量积的坐标表示教师:已知两个非零向量()()1122,,,x y x y =a =b .试根据向量加法、减法的坐标运算的推导过程,写出向量a 与b 的数量积⋅a b 的坐标表示的推导过程.学生:学生回顾向量加法、减法的坐标运算的推导过程,自己独立推导平面向量数量积的坐标表示.学生推导完成后,用实物投影展示学生推导过程,并让学生讲解.解:因为()()1122x y x y ⋅++a b =i j i j 2212122112x x x y x y y y =+⋅+⋅+i i j i j j又1⋅=i i ,1⋅=j j ,0⋅=⋅=i j j i ,所以⋅a b 2121y y x x +=.教师:你能用文字表述上面的结论吗?学生:学生尝试表述,并同位间交流,最后得出结论:两个向量的数量积等于它们对应坐标的乘积的和.即⋅a b 2121y y x x +=.【设计意图】问题引领,培养学生的探索研究能力,让学生体会成功的乐趣.探究2:向量的模的坐标表达式教师:若(),x y a =,如何计算2a 和a 呢?学生:222||x y =+a , ||=a 教师:如果表示向量a 的有向线段的起点和终点的坐标分别为1122(,)(,)x y x y 、,那么向量a 的坐标如何表示?a 等于什么?学生: 2121(,)x x y y =--a , =a .【设计意图】在向量数量积的坐标表示基础上,探索发现向量的模小试牛刀:已知()3,4=-a ,(5,2)=b ,求,,⋅a b a b .学生:学生计算,并提问学生回答: 5,7.==⋅=-a b a b【设计意图】熟练应用向量数量积的坐标公式.探究3:向量垂直的坐标表示教师:设a 与b 都是非零向量,()()1122,,,x y x y =a =b ,如何用向量a,b 的坐标来表示⊥a b ?提问一名同学到黑板上书写,其他同学在导学案上书写:1212=00x x y y ⊥⇔⋅⇔+=a b a b .【设计意图】在向量数量积的坐标表示基础上两向量垂直.此时,展示例1.让学生把答案写在导学案上.给学生4分钟的时间完成,并用投影展示学生的答案,在展示时可以多选取学生完成几种不同的方法.多媒体上展示变式1,让学生完成并口述答案.多媒体上展示变式2,提问一名同学到黑板上板书过程.【设计意图】此时展现例题,注重讲练结合,而且能够及时加深学生对两向量垂直的记忆和理解.两个变式题目的设计也注重梯度性,有利于各层次学生的学习.探究4:向量夹角的坐标表示教师:设a 与b 都是非零向量, ()()1122,,,x y x y =a =b ,θ是a 与b 的夹角,你能用a ,b 的坐标来表示cos θ?提问一名同学到黑板上书写,其他同学在导学案上书写:cos θ=接下来讲解例2.先给学生2分钟的思考时间,然后提问一名同学回答,教师板书,给学生起到示范作用.并引导学生总结求两向量夹角余弦值的方法.(四)应用新知例1.已知点(1,2),(2,3),(2,5)A B C -,试判断ABC ∆的形状,并给出证明.引导学生用不同的方法做这道题目,并展示学生的答案.变式:(1)已知ABC ∆为直角三角形,090A ∠=,(1,3),(2,)AB AC k ==,求k 的值.(2)若上式中090C ∠=,那么k 的值是多少? 答案:(1)23k =-;(2)k =1或2. 例2.已知向量()5,7=-a ,()6,4=--b ,求a b 及a 、b 的夹角θ的余弦值. 解:5(6)(7)(4)3028 2.⋅⨯-+-⨯-=-+=-a b ===,a ==b∴cos 0.03.96274θ===-≈-a b a b 教师:结合本题,总结一下求两向量夹角余弦值的步骤?学生:求两向量夹角的余弦值,先求|⋅、|、,a b a b 再代入公式计算.(五)课堂小结提问一名同学回答,通过本节课的学习,在知识方面和思想方法你有哪些收获?知识方面:1.平面向量数量积的坐标表示;2.向量模的坐标表示;3.向量垂直的坐标表示;4.向量夹角的坐标表示.思想方法:数形结合,类比.【设计意图】培养学生归纳整合知识能力,培养学生思维的灵活性与严谨性.(六)布置作业1.阅读课本P106-P107;2.必做:课本P108 A 组第9、10、11题;选做:课本P108 B 组第2题.【设计意图】学生养成先复习后做作业的学习习惯,另外分层布置作业,满足不同学生的需要.(七)板书设计x x+12【学情分析】平面向量数量积的坐标表示、模、夹角_数学_高中__3704810004在学习本节之前学生已经学习了平面向量数量积概念、运算以及平面向量的坐标表示,且大部分同学有了一定的推理计算能力和处理向量问题的方法,完全有能力推导出平面向量数量积的坐标表示,对于少数不能推导出平面向量数量积坐标表示的可以让他们看课本上的推导过程.有了数量积的坐标表示,在结合上一节中平面向量数量积的性质,那么平面向量的模、两非零向量的垂直关系以及两非零向量的夹角也就很容易用坐标来表示了,学生接受起来也会比较容易.为了更好的学习本节课,在课前需要学生提前预习并且复习好上一节的内容和平面向量的坐标表示,尤其是向量加法、减法运算的推导过程,以便能够顺利的推导出平面向量的数量积的坐标表示.【效果分析】平面向量数量积的坐标表示、模、夹角_数学_高中__3704810004本节课是从坐标表示对平面向量数量积的进一步学习,本节课公式比较多,通过本节课的教学,基本上达到了预期的效果,可以通过以下几个方面来说明:1.课堂教学效率比较高,学生思维活跃,整堂课气氛比较热烈。

