2020年高考数学仿真押题试卷(十二)(含解析)

合集下载

2020届江苏省高考数学押题试卷含解析

2020届江苏省高考数学押题试卷含解析

2020届江苏省高考数学押题卷数学I一、填空题:本大题共14小题,每小题5分,计70分.请把答案写在答题纸的指定位置上.1.已知集合{|02}A x x =<<,{|11}B x x =-<<,则A B =U .2.设复数z 满足(1i)i z ⋅-=(其中i 为虚数单位),则z 的模为 .3.一组数据3,x ,5,6,7的均值为5,则方差为 .4.右图是一个算法的伪代码,其输出的结果为 .5.袋中有形状、大小都相同的5只球,其中2只白球,3只红球,从中一次随机摸出2只球,则这2只球颜色相同的概率为 .6.已知正四棱柱1111ABCD A B C D -中,AB =3,AA 1=2,P ,M 分别为BD 1,B 1C 1上的点. 若112BP PD =,则三棱锥M -PBC 的体积为______.7.在平面直角坐标系xOy 中,若双曲线)0,0(12222>>=-b a by a x 的一个焦点到一条渐近线的距离为2a ,则该双曲线的离心率为 .8. 若将函数f (x )的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f =______. 9. 已知函数()f x 是R 上的奇函数,当x ≥0时,f (x )=2x +m (m 为常数),则2(log 5)f -的值为______.10.已知函数2()e (1)x f x x ax =++的单调减区间为()ln ln e e b a ,,则a b 的值为______. 11.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的 圆C 与直线l 交于另一点D .若AB ⊥CD ,则点A 的横坐标为 .12.设H 为三角形ABC 的垂心,且3450HA HB HC ++=u u u r u u u r u u u r r ,则cos BHC ∠= .13.已知函数f (x )满足1()+()x f x f x e'=,且f (0)=1,则函数[]21()3()()2g x f x f x =-的零点个数是 .14.若数列{}n a 满足21321111222n n a a a a a a --<-<<-<L L ,则称数列{}n a 为“差半递增”数列.若数列{}n a 为“差半递增”数列,其前n 项的和为n S ,且满足221()n n S a t n N *=+-∈,则实数t 的取值范围为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出 文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱锥S —ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB ,过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ‖平面ABC .(2)求证:BC ⊥SA .16.(本小题满分14分)已知△ABC 的内角的对边分别为a 、b 、c .(1)若π3B =,b =,△ABC 的面积S ,求a+c 值; (2)若()22cos C BA BC AB AC c ⋅+⋅=u u u v u u u v u u u v u u u v ,求角C .椭圆22221x y a b +=(a >b >0)的离心率为13,左焦点F 到直线l :x =9的距离为10, 圆G :(x -1)2+y 2=1.(1)求椭圆的方程;(2)若P 是椭圆上任意一点,EH 为圆G :(x -1)2+y 2=1的任一直径,求PE PH ⋅u u u r u u u r 的取值 范围;(3)是否存在以椭圆上点M 为圆心的圆M ,使得圆M 上任意一点N 作圆G 的切线,切点为T ,都满足NF NT =M 的方程;若不存在,请说明理由.18.(本小题满分16分)如图,在某商业区周边有两条公路1l 和2l ,在点O 处交汇;该商业区为圆心角π3, 半径3km 的扇形.现规划在该商业区外修建一条公路AB ,与12l l 、分别交于A B 、,要求AB 与扇形弧相切,切点T 不在12l l 、上.(1)设km,km,OA a OB b == 试用,a b 表示新建公路AB 的长度,求出,a b 满足的关系式,并写出,a b 的范围;(2)设α=∠AOT ,试用α表示新建公路AB 的长度,并且确定A B 、的位置,使得新建公路AB 的长度最短.已知函数f (x )=x 3-x +2x .(1)求函数y =f (x )在点(1,f (1))处的切线方程;(2)令g (x )2ln x +,若函数y =g (x )在(e ,+∞)内有极值,求实数a 的取值范围;(3)在(2)的条件下,对任意t ∈(1,+∞),s ∈(0,1),求证:1()()e 2eg t g s ->+- .20.(本小题满分16分)已知数列{a n },{b n }满足,2S n =(a n +2)b n ,其中n S 是数列{a n }的前n 项和.(1)若数列{a n }是首项为23,公比为13-的等比数列,求数列{b n }的通项公式; (2)若b n =n ,a 2=3,求证:数列{a n }满足a n +a n +2=2a n +1,并写出数列{a n }的通项公式;(3)在(2)的条件下,设 n n na cb =.试问,数列{c n }中的任意一项是否总可以表示成该数列其他两项之积?若可以,请证明之;若不可以,请说明理由.数学Ⅱ(附加题)满分40分考试时间30分钟21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,每小题10分.若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.B.(选修4-2:矩阵与变换)已知线性变换T1是按逆时针方向旋转90︒的旋转变换,其对应的矩阵为M,线性变换T2:2,3x xy y'=⎧⎨'=⎩对应的矩阵为N.(1)写出矩阵M、N;(2)若直线l在矩阵NM对应的变换作用下得到方程为y=x的直线,求直线l的方程.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为,2sinxyαα⎧=⎪⎨=⎪⎩(α∈R,α为参数),曲线C2的极坐标方程为cos sin50ρθθ-=.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设P为曲线C1上一点,Q曲线C2上一点,求线段PQ的最小值.【必做题】第22、23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,已知长方体ABCD-A1B1C1D1,AB=2,AA1=1,直线BD与平面AA1B1B所成的角为30︒,AE垂直BD于点E、F为A1B1的中点.(1)求异面直线AE与BF所成角的余弦值;(2)求平面BDF与平面AA1B1B所成二面角(锐角)的余弦值.23.(本小题满分10分)设集合S={1,2,3,…,n}(n≥5,n∈N*),集合A={a1,a2,a3}满足a1<a2<a3,且a3-a2≤2,A⊆S.(1)若n = 6,求满足条件的集合A的个数;(2)对任意的满足条件的n及A,求集合A的个数.。

2020年高考数学仿真押题试卷(Word版,含答案解析)

2020年高考数学仿真押题试卷(Word版,含答案解析)

高考数学仿真押题试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数z 满足(1)2i z i -=,则下列关于复数z 说法正确的是( ) A .1z i =--B .||2z =C .2z z =D .22z =【解析】解:由(1)2i z i -=,得,故A 错;||z =B 错;2||2z z z ==,故C 正确;,故D 错误.【答案】C .2.命题“x R ∀∈,210x x -+…”的否定是( ) A .x R ∀∈,210x x -+<B .0x R ∃∈,C .0x R ∃∈,2010x x -+… D .0x R ∃∈,2010x x -+… 【解析】解:根据全称命题的否定是特称命题, 则命题的否定是:0x R ∃∈,【答案】B .3.执行如图所示的程序框图,则输出的结果是( )A .171B .342C .683D .341【解析】解:根据程序框图可知:1i =1S =;2i =2S =;3i =3S =;4i =6S =;5i =,11S =;6i =22S =;7i =,43S =;8i =,86S =;9i =171S =;10i =,342S =;11i =683S =,1110i =>满足条件. 输出683S =, 【答案】C .4.设(0,)2πα∈,(0,)2πβ∈,且,则( )A .4παβ-=B .2παβ+=C .22παβ-=D .22παβ+=【解析】解:由,可得,,即,又(0,)2πα∈,(0,)2πβ∈,则,.故,即22παβ+=.【答案】D .5.已知实数x,y满足约束条件,则目标函数的最小值为()A B C.2 D.4【解析】解:作出可行域,的几何意义表示可行域中点(,)x y与定点(1,0)D-的距离的平方,可知当1y=时,目标函数取到最小值,x=,0最小值为,【答案】D.6.某一简单几何体的三视图如图所示,该几何体的体积是()A.27 B.24 C.18 D.12【解析】解:由三视图可知,该几何体是一个长方体,其长、宽、高分别为3,其体积为.【答案】B .7.已知()f x 是定义在R 上的奇函数,若1x ,2x R ∈,则“120x x +=”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】解:函数()f x 是奇函数,∴若120x x +=,则12x x =-, 则,即成立,即充分性成立,若()0f x =,满足()f x 是奇函数,当122x x ==时, 满足,此时满足,但,即必要性不成立,故“120x x +=”是“”的充分不必要条件,【答案】A . 8.已知函数,0ω>,||)2πϕ<的部分图象如图所示,点3(0,)2-,(3π,0),7(,0)3π在图象上,若1x ,27(,)33x ππ∈,12x x ≠,且,则12()(f x x += )A .3B .32C .0D .32-【解析】解:由条件知函数的周期满足,即24ππω=,则12ω=, 由五点对应法得03πωϕ+=,即1032πϕ⨯+=,得6πϕ=-, 则,则,得3A =,即,在7(,)33ππ内的对称轴为,若1x ,27(,)33x ππ∈,12x x ≠,且,则1x ,2x 关于43x π=对称, 则,则,【答案】D . 9.若直线与圆相交,且两个交点位于坐标平面上不同的象限,则m 的取值范围是( ) A .(0,1)B .(0,2)C .(1,0)-D .(2,0)-【解析】解:根据题意,圆的圆心为(1,0),半径1r =,与x 轴的交点为(0,0),(2,0),设B 为(2,0); 直线即,恒过经过点(0,1),设(0,1)A ;当直线经过点A 、B 时,即2m =-,若直线与圆相交,且两个交点位于坐标平面上不同的象限, 必有20m -<<,即m 的取值范围为(2,0)-;【答案】D .10.在空间直角坐标系O xyz -中,四面体ABCD 各顶点坐标分别为(2A ,2,1),(2B ,2,1)-,(0C ,2,1),(0D ,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .D .6π【解析】解:通过各点的坐标可知,A ,B ,C ,D 四点恰为棱长为2的正方体的四个顶点,故此四面体与对应正方体由共同的外接球,故其表面积为:12π, 【答案】B .11.设P 是抛物线2:4C y x =上的动点,Q 是C 的准线上的动点,直线l 过Q 且与(OQ O 为坐标原点)垂直,则P 到l 的距离的最小值的取值范围是( ) A .(0,1)B .(0,1]C .[0,1]D .(0,2]【解析】解:抛物线24y x =上的准线方程是1x =-设点Q 的坐标为(1,)t -,(0)t ≠. 则直线l 的方程为.设与直线l 平行的直线方程为0x ty m -+=.代入抛物线方程可得,由△,可得2m t =.故与直线l 平行且与抛物线相切的直线方程为20x ty t -+=.∴则P 到l 的距离的最小值.【答案】B . 12.已知函数.若不等式()0f x >的解集中整数的个数为3,则a 的取值范围是( ) A .(13ln -,0]B .(13ln -,22]lnC .(13ln -,12]ln -D .[0,12]ln -【解析】解:,当10a -…时,()0f x '>,此时函数()f x 单调递增,不满足条件,舍去.当10a -<时,,可得11x a=-时取得极大值即最大值..而f (1)10a =->,f (2)20ln =>,∴必须f (3),f (4).解得:.a ∴的取值范围是(13ln -,12]ln -.【答案】C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.已知向量a 与b 的夹角为3π,||||1a b ==,且()a a b λ⊥-,则实数λ= 2 . 【解析】解:向量a 与b 的夹角为3π,||||1a b ==,且()a a b λ⊥-;∴;2λ∴=. 【答案】2.14.若21(2)n x x -展开式的二项式系数之和为64,则展开式中的常数项是 60 .【解析】解:若21(2)n x x-展开式的二项式系数之和为64,则264n =,6n ∴=.则展开式中的通项公式为,令1230r -=,求得4r =,可得常数项为426260C =, 【答案】60.15.在平面直角坐标系xOy 中,角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边交单位圆O 于点(,)P a b ,且75a b +=,则cos(2)2πα+的值是 2425- . 【解析】解:在平面直角坐标系xOy 中,角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边交单位圆O 于点(,)P a b ,∴由任意角的三角函数的定义得,sin b α=,cos a α=.75a b +=,可得:,∴两边平方可得:,可得:,解得:,∴.【答案】2425-. 16.图(1)为陕西博物馆收藏的国宝--唐金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯型几何体的主体部分可近似看作是双曲线的右支与直线0x =,4y =,2y =-围成的曲边四边形MABQ 绕y 轴旋转一周得到的几何体,如图(2).N ,P 分别为C 的渐近线与4y =,2y =-的交点,曲边五边形MNOPQ 绕y 轴旋转一周得到的几何体的体积可由祖恒原理(祖恒原理:幂势既同,则积不容异).意思是:两登高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等.那么这两个几何体的体积相等)据此求得该金杯的容积是 18π .(杯壁厚度忽略不计)【解析】解:由双曲线,得a =3b =,则渐近线方程为y =.设y h =在y 轴右侧与渐近线的交点N 的横坐标x ,与双曲线第一象限的交点M 的横坐标x =,∴金杯的容积是.【答案】18π.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且.(Ⅰ)求角C 的大小;(Ⅱ)若点D 为BC 中点,且AD =4a =,求ABC ∆的面积.【解析】解:(1),,,1cos 2C ∴=-,0C π<<, 23C π∴=;(2)ADC ∆中,AD =4a =, 由余弦定理可得,,,,解可得4AC =,6AC =-(舍),.18.如图,在三棱柱中,四边形11AA C C 是边长为2的菱形,平面ABC ⊥平面11AA C C ,160A AC ∠=︒,90BCA ∠=︒.(Ⅰ)求证:11A B AC ⊥;(Ⅱ)已知点E 是AB 的中点,BC AC =,求直线1EC 与平面11ABB A 所成的角的正弦值.【解析】(Ⅰ)证明:取AC 的中点O ,连接1A O , 由于平面ABC ⊥平面11AA C C ,1AO AC ⊥, 所以:1A O ⊥平面ABC , 所以:1AO BC ⊥, 又BC AC ⊥,所以:BC ⊥平面1A AC ,又11AC AC ⊥,1A C 为1A B 的射影, 所以:11A B AC ⊥.(Ⅱ)以O 为坐标原点建立空间直角坐标系O xyz -,(0A ,1-,0),(2B ,1,0),(0C ,1,0),1(0C ,2,则:(2,2,0)AB =,,设(m x =,y ,)z 是平面11ABB A 的法向量, 所以:100m AB m BB ⎧=⎪⎨=⎪⎩,2200x y y +=⎧⎪⎨=⎪⎩求得:,由(1E ,0,0) 求得:,直线1EC 与平面11ABB A 所成的角的正弦值.19.一家大型超市委托某机构调查该超市的顾客使用移动支付的情况.调查人员从年龄在20至60的顾客中,随机抽取了200人,调查结果如图:(Ⅰ)为推广移动支付,超市准备对使用移动支付的每位顾客赠送1个环保购物袋.若某日该超市预计有10000人购物,试根据上述数据估计,该超市当天应准备多少个环保购物袋?(Ⅱ)填写下面列联表,并根据列联表判断是否有99.9%的把握认为使用移动支付与年龄有关?(Ⅲ)现从该超市这200位顾客年龄在[55,60]的人中,随机抽取2人,记这两人中使用移支付的顾客为X 人,求X的分布列.附:【解析】解:(Ⅰ)根据图中数据,由频率估计概率,根据已知可预计该超市顾客使用移动支付的概率为:,所以超市当天应准备的环保购物袋个数为:.(Ⅱ)由(1)知列联表为:假设移动支付与年龄无关,则,,所以有99.9%的把握认为使用移动支付与年龄有关.(Ⅲ)X可能取值为0,1,2,,,,所以X的分布列为:20.已知两点(2,0)A -、(2,0)B ,动点P 与A 、B 两点连线的斜率PA k ,PB k 满足14PA PB k k =-.(Ⅰ)求动点P 的轨迹E 的方程;(Ⅱ)若H 是曲线E 与y 轴正半轴的交点,则曲线E 上是否存在两点M ,N ,使得HMN ∆是以H 为直角顶点的等腰直角三角形?若存在,请说明满足条件的点M 、N 有几对;若不存在,请说明理由. 【解析】解:(1)设动点P 的坐标为(,)x y ,因为斜率PA k ,PB k 存在,故2x ≠±, 则2PA y k x =+,2PB yk x =-, 又动点P 与A 、B 两点连线的斜率PA k ,PB k 满足14PA PB k k =-,所以,化简得,动点P 的轨迹E 的方程为:2214x y +=,(2)x ≠±(2)设能构成等腰直角三角形HMN ,其中H 为(0,1),由题意可知,直角边HM ,HN 不可能垂直或平行于x 轴,故可设HM 所在直线的方程为1y kx =+,(不妨设0)k >则HN 所在直线的方程为11y x k =-+,由求得交点28(14kM k -+,2281)14k k -++,(另一交点(0,1))H ,,用1k-代替上式中的k ,得,由||||HM HN =,得,,解得:1k =或k .当HM 斜率1k =时,HN 斜率1-;当HM 斜率k =时,HN ;当HM 斜率k =时,HN .21.设函数,实数[0a ∈,)+∞,是自然对数的底数,.(Ⅰ)若()0f x …在x R ∈上恒成立,求实数a 的取值范围;(Ⅱ)若x e lnx m +…对任意0x >恒成立,求证:实数m 的最大值大于2.3. 【解析】解:(Ⅰ),()0f x …在x R ∈上恒成立,12x e a x ∴+…,设()12x e h x x =+,,令()0h x '=,解得12x =, 当12x >,即()0h x '>,函数单调递增, 当12x <,即()0h x '<,函数单调递减, ,0a ∴<…故a的取值范围为;(Ⅱ)设,∴,()0g x '>,可得x >;()0g x '<,可得0x <.()g x ∴在,)+∞上单调递增;在上单调递减., ,∴ 1.6>,() 2.3g x ∴>.由(Ⅰ)可得,x e lnx ∴-的最小值大于2.3,故若x e lnx m +…对任意0x >恒成立,则m 的最大值一定大于2.3. 请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.[极坐标与参数方程]22.已知直线l 的参数方程为,点(1,2)P 在直线1上.(1)求m 的值;(2)以坐标原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线1:4C ρ=与直线l 交于两点A 、B ,求||||PA PB 的值.【解析】解:(1)由于点(1,2)P 在直线1上.直线l 的参数方程为,故代入直线的参数方程得到:2m =+. (2)曲线1:4C ρ=,转换为直角坐标方程为:2216x y +=, 由于圆与直线l 交于两点A 、B , 把直线的参数方程代入圆的方程得到:,故:12111(t t t =-和2t 为A 、B 对应的参数). 故:.[选修4-5:不等式选讲]23.设函数.(Ⅰ)若对(0,)…恒成立,求实数m的取值范围;f x ma∀∈+∞,()(Ⅱ)若f(2)1a<+,求a的取值范围.【解析】解:(Ⅰ)0a>,a=时取等号,a>时,,当且仅当1,()…恒成立,f x m∴…,2m(Ⅱ)f(2),,等价于或,a…或,解得2故a的取值范围为,)+∞.。

