平均数复习要点
八年级数学复习专题一平均数
专题一:平均数一、算术平均数在日常生活中,我们常用平均数表示一组数据的“平均水平”.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n(x 1+x 2+…+x n )叫做这n 个数的算术平均数,简称为平均数,这里记为.求一组数据的平均数是考试中经常出现的题目.例1 新港中学“学用杯”竞赛前10名学生的成绩如下(单位:分): 125,120,115,107,109,120,107,115,115,107.计算这10名学生的平均成绩.析解:根据平均数的定义:x =110(125+120+115+…+107)=110×1140=114(分). 根据定义可求任意一组数据的平均数,但是如果这组数据中的每个数都比较大,计算起来就比较麻烦,那么还有一种计算平均数的方法,如上题还可以这样解答:将本组数据都减去115,得一组新数据:10,5,0,-8,-6,5,-8,0,0,-8,求出这组新数据的平均数x '=110[10+5+0+(-8)+(-6)+…+0+(-8)]=-1,则原数据的平均数x =115+(-1)=114.因此,当一组数据都比较大,且都在某一数的附近波动时,可将它的每一个数都减去同一个适当的数,得到一组新的数据,求出这组新数据的平均数,用这个平均数加上都减去的那个数,就是原数据组的平均数.例2 某校八年级共有六个班,在一次数学考试中,参加的人数和成绩如下表:求该校八年级的全体学生在这一次数学考试中的平均成绩(保留三位有效数字). 析解:根据平均数的定义可知,该校八年级的全体学生在这次数学考试中,平均成绩等于所有的数学成绩总和除以总人数,而成绩总和又等于平均成绩乘以学生总人数,这样可求出各班数学成绩总分,再把各班成绩总分的总和求出来即得全年级成绩总和,从而可求出全年级的平均成绩:x =1308(81×52+80×48+84×55+83×51+86×49+82×53)≈82.7(分). 说明:解答本题时有的学生往往会错解为: 81808483868282.76+++++≈≈82.7(分). 二、加权平均数平均数是体现一组数据的平均状态,但是,在实际问题中,一组数据中的各个数据的“重要程度”并不相同,因而在计算这组数据的平均数时,往往给每一个数据一个“权”,求一组数据的加权平均数通常有两种情况:第一种:该组数据中各数据的重要程度不同,所占比例也不同;例如,李刚的平时成绩为89分,单元测验为90分,期末成绩为91分,如果把三项成绩按2∶3∶4的比例计算总评成绩,那么总评成绩为:89290391490.2234⨯+⨯+⨯++≈≈90.2(分). 在这个问题中,2,3,4分别叫做89,90,91的权,而90.2就是加权平均数.第二种:若一组数据中有多个数据出现多次,例如,数据3,5,10,6,5,3,3,6,10,5,10,3的平均数为:x =112(3×4+5×3+10×3+6×2)=5.75. 其中4,3,3,2分别是3,5,10,6出现的次数,同时也是权.例3 某居民小区开展节约用水活动成效显著,据对该小区200户家庭用水情况统计分析,3月份比2月份节约用水情况如下表所示:求3月份平均每户节约用水多少立方米?分析:本题考查直接求一组数据的加权平均数的方法.解:120 1.520260 1.6200x ⨯+⨯+⨯==(m 3). 上题中,数据20,120,60分别是1,1.5,2的权,本题不能解答为:1 1.52 1.53x ++==(m 3).专练一:1.在一次数学考试中,第一小组的14名同学的成绩与全班平均分的差是2,3,-5,10,12,8,-1,2,-5,4,-10,-2,5,5,全班平均成绩为83分,则这个小组的平均成绩是_________分.2.某班在一次数学测试后,成绩统计如下表:该班这次数学测试的平均成绩是( )A.82 B.75 C.65 D.623.甲、乙两篮球队员在以往16场比赛中的得分情况统计如下:则甲、乙两队员的平均每场得分分别是多少(保留整数)?4.在一次运动会上,各队得奖牌情况如下表:现在为了比较各队的综合实力,分别将金、银、铜以每块按1分,0.7分,0.3分来进行计分比较,问哪一队的综合实力最强?5.从鱼池捕得同时放养的鲤鱼230尾,从中任选10尾,称得每尾鱼的质量分别是1.8,1.7,1.2,1.4,1.3,1.6,1.4,1.6,1.5,1.5(单位:千克).(1)这10尾鱼的平均质量是多少千克?(2)你能估计一下这230尾鱼的总质量是多少千克吗?6.某公司去年的广告宣传投资为:电视广告9 000万,报纸广告4 000万,大型活动6 000万.今年该公司为了加大广告宣传力度,三项投资分别比去年增长了10%、5%、15%.该公司今年的广告宣传投资比去年增长的百分数是多少?(保留两位小数)参考答案:1.852.A3.甲:23分,乙:22分4.C队综合实力强5.(1)1.5千克;(2)345千克6.10.53%。
人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习
平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
高考一轮复习之算术平均数与几何平均数