高中数学人教A版必修四2.4.2教学设计《2.4.2 平面向量数量积的坐标表示、模、夹角》

高中数学人教A版必修四2.4.2教学设计《2.4.2 平面向量数量积的坐标表示、模、夹角》

《2.4.2 平面向量数量积的坐标表示、模、夹角》一、讲什么1.教学内容(1)概念原理:平面向量的数量积的坐标表示、模、夹角。

(2)思想方法:数形结合,类比、归纳。

(3)能力素养:几何直观、数学抽象。

2.内容解析:前面已学了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量数量积。

教科书以物体受力作功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

在定义了数量积的概念后,进一步探究了两个向量的数量积的坐标表示,模及夹角。

二、为何讲1.教学目标:(1)掌握向量数量积的坐标表示,经历向量数量积坐标表示的推导过程,培养学生代数运算的能力;(2)掌握向量数量积的应用,理解向量数量积与向量的模和夹角的关系,体会数形结合的思想方法。

2.目标解析:(1)要让学生经历向量数量积的坐标表示的推导过程,感受代数运算的过程。

(2)让学生从数形两方面理解向量数量积这个概念的本质,帮助学生从两个要素全面考虑,防止顾此失彼。

3. 教学重点:向量数量积坐标表示的推导过程及应用。

三、怎样讲(一)教学准备1.教学问题:(1)学习过程中,学生对向量数量积的坐标表示的推导,一时难以适应;(2)向量数量积的应用。

2.教学支持条件:科大讯飞问答系统。

(二)教学过程设计【问题1】 已知两个非零向量()11,x y =a ,()22,x y =b ,怎样用a 与b 的坐标表示⋅a b 呢?【设计意图】思考向量的数量积的坐标表示,为引出数量积的坐标运算作铺垫。

【预设师生活动】(1)老师: ()11,x y =a 和()22,x y =b 作为坐标表示,他们能否用基底表示出来? (2)学生:我们选取的基底是()1,0=i 和()0,1=j ,所以()1111,x y x y ==+a i j ,()2222,x y x y ==+b i j .(3)老师: 那么11x y =+a i j 与22x y =+b i j 的数量积等于多少? (4)学生: ()()22112212122112x y x y x x x y x y y y ⋅=+⋅+=+⋅+⋅+a b i j i j i i j i j j ,而 221,0==⋅=⋅=i j i j j i ,所以1212x x y y ⋅=+a b .(5)老师:能不能用一句话总结数量积的坐标表示?(6)学生:两个向量的数量积等于它们对应坐标的乘积的和。