2020年高考数学仿真押题试卷(十二)(含解析)

2020年高考数学仿真押题试卷(十二)(含解析)

专题12高考数学仿真押题试卷(十二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0A =,1},{0B =,1,2},则满足A C B =U 的集合C 的个数为( ) A .4B .3C .2D .1【解析】解:Q 集合{0A =,1},{0B =,1,2},∴满足A C B =U 的集合C 有:{2},{0,2},{1,2},{0,1,2},共4个.【答案】A .2.已知i 为虚数单位,复数,则||(z = )A .235+B .202C .5D .25【解析】解:i 为虚数单位,复数,,【答案】C .3.已知平面向量a r,b r 的夹角为3π,且||1a =r ,||2b =r ,则2a b +r r 与b r 的夹角是( )A .56π B .23π C .3π D .6π 【解析】解:Q 向量a r,b r 的夹角为3π,且||1a =r ,||2b =r ,∴,,,设2a b +rr 与b r 的夹角是θ,则,0θπ<Q …,∴6πθ=.【答案】D .4.空气质量指数AQI 是一种反映和评价空气质量的方法,AQI 指数与空气质量对应如表所示:AQI0~50 51~100 101~150 151~200 201~300 300以上 空气质量优良轻度污染中度污染重度污染严重污染如图是某城市2020年12月全月的AQI 指数变化统计图:根据统计图判断,下列结论正确的是( ) A .整体上看,这个月的空气质量越来越差B .整体上看,前半月的空气质量好于后半个月的空气质量C .从AQI 数据看,前半月的方差大于后半月的方差D .从AQI 数据看,前半月的平均值小于后半月的平均值【解析】解:从整体上看,这个月AQI 数据越来越低,故空气质量越来越好;故A ,B 不正确; 从AQI 数据来看,前半个月数据波动较大,后半个月数据波动小,比较稳定,因此前半个月的方差大于后半个月的方差,所以C 正确;从AQI 数据来看,前半个月数据大于后半个月数据,因此前半个月平均值大于后半个月平均值,故D 不正确.【答案】C . 5.622()x x -的展开式中,常数项为( ) A .60- B .15- C .15 D .60【解析】解:622()x x -的展开式的通项公式为,令630r -=,求得2r =,可得常数项26460C =g , 【答案】D .6.若数列{}n a 的前n 项和为n S ,且11a =,22a =,,则(n S = )A .(1)2n n + B .12n + C .21n -D .121n ++【解析】解:由题意,可知: 根据,可知:数列{1}n S +为等比数列. 又111S a ==Q ,.112S ∴+=, 214S +=.∴12n n S += ∴21n n S =-.【答案】C .7.已知2a =,55b =,77c =,则( ) A .a b c >>B .a c b >>C .b a c >>D .c b a >>【解析】解:2a =,55b =,77c =, 则,,,b ac ∴>>, 【答案】C .8.某商场通过转动如图所示的质地均匀的6等分的圆盘进行抽奖活动,当指针指向阴影区域时为中奖.规定每位顾客有3次抽奖机会,但中奖1次就停止抽奖.假设每次抽奖相互独立,则顾客中奖的概率是()A .427 B .13C .59D .1927【解析】解:由题意应用几何概型面积之比得一次中奖概率13,第一次就中奖的概率13,第二次中奖概率为212339⨯=,第三次中奖概率为,所以顾客中奖的概率问哦.【答案】D .9.设椭圆E 的两焦点分别为1F ,2F ,以1F 为圆心,12||F F 为半径的圆与E 交于P ,Q 两点.若△12PF F 为直角三角形,则E 的离心率为( ) A .21-B .51- C .2 D .21+【解析】解:如图所示, Q △12PF F 为直角三角形,,1||2PF c ∴=,2|22PF c =,则,解得.【答案】A.10.如图,AB是圆锥SO的底面O的直径,D是圆O上异于A,B的任意一点,以AO为直径的圆与AD的另一个交点为C,P为SD的中点.现给出以下结论:①SAC∆为直角三角形;②平面SAD⊥平面SBD;③平面PAB必与圆锥SO的某条母线平行.其中正确结论的个数是()A.0 B.1 C.2 D.3【解析】解:①SO⊥Q底面圆O,∴⊥,SO ACC在以AO为直径的圆上,∴⊥,AC OC,∴⊥平面SOC,AC SC⊥,AC即①SAC∆为直角三角形正确,故①正确,②BD AD⊥Q,∴若平面SAD⊥平面SBD,则BD⊥平面SAD,AC OC⊥Q,OC SC∴⊥,在SOC∆中,SO OC⊥,在一个三角形内不可能有两个直角,故平面SAD⊥平面SBD不成立,故②错误,③连接DO并延长交圆于E,连接PO,SE,PQ为SD的中点,O为ED的中点,OP∴是SDE∆的中位线,//PO SE∴,即//SE平面APB,即平面PAB必与圆锥SO的母线SE平行.故③正确,故正确是①③,【答案】C.11.已知函数,且f(a)(1)2f a++>,则a的取值范围是()A.1(2-,)+∞B.1(1,)2--C.1(2-,0)D.1(2-,1)【解析】解:根据题意,函数,有11xx+>-,解可得11x-<<,即函数()f x的定义域为(1,1)-,设,则,则函数()g x为奇函数;分析易得:在(1,1)-上为增函数,f(a)(a)(a)(a),解可得:102a -<<,即a 的取值范围为1(2-,0);【答案】C .12.在ABC ∆中,30B =︒,3BC =,23AB =,点D 在边BC 上,点B ,C 关于直线AD 的对称点分别为B ',C ',则△BB C ''的面积的最大值为( )A .933- B .63C .93D .33【解析】解:由余弦定理可得,3AC ∴=,且,AC BC ∴⊥,以C 为原点,以CB ,CA 为坐标轴建立平面直角坐标系,如图所示: 设直线AD 的方程为3y kx =+,当D 与线段AB 的端点重合时,B ,B ',C '在同一条直线上,不符合题意,∴则3k <-,设(,)B m n ',显然0n <, 则,解得623k n +=,//CC BB ''Q ,,令,则,令()0f k '=可得3k =-或3k =(舍), ∴当3k <-时,()0f k '>,当时,()0f k '<,∴当3k =-时,()f k 取得最大值.【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知平面向量a r,b r 夹角为30︒,||3a =r ,||2b =r ,|2|a b +=r r 31 ;【解析】解:由题意,可知:..【答案】31.14.设随机变量~(2,)X B p ,若5(1)9P X =…,则()D X = 49; 【解析】解:Q 随机变量~(2,)X B p ,5(1)9P X =…, .13p ∴=,.【答案】49. 15.过平行六面体的任意两条棱的中点作直线,其中与平面11BCC B 平行的直线有 6 条;【解析】解:设AB 、11A B 、11C D 、CD 的中点分别为E 、F 、G 、H ,连接EF 、FG 、GH 、HE 、EG 、FH ,Q 平面//EFGH 平面11BCC B ,EF 、FG 、GH 、HE 、EG 、FH 都是平面EFGH 内的直线EF ∴、FG 、GH 、HE 、EG 、FH 都与平面11BCC B 平行,共6条直线,因此,满足条件:“与平面11BCC B 平行的直线平行”的直线一共有6条. 【答案】6.16.若存在正实数m ,使得关于x 方程有两个不同的实根,其中e 为自然对数的底数,则实数k 的取值范围是 1(,)e -∞-【解析】解:,,若方程存在两个不同解,则0k ≠,∴,令x mt x+=, 0m >Q ,1t ∴>, 设,则在(1,)+∞上单调递增,且g '(e )0=,()g t ∴在(1,)e 上单调递增,(,)e +∞上单调递减, ()min g x g ∴=(e )e =-,g (1)(2)0g e ==,()0g t ∴<在(1,2)e 上恒成立,∴若方程存在两个不同解,1(,0)e k∈-, 即1(,)k e∈-∞-.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且23a c =. (Ⅰ)若,求B ;(Ⅱ)若ABC ∆的面积为,求ABC ∆的周长.【解析】(本题满分为12分)解:(Ⅰ)23a c =Q ,由正弦定理可得:,可得:,1⋯分由,可得:,两边同时加sin cos C B ,可得:,可得:,3⋯分由(0,)C π∈,可得:sin 0C ≠,可求1cos 2B =,4⋯分 由(0,)B π∈,可得:53B π=⋯分(Ⅱ)由tan 33A =,可得:7cos A =,321sin A =, 可得,解得:47bc =,9⋯分又由23a c =,,可得:,联立47bc =,解得:,10⋯分化简整理可得:,解得:22c =,14b =,32a =,11⋯分可得ABC ∆的周长为.12⋯分18.如图,在四棱锥P ABCD -中,PA AD ⊥,底面四边形ABCD 为直角梯形,AD BC λ=,//AD BC ,90BCD ∠=︒,M 为线段PB 上一点.(Ⅰ)若13λ=,则在线段PB 上是否存在点M ,使得//AM 平面PCD ?若存在,请确定M 点的位置;若不存在,请说明理由;(Ⅱ)己知2PA =,1AD =,若异面直线PA 与CD 成90︒角,二而角B PC D --的余弦值为10-,求CD 的长.【解析】解:(Ⅰ)13λ=时,则在线段PB 上是存在点M ,且13PM PB =,使得//AM 平面PCD .理由如下:如图取13CN CB =,连接AN ,MN .可得//AD CN ,AD CN =,∴四边形ADCN 为平行四边形,//AN CD ∴,M Q ,N 分别为PB ,CN 的三等分点,//MN PC ∴.∴面//AMN 面PCD ,//AM ∴平面PCD .(Ⅱ)如图,过A 作//AN DC 交BC 与N ,设CD a =.则(0A ,0,0),(N a ,0,0),(0P ,0,2),(0D ,1,0).(C a ,1,0),(,0,0)DC a =u u u r,设面PDC 的法向量为(,,)m x y z =r.∴⇒(0,2,1)m =r.,.设面PNC 的法向量为111(,,)n x y z =r.⇒(2,0,)n a =r..CD ∴的长为2.19.随着经济的发展,个人收入的提高.自2020年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如表:个人所得税税率表(调整前)个人所得税税率表(调整后)免征额3500元免征额5000元 级数全月应纳税所得额税率(%)级数 全月应纳税所得额税率(%)1 不超过1500元的部分 3 1 不超过3000元的部3(1)假如小李某月的工资、薪金等所得税前收入总和不高于8000元,记x表示总收入,y表示应纳的税,试写出调整前后y关于x的函数表达式;(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:5000)7000)11000)13000)人数30 40 10 8 7 5①先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用a表示抽到作为宣讲员的收人在[3000,5000)元的人数,b表示抽到作为宣讲员的收入在[5000,7000)元的人数,随机变量||Z a b=-,求Z的分布列与数学期望;②小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收人比调整前增加了多少?【解析】解:(1)调整前y关于x的解析式为;调整后y关于x的解析式为;(2)①由频率分布表可知,从收入在[3000,5000)及[5000,7000)的人群中抽取7人,其中在[3000,5000)元的人数为3人,在[5000,7000)元的人数为4人,再从这7人中选4人,所以Z的取值可能为0,2,4;则,,,,,,,所以Z的分布列为,Z0 2 4P18351635135数学期望为;②由于小李的工资、薪金等税前收入为7500元,按调整前起征点应纳个税为(元);按调整后起征点应纳个税为(元),比较两个纳税方案可知,按照调整后起征点应纳个税少交(元),即个人的实际收入增加了220元,所以小李的实际收人比调整前增加了220元.20.已知椭圆的左、右焦点分别为1(1,0)F -,2(1,0)F 且椭圆上存在一点M ,满足.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知A ,B 分别是椭圆C 的左、右顶点,过2F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ 的交点为T ,是否存在一条定直线l ,使点T 恒在直线l 上?【解析】解:(Ⅰ)设1||F M x =,则△12MF F 中,由余弦定理得,化简得,解得65x =. 故,2a ∴=,得,因此,椭圆C 的标准方程为22143x y +=;(Ⅱ)如下图所示,已知(2,0)A -、(2,0)B ,设(,)T x y 、1(P x ,1)y 、2(Q x ,2)y ,由TA PA k k =,可得,①由TB QB k k =,可得,②上述两式相除得,又,所以,,故,③设直线PQ 的方程为1x my =+,代入椭圆C 的方程并整理得,△0>恒成立,由韦达定理得,,代入③得,得4x =,故点T 在定直线4x =上. 21.设函数.(Ⅰ)求函数()f x 的极值点个数;(Ⅱ)若.【解析】解:(Ⅰ)()f x Q 是奇函数,其图象关于原点对称, 故只需考虑(0,)x ∈+∞上的极值点的个数,,令,,故3(0,)x ∈时,()0h x '<,()h x 递减, 3(x ∈,)+∞时,()0h x '>,()h x 递增,故,取6x =,,故在3(,)+∞上存在唯一的0x 使得0()0h x =, 故()f x 在0(0,)x 递减,在0(x ,)+∞递增, 又()f x 是奇函数,故()f x 在0(,)x -∞-递增,在0(x -,0)x 递减,在0(x ,)+∞递增, 故()f x 的极值点共2个; (Ⅱ)由(Ⅰ)可知()f x 在区间3(0,)递减,且()0f x <恒成立, 故3(0,)x ∈时,,即得,又令,得,.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.(本小题满分10分[选修4-4:坐标系与参数方程]22.曲线1C 的参数方程为,以原点为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线关于1C 对称.(Ⅰ)求1C 极坐标方程,2C 直角坐标方程;(Ⅱ)将2C 向左平移4个单位长度,按照3x x y y '=⎧⎪⎨'=⎪⎩变换得到3C ;3C 与两坐标轴交于A 、B 两点,P 为3C 上任一点,求ABP ∆的面积的最大值.【解析】解:(Ⅰ)1C 的参数方程为,消去参数t 得,4x y -=,又由公式cos sin x y ρθρθ=⎧⎨=⎩,代入4x y -=,,即∴所以1C 极坐标方程是Q 曲线所以,即,即∴圆心坐标是(,0)a ,半径是a ,又曲线关于1C 对称 所以圆心在曲线1C 上,所以4a =,故(Ⅱ)将2C 向左平移4个单位长度,得到新曲线的方程是222x y a +=,再按照3x xy y '=⎧⎪⎨'=⎪⎩变换得到3C ;,整理得2211612x y +=,即,又3C 与两坐标轴交于A 、B 两点,不妨令(4,0)A ,(0B ,23),||27AB =,P 为3C 上任一点,设(4cos P θ,23sin )θ,可得,则P 到直线AB 的距离,即54πθ=时,d 取到最大值43(21)7+.ABP ∴∆的面积的最大值为.[选修4-5:不等式选讲] 23.已知.(Ⅰ)解关于x 的不等式()4f x >;(Ⅱ)对任意正数a 、b ,求使得不等式恒成立的x 的取值集合M .【解析】解:(Ⅰ)()4f x >即为,当12x …时,214x x +->,解得53x >;当102x <<时,124x x +->,解得x ∈∅; 当0x „时,,解得1x <-,综上可得,()4f x >的解集为{|1x x <-或5}3x >;(Ⅱ)对任意正数a 、b ,不等式恒成立,可得()f x 小于的最小值,由,当2a b ==时取得等号,即有()3f x <,即为,当12x …时,213x x +-<,解得1423x <„;当102x <<时,123x x +-<,解得102x <<; 当0x „时,,解得203x -<„.综上可得,.。