[精品]新人教A版高中数学必修42.4.2平面向量数量积的坐标表示、模、夹角教学案

[精品]新人教A版高中数学必修42.4.2平面向量数量积的坐标表示、模、夹角教学案

2. 4.2平面向量数量积的坐标表示、模、夹角一、教材分析本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。

它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

二.教学目标1.学会用平面向量数量积的坐标表达式,会进行数量积的运算。

理解掌握向量的模、夹角等公式。

能根据公式解决两个向量的夹角、垂直等问题。

2.(1)通出问题,把问题的求解与探究贯穿整堂课,学生在自主探究中发现了结论(2)通过对向量平行与垂直的充要条件的坐标表示的类比,教给了学生类比联想的记忆方法。

3.经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神、三、教学重点难点重点:平面向量数量积的坐标表示.难点:向量数量积的坐标表示的应用.四、学情分析此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。

所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。

因此结合中学生的认知结构特点和学生实际。

我将本节教学目标确定为:1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。

理解掌握向量的模、夹角等公式。

能根据公式解决两个向量的夹角、垂直等问题2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。

五、教学方法1.实验法:多媒体、实物投影仪。

2.学案导学:见后面的学案。

3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习。

高中数学 2.4.2《平面向量数量积的坐标表示、模、夹角》教案人教版必修4

高中数学 2.4.2《平面向量数量积的坐标表示、模、夹角》教案人教版必修4

2.4.2向量数量积的坐标表示、模、夹角
(一)教学目标
1.知识与技能:
(1)掌握向量内积的坐标运算及其应用。

(2)掌握用向量的坐标表示向量垂直的条件。

(3)掌握向量的长度、距离和夹角公式。

2.过程与方法:
通过解题实践,体会公式和向量垂直的条件的应用。

3.情感、态度与价值观:
通过用向量的坐标反映向量的数量积,让学生体会到代数与几何的完美结合,说明事物是可以相互联系与相互转化的,激发学生的学习兴趣。

(二)教学重点、难点
教学重点:向量数量积的坐标表示以及由此推得的垂直条件,长度、距离和夹角公式的
坐标表示。

教学难点:向量的长度、距离、夹角、垂直条件的坐标表示的灵活运用。

(三)教学方法:
本节的内容是在前面学习了向量的数量积的定义、性质、运算律的基础上,给出了向量内积的坐标运算公式,两向量垂直的坐标公式,向量的长度、运算、夹角的坐标公式,从而使向量数量积的运算代数化,在教学中,要引导学生分析解题思路,总结解题规律,提高学生分析问题解决问题的能力。

(四)教学过程
若A(x1, y1
=
(
AB x
这就是两点的距离公式。

(3)向量夹角余弦的坐标表达式:
cos<a, b>
.已知a=(
|,|b|,<a, b
小结:运用向量的数量积的坐标公式求值。

.已知点A(1,2)
⊥。

求证AB AC
小结:利用数量积的坐标运算证明垂直
.已知点A(1,2
求∠BAC的正弦值。

小结:本题利用两向量夹角的坐标公式求正弦值,揭示了向量与三角的联系。

.已知点A(a,。

【数学】2.4.2《平面向量数量积的坐标表示、模、夹角2》教案(新人教A版必修4)

【数学】2.4.2《平面向量数量积的坐标表示、模、夹角2》教案(新人教A版必修4)

知识改变命运,学习成就未来欢迎各位老师踊跃投稿,稿酬丰厚邮箱:zxjkw@第 1 页共 4 页课题向量数量积的坐标运算和度量公式教学目标1、知识与技能掌握平面向量数量积的坐标表示和运算,度量公式的推导应用(1)根据向量的坐标计算它们的数量积,由数量积的坐标形式求两个向量的夹角.(2)运用向量垂直的坐标表示的充要条件解决有关问题,特别是运用坐标法证明两个向量垂直.(3)掌握平面内两点间的距离公式2、过程与方法通过平面向量数量积的数与形两种表示的相互转化,使学生进一步体会数形结合思想,增强用两种方法——向量法与坐标法处理向量问题的意识.3、情感、态度、价值观通过本节内容的启发探研式学习,培养学生的动手能力和探索精神.教学重点1、向量数量积的坐标运算和度量公式2、向量垂直的坐标表示的充要条件.教学难点平面向量数量积的两种形式的内在联系及灵活运用坐标运算与度量公式解决有关问题。