2020年高考数学押题卷含解答

2020年高考数学押题卷含解答
AB 2
由( 2 )可知: CD ⊥AE,又 AB//CD ,所以 AB⊥AE.
由 PA⊥平面 ABCD ,知 PA⊥AE.
又 PA∩AB=A ,所以 AE⊥平面 PAB. 又 GA 平面 PAB,所以
GA ⊥AE.
所以,要使 GA⊥平面 FAE,只需 GA⊥AF.
在 Rt△PAB 中,设 PA= x,AB=AD=y. 则 AG= 1 PB
3
6
式是( A )
A. y
3sin( 2x
2 )
1
3
C. y 3sin 2x 1
B. y
3 sin( 2 x
2 )1
3
D . y 3sin( 2x ) 1
2
3 .将一张坐标纸折叠, 使得点(0,2)与点(- 2,0)重合,且点(2004 ,
2005 )与点( m ,n)重合,则 m -n 的值为
(B)
1 .已知数列 { an } ,“对任意的 n N ,点 Pn ( n, an ) 都在直线 y=3 x+2 上”
是“ { an} 为等差数列”的 (A)
A .充分而不必要条件
B.必要而不充分条件
C.充要条件
D .既不充分也不必要条件
2 .将函数 y 3sin(2x ) 的图象按向量 a ( , 1) 平移后所得图象的解析
由 CD⊥AE,知: MH ⊥AE.
连结 FH,则 FH⊥AE,所以∠FHM 即为所求二面角的平面角 .
设 PA=AD=1 ,则
在 Rt △FMH 中, FM 1 PA 1 , MH
2
2
所以 tan FHM FM 2,即二面角 F AE
MH
1 DE
DC
1 ,

2020高考押题卷及答案(数学)

2020高考押题卷及答案(数学)

2020届高三数学高考押题试卷数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡...相应位置上...... 1.已知集合{13,}A x x x Z =≤≤∈,B={2,m ,4},若A ∩B={2,3},则实数m= .2.若复数2(1a a +∈+iiR )的实部与虚部互为相反数,则a 的值等于 . 3.两根相距6m 的木杆上系一根水平绳子,并在绳子上随机挂一盏灯,则灯与两端距离都大于2m 的概率为 .4.为了解一大片经济林的生长情况,随机测量其中若干株树木的底部周长(单位:cm),其数据绘制的频率分布直方图如图,则估计该片经济林中底部周长在[98,104)中的树木所占比例为 .5. 根据如图所示的伪代码,可知输出的结果为 .6. 已知数列是}{n a 等比数列,若456,1,a a a +成等差数列,且71a =,则10a = .则获利最大值为 百万元.(cm) 第4题图FEGHDCBAS 4S 2S 3S 113题图8.在△ABC 中,已知BC =4,AC =3,且cos(A -B)=1718,则cosC = . 9.设向量a ,b 满足2a b +=,6a b -=,则a 与b 夹角的最大值为 . 10.若函数(0)y ax a =>的最小值为4,则a 的值为_______.11. 底面半径为2cm 的圆柱形容器里放有四个半径为1cm 的实心铁球,使得四个球两两相切,其中底层两球与容器底面也相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3.12. 已知点12,F F 分别为双曲线22221(0)x y a b a b -=>>的左、右焦点,点P 为该双曲线左支上的任意一点.若221PF PF 的最小值为8a ,则该双曲线离心率e 的取值范围是 .13.如图,线段EF 和GH 把矩形ABCD 分割成四个小矩形,记四个小矩形的面积分别为(=1,2,3,4)i S i .已知AB=1,11S ≥,21S ≥,31S ≥,42S ≥,则BC 的最小值是 .14.若方程log x a a x =(1)a >有两个不相等的实数根,则实数a 的取值范围是 . 二、解答题: 本大题共6小题, 15-17每题14分,18-20每题16分,共计90分.请在答题卡指定的区域内作答..........., 解答时应写出文字说明, 证明过程或演算步骤. 15.设(,1)a x =,(2,1)b =-,(,1)c x m m =--(,x m ∈∈R R ). (1)若a 与b 的夹角为钝角,求x 的取值范围; (2)解关于x 的不等式a c a c +<-.16.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1DD 的中点. (1)求证:1BD 面EAC ;(2)求四面体1EACB 的体积.17.如图,开发商欲对边长为1km 的正方形ABCD 地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路EF (点E F 、分别在BC CD 、上),根据规划要求ECF ∆的周长为2km . (1)试求EAF ∠的大小;(2)欲使EAF ∆的面积最小,试确定点E F 、的位置.18.如图,线段AB 两端点分别在x 轴,y 轴上滑动,且AB a b =+(a b >).M 为线1D A1B D E1A 1CB C FE DCB A段AB 上一点,且MB a =,MA b =. (1)求点M 的轨迹C 的方程;(2)已知圆O :221x y +=,设P 为轨迹C 上任一点,若存在以点P 为顶点,与圆O 外切且内接于轨迹C 的平行四边形,求证:22111a+=.19.已知数列{}n a 的各项均为整数,其前6项依次构成等比数列,且从第5项起依次构成等差数列.(1)设数列{}n a 的前n 项和为n S ,且44a =,81a =-.①求满足0n S <的n 的最小值;②是否存在正整数m ,使得221m m m m a a a a ++⋅+-=成立?若存在,求出m 的值;若不存在,说明理由.(2)设数列{}n a 的前6项均为正整数,公比为q ,且(1,2)q ∈,求6a 的最小值.20.已知函数2)(x x ae e x f -+=,2)(xx e e x g --=,(,)x a ∈∈R R .⑴当1=a 时,试用)(),(),(),(y g x g y f x f 表示)(y x f +;⑵研究函数)(x f y =的图象发现:取不同的a 值,)(x f y =的图象既可以是中心对称图形,也可以是轴对称图形(对称轴为垂直于x 轴的一条直线),试求其对称中心的坐标和对称轴方程;⑶设函数)(x h 的定义域为R ,若对于任意的实数y x ,,函数)(x h 满足)()()()()()(x yh y xh xy f x yf y xf xy h ++=++,且1)()(≤-x f x h .证明:)()(x f x h =数学附加题部分(考试时间30分钟,试卷满分40分) 21.【选做题】在A ,B ,C ,D 四个小题中只能选做2个小题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4-1:几何证明选讲如图,1O 和2O 外切于点P ,延长1PO 交1O 于点A ,延长2PO 交2O 于点D ,若AC 与2O 相切于点C ,且交1O 于点B. (1)PC 平分BPD ∠;(2)2PC PB PD =⋅.B .选修4-2:矩阵与变换已知矩阵2113A ⎡⎤=⎢⎥-⎣⎦将直线:10l x y +-=变换成直线l '. (1)求直线l '的方程;(2)判断矩阵A 是否可逆?若可逆,求出矩阵A 的逆矩阵1A -;若不可逆,请说明理由.C .选修4-4:坐标系与参数方程在极坐标系中,已知点P 为圆22sin 70ρρθ+-=上任一点.求点P 到直线cos sin 70ρθρθ+-=的距离的最小值与最大值.D .选修4-5:不等式选讲设2()13f x x x =-+,实数a 满足1x a -<,求证:()()2(1)f x f a a -<+.22. 必做题(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花..①求恰有两个区域用红色鲜花的概率;②记花圃中红色鲜花区域的块数为ξ,求ξ的分布列及其数学期望()E ξ.23.必做题已知抛物线x y =2的焦点为F ,点),(00y x M (与原点不重合)在抛物线上. (1)作一条斜率为021y -的直线交抛物线于H G ,两点,连接MH MG ,分别交x 轴于B A ,两点,(直线MH MG ,与x 轴不垂直),求证MB MA =;(2)设D C ,为抛物线上两点,过D C ,作抛物线的两条切线相交于点P ,(D C ,与M 不重合,与M 的连线也不垂直于x 轴),求证:PFC PFD ∠=∠.命题人员:鲍立华 王正军 陆明明图一图二数学试题参考答案 一、填空题1.3 2.0 3. 4. 75% 5.11 6.18 7.14.75 8.169.120 10.1 11.83π+12.(1,3] 13.3+.11e a e << 二、解答题15.(1)由题知:210a b x ⋅=-<,解得12x <;又当2x =-时,a 与b 的夹角为π, 所以当a 与b 的夹角为钝角时, x 的取值范围为1(,2)(2,)2-∞-⋃-.…………………6分(2)由a c a c +<-知,0a c ⋅<,即(1)[(1)]0x x m ---<;……………………8分 当2m <时,解集为{11}x m x -<<;………………………………10分 当2m =时,解集为空集;………………………………12分当2m >时,解集为{11}x x m <<-.………………………………14分 16.(1)连接BD 交AC 于O 点,连接OE . 由题知,O 为BD 中点.∴在1BDD 中,OE 为中位线,∴OE ∥1BD ………………………………4分 又OE ⊆面EAC ,1BD ⊄面EAC∴1BD ∥面EAC .………………………………6分 (2)连接1OB .∵O 为AC 中点,EA=EC ,11B A B C = ∴EO AC ⊥,1B O AC ⊥∴1B OE ∠为二面角1E AC B --的平面角由正方体的棱长为2,得EO =1OB 13EB = ∴22211EO OB EB +=,即12B OE π∠=∴EO ⊥面1AB C ,即EO 为四面体1E AB C -的高………………………………12分∴1113E AB C AB C V EO S -=⋅11232=⨯=………………………………14分17.解:(1)设,BAE DAF αβ∠=∠=,,(01,01)CE x CF y x y ==<≤<≤, 则tan 1,tan 1x y αβ=-=-,由已知得:2x y +=,即2()2x y xy +-=…………………………………4分tan tan 112()2()tan()11tan tan 1(1)(1)[22()]x y x y x y x y x y xy x y x y αβαβαβ+-+--+-++=====----+-++-+0,24ππαβαβ<+<∴+=,即.4EAF π∠=…………………………8分(2)由(1)知,1111sin 244cos cos 4cos cos AEF S AE AF EAF AE AF αβαβ∆=⋅∠=⋅=⋅==2111142cos (sin cos )sin 22cos sin 2cos 21cos cos()4πααααααααα⋅===++++-=1)14πα++.…………………………………………………12分04πα<<,242ππα∴+=,即8πα=时AEF ∆1.22tan8tan,tan 1481tan 8ππππ=∴=-,故此时1BE DF ==所以,当1BE DF ==时,AEF ∆的面积最小.………………………………14分 18.(1)点M 的轨迹C 的方程为22221x y a b+=………………………………6分(2)显然圆O 外切的平行四边形为菱形,连接PO 并延长交椭圆C 于点Q ,过O 作PQ 垂线交椭圆于C ,D ,连接PC 与圆O 切于点H.当PO 斜率不存在时,可得22111a b+=………………………………8分 当PO 斜率存在时设为k ,PO 方程y kx =与22221x y a b +=联立解得222222a b x b a k =+,2222222a b k y b a k =+………………………………10分所以2222222222211b a k OP x y a b a b k +==++同理可求得2222222221a b k OC a b a b k+=+ 所以22221111OP OC a b +=+………………………………14分 又Rt POC ∆的斜边与圆O 切于点H ,故222111OP OC OH+= 所以22111a b +=………………………………16分 19.(1)①设数列{}n a 的前6项等比数列的公比为q ,从第5项起等差数列的公差为d .由544a a q q ==,22644a a q q ==,则244d q q =-; 又285343(44)1a a d q q q =+=+-=-,解得12q =或16q =(舍,因为n a 为整数), 所以12q =,1d =-.故61()(6,*)27(7,*)n n n n N a n n n N -⎧≤∈⎪=⎨⎪-≥∈⎩.……2分所以164[1()](6,*)2(7)(6)63(7,*)2n n n n N S n n n n N ⎧-≤∈⎪⎪=⎨--⎪-≥∈⎪⎩…………4分∵0n S < ∴7n ≥ 由(7)(6)6302n n ---<得17n >所以,满足0n S >的n 的最小值为18.……………………………6分②假设存在正整数m ,使得221m m m m a a a a ++⋅+-=成立, 即2(1)(1)0m m a a +-+= 由1m a =或21m a +=-得6m =所以,存在正整数6m =,使得221m m m m a a a a ++⋅+-=成立.…………………10分 (Ⅱ)设11n n a a q -=,由1a ,…,6a 都是正整数,则q 必为有理数.设sq r =,其中s ,r 都是正整数,且(,)1s r =,22r s r ≤<<,则5615s a a r =.由(,)1s r =,得55(,)1s r =,所以1a 是5r 的整数倍.因此,5556153243s a a s r=≥≥=.……………14分 当2r =,3s =时,即32q =,512a =时,6a 取到最小值243.……16分 20.⑴⎪⎪⎩⎪⎪⎨⎧-=+=--2)(2)(x x xx ee x g e e xf 得⎪⎩⎪⎨⎧-=+=-)()()()(xg x f e x g x f e x x )()()()(2)(y g x g y f x f e e e e y x f yx y x +=+=+--……………………………4分 (2)设)(x f 关于点),(n m 对称,则n x m f x f 2)2()(=-+n ae e ae e m x x m x x 422=+++---0)(4)(22222=++-+m m x m m x e a e e ne a e e 对R x ∈恒成立⎪⎩⎪⎨⎧==+04022m m ne a e 故当0<a 时存在对称点()0),ln(21(a - …………………………7分 同理当0>a 时存在对称轴a x ln 21=……………………………9分 当0=a 时函数不存在对称点或对称轴 ……………………………10分 (3)设)()()(x f x h x G -=,假设存在实数a 使得0)(≠a G因为)()()()()()(x yh y xh xy f x yf y xf xy h ++=++所以)()()(x yG y xG xy G +=)()()(x aG a xG xa G += ……………………………12分 )()()(x aG a xG xa G +=)()(x aG a xG -≥ 1a a G x -≥)()(1a G ax +≤ ……………………………14分即只有当)(1a G ax +≤时,)()()(x aG a xG xa G +=)()(x aG a xG -≥不等式才能恒成立与R x ∈矛盾所以不存在实数a 使得G (a )0≠,故)()(x f x h = ……………………………16分附加题部分21.A .选修4-1:几何证明选讲(1)连结2O C ,AC 切2O 于点C ,2AC OC ∴⊥,又AP 是1O 的直径,90ABP AB PB ∴∠=∴⊥,2//PB O C ∴, (2)分2BPC O PC ∴∠=∠,又22O P O C =,22O PC O CP ∴∠=∠, (4)分PC∴平分BPD ∠.………………………………………………………………………5分(2)连结CD ,可得BCP D ∠=∠,…………………………………………………6分又BPC CPD ∠=∠,BPC CPD ∴∆∆,………………………………………………………………… 8分PB PC PC PD∴=, 2PC PB PD ∴=⋅. ……………………………………………………………… 10分B .选修4-2:矩阵与变换(1)在直线l 上任取一点00(,)P x y ,设它在矩阵2113A ⎡⎤=⎢⎥-⎣⎦对应的变换作用下变为(,)Q x y .∵002113x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,………………………………………………………………2分∴000023x x y y x y =+⎧⎨=-+⎩,即003727x y x x y y -⎧=⎪⎪⎨+⎪=⎪⎩,……………………………………………………4分又∵点00(,)P x y 在直线:10l x y +-=, ∴321077x y x y -++-=, 即直线l '的方程为470x y +-=.…………………………………………………………5分(2)21013≠-,∴矩阵A 可逆. ………………………………………………7分设1a b A c d -⎡⎤=⎢⎥⎣⎦,∴11001AA -⎡⎤=⎢⎥⎣⎦, ……………………………………………8分∴21203031a c b d a c b d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解之得37171727a b c d ⎧=⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩,∴131771277A -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. ……………………10分 C .选修4-4:坐标系与参数方程圆22sin 70ρρθ+-=的普通方程为22270x y y ++-=,……………… 2分直线cos sin 70ρθρθ+-=的普通方程为70x y +-=, (4)分设点,1)P αα-,则点到直线70x y +-=的距离d == (8)分∴min d ==max d ==……………………………………10分 D .选修4-5:不等式选讲2()13f x x x =-+, 22()()-=--+f x f a x x a a ……………………………………………………2分 1=-⋅+-x a x a ……………………………………………………………………4分 1<+-x a ,………………………………………………………………………… 5分 又1()21+-=-+-x a x a a …………………………………………………… 7分 21≤-+-x a a ………………………………………………………………………9分 1212(1)<++=+a a .………………………………………………………………10分22. (1)根据分步计数原理,摆放鲜花的不同方案有:432248⨯⨯⨯=种.…………2分(2)① 设M 表示事件“恰有两个区域用红色鲜花”,如图二,当区域A 、D 同色时,共有54313180⨯⨯⨯⨯=种;当区域A 、D 不同色时,共有54322240⨯⨯⨯⨯=种;因此,所有基本事件总数为:180+240=420种.……………4分它们是等可能的。

2020年全国高考数学临考押题试卷(文科)-含答案与解析

2020年全国高考数学临考押题试卷(文科)-含答案与解析

2020年全国高考数学临考押题试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D12已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D135已知sin2()=,则sin()=()A B﹣C D﹣6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D199将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.82820(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D1【分析】利用复数的运算法则、复数相等可得a,b,再利用模的计算公式即可得出【解答】解:(1+ai)(2﹣i)=3+bi,化为:2+a+(2a﹣1)i=3+bi,∴2+a=3,2a﹣1=b,解得a=1,b=1∴z=1+i,则|z|==,故选:C【点评】本题考查了复数的运算法则、复数相等、模的计算公式,考查了推理能力与计算能力,属于基础题2已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}【分析】求出集合A,B,再由交集的定义求出A∩B【解答】解:∵集合A={x∈Z|x2﹣2x﹣3≤0}={x∈Z|﹣1≤x≤3}={﹣1,0,1,2,3},B={x|y=}={x|x≤0},∴A∩B={﹣1,0}故选:D【点评】本题考查交集的求法,交集定义等基础知识,考查运算能力,是基础题32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数【分析】根据题中给出的图形中的数据,对四个选项逐一分析判断即可【解答】解:由题意,2015年至2019年这五年内每年第二产业增加值占国内生产总值比重都在39%~40.8%,故选项A正确;2015年至2019年每年第一产业增加值占国内生产总值比重先下降后上升,但无法据此判断第一产业产值是否在下降,故选项B错误;第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加,第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数,故选项C,D正确故选:B【点评】本题考查了条形图的应用,读懂统计图并能从统计图得到必要的信息是解决问题的关键,属于基础题4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D13【分析】根据等差数列的通项公式和前n项和公式列方程组求出首项a1和公差d,即可求出a10的值【解答】解:等差数列{a n}中,a3=5,S3=12,所以,解得a1=3,d=1,所以a n=3+(n﹣1)×1=n+2,a10=10+2=12故选:C【点评】本题考查了等差数列的通项公式和前n项和公式应用问题,是基础题5已知sin2()=,则sin()=()A B﹣C D﹣【分析】利用二倍角公式化简已知等式可得cos(2α﹣)=,进而根据诱导公式即可化简求解【解答】解:因为sin2()==,可得cos(2α﹣)=,所以sin()=sin[+(2α﹣)]=cos(2α﹣)=故选:A【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a【分析】判断a<0,由幂函数y=x0.2的单调性得出0.70.2>0.30.2,由指数函数y=0.3x 的单调性得出0.30.2>0.30.5,判断b>c>0,即可得出结论【解答】解:因为a=5=﹣log35<0,由幂函数y=x0.2在(0,+∞)上是单调增函数,且0.7>0.3,所以0.70.2>0.30.2,又指数函数y=0.3x是定义域R上的单调减函数,且0.2<0.5,所以0.30.2>0.30.5,所以0.70.2>0.30.5>0,即b>c>0所以b>c>a故选:D【点评】本题考查了根据函数的单调性判断函数值大小的应用问题,是基础题7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】x2﹣mx+4>0对于∀x∈[3,+∞)恒成立,可得m<x+,求出x+的最小值,可得m的取值范围,再根据充要条件的定义即可判断【解答】解:∵x∈[3,+∞),由x2﹣mx+4>0x>0,得m<x+,∵当x∈[3,+∞)时,x+≥,当x=3时,取得最小值∴m<,∵{m|m<4}⫋{m|m}∴“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的充分不必要条件,故选:A【点评】本题考查了不等式恒成立问题和充要条件的判断,属于基础题8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D19【分析】根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,利用垂径定理得到E、F分别为AB、CD的中点,由AB=CD得到弦心距OE=OF,可得出四边形EMFO 为正方形,由M与O的坐标,利用两点间的距离公式求出OM的长,即为正方形的对角线长,求出正方形的边长OE,由圆的方程找出半径r,得OA的长,在直角三角形AOE中,由OA与OE的长,利用勾股定理求出AE的长,进而求出AB与CD的长,再利用对角线互相垂直的四边形面积等于两对角线乘积的一半,即可求出四边形ACBD的面积【解答】解:由x2﹣2x+y2﹣15=0,得(x﹣1)2+y2=16,则圆心坐标为O(1,0),根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,∴E为AB的中点,F为CD的中点,又AB⊥CD,AB=CD,∴四边形EMFO为正方形,又M(﹣1,3),∴|OM|=,∴|OE|=×=,又|OA|=4,∴根据勾股定理得:|AE|=,∴|AB|=|CD|=2|AE|=,则S四边形ACBD=|AB|•|CD|=19故选:D【点评】本题考查了直线与圆相交的性质,涉及的知识有:垂径定理,勾股定理,正方形的判定与性质,两点间的距离公式,以及对角线互相垂直的四边形面积求法,当直线与圆相交时,常常由垂径定理根据垂直得中点,然后由弦心距,弦长的一半及圆的半径构造直角三角形,利用勾股定理来解决问题,是中档题9将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z【分析】首先利用关系式的平移变换和伸缩变换的应用,求出函数的关系式,进一步利用正弦函数的性质的应用求出结果【解答】解:将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数g(x)=sin(ωx+ω+φ)的图象,因为函数y=g(x)的周期为π=,可得ω=2,所以g(x)=sin(2x++φ),因为函数y=g(x)图象的一条对称轴为直线x=,且g(x)是由f(x)的图像向左平移个单位长度得到,所以f(x)的一条对称轴为x=+=,所以2×+φ=kπ+,k∈Z,解得φ=kπ﹣,k∈Z,因为|φ|<,可得φ=,可得f(x)=sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,函数y=f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z故选:B【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于中档题10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)【分析】设出点P的坐标,根据椭圆方程求出左右焦点的坐标,然后利用点P在椭圆上以及点P满足的向量关系联立求出点P的坐标,然后利用点到直线的距离公式建立不等关系,进而可以求解【解答】解:设点P的坐标为(x0,y0),则x0>0,y0>0,由椭圆的方程可得:a2=30,b2=5,则c=,所以F1(﹣5,0),F2(5,0),则=(﹣5﹣x0,﹣y0)•(5﹣x0,﹣y0)=x…①又…②,联立①②解得:x(负值舍去),所以点P的坐标为(2,1),则点P到直线AB的距离为d==,解得﹣10,即实数m的取值范围为(﹣10,0),故选:C【点评】本题考查了椭圆的性质以及向量的坐标运算性质,考查了学生的运算能力,属于中档题11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D【分析】取AD中点M,连接PM,ON,MN,求解三角形证明OM=MA=MD=MP,说明三棱锥P﹣AOD的外接球的球心O,在PM上,求出外接球的半径,然后求解外接球的体积【解答】解:如图,取AD中点M,连接PM,∵平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA=PD=3,AD=2,所以M为底面△AOD的外心,PM⊥平面AOD,所以三棱锥P﹣AOD的外接球的球心在PM上,球心为O,设球的半径为R,PM==2,所以R2=(2R)2+12,解得R=,∴PD⊥AD,PD⊥ON,三棱锥P﹣AOD的外接球的体积:=故选:D【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m【分析】利用极值点的定义,结合题意得到方程f'(x)=0有两个正解,从而求解得出正确结论【解答】解:∵函数的定义域为:x∈(0,+∞),∴函数有两个极值点,即得f'(x)=0有两个正解,∵f'(x)=∴方程x2﹣x﹣m=0有两个正解x1,x2,故有x1+x2=1,即得B正确;根据题意,可得△=1+4m>0⇒m>,且有x1•x2=﹣m>0⇒m<0所以可得<m<0,故D正确;又因为根据二次函数的性质可知,函数y=x2﹣x﹣m的对称轴为x=,由上可得0<x1<,<x2<1,故C正确;∴﹣ln2<lnx2<0,∴x1+lnx2∈(﹣ln2,),故A错误故选:A【点评】本题考查函数极值点的定义,以及函数零点与方程的根的关系属于基础题二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=﹣4【分析】根据y=f(x)+3是R上的奇函数,并且f(1)=﹣2即可得出f(﹣1)+3=﹣(﹣2+3),然后解出f(﹣1)即可【解答】解:∵y=f(x)+3是R上的奇函数,且f(1)=﹣2,∴f(﹣1)+3=﹣[f(1)+3],即f(﹣1)+3=﹣(﹣2+3),解得f(﹣1)=﹣4 故答案为:﹣4【点评】本题考查了奇函数的定义,考查了计算能力,属于基础题14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为【分析】根据条件可得出,进而可求出的值,从而可得出与的夹角【解答】解:∵,∴,∴,且,∴,且,∴故答案为:【点评】本题考查了向量垂直的充要条件,向量数量积的运算,向量夹角的余弦公式,考查了计算能力,属于基础题15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为【分析】由|OA|=c,得到AF1⊥AB,运用双曲线的定义和直角三角形的勾股定理,可得a,c的关系,进而得到离心率【解答】解:设双曲线的半焦距为c,由|OA|==c=|OF1|+|OF2|,可得AF1⊥AB,由|BF1|=5a,可得|BF2|=5a﹣2a=3a,设|AF1|=m,可得|AF2|=m+2a,|AB|=m+3a,由直角三角形ABF1,可得(m+3a)2+(m+2a)2=(5a)2,化为m2+5ma﹣6a2=0,解得m=a,则|AF1|=3a,|AF2|=a,所以(3a)2+a2=(2c)2,即为c=a,则离心率e==故答案为:【点评】本题考查双曲线的定义和性质,以及勾股定理法运用,考查方程思想和运算能力,属于中档题16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为1010【分析】根据已知关系式推出,然后利用累乘法求出a n,再利用裂项相消法求出S n,进而可以求解【解答】解:由已知(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),则(2n2﹣n﹣1)a,即(2n+1)(n﹣1)a n=(2n﹣3)(n﹣1)a n﹣1,所以,则a×==,则S=,因为S,则,解得n,所以n的最小值为1010,故答案为:1010【点评】本题考查了数列的递推式的应用,涉及到利用累乘法求解数列的通项公式以及裂项相消求和的应用,考查了学生的运算能力,属于中档题三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值【分析】(1)由已知结合正弦定理及和差角公式进行化简可求cos B,进而可求B;(2)由余弦定理可求bc的范围,然后结合三角形的面积公式可求【解答】解:(1)因为a=b cos C+c,所以sin A=sin B cos C+sin C=sin(B+C)=sin B cos C+sin C cos B,即sin C=sin C cos B,因为sin C>0,所以cos B=,由B∈(0,π)得B=;(2)由余弦定理得b2=9=a2+c2﹣ac≥ac,当且仅当a=c时取等号,故ac≤9,△ABC面积S==故面积的最大值【点评】本题主要考查了余弦定理,正弦定理,和差角公式在三角化简求值中的应用,还考查了三角形的面积公式的应用,属于中档题18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积【分析】(1)由已知可得D1D⊥平面ABCD,则D1D⊥BC,再证明BC⊥BD,由直线与平面垂直的判定可得BC⊥平面BDD1;(2)由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,求得DD1=5,再由棱锥体积公式求四棱锥D1﹣ABCD的体积【解答】(1)证明:已知直四棱柱ABCD﹣A1B1C1D1,则D1D⊥平面ABCD,∵BC⊂平面ABCD,∴D1D⊥BC,在直角梯形ABCD中,过B作BE⊥CD,则BE=AD=2,CE=DC﹣DE=DC﹣AB=4,∴BC=,BD2=AD2+AB2=5,∴BC2+BD2=CD2,即BC⊥BD,∵BD∩DD1=D,∴BC⊥平面BDD1;(2)解:由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,且tan∠D1BD=,则DD1=5∴四棱锥D1﹣ABCD的体积V=【点评】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.828【分析】(1)求出平均值,由72与平均值比较大小得结论;(2)由题意填写2×2列联表,再求出K2的观测值k,与临界值表比较得结论;(3)利用分层抽样求出8人中文理科所占人数,再由古典概型概率计算公式求解【解答】解:(1)由表可得高三600名文科生的成绩的平均值为:=70,∴某文科生72分的成绩达到该校高三年级文科生的平均水平;(2)2×2列联表:文科理科总计较好掌握125 75 200非较好掌握475 725 1200 总计600 800 1400 K2的观测值k=≈36.762>10.828,故有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”;(3)由分层抽样方法从200名学生中抽取8名,文科所占人数为人,则理科有3人在8人中随机抽取2人,2人中至少有1人学理科的概率为P==【点评】本题考查频率分布表,考查独立性检验,训练了古典概型概率的求法,是中档题20(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值【分析】(1)由抛物线的定义和范围,可得|PF|的最小值为,可得所求抛物线的方程;(2)设直线l的方程为x=my+1,与抛物线的方程联立,运用韦达定理和弦长公式,以及中点坐标公式和两直线垂直的条件,求得|DF|,即可得到定值【解答】解:(1)抛物线C:y2=2px(p>0),焦点F(,0),准线方程为x=﹣,设P(x0,y0),x0≥0,可得x0+的最小值为=1,即p=2,所以抛物线的方程为y2=4x;(2)证明:设直线l的方程为x=my+1,与抛物线的方程y2=4x联立,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,所以AB的中点坐标为(1+2m2,2m),AB的垂直平分线方程为y﹣2m=﹣m(x﹣1﹣2m2),令y=0,解得x=2+2m2,即D(3+2m2,0),|DF|=2(1+m2),又|AB|=x1+x2+2=m(y1+y2)+4=4m2+4,则为定值【点评】本题考查抛物线的定义、方程和性质,以及直线和抛物线的位置关系,考查方程思想和运算能力,属于中档题21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3【分析】(1)f′(x)=1﹣cos x,可得f′(π),又f(π)=π,利用点斜式即可得出曲线y=f(x)在点(π,f(π))处的切线方程(2)令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0多次利用导数研究函数的单调性极值与最值即可证明结论【解答】解:(1)f′(x)=1﹣cos x,f′(π)=1﹣cosπ=2,又f(π)=π﹣sinπ=π,∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣π=2(x﹣π),即y=2x ﹣π(2)证明:令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0 g′(x)=1﹣cos x﹣x2=h(x),h(0)=0,x∈(0,π),h′(x)=sin x﹣x=u(x),u(0)=0,x∈(0,π),u′(x)=cos x﹣1<0,x∈(0,π),∴u(x)在x∈(0,π)上单调递减,∴h′(x)=u(x)<u(0)=0,∴h(x)在x∈(0,π)上单调递减,∴g′(x)=h(x)<h(0)=0,∴函数g(x)在x∈(0,π)单调递减,∴g(x)<g(0)=0∴x﹣sin x﹣x3<0,即当x∈(0,π)时,6f(x)<x3【点评】本题考查了利用导数研究函数的单调性极值、证明不等式,考查了推理能力与计算能力,属于难题选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程【分析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换,再利用三角函数的关系式的变换和三角函数的性质的应用求出结果(2)利用直线与圆的位置关系和一元二次方程根和系数关系式的应用求出直线的方程【解答】解:(1)曲线C的参数方程为(φ为参数),转换为直角坐标方程为x2+(y﹣1)2=4,根据,转换为极坐标方程为ρ2﹣2ρsinθ﹣3=设曲线上的点的坐标为P(2cosθ,1+2sinθ),原点的坐标为O(0,0),所以,当(k∈Z)时,|PO|max=3(2)直线l的参数方程为(t为参数),转换为极坐标方程为θ=α(ρ∈R),由于直线与圆相交,故,整理得ρ2﹣2ρsinα﹣3=0,所以ρA+ρB=2sinα,ρAρB=﹣3,故|OA|+|OB|==,整理得sinα=0,所以直线与x轴平行,故直线的方程为y=0【点评】本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,三角函数关系式的变换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和数学思维能力,属于基础题[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围【分析】(1)把a=3代入函数解析式,然后根据f(x)≥6,利用零点分段法解不等式即可;(2)根据绝对值不等式性质可得f(x)≥|a+2|,把不等式f(x)≥2a,对任意x∈R 恒成立转化为|a+2|≥2a恒成立,然后求出a的取值范围【解答】解:(1)把a=3代入f(x)=|x+2|+|x﹣a|,可得f(x)=|x+2|+|x﹣3|=,当x≤﹣2时,f(x)≥6等价于﹣2x+1≥6,解得x≤,则x≤﹣,当﹣2<x<3时,f(x)≥6等价于5≥6,此式不成立,当x≥3时,f(x)≥6等价于2x﹣1≥6,解得x,则x综上,不等式f(x)≥6的解集为:(﹣∞,]∪[,+∞)(2)∵f(x)=|x+2|+|x﹣a|=|x+2|+|a﹣x|≥|x+2+a﹣x|=|a+2|,∴不等式f(x)≥2a,对任意x∈R恒成立转化为|a+2|≥2a恒成立,若2a<0,即a<0,则不等式|a+2|≥2a成立,若2a≥0,即a≥0,则a2+4a+4≥4a2,即3a2﹣4a﹣4≤0,解得≤a≤2,则0≤a≤2综上,实数a的取值范围是(﹣∞,2]【点评】本题考查绝对值不等式的解法和不等式恒成立问题,考查分类讨论思想和转化思想,属于中档题。