教学方法设置情境,启发引导学生由旧知推新知,自主探索研究,使数学的学习成为再创造的过程,使学生树立学习数学的信心。

教学环节教学内容师生互动设计意图复习提问提问1:如何用向量的长度、夹角反映数量积?又如何用数量积、长度来反映夹角?向量的运算律有哪些?由学生口答,教师板书向量数量积的定义及向量的运算律公式为数量积的坐标运算及度量公式的推导证明打好理论基础练习2:已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.练习3:设i ,j 为正交单位向量,则①i ·i =_______ ②j ·j =________ ③ i ·j =________学生板书,教师分析,引导学生复习前课重点……两个向量的数量积的运算性质。

高中数学说课稿:新人教版必修四《平面向量数量积的坐标表示、模、夹角》优秀说课稿模板

高中数学说课稿:新人教版必修四《平面向量数量积的坐标表示、模、夹角》优秀说课稿模板

高中数学说课稿:新人教版必修四《平面向量数量积的坐标表示、模、夹角》优秀说课稿模板数学必修4《平面向量数量积的坐标表示、模、夹角》
 新课标指出:学生是教育主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,构建新的知识体系.此为基础从教材分析,教学目标、学习方法、教学过程分析、教学方法等几个方面加以说课。

 一、教材分析
 1.本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。

它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

 2学生情况分析:在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。

所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。

因此结合中学生的认知结构特点和学生实际。

我将本节教学目标确定为:1、理解掌握平面向量数。

人教高中数学必修四《2.4.2平面向量数量积的坐标表示、模、夹角》说课稿

人教高中数学必修四《2.4.2平面向量数量积的坐标表示、模、夹角》说课稿

《2.4.2 平面向量数目积的坐标表示、模、夹角》讲课稿敬爱的各位评委大家好:我讲课的题目是《2.4.2 平面向量数目积的坐标表示、模、夹角》,下边我从教材剖析、学情剖析、教课目的剖析、教法学法剖析、教课过程剖析、教课媒体设计及教课评论设计六个方面对本节课的教课进行说明。

一、教材剖析1、教材的地位和作用本节课是一般高中课程标准实验教科书(人教 A 版)《数学必修4》第二章第四节“平面向量的数目积”的第二课时---平面向量数目积的坐标表示、模、夹角。

平面向量的数目积是继向量的线性运算以后的又一重要运算,平面向量数目积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题供给了崭新的手段。

它把向量的数目积与坐标运算两个知识点密切联系起来,是全章要点之一。

本节课是是在学生已经掌握了平面向量数目积的含义及运算律的基础长进行教课的,所以难度不大。

依据新课标的要乞降学生的实质我确立本节课的重难点以下:2.教课要点、难点(1)教课要点1.掌握平面向量数目积的坐标表示方法;2.掌握向量垂直的坐标表示的条件及平面内两点间的距离公式;3.能用平面向量数目积的坐标表示解决相关长度、角度、垂直等几何问题 .(2)教课难点用平面向量数目积的坐标表示解决相关长度、角度、垂直等几何问题.二、学情剖析此以前学生已学习了平面向量的坐标表示和平面向量数目积概念及运算,但数目积是用长度和夹角这两个观点来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数目积,使之应用更方便,就是摆在学生眼前的一个亟待解决的问题。

所以,本节内容的学习是学生认知发展和知识建立的一个合情、合理的“生长点”。

三、教课目的剖析依据本节课的特色,联合新课程标准对本节课的教课要乞降学生的认知规律 ,我从以下三个方面确立了以下教课目的:(1)知识与技术目标 :⑴掌握平面向量数目积的坐标表达式,会进行平面向量数目积的运算;⑵掌握平面向量的模的坐标公式以及平面内两点间的距离公式;⑶掌握两个平面向量的夹角的坐标公式;⑷能用平面向量数目积的坐标公式判断两个平面向量的垂直关系;(2)过程与方法目标:经历依据平面向量数目积的意义研究其坐标表示的过程,体验在此基础上研究发现向量的模、夹角等重要的胸怀公式的成功乐趣,培育学生的研究能力、创新精神。