2020高考理科数学押题密卷解析版 (12)

2020高考理科数学押题密卷解析版 (12)

钉的间隙,又碰到下一排铁钉.如此继续下去,小球最后落入下方条状的格子内求小球落到第
7 个格子(从左开始)的概率是()
A. 9 128
B. 15 128
C. 21 128
5.下列命题中,正确命题的个数是()
D. 105 512
①若 , ,则
的充要条件是

②若 , 且 ,则

③若
,则

A. B.
C. D.
ab
ab
②. a b | a b | a | a b | b 恒成立;题中的结论正确;
③.当 a 2,b 1 时, a2 +b2 5 , 4ab 3b2 5 ,不满足 a2 +b2 4ab 3b2 ,题中的结论错误;
9
④. ab 2 2 ab 2 2 2 2 恒成立.题中的结论正确;
2
190
个奇数,
所以 a20 从左到右第一个数是第191个奇数,第 n 个奇数为 2n 1, 所以第191个奇数为 2 191 1 381 .
故选:
C.
【点睛】
7
本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档
题.
4.C
解析:C
【解析】
【分析】
落入第 7 个格子需要 3 次左 6 次右,计算概率得到答案.
21.设已知函数

(1)当
时,求函数 的最大值的表达式
(2)是否存在实数 ,使得
有且仅有 3 个不等实根,且它们成等差数列,若存在,
求出所有 的值,若不存在,说明理由.
(二)选考题:共 10 分,请考生在 22、23 题中任选一道题作答。如果多做,则按所做的第

【精品】2020年高考数学终极仿真预测试卷(含答案)

【精品】2020年高考数学终极仿真预测试卷(含答案)

【精品】2020年高考数学仿真押题试卷专题21 高考数学终极仿真预测试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数z 满足,则复数z 在复平面内表示的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】解:由,得,∴复数z 在复平面内表示的点的坐标为71(,)22,所在的象限为第一象限.【答案】A .2.已知,则sin x 的值为( ) A .2-B .2 C .72D .72-【解析】解:(0,)2x π∈Q ,得(44x ππ+∈,3)4π,∴由,得..【答案】B .3.已知0sin a xdx π=⎰,则5()ax x-展开式中1x -项的系数为( )A .10B .10-C .80D .80-【解析】解:Q 已知,则展开式的通项公式为,令521r -=-,求得3r =,故展开式中1x -项的系数为,【答案】D .4.已知双曲线221169x y -=的左焦点为1F ,过1F 的直线l 交双曲线左支于A 、B 两点,则l 斜率的范围为()A .4(3-,4)3B .(-∞,33)(44-⋃,)+∞C .33(,)44-D .(-∞,44)(33-⋃,)+∞【解析】解:双曲线221169x y -=的左焦点为1F ,过1F 的直线l 交双曲线左支于A 、B 两点,双曲线的渐近线方程为:34y x =±,所以l 斜率满足3||4k >,即(k ∈-∞,33)(44-⋃,)+∞. 【答案】B . 5.已知向量a r,b r 满足,且(2)a a b ⊥+r r r ,则b r 在a r方向上的投影为( )A .1B .2-C .2D .1-【解析】解:向量a r,b r 满足,且(2)a a b ⊥+r r r,可得220a a b +=r r r g ,可得2a b =-r r g ,则b r 在a r方向上的投影为:1||a b a =-r r g r .【答案】D . 6.已知,0ω>,||)2πϕ<部分图象如图,则()f x 的一个对称中心是()A .(,0)πB .(,0)12πC .5(,1)6π-- D .(,1)6π--【解析】解:函数的最大值为1A B +=,最小值为3A B -+=-, 得2A =,1B =-, 即, ,,即T π=,即2ππω=,得2ω=,则,由五点对应法得得3πϕ=,得,由23x k ππ+=,得62k x ππ=-+,k Z ∈, 即函数的对称中心为(62k ππ-+,1)-,k Z ∈ 当0k =时,对称中心为(6π-,1)-,【答案】D .7.已知等比数列{}n a 的公比为q ,34a =,2410a a +=-,且||1q >,则其前4项的和为( ) A .5B .10C .5-D .10-【解析】解:Q 等比数列{}n a 的公比为q ,34a =,2410a a +=-,∴4410q q+=-, 解得12q =-(舍去),或2q =-,1241a q ∴==, ,【答案】C .8.已知ABC ∆是边长为2的等边三角形,D 为BC 的中点,且23BP BC =u u u r u u u r,则(AD AP =u u u r u u u r g )A .3 B .1 C .3 D .3【解析】解:由23BP BC =u u u r u u u r,可得点P 为线段AB 的三等分点且靠近点A ,过点P 作PE AD ⊥交AD 于点E ,则,【答案】B .9.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( ) A .16B .14 C .13D .12【解析】解:我市某农业经济部门派四位专家对三个县区进行调研, 每个县区至少派一位专家, 基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,∴甲,乙两位专家派遣至同一县区的概率为.【答案】A .10.已知x ,y 满足约束条件,则2z x y =+的最大值是( )A .0B .2C .5D .6【解析】解:画出约束条件表示的平面区域,如图所示;由解得(3,4)A -,此时直线在y 轴上的截距最大,所以目标函数2z x y =+的最大值为.【答案】C .11.将函数的图象向左平移8π个单位得到()g x 的图象,则()g x 在下列那个区间上单调递减( ) A .[,0]2π-B .9[,]1616ππC .[0,]2πD .[,]2ππ【解析】解:将函数的图象向左平移8π个单位得到 的图象,在区间[0,]2π上,则2[0x ∈,]π,()g x 单调递减,故C 满足条件,在区间[2π-,0]上,则2[x π∈-,0],()g x 单调递增,故A 不满足条件;在区间[16π,9]16π上,则2[8x π∈,9]8π,()g x 没有单调性,故B 不满足条件;在区间[0,]2π上,则2[0x ∈,]π,()g x 单调递减,故C 满足条件; 在区间[2π,]π上,则2[x π∈,2]π,()g x 没有单调性,故D 不满足条件,【答案】C .12.已知()f x 为定义在R 上的偶函数,,且当(x ∈-∞,0]时,()g x 单调递增,则不等式的解集为( )A .3(,)2+∞B .3(,)2-+∞C .(,3)-∞-D .(,3)-∞【解析】解:根据题意,,则,若()f x 为偶函数,则,即可得函数()g x 为偶函数,又由当(x ∈-∞,0]时,()g x 单调递增, 则,解可得32x >-,即不等式的解集为3(2-,)+∞;【答案】B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.学校要从5名男生和2名女生中随机抽取2人参加社区志愿者服务,若用ξ表示抽取的志愿者中女生的人数,则随机变量ξ的数学期望()E ξ的值是47.(结果用分数表示) 【解析】解:学校要从5名男生和2名女生中随机抽取2人参加社区志愿者服务, 用ξ表示抽取的志愿者中女生的人数, 则ξ的可能取值为0,1,2,,,,∴随机变量ξ的数学期望:.故答案为:47. 14.若,则cos2α的值是 .【解析】解:已知:,根据三角函数的诱导公式,,所以:则:3cos 5α=, 则:.故答案为:725-15.已知点F 是抛物线2:4C y x =的焦点,点M 为抛物线C 上任意一点,过点M 向圆作切线,切点分别为A ,B ,则四边形AFBM 面积的最小值为 12. 【解析】解:如下图所示:圆的圆心与抛物线的焦点重合, 若四边形AFBM 的面积最小, 则MF 最小, 即M 距离准线最近,故满足条件时,M 与原点重合,此时1MF =,,此时四边形AFBM 面积,故答案为:12. 16.设数列{}n a 是递减的等比数列,且满足2712a a =,3694a a +=,则1232n a a a a ⋯的最大值为 64 . 【解析】解:设递减的等比数列{}n a 的公比为q ,Q 2712a a =,3694a a +=, ∴,3694a a +=, 解得32a =,614a =. 36318a q a ∴==,12q ∴=,3128a a q ==,24a =,41a =.5n …时,(0,1)n a ∈. .的最大值为64.故答案为:64.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .已知.(Ⅰ)求证:2B A π-=;(Ⅱ)若3c =,3C π=,求ABC ∆的面积.【解析】解:(Ⅰ)证明:, ∴由正弦定理可得:,可得:,,,,sin02B A+≠, ,,,2B A π∴-=,即2B A π=+.(Ⅱ)3C π=Q ,,又2B A π-=,所以712B π=,12A π=, 由正弦定理得sin sin a cA C=,,.18.梯形ABCD 中,//AD BC ,6ABC π∠=,3BCD π∠=,2AD CD ==,过点A 作AE AB ⊥,交BC 于E(如图1).现沿AE 将ABE ∆折起,使得BC DE ⊥,得四棱锥B AECD -(如图2). (Ⅰ)求证:平面BDE ⊥平面ABC ;(Ⅱ)若F 为BC 的中点,求二面角D EF C --的余弦值.【解析】(Ⅰ)证明:在ABE ∆中,6ABC π∠=Q ,AE AB ⊥,3BEA π∴∠=,又3BCD π∠=,//AE DC ∴,又//AD BC ,∴四边形AECD 为平行四边形,AD CD =Q ,∴平行四边形AECD 为菱形,则DE AC ⊥, 又BC DE ⊥,AC ,BC ⊂平面ABC ,,DE ∴⊥平面ABC ,又DE ⊂Q 平面BDE ,∴平面BDE ⊥平面ABC ;(Ⅱ)解:DE ⊥Q 平面ABC ,AB ⊂平面ABC ,AB DE ∴⊥, 又AB AE ⊥,AE ,DE ⊂平面AECD ,,AB ∴⊥平面AECD ,设,O ∴,F 分别为AC ,BC 的中点,则//OF AB ,OF ∴⊥平面AECD .由(Ⅰ)得,以O 为原点,建立如图所示空间直角坐标系, 不妨设2AD CD ==,可知2AE CD ==,.则(0F ,0,3),(0C ,3,0),(1E ,0,0), 设平面EFC 的一个法向量为(,,)m x y z =r,则,取3x =,得(3,1,1)m =r.平面DEF 的一个法向量(0,1,0)n =r.设二面角D EF C --的平面角为θ,则.即二面角D EF C --的余弦值为5.19.已知动直线与y 轴交于点A ,过点A 作直线AB l ⊥,交x 轴于点B ,点C 满足3AC AB =u u u r u u u r,C 的轨迹为E .(Ⅰ)求E 的方程;(Ⅱ)已知点(1,0)F ,点(2,0)G ,过F 作斜率为1k 的直线交E 于M ,N 两点,延长MG ,NG 分别交E 于P ,Q 两点,记直线PQ 的斜率为2k ,求证:12k k 为定值. 【解析】解:()I 动直线与y 轴交于点(0,3)A k ,Q 直线AB l ⊥,∴直线AB 的方程为:,交x 轴于点2(3B k ,0).设(,)C x y ,点C 满足3AC AB =u u u r u u u r,(x ∴,,3)k -.29x k ∴=,6y k =-.消去k 可得:.即为C 的轨迹方程E .()II 证明:设M ,N ,P ,Q 的坐标依次为(i x ,)(1i y i =,2,3,4). 直线MN 的方程为:1x ty =+,联立214x ty y x =+⎧⎨=⎩,化为:,124y y t ∴+=,124y y =-,设直线MG 的方程为:2x my =+,联立224x my y x =+⎧⎨=⎩,化为:,138y y ∴=-,318y y ∴=-.同理可得:428y y =-.,2344k y y=+. ∴为定值.20.某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有两种可能10%或者20%,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.(Ⅰ)在不开箱检验的情况下,判断是否可以购买;(Ⅱ)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.()i 若此箱出现的废品率为20%,记抽到的废品数为X ,求X 的分布列和数学期望; ()ii 若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买.【解析】解:(Ⅰ)在不开箱检验的情况下,一箱产品中正品的价格期望值为:,∴在不开箱检验的情况下,可以购买.(Ⅱ)()i X 的可能取值为0,1,2,, , ,X ∴的分布列为:X 0 1 2 P0.640.320.04.()ii 设事件A :发现在抽取检验的2件产品中,其中恰有一件是废品,则P (A ),一箱产品中,设正品的价格的期望值为η,则8000η=,9000,事件1B :抽取的废品率为20%的一箱,则,事件2B :抽取的废品率为10%的一箱,则,,∴已发现在抽取检验的2件产品中,其中恰有一件是废品,不可以购买.21.已知函数.(Ⅰ)若0a =,求过点(1,0)-与曲线()y f x =相切的切线方程; (Ⅱ)若不等式恒成立,求a 的取值范围.【解析】解:(Ⅰ)当0a =时,()x f x e =,()x f x e '=,设切点为0(x ,0)x e ,则,得00x =.∴所求切线方程为1y x =+;(Ⅱ)依题意,得,即,也就是恒成立,令()x g x e x =+,则()g x 在R 上单调递增, 则等价于()x ln x a >-恒成立.即x e x a >-恒成立,即x a x e >-恒成立.令()x h x x e =-,()1x h x e '=-,由()0h x '>,得0x <,由()0h x '<,得0x >, ()h x ∴在(,0)-∞上单调递增,在(0,)+∞上单调递减..1a ∴>-.故实数a 的取值范围为(1,)-+∞.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.在平面直角坐标系xOy 中,已知曲线C 的参数方程为为参数,直线,以O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,求||||OA OB g 的值.【解析】解:(Ⅰ)由曲线C 的参数方程消去参数α可得曲线C 的普通方程为:,即,化为极坐标方程为.(Ⅱ)直线l 的极坐标方程为,将θβ=代入方程,得,123ρρ∴=-g ,.23.已知不等式的解集是A .(Ⅰ)求集合A ;(Ⅱ)设x ,y A ∈,对任意a R ∈,求证:. 【解析】解:(Ⅰ)当12x <时,不等式变形为,解得102x <<; 当112x 剟时,不等式变形为,解得112x 剟;当1x >时,不等式变形为,解得12x <<;综上得.(Ⅱ)x Q ,y A ∈,0x ∴<,2y <,,0x <Q ,2y <,,||2x y ∴-<,,Q ,,即.。

2020高考数学押题卷含答案

2020高考数学押题卷含答案

2020⾼考数学押题卷含答案⼀、选择题:本⼤题共11⼩题,每⼩题5分,共55分. 在每⼩题给出的4个选项中,只有⼀项是符合题⽬要求的. 1、集合A =1| 01x x x -??,B ={}|||x x b a -<,若“1a =”是“B A ≠?I ”的充分条件,则b 的取值范围可以是()A 、20b -≤<B 、02b <≤C 、31b -<<-D 、12b -≤<2、已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平⾯,给出下列四个命题:①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ??;④若m 、n 是异⾯直线,βααββα//,//,,//,则n n m m ??. 其中真命题是() A .①和② B .①和③C .③和④D .①和④3、函数ln(y x =的反函数是()A .2xx e e y -+= B .2x x e e y -+-=C .2xx e e y --=D .2xx e e y ---=4、若011log 22<++aa a,则a 的取值范围是()A .),21(+∞B .),1(+∞1(D .)21,0(5、在R 上定义运算).1(:y x y x -=??若不等式1)()(<+?-a x a x 对任意实数x 成⽴,则()A .11<<-aB .20<C .2321<<-aD .2123<<-a6、若钝⾓三⾓形三内⾓的度数成等差数列,且最⼤边长与最⼩边长的⽐值为m ,则m 的范围是()A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)7、若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值()A .8或-2B .6或-4C .4或-6D .2或-88、已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x a λλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则()A .0<λB .0=λC .10<<λD .1≥λ9、已知双曲线的中⼼在原点,离⼼率为3.若它的⼀条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是()B .21C .21218+D .2110、⼀给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满⾜)(*1N n a a n n ∈>+,则该函数的图象是()A B CD11、设定义域为R 的函数|lg |1||,1()0,1x x f x x -≠?=?=?,则关于x 的⽅程2()()0f x bf x c ++=有7个不同实数解的充要条件是( )(A)b<0且c>0 (B) b>0且c<0 (C)b<0且c=0 (D)b≥0且c=0⼆、填空题:本⼤题共7⼩题,每⼩题4分,共28分.把答案填在题中横线上. 12、11622(2)x x --的展开式中常数项是 .13、如图,正⽅体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点,那么点M 到截⾯ABCD 的距离是 .14、设函数f (x )的图象关于点(1,2)对称,且存在反函数1()f x -,f(4)=0,则1(4)f -= .15、某班有50名学⽣,其中 15⼈选修A 课程,另外35⼈选修B课程.从班级中任选两名学⽣,他们是选修不同课程的学⽣的慨率是.(结果⽤分数表⽰) 16、直⾓坐标平⾯xoy 中,若定点A(1,2)与动点P(x ,y)满⾜=4。

2020高考文科数学全真押题卷含解答

2020高考文科数学全真押题卷含解答

数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)1.答第Ⅰ卷前,请务必将自己的姓名、准考证号、考试科目,用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在考题卷上。

3.考试结束后,将本试卷和答题卡一并交回。

4.参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+p(B)。

如果事件A、B相互独立,那么P(A⋅B)=P(A)⋅P(B)如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中恰好发生k次的概率为P(k)=C k p k(1-p)n-kn n一、选择题:本大题共有12个小题,每小题5分,共60分。

每小题给γ β n n出的四个选项中,只有一项是符合要求的。

1.设集合 U={0,1,2,3,4,5},集合 M={0,3,5},N={1,4,5},则 M I ( N )u(A ){5} (B ){0,3} (C ){0,2,3,5} (D ) {0,1,3,4,5}2.函数 f ( x ) = x 3 + ax 2 + 3x - 9 ,已知 f ( x ) 在 x = -3 时取得极值,则a =(A )4(B )3 (C )5 (D )23.已知θ 是锐角,那么下列各值中,sin θ + cos θ 能取到的值是(A ) 43(B ) 34(C ) 53(D ) 124.若命题甲的逆命题是乙,命题甲的否命题是丙,则命题乙是命题丙的(A )逆命题 (B )逆否命题(C )否命题 (D )否定5.函数 f ( x ) =1的定义域为log (- x 2 + 4 x - 3)2(A ) (1,2) U (2,3)(B ) (-∞,1) U (3, +∞)(C )(1,3)(D )[1,3]6.已知直线 m 、n ,平面α 、β 、 ,则α ⊥ β 的一个充分不必要条件为(A ) α ⊥ γ , ⊥ γ (B )α I β = m , ⊥ m , ⊂ β(C ) m // α ,m ⊥ β(D ) m // α ,m // β2x+π⎪⎝12,0⎫⎪成中心对称(D)关于直线x=π成轴对称1247.设a>0,不等式|ax+b|<c的解集是{x|-2<x<1},则a:b:c等于(A)1:2:3(B)2:1:3(C)3:1:2(D)3:2:18.等差数列{a}中,若an4+a+a+a+a=120,则S68101215的值为:(A)180(B)240(C)360(D)7209.y=2sin⎛⎫的图象是:⎝3⎭(A)关于原点成中心对称(B)关于y轴成轴对称(C)关于点⎛π⎭1210.在R上定义运算⊗:x⊗y=x(1-y).若不等式(x-a)⊗(x+a)<1对任意实数x成立,则(A)-1<a<1(B)0<a<2(C)-1<a<322(D)-3<a<12211.在重庆召开的“市长峰会”期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A)C12A4A414128(B)C12C4C414128(C)C14C12C84A33(D)C12C4C4A314128312.定义在R上的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则下列不等式关系中正确的是(A)f(sinα)>f(cosβ)(C)f(cosα)>f(cosβ)(B)f(cosα)<f(cosβ)(D)f(sinα)<f(cosβ)第Ⅱ卷(非选择题,共90分)注意事项1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中。

2020年高考数学押题密卷(含解析)

2020年高考数学押题密卷(含解析)

2020年全国高考数学试卷及答案(名师押题预测试卷+解析答案,值得下载)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则(A B = )A .(1,2)B .(1,)+∞C .(1,2]D .(2,)+∞【解析】解:,,则【答案】A . 2.已知向量,(3,1)b =,若//a b ,则(a b = ) A .1 B .1-C .10-D .1±【解析】解:,(3,1)b =, 若//a b ,则,1m ∴=-,【答案】C .3.已知α是第二象限角,若,则sin (α= )A .223-B .13-C .13D .223【解析】解:α是第二象限角,若可得1cos 3α=-,所以.【答案】D .4.等差数列{}n a 的前项和为n S ,若3a 与8a 的等差中项为10,则10(S = ) A .200B .100C .50D .25【解析】解:由等差数列的性质可得:,则.【答案】B .5.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题: ①若m α⊂,//n α,则//m n ; ②若//m α,//m β,则//αβ; ③若n αβ=,//m n ,则//m α且//m β;④若m α⊥,m β⊥,则//αβ. 其中真命题的个数是( ) A .0B .1C .2D .3【解析】解:①若m α⊂,//n α,则m 与n 平行或异面,故不正确; ②若//m α,//m β,则α与β可能相交或平行,故不正确; ③若n αβ=,//m n ,则//m α且//m β,m 也可能在平面内,故不正确;④若m α⊥,m β⊥,则//αβ,垂直与同一直线的两平面平行,故正确 【答案】B .6.执行如图所示的程序框图,则输出的n 值是( )A.11 B.9 C.7 D.5 【解析】解:模拟程序的运行,可得1n=,0S=不满足条件37S,执行循环体,113S=⨯,3n=不满足条件37S,执行循环体,,5n=不满足条件37S,执行循环体,,7n=此时,满足条件37S,退出循环,输出n的值为7.【答案】C.7.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD-中,AB⊥平面BCD,BC CD⊥,且,M为AD的中点,则异面直线BM与CD夹角的余弦值为()A.23B.34C.33D.24【解析】解:以D为原点,DB为x轴,DC为y轴,过D作平面BDC的垂线为z轴,建立空间直角坐标系,设,则(1A,0,1),(1B,0,0),(0C,0,0),(0D,1,0),111 (,,)222 M,则,(0CD =,1,0),设异面直线BM 与CD 夹角为θ,则.∴异面直线BM 与CD 夹角的余弦值为33. 【答案】C .8.设0a >且1a ≠,则“b a >”是“log 1a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】解:充分性:当01a <<时,“b a >”时“log 1a b <”故充分性不成立. 必要性:当log 1a b >时,若01a <<,则0b a <<,故充分性不成立. 综上,“b a >”是“log 1a b >”的既不充分也不必要条件. 【答案】D .9.某空间几何体的三视图如图所示,其中正视图和俯视图均为边长为1的等腰直角三角形,则此空间几何体的表面积是( )A.322+B.312+C.3122++D.23+【解析】解:由题意可知几何体的直观图如图是正方体的一部分,三棱锥A BCD-,正方体的棱长为1,所以几何体的表面积为:.【答案】C.10.程序框图如图,若输入的2a=,则输出的结果为()A .20192B .1010C .20232D .1012【解析】解:模拟程序的运行,可得2a =,0S =,0i = 执行循环体,2S =,12a =,1i = 满足条件2019i ,执行循环体,122S =+,1a =-,2i = 满足条件2019i ,执行循环体,1212S =+-,2a =,3i = 满足条件2019i ,执行循环体,,12a =,4i = ⋯由于,观察规律可知,满足条件2019i ,执行循环体,,12a =,2020i = 此时,不满足条件2019i ,退出循环,输出.【答案】D .11.将三颗骰子各掷一次,设事件A = “三个点数互不相同”, B = “至多出现一个奇数”,则概率()P A B 等于( ) A .14B .3536C .518D .512【解析】解:将三颗骰子各掷一次,设事件A = “三个点数互不相同”, B = “至多出现一个奇数”, 基本事件总数,AB 包含的基本事件个数,∴概率.【答案】C .12.已知定义在R 上的连续可导函数()f x 无极值,且x R ∀∈,,若在3[,2]2ππ上与函数()f x 的单调性相同,则实数m 的取值范围是( ) A .(-∞,2]- B .[2-,)+∞ C .(-∞,2] D .[2-,1]-【解析】解:定义在R 上的连续可导函数()f x 无极值,方程()0f x '=无解,即()f x 为R 上的单调函数,,则()2018x f x +为定值, 设,则,易知()f x 为R 上的减函数,,,又()g x 与()f x 的单调性相同, ()g x ∴在R 上单调递减,则当3[,2]2x ππ∈,()0g x '恒成立, 即,当3[,2]2x ππ∈,则5[63x ππ+∈,13]6π, 则当26x ππ+=时,取得最大值2,此时取得最小值2-,即2m -,即实数m 的取值范围是(-∞,2]-, 【答案】A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.函数1()x f x e -=在(1,1)处切线方程是 . 【解析】解:函数1()x f x e -=的导数为1()x f x e -'=,∴切线的斜率k f ='(1)1=,切点坐标为(1,1),∴切线方程为1y x -=,即y x =.故答案为:y x =.14.已知P 是抛物线24y x =上一动点,定点(0,22)A ,过点P 作PQ y ⊥轴于点Q ,则||||PA PQ +的最小值是 .【解析】解:抛物线24y x =的焦点坐标(1,0),P 是抛物线24y x =上一动点,定点(0,22)A ,过点P 作PQ y ⊥轴于点Q ,则||||PA PQ +的最小值,就是PF 的距离减去y 轴与准线方程的距离, 可得最小值为:.故答案为:2.15.设n S 是数列{}n a 的前n 项和,点(n ,*)()n a n N ∈在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为 1nn + .【解析】解:点(n ,*)()n a n N ∈在直线2y x =上,2n a n ∴=..∴.则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和.故答案为:1nn +. 16.已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为 254π .【解析】解:由圆锥体积为23π,其底面半径为1, 可求得圆锥的高为2, 设球半径为R ,可得方程:,解得54R =, ∴,故答案为:254π. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别是ABC ∆的三个内角A ,B ,C 的对边,若10a =,角B 是最小的内角,且.(Ⅰ)求sin B 的值;(Ⅱ)若ABC ∆的面积为42,求b 的值. 【解析】(本题满分为12分) 解:(Ⅰ)由、及正弦定理可得:,⋯⋯由于sin 0A >,整理可得:,又sin 0B >, 因此得3sin 5B =.⋯⋯ (Ⅱ)由(Ⅰ)知3sin 5B =, 又ABC ∆的面积为42,且10a =, 从而有,解得14c =,⋯⋯又角B 是最小的内角, 所以03Bπ<,且3sin 5B =,得4cos 5B =,⋯⋯ 由余弦定理得,即62b =.⋯⋯18.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、0~2000步,(说明:“0~2000”表示“大于或等于0,小于2000”,以下同理),B 、2000~5000步,C 、5000~8000步,D 、8000~10000步,E 、步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.若某人一天的走路步数大于或等于8000,则被系统认定为“超越者”,否则被系统认定为“参与者”. (Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在2000~8000的人数;(Ⅱ)若在大学生M 该天抽取的步数在8000~12000的微信好友中,按男女比例分层抽取9人进行身体状况调查,然后再从这9位微信好友中随机抽取4人进行采访,求其中至少有一位女性微信好友被采访的概率;(Ⅲ)请根据抽取的样本数据完成下面的22⨯列联表,并据此判断能否有95%的把握认为“认定类别”与“性别”有关?参与者超越者 合计 男 20 女20合计 40附:,,20()P K k0.10 0.050 0.010 0k 2.706 3.841 6.635【解析】解:(Ⅰ)所抽取的40人中,该天行走2000~8000步的人数:男12人, 女14人⋯⋯,400位参与“微信运动”的微信好友中,每天行走2000~8000步的人数 约为:人⋯⋯;(Ⅱ)该天抽取的步数在8000~12000的人数:男8人,女4人, 再按男女比例分层抽取9人,则其中男6人,女3人⋯⋯所求概率(或⋯⋯ (Ⅲ)完成22⨯列联表⋯⋯参与者 超越者 合计男 12 8 20女 16 4 20合计 28 12 40计算,⋯⋯因为1.905 3.841<,所以没有理由认为“认定类别”与“性别”有关, 即“认定类别”与“性别”无关 ⋯⋯19.如图,在正三棱柱中,12AB AA ==,E ,F 分别为AB ,11B C 的中点.(Ⅰ)求证:1//B E 平面ACF ;(Ⅱ)求CE 与平面ACF 所成角的正弦值.【解析】证明:(Ⅰ)取AC 的中点M ,连结EM ,FM ,在ABC ∆中, 因为E 、M 分别为AB ,AC 的中点,所以//EM BC 且12EM BC =, 又F 为11B C 的中点,11//B C BC ,所以1//B F BC 且112B F BC =,即1//EM B F 且1EM B F =,故四边形1EMFB 为平行四边形,所以,又MF ⊂平面ACF ,1B E ⊂/平面ACF ,所以1//B E 平面ACF .⋯⋯解:(Ⅱ)取BC 中点O ,连结AO 、OF ,则AO BC ⊥,OF ⊥平面ABC ,以O 为原点,分别以OB 、AO 、OF 为x 轴、y 轴、z 轴,建立空间直角坐标系 ⋯⋯ 则有, 得 设平面ACF 的一个法向量为(n x =,y ,)z则00n CA n CF ⎧=⎪⎨=⎪⎩,即3020x y x z ⎧-=⎪⎨+=⎪⎩,令3z =-,则(23n =,2,3)-,⋯⋯ 设CE 与平面ACF 所成的角为θ,则,所以直线CE 与平面ACF 所成角的正弦值为21919.⋯⋯。