高中数学必须4--2.4.2平面向量数量积的坐标表示、模、夹角教案

高中数学必须4--2.4.2平面向量数量积的坐标表示、模、夹角教案

2.4.2平面向量数量积的坐标表示、模、夹角教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用教学过程:一、复习引入:1.平面向量数量积(内积)的定义:2.两个向量的数量积的性质: 设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a|cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a||b|;当a 与b 反向时,a ⋅b = -|a||b|. 特别的a ⋅a = |a|2或a a a ⋅=||4︒cos θ =||||b a b a ⋅ ; 5︒|a ⋅b| ≤ |a||b| 3.练习:(1)已知|a|=1,|b|=2,且(a-b)与a 垂直,则a 与b 的夹角是( )A.60°B.30°C.135°D.45°(2)已知|a|=2,|b|=1,a 与b 之间的夹角为3π,那么向量m=a-4b 的模为( ) A.2 B.23 C.6 D.12二、讲解新课:探究:已知两个非零向量),(11y x a =,),(22y x b =,怎样用a 和b 的坐标表示b a ⋅?.1、平面两向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)3. 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x4. 两向量夹角的余弦(πθ≤≤0)cos θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=二、讲解范例:例1 已知A(1, 2),B(2, 3),C(-2, 5),试判断△ABC 的形状,并给出证明.例2 设a = (5, -7),b = (-6, -4),求a·b 及a 、b 间的夹角θ(精确到1o )分析:为求a 与b 夹角,需先求a·b 及|a |·|b |,再结合夹角θ的范围确定其值. 例3 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22=⋅⋅b a b a 又∵0≤θ≤π,∴θ=4π 评述:已知三角形函数值求角时,应注重角的范围的确定.三、课堂练习:1、P107面1、2、3题2、已知A(3,2),B(-1,-1),若点P(x ,-21)在线段AB 的中垂线上,则x= . 四、小结: 1、b a ⋅2121y y x x +=2、平面内两点间的距离公式 221221)()(||y y x x a -+-=3、向量垂直的判定:设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x五、课后作业:《习案》作业二十四。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《2.4.2平面向量数量积的坐标表示、模、夹角》说课稿
孔祥伟
尊敬的各位评委大家好:
我说课的题目是《2.4.2平面向量数量积的坐标表示、模、夹角》,下面我从教材分析、学情分析、教学目标分析、教法学法分析、教学过程分析、教学媒体设计及教学评价设计六个方面对本节课的教学进行说明。

一、教材分析
1、教材的地位和作用
本节课是普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第二课时---平面向量数量积的坐标表示、模、夹角。

平面向量的数量积是继向量的线性运算之后的又一重要运算,平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。

它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

本节课是是在学生已经掌握了平面向量数量积的含义及运算律的基础上进行教学的,因此难度不大。

根据新课标的要求和学生的实际我确定本节课的重难点如下:
2.教学重点、难点
(1)教学重点
1.掌握平面向量数量积的坐标表示方法;
2.掌握向量垂直的坐标表示的条件及平面内两点间的距离公式;
3.能用平面向量数量积的坐标表示解决有关长度、角度、垂直等几何问题. (2)教学难点
用平面向量数量积的坐标表示解决有关长度、角度、垂直等几何问题.
二、学情分析
此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。

三、教学目标分析
根据本节课的特点,结合新课程标准对本节课的教学要求和学生的认知规律,我从以下三个方面确定了以下教学目标:
(1)知识与技能目标:
⑴掌握平面向量数量积的坐标表达式,会进行平面向量数量积的运算;
⑵掌握平面向量的模的坐标公式以及平面内两点间的距离公式;
⑶掌握两个平面向量的夹角的坐标公式;
⑷能用平面向量数量积的坐标公式判断两个平面向量的垂直关系;
(2) 过程与方法目标:经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。

(3)情感态度与价值观目标:引导学生探索归纳,感受、理解知识的产生和发展过程,激发学习数学的兴趣。

注重培养学生的动手能力和探索能力;同时通过平面向量数量积的数与形两种表示的相互转化,使学生进一步体会数形结合的
思想。

四、教法学法分析
1.教学方法
“授人以鱼,不如授人以渔” 。

在教学过程中,不仅要传授学生课本知识,更重要的是培养学生善于观察、主动思考、勤于动手、学会合作等学习能力,增强学生的综合素质,所以教学方法主要采用启发探究式,来充分调动学生学习的主动性、积极性。