2020年江苏省高考押题卷数学试题(详解版)

2020年江苏省高考押题卷数学试题(详解版)

12. 已知正实数 x,y 满足 x (x 1 )2 1, 则 x 1 的最小值为 ▲ .
yy
y
13.如图,在平行四边形 ABCD 中,AB=2AD,E, F 分别
D
为 AD,DC 的中点,AF 与 BE 交于点 O.若
E
O
12AD AB 5OF OB ,则∠DAB 的余弦值为 ▲ .A
F
条渐近线方程是 y 3x ,则该双曲线标准方程为 ▲ . 8.已知 sin cos 2 5 ,则 sin 2 cos 4 的值为 ▲ .
5
(第 4 题)
数学试题 第 1 页 共 6 页
9. 设 Sn 为等差数列{an}的前 n 项和,若 2a3 a5 1, S10 100 ,则 S20 的值为 ▲ . 10. 埃及数学中有一个独特现象:除 2 用一个单独的符号表示以外,其它分数都要写成若干
,2 7
1 4
1 28
,2 9
1 5
1 45

按此规律,
2 n
▲ (n 5,7,9,11,„) .
11. 在平面直角坐标系 xOy 中,已知圆 C : (x 2)2 y2 4 ,点 P 是圆 C 外的一个动点,
直线 PA,PB 分别切圆 C 于 A,B 两点.若直线 AB 过定点(1,1),则线段 PO 长的最小 值为 ▲ .
1. 已知集合 M {1,0,1,2 },集合 N { x | x2 x 2 0 },
则集合 M∩N ▲ .
2.
已知复数
z
2
i
1
2
i
(i 为虚数单位),则 z 的共轭复数 z
▲.
3. 为了解学生课外阅读的情况,随机统计了 n 名学生的课外

2020届河北衡水密卷新高考押题仿真模拟(十二)理科数学

2020届河北衡水密卷新高考押题仿真模拟(十二)理科数学

2020届河北衡水密卷新高考押题仿真模拟(十二)理科数学★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{1,0,1,2,3}M =-,{}2|20=-…N x x x ,则M N =I ( ) A. {1,0,1,2}- B. {1,0,1}-C. {0,1,2}D. {0,1}【答案】C 【解析】 【分析】求出N 中不等式的解集确定出N ,找出M 与N 的交集即可. 【详解】由N 中不等式变形得:x (x ﹣2)≤0, 解得:0≤x ≤2,即N =[0,2], ∵M ={﹣1,0,1,2,3}, ∴M ∩N ={0,1,2}, 故选C .【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 2.复数212ii+=-( )A. iB. -iC.4i 5+ D.4i 5- 【答案】A 【解析】 【分析】由复数代数形式的乘除运算化简得答案.【详解】∵()()()()21222241212125i i i i ii i i i +++-++===--+. 故选A .【点睛】本题考查复数代数形式的乘除运算,是基础题.3.已知向量()()121a b m =-=-r r ,,,,若a b λ=r r (λ∈R ),则m =( ) A. -2 B. 12-C.12D. 2【答案】C 【解析】 【分析】根据向量的坐标运算计算即可.【详解】∵向量()()121a b m =-=-r r ,,,,a b λ=r r (λ∈R ),∴()12-,=λ()1m -,, ∴12mλλ-=⎧⎨=-⎩,∴m =12,故选C .【点睛】本题考查了共线向量的坐标运算,属于基础题.4.已知等差数列{}n a 的前n 项和为n S ,若2466++=a a a ,则7S =( ) A .7B. 14C. 21D. 42【答案】B 【解析】【分析】由等差数列的性质可得:a 4=2,而由求和公式可得S 7=7a 4,代入可得答案. 【详解】由等差数列的性质可得:2a 4=a 2+a 6,又2466++=a a a ,解得a 4=2,而S 7()17477222a a a +⨯===7a 4=14 故选B .【点睛】本题考查等差数列的性质和求和公式,属基础题. 5.已知,a b ∈R ,则“0a b <<”是“11a b>”的( ) A. 充分不必要条件 B. 必要比充分条件 C. 充要条件 D. 既不充分又不必要条件【答案】A 【解析】 【分析】根据充分必要条件的定义分别判断其充分性和必要性即可. 【详解】若11a b >,即b a ab->0, ∴00b a ab ->⎧⎨⎩>或00b a ab -<⎧⎨⎩<,即a ,b 同号时:a <b ,a ,b 异号时:a >b ,∴当a <b<0时,11a b >成立,但11a b >成立,不一定有a <b<0, 所以“0a b <<”是“11a b>”的充分不必要条件故选A .【点睛】本题考查了充分必要条件,考查不等式问题,是一道基础题. 6.执行右图所示的程序框图,则输出的n =( )A. 3B. 4C. 5D. 6【答案】C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】第一次执行循环体后,n =1,不满足退出循环的条件, 第二次执行循环体后,n =2,不满足退出循环的条件, 第三次执行循环体后,n =3,不满足退出循环的条件, 第四次执行循环体后,n =4,不满足退出循环的条件, 第四次执行循环体后,n =5,满足退出循环的条件, 故输出的n 值为5, 故选C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.已知 1.22a =,0.43b =,8ln 3=c ,则( ) A. b a c >> B. a b c >>C. b c a >>D. a c b >>【答案】B 【解析】 【分析】容易得出 1.20.4822132013ln ><<<,,<,从而得出a ,b ,c 的大小关系.【详解】 1.210.50.40822223331013a b c ln lne =>=>>==<==,>,<; ∴a >b >c . 故选B .【点睛】本题考查指数函数、对数函数的单调性,考查了比较大小的方法:中间量法.8.函数3()e 1=+x x f x 的图象大致是( )A. B.C. D.【答案】D 【解析】 【分析】利用特殊值及函数的导数判断函数的单调性进行排除,即可得到函数的图象. 【详解】当x<0时,f (x )<0.排除AC , f ′(x )()()()32222333(1)11x xx xxxx e xe x e x e ee+-+-==++,令33x x e xe +-=g (x )g ′(x )()()312xxxe x e x e =-+=-,当x ∈(0,2),g ′(x )>0,函数g (x )是增函数,当x ∈(2,+∞),g ′(x )<0,函数g (x )是减函数,g (0)= 60>,g (3)=3>0, g (4)=4 3e -<0, 存在()03,4x ∈,使得g (0x )=0,且当x ∈(0,0x ),g (x )>0,即f ′(x )>0,函数f (x )是增函数,当x ∈(0x ,+∞),g (x )<0,即f ′(x )<0,函数f (x )是减函数, ∴B 不正确, 故选D .【点睛】本题考查函数图象的判断,一般通过函数的定义域、值域、奇偶性、对称性、单调性、特殊点以及变化趋势判断.9.已知角α的顶点在坐标原点O ,始边与x 轴的非负半轴重合,将α的终边按顺时针方向旋转4π后经过点(3,4),则sin 2α=( ) A. 1225-B. 725-C.725D.2425【答案】B 【解析】 【分析】由题意利用任意角的三角函数的定义及二倍角的余弦公式,求得结果.【详解】∵角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边按顺时针方向旋转4π后经过点(3,4),∴345cos πα⎛⎫-= ⎪⎝⎭,∴27212?2242542cos cos cos sin πππαααα⎛⎫⎛⎫⎛⎫--=-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ∴7225sin α=-, 故选B .【点睛】本题主要考查任意角的三角函数的定义,二倍角的余弦公式,考查了逻辑思维能力,属于基础题. 10.若函数()sin(2)(0)f x x ϕϕ=+>的图象关于点,03π⎛⎫⎪⎝⎭对称,则ϕ的最小值为( ) A.12πB.6πC.3π D.512π 【答案】C 【解析】 【分析】由正弦函数图象的性质可得φ=23k ππ-,(k ∈z )再求解即可.【详解】由f (x )=sin (2x +φ),令23π⨯+φ=kπ,(k ∈z ) 得:φ23k ππ=-,(k ∈z )又φ>0,所以k =1时 则φmin 3π=,故选C .【点睛】本题考查了正弦函数图象的性质,属简单题.11.已知向量a r =22b a b =⋅=-r r r ,,.若1c a b --=r r r ,则c r的取值范围是( )A. 13,22⎡⎤⎢⎥⎣⎦B. 15,22⎡⎤⎢⎥⎣⎦C. [2,3]D. [1,3]【答案】D 【解析】 【分析】由题意得到a r ,b r是夹角为23π,模为2的两个向量,设OA a =u u u r r ,OB b =u u u r r , O C c =u u u r r ,利用向量加减法的几何意义求出C 的轨迹,则可求得c r 的取值范围.【详解】因为向量a r =22b a b a b cos θ=⋅==-r r r r r ,,可得12cos θ=-,所以a r ,b r是夹角为23π,模为2的两个向量,设OA a =u u u r r ,OB b =u u u r r , O C c =u u u r r ,则A ,B 在以原点为圆心,2为半径的圆上,如图,不妨令A (2,0),则B (-13,则13OA OB OD +==u u u r u u u r u u u r,,则1c a b OC OA OB OC OD DC --=--=-==u u u r u u u r u u u r u u u r u u u r u u u r r r r ,所以C 在以D 为圆心,1为半径的圆上,c OC =u u u r r ,即求以D 为圆心,1为半径的圆上的动点C 到(0,0)的距离的最值问题, 又|OD |2=.所以OC u u u r∈[21-,21+]= [1,3],故选D .【点睛】本题考查了向量加减法的几何意义的应用,考查了动点的轨迹问题,考查了转化思想,解题时我们要根据题目中已知的条件,选择转化的方向,属于中档题.12.定义在R 上的可导函数()f x 满足(2)()22-=-+f x f x x ,记()f x 的导函数为()f x ',当1x „时恒有()1f x '<.若()(12)31---…f m f m m ,则m 的取值范围是( ) A. (],1-∞- B. 1,13⎛⎤- ⎥⎝⎦C. [)1,-+∞D. 11,3⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】令g (x )=f (x )-x ,求得g (x )=g (2﹣x ),则g (x )关于x =1对称,再由导数可知g (x )在1x „时为减函数,化f (m )﹣f (1﹣2m )≥3m ﹣1为g (m )≥g (1﹣2m ),利用单调性及对称性求解. 【详解】令g (x )=f (x )-x ,g ′(x )=f ′(x )﹣1,当x ≤1时,恒有f '(x )<1.∴当x ≤1时,g (x )为减函数, 而g (2﹣x )=f (2﹣x )-(2﹣x ), ∴由(2)()22-=-+f x f x x 得到 f (2﹣x )-(2﹣x )=f (x )-x ∴g (x )=g (2﹣x ). 则g (x )关于x =1对称,由f (m )﹣f (1﹣2m )≥3m ﹣1,得f (m )-m ≥f (1﹣2m )-(1﹣2m ), 即g (m )≥g (1﹣2m ),∴1121m m -≥--,即-113m ≤≤. ∴实数m 的取值范围是[﹣1,13]. 故选D .【点睛】本题考查利用导数研究函数的单调性,构造函数是解答该题的关键,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分。