教师平等的参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,
引导学生全员、全过程参与,保证学生的认知水平和情感体验分层次向前推进。

2.学法分析
通过教师的启发与帮助,让学生在课堂上能说一说、想一想、做一做、议一议,强调学生的发现学习、自主探究和合作交流,使学生真正成为学习的主人。

五、教学过程设计
1、创设问题情景,激发学习兴趣
问题1、⑴正交分解下向量的坐标表示;
问题2、平面向量数量积的意义、运算律。

设计意图:回顾平面向量数量积的意义,为探究数量积的坐标表示做好准备。

2、探索研究,建构新知
探究1、探究平面向量数量积的坐标表示 已知两个非零向量),(11y x a =,),(22y x b =,怎样用a 与b 的坐标来表示b a ⋅呢? ())((2211j y i x j y i x b a ++=⋅ 2
211221221j y y j i y x j i y x i x x +⋅+⋅+=
2121y y x x +=
设计意图:让学生先思考,尝试归纳平面向量数量积的坐标表示,充分发挥学生
学习的主动性。

探究2、探索发现向量的模、夹角等度量的坐标表示式
向量的模: 设),(y x a =,则有222y x a +=或22||y x a +=
两点间的距离公式:
设),(11y x A ,),(22y x B ,则),(1212y y x x AB --=,
221221)()(||y y x x AB -+-= 两向量的夹角的坐标表示公式: 设),(11y x a =,),(22y x b =,则02121=+⇔⊥y y x x b a
设非零向量),(11y x a =,),(22y x b =,θ为a 与b 的夹角,则222221212
121||||cos y x y x y y x x b a +⋅++=⋅=θ
两向量垂直的坐标表示的判断条件: 设),(11y x a =,),(22y x b =,则02121=+⇔⊥y y x x b a
设计意图:通过学生的自主探究合作交流解决提出的问题并让学生展示探究结果,教师予以点评。

这样能够充分调动学生学习的积极性,使学生体会到成功的乐趣。

3、典例讲解:
例5、已知)2,1(A ,)3,2(B ,)5,2(-C ,试判断ABC ∆的形状,并给出证明.
例6、 设a = (5, -7),b = (-6, -4),求a ⋅b 以及a 和b
之间的夹角。

设计意图:学生才是学习活动的主体,让学生成为学习的研究者,不断地让学生体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生善于归纳总结思维品质
课堂练习:
教材P108习题2.4A 组第5题,教材P107练习第1~3题。

设计意图:围绕本节课的知识目标, 让学生完成4道习题。

通过练习,及时反馈学生学习达成度,同时学生可以自评这节课的学习收获。

4、总结提炼,知识升华:
⑴掌握平面向量数量积的坐标表达式,会进行平面向量数量积的运算; ⑵掌握平面向量的模的坐标公式以及平面内两点间的距离公式;
⑶掌握两个平面向量的夹角的坐标公式;
⑷能用平面向量数量积的坐标公式判断两个平面向量的垂直关系;
设计意图:以学生小结为主教师帮助为辅,巩固所学知识。

在梳理本节课所学的知识点归纳的过程中进一步加深对本节课所学知识的理解与运用,培养学生归纳总结的能力。

5.布置作业,延伸课堂
(1)基本题:教材P108习题2.4A 组第7~11题,
(2)提高拓展:B 组第2~4题。

设计意图:将作业分为基本题和提高拓展题两个部分,体现分层教学思想。

基本题面向全体,注重知识反馈,提高拓展题更注重知识的延伸性、连贯性和应用性,有能力的学生可以去探求。

6、板书设计
平面向量数量积的坐标表示、模、夹角
一、坐标表示例题:
二、模、夹角公式
六、教学评价分析
及时的教学评价能有效调动课堂的气氛,感染学生的情绪,对课堂教学发挥着积极的推动作用。

教学过程中,尊重学生之间的差异,注重过程性评价与多元评价,将教学评价贯穿于本堂课的每个教学环节中,通过自我测评、同学互评、老师点评等多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

相关文档
最新文档