2020河南高考数学模拟押题卷及答案

2020河南高考数学模拟押题卷及答案

19.(12 分)
已知椭圆
C:
x2 a2+y2 b2 Nhomakorabea=1
(a>b>0)过点(
1 2
,-
15
),顺次连接椭圆 C 的 4 个顶
4
点,得到的四边形的面积为 4. (Ⅰ)求椭圆 C 的方程; (Ⅱ)已知直线 l:y=kx+2 与椭圆 C 交于 M,N 两点,若∠MON 为锐角(O 为坐标原 点),求实数 k 的取值范围.
2 32
B.[ , ]
24
3 52
C.[ , ]
28
3 32
D.[ , ]
24
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
3x-2 y≤6,
13.已知实数
x,y
满足
x+2
y≥3,则
z=2x+y
的最大值为
y≤3,
__________.
14.运行如图所示的程序框图,则输出的 S 的值为__________.
x∈[0,4]时,
f
x =
3 2
x
-1,0≤x<2,

f(f(2020))+f(2021)=

5 8
x+
5 2
,2≤x≤4,
5
A.-
8
3
B.
8
5
C.
8
13
D.
8
8.2020 年 2 月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等
多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调
20.(12 分) 某 24 小时便利店计划购进一款盒装寿司(保质期为 2 天),已知该款寿司的进价为 10 元 /盒,售价为 15 元/盒,如果 2 天之内无法销售,就当做垃圾处理,且 2 天内的销售 情况相互独立.若该便利店每两天购进一批新做寿司,连续 200 天该款寿司的日销售情 况如下表所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题12高考数学仿真押题试卷(十二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0A =,1},{0B =,1,2},则满足A C B =U 的集合C 的个数为( ) A .4B .3C .2D .1【解析】解:Q 集合{0A =,1},{0B =,1,2},∴满足A C B =U 的集合C 有:{2},{0,2},{1,2},{0,1,2},共4个.【答案】A .2.已知i 为虚数单位,复数,则||(z = )A .235+B .202C .5D .25【解析】解:i 为虚数单位,复数,,【答案】C .3.已知平面向量a r,b r 的夹角为3π,且||1a =r ,||2b =r ,则2a b +r r 与b r 的夹角是( )A .56π B .23π C .3π D .6π 【解析】解:Q 向量a r,b r 的夹角为3π,且||1a =r ,||2b =r ,∴,,,设2a b +rr 与b r 的夹角是θ,则,0θπ<Q …,∴6πθ=.【答案】D .4.空气质量指数AQI 是一种反映和评价空气质量的方法,AQI 指数与空气质量对应如表所示:AQI0~50 51~100 101~150 151~200 201~300 300以上 空气质量优良轻度污染中度污染重度污染严重污染如图是某城市2020年12月全月的AQI 指数变化统计图:根据统计图判断,下列结论正确的是( ) A .整体上看,这个月的空气质量越来越差B .整体上看,前半月的空气质量好于后半个月的空气质量C .从AQI 数据看,前半月的方差大于后半月的方差D .从AQI 数据看,前半月的平均值小于后半月的平均值【解析】解:从整体上看,这个月AQI 数据越来越低,故空气质量越来越好;故A ,B 不正确; 从AQI 数据来看,前半个月数据波动较大,后半个月数据波动小,比较稳定,因此前半个月的方差大于后半个月的方差,所以C 正确;从AQI 数据来看,前半个月数据大于后半个月数据,因此前半个月平均值大于后半个月平均值,故D 不正确.【答案】C . 5.622()x x -的展开式中,常数项为( ) A .60- B .15- C .15 D .60【解析】解:622()x x -的展开式的通项公式为,令630r -=,求得2r =,可得常数项26460C =g , 【答案】D .6.若数列{}n a 的前n 项和为n S ,且11a =,22a =,,则(n S = )A .(1)2n n + B .12n + C .21n -D .121n ++【解析】解:由题意,可知: 根据,可知:数列{1}n S +为等比数列. 又111S a ==Q ,.112S ∴+=, 214S +=.∴12n n S += ∴21n n S =-.【答案】C .7.已知2a =,55b =,77c =,则( ) A .a b c >>B .a c b >>C .b a c >>D .c b a >>【解析】解:2a =,55b =,77c =, 则,,,b ac ∴>>, 【答案】C .8.某商场通过转动如图所示的质地均匀的6等分的圆盘进行抽奖活动,当指针指向阴影区域时为中奖.规定每位顾客有3次抽奖机会,但中奖1次就停止抽奖.假设每次抽奖相互独立,则顾客中奖的概率是()A .427 B .13C .59D .1927【解析】解:由题意应用几何概型面积之比得一次中奖概率13,第一次就中奖的概率13,第二次中奖概率为212339⨯=,第三次中奖概率为,所以顾客中奖的概率问哦.【答案】D .9.设椭圆E 的两焦点分别为1F ,2F ,以1F 为圆心,12||F F 为半径的圆与E 交于P ,Q 两点.若△12PF F 为直角三角形,则E 的离心率为( ) A .21-B .51- C .2 D .21+【解析】解:如图所示, Q △12PF F 为直角三角形,,1||2PF c ∴=,2|22PF c =,则,解得.【答案】A.10.如图,AB是圆锥SO的底面O的直径,D是圆O上异于A,B的任意一点,以AO为直径的圆与AD的另一个交点为C,P为SD的中点.现给出以下结论:①SAC∆为直角三角形;②平面SAD⊥平面SBD;③平面PAB必与圆锥SO的某条母线平行.其中正确结论的个数是()A.0 B.1 C.2 D.3【解析】解:①SO⊥Q底面圆O,∴⊥,SO ACC在以AO为直径的圆上,∴⊥,AC OC,∴⊥平面SOC,AC SC⊥,AC即①SAC∆为直角三角形正确,故①正确,②BD AD⊥Q,∴若平面SAD⊥平面SBD,则BD⊥平面SAD,AC OC⊥Q,OC SC∴⊥,在SOC∆中,SO OC⊥,在一个三角形内不可能有两个直角,故平面SAD⊥平面SBD不成立,故②错误,③连接DO并延长交圆于E,连接PO,SE,PQ为SD的中点,O为ED的中点,OP∴是SDE∆的中位线,//PO SE∴,即//SE平面APB,即平面PAB必与圆锥SO的母线SE平行.故③正确,故正确是①③,【答案】C.11.已知函数,且f(a)(1)2f a++>,则a的取值范围是()A.1(2-,)+∞B.1(1,)2--C.1(2-,0)D.1(2-,1)【解析】解:根据题意,函数,有11xx+>-,解可得11x-<<,即函数()f x的定义域为(1,1)-,设,则,则函数()g x为奇函数;分析易得:在(1,1)-上为增函数,f(a)(a)(a)(a),解可得:102a -<<,即a 的取值范围为1(2-,0);【答案】C .12.在ABC ∆中,30B =︒,3BC =,23AB =,点D 在边BC 上,点B ,C 关于直线AD 的对称点分别为B ',C ',则△BB C ''的面积的最大值为( )A .933- B .63C .93D .33【解析】解:由余弦定理可得,3AC ∴=,且,AC BC ∴⊥,以C 为原点,以CB ,CA 为坐标轴建立平面直角坐标系,如图所示: 设直线AD 的方程为3y kx =+,当D 与线段AB 的端点重合时,B ,B ',C '在同一条直线上,不符合题意,∴则3k <-,设(,)B m n ',显然0n <, 则,解得623k n +=,//CC BB ''Q ,,令,则,令()0f k '=可得3k =-或3k =(舍), ∴当3k <-时,()0f k '>,当时,()0f k '<,∴当3k =-时,()f k 取得最大值.【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知平面向量a r,b r 夹角为30︒,||3a =r ,||2b =r ,|2|a b +=r r 31 ;【解析】解:由题意,可知:..【答案】31.14.设随机变量~(2,)X B p ,若5(1)9P X =…,则()D X = 49; 【解析】解:Q 随机变量~(2,)X B p ,5(1)9P X =…, .13p ∴=,.【答案】49. 15.过平行六面体的任意两条棱的中点作直线,其中与平面11BCC B 平行的直线有 6 条;【解析】解:设AB 、11A B 、11C D 、CD 的中点分别为E 、F 、G 、H ,连接EF 、FG 、GH 、HE 、EG 、FH ,Q 平面//EFGH 平面11BCC B ,EF 、FG 、GH 、HE 、EG 、FH 都是平面EFGH 内的直线EF ∴、FG 、GH 、HE 、EG 、FH 都与平面11BCC B 平行,共6条直线,因此,满足条件:“与平面11BCC B 平行的直线平行”的直线一共有6条. 【答案】6.16.若存在正实数m ,使得关于x 方程有两个不同的实根,其中e 为自然对数的底数,则实数k 的取值范围是 1(,)e -∞-【解析】解:,,若方程存在两个不同解,则0k ≠,∴,令x mt x+=, 0m >Q ,1t ∴>, 设,则在(1,)+∞上单调递增,且g '(e )0=,()g t ∴在(1,)e 上单调递增,(,)e +∞上单调递减, ()min g x g ∴=(e )e =-,g (1)(2)0g e ==,()0g t ∴<在(1,2)e 上恒成立,∴若方程存在两个不同解,1(,0)e k∈-, 即1(,)k e∈-∞-.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且23a c =. (Ⅰ)若,求B ;(Ⅱ)若ABC ∆的面积为,求ABC ∆的周长.【解析】(本题满分为12分)解:(Ⅰ)23a c =Q ,由正弦定理可得:,可得:,1⋯分由,可得:,两边同时加sin cos C B ,可得:,可得:,3⋯分由(0,)C π∈,可得:sin 0C ≠,可求1cos 2B =,4⋯分 由(0,)B π∈,可得:53B π=⋯分(Ⅱ)由tan 33A =,可得:7cos A =,321sin A =, 可得,解得:47bc =,9⋯分又由23a c =,,可得:,联立47bc =,解得:,10⋯分化简整理可得:,解得:22c =,14b =,32a =,11⋯分可得ABC ∆的周长为.12⋯分18.如图,在四棱锥P ABCD -中,PA AD ⊥,底面四边形ABCD 为直角梯形,AD BC λ=,//AD BC ,90BCD ∠=︒,M 为线段PB 上一点.(Ⅰ)若13λ=,则在线段PB 上是否存在点M ,使得//AM 平面PCD ?若存在,请确定M 点的位置;若不存在,请说明理由;(Ⅱ)己知2PA =,1AD =,若异面直线PA 与CD 成90︒角,二而角B PC D --的余弦值为10-,求CD 的长.【解析】解:(Ⅰ)13λ=时,则在线段PB 上是存在点M ,且13PM PB =,使得//AM 平面PCD .理由如下:如图取13CN CB =,连接AN ,MN .可得//AD CN ,AD CN =,∴四边形ADCN 为平行四边形,//AN CD ∴,M Q ,N 分别为PB ,CN 的三等分点,//MN PC ∴.∴面//AMN 面PCD ,//AM ∴平面PCD .(Ⅱ)如图,过A 作//AN DC 交BC 与N ,设CD a =.则(0A ,0,0),(N a ,0,0),(0P ,0,2),(0D ,1,0).(C a ,1,0),(,0,0)DC a =u u u r,设面PDC 的法向量为(,,)m x y z =r.∴⇒(0,2,1)m =r.,.设面PNC 的法向量为111(,,)n x y z =r.⇒(2,0,)n a =r..CD ∴的长为2.19.随着经济的发展,个人收入的提高.自2020年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如表:个人所得税税率表(调整前)个人所得税税率表(调整后)免征额3500元免征额5000元 级数全月应纳税所得额税率(%)级数 全月应纳税所得额税率(%)1 不超过1500元的部分 3 1 不超过3000元的部3(1)假如小李某月的工资、薪金等所得税前收入总和不高于8000元,记x表示总收入,y表示应纳的税,试写出调整前后y关于x的函数表达式;(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:5000)7000)11000)13000)人数30 40 10 8 7 5①先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用a表示抽到作为宣讲员的收人在[3000,5000)元的人数,b表示抽到作为宣讲员的收入在[5000,7000)元的人数,随机变量||Z a b=-,求Z的分布列与数学期望;②小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收人比调整前增加了多少?【解析】解:(1)调整前y关于x的解析式为;调整后y关于x的解析式为;(2)①由频率分布表可知,从收入在[3000,5000)及[5000,7000)的人群中抽取7人,其中在[3000,5000)元的人数为3人,在[5000,7000)元的人数为4人,再从这7人中选4人,所以Z的取值可能为0,2,4;则,,,,,,,所以Z的分布列为,Z0 2 4P18351635135数学期望为;②由于小李的工资、薪金等税前收入为7500元,按调整前起征点应纳个税为(元);按调整后起征点应纳个税为(元),比较两个纳税方案可知,按照调整后起征点应纳个税少交(元),即个人的实际收入增加了220元,所以小李的实际收人比调整前增加了220元.20.已知椭圆的左、右焦点分别为1(1,0)F -,2(1,0)F 且椭圆上存在一点M ,满足.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知A ,B 分别是椭圆C 的左、右顶点,过2F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ 的交点为T ,是否存在一条定直线l ,使点T 恒在直线l 上?【解析】解:(Ⅰ)设1||F M x =,则△12MF F 中,由余弦定理得,化简得,解得65x =. 故,2a ∴=,得,因此,椭圆C 的标准方程为22143x y +=;(Ⅱ)如下图所示,已知(2,0)A -、(2,0)B ,设(,)T x y 、1(P x ,1)y 、2(Q x ,2)y ,由TA PA k k =,可得,①由TB QB k k =,可得,②上述两式相除得,又,所以,,故,③设直线PQ 的方程为1x my =+,代入椭圆C 的方程并整理得,△0>恒成立,由韦达定理得,,代入③得,得4x =,故点T 在定直线4x =上. 21.设函数.(Ⅰ)求函数()f x 的极值点个数;(Ⅱ)若.【解析】解:(Ⅰ)()f x Q 是奇函数,其图象关于原点对称, 故只需考虑(0,)x ∈+∞上的极值点的个数,,令,,故3(0,)x ∈时,()0h x '<,()h x 递减, 3(x ∈,)+∞时,()0h x '>,()h x 递增,故,取6x =,,故在3(,)+∞上存在唯一的0x 使得0()0h x =, 故()f x 在0(0,)x 递减,在0(x ,)+∞递增, 又()f x 是奇函数,故()f x 在0(,)x -∞-递增,在0(x -,0)x 递减,在0(x ,)+∞递增, 故()f x 的极值点共2个; (Ⅱ)由(Ⅰ)可知()f x 在区间3(0,)递减,且()0f x <恒成立, 故3(0,)x ∈时,,即得,又令,得,.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.(本小题满分10分[选修4-4:坐标系与参数方程]22.曲线1C 的参数方程为,以原点为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线关于1C 对称.(Ⅰ)求1C 极坐标方程,2C 直角坐标方程;(Ⅱ)将2C 向左平移4个单位长度,按照3x x y y '=⎧⎪⎨'=⎪⎩变换得到3C ;3C 与两坐标轴交于A 、B 两点,P 为3C 上任一点,求ABP ∆的面积的最大值.【解析】解:(Ⅰ)1C 的参数方程为,消去参数t 得,4x y -=,又由公式cos sin x y ρθρθ=⎧⎨=⎩,代入4x y -=,,即∴所以1C 极坐标方程是Q 曲线所以,即,即∴圆心坐标是(,0)a ,半径是a ,又曲线关于1C 对称 所以圆心在曲线1C 上,所以4a =,故(Ⅱ)将2C 向左平移4个单位长度,得到新曲线的方程是222x y a +=,再按照3x xy y '=⎧⎪⎨'=⎪⎩变换得到3C ;,整理得2211612x y +=,即,又3C 与两坐标轴交于A 、B 两点,不妨令(4,0)A ,(0B ,23),||27AB =,P 为3C 上任一点,设(4cos P θ,23sin )θ,可得,则P 到直线AB 的距离,即54πθ=时,d 取到最大值43(21)7+.ABP ∴∆的面积的最大值为.[选修4-5:不等式选讲] 23.已知.(Ⅰ)解关于x 的不等式()4f x >;(Ⅱ)对任意正数a 、b ,求使得不等式恒成立的x 的取值集合M .【解析】解:(Ⅰ)()4f x >即为,当12x …时,214x x +->,解得53x >;当102x <<时,124x x +->,解得x ∈∅; 当0x „时,,解得1x <-,综上可得,()4f x >的解集为{|1x x <-或5}3x >;(Ⅱ)对任意正数a 、b ,不等式恒成立,可得()f x 小于的最小值,由,当2a b ==时取得等号,即有()3f x <,即为,当12x …时,213x x +-<,解得1423x <„;当102x <<时,123x x +-<,解得102x <<; 当0x „时,,解得203x -<„.综上可得,.。

相关文档
最新文档