课时2 算术平均数与几何平均数复习目标:1、掌握算术平均数与几何平均数定理及其变形;2、能运用均值不等式求函数最值、证明不等式以及解决一些实际问题;3、注意运用均值定理的三个条件:一正、二定、三相等,缺一不可。
知识点:(1)基本不等式定理1:如果R b a ∈,,那么ab b a 222≥+(当且仅当a=b 时取“=”号) (2)基本不等式的重要推论推论1:如果+∈R b a ,,那么ab ba ≥+2(当且仅当a=b 时取“=”号) 推论2:如果+∈R c b a ,,,那么33abc c b a ≥++(当且仅当a=b=c 时取“=”号) 如果+∈R b a ,,那么2211222b a ba ab ba +≤+≤≤+(当且仅当a=b 时取“=”号) 一、基础训练:1、若1>>b a ,b a P lg lg ⋅=, )lg (lg 21b a Q +=,)2lg(b a R +=,则 ( ) A 、 Q P R << B 、 R Q P << C 、R P Q << D 、Q R P <<2、若实数a 、b 满足a+b=2,则ba33+的最小值是 ( )A 、 18B 、 6C 、 32D 2433、(2005福建卷)下列结论正确的是( )A .当2lg 1lg ,10≥+≠>x x x x 时且B .21,0≥+>xx x 时当C .x x x 1,2+≥时当的最小值为2 D .当xx x 1,20-≤<时无最大值4、函数]4,0(,sin 1sin π∈+=x x x y ,当x= 时,函数有最 值为 。
5、若正数a 、b 满足ab=a+b+3,则ab 的取值范围是 。
二、例题选讲:例1、已知,0,0,0,0>>>>d c b a 求证:4≥+++acadbc bd bc ad 。
例2、(1)求函数)0(21<+=x xx y 的最大值; (2)求函数4522++=x x y 的最小值;(3)设1->x ,求函数1)2)(5(+++=x x x y 的最值。
(小升初培优讲义)专题12 平均数-2022-2023六年级一轮复习(学生版)
专题12平均数1.平均数的意义。
已知几个不相等的数,在总数不变的情况下,通过移多补少,使它们完全相等,最后所得的相等的数就是这几个数的平均数。
在日常生活和工农业生产中,用平均数来说明问题的事侧很多,在统计中也常用求平均数的方法。
2.平均数基本数量关系式。
总数量÷总份数=平均数总数量÷平均数=总份数平均数×总份数=总数量【例1】市供热厂采用新技术后,在一周内的前3天共节约用煤12.6吨,后4天平均每天节约用煤3.5吨。
这一周平均每天节约用煤多少吨?【点拨分析】这是一道最常见的平均数应用题,只要找出这一周节约的煤的总数量和要平均分的份数,即可根据求平均数问题的基本关系式解答。
【答案】(3.5×4+12.6)÷7=3.8(吨)这一周平均每天节约用煤3.8吨。
1.养路工养护一段铁路,开始6天一共养护了2.3千米,后15天平均每天养护0.4千米。
这21天养路工平均每天约养护多少千米铁路?(得数保留两位小数)2.一次考试中,小明语文得了86分,英语得了90分。
现在还要考数学,他想争取三科平均成绩至少为90分,那么他的数学至少要考多少分?3.2020年,由于疫情原因导致市场上口罩供不应求,以下是疫情期间的一则新闻报道。
“疫情初期,宁波有慈善人士从国外购买了11.2万只口罩寄回国内,打算捐献。
运送途中被别有用心人士扣留了10万只,只到货1.2万只。
后通过媒体曝光、政府介人等方式追回了被扣留的60%的口罩。
剩余的口罩已经被私自征用无法追回,只能以10.2万元的金额给予资金补偿。
”根据这则新闻报道,计算这批口罩的平均单价。
【例2】朝阳小学五年级有两个班,一班有51人,二班有49人,期中考试两个班全体同学的平均成绩是81分,已知二班的平均成绩比一班的平均成绩高7分,那么二班的平均成绩是多少分?【点拨分析】根据两个班全体同学的平均成绩是81分,可求出这两个班的总成绩是81×(51+49)=8100(分)。
小升初复习:知识点18平均数问题
第十八节:典型应用题(三)平均数问题算数平均数【例1】用4个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?思路引导求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。
正确解答:(4+5+7+8)÷4=6(厘米)。
答:这4个杯子水面平均高度是6厘米。
此类题目是最简单的平均数问题,找准对应的总数量和总份数,利用基本等量关系式:总数量÷总份数=平均数,进而解决问题。
【变式1】1. 五个连续奇数的和是135,这五个连续奇数分别是多少?【例2】一辆汽车以每小时100千米的速度从甲地开往乙地,到达乙地后,又以每小时60千米的速度从乙地返回甲地,求这辆汽车往返一次的平均速度?思路引导往返一次的平均速度=往返一次的总路程÷往返一次的总时间。
这一数量关系是正确解答这道题的关键,由于往返一次的总路程不清楚,我们不妨假设甲地到乙地的路程为300千米。
正确解答:解:设甲地到乙地的路程为300千米。
300×2÷(300÷100+300÷60)=600÷(3+5)=75(千米∕小时)答:这辆汽车往返一次的平均速度75千米∕小时。
此类题目要牢记等量关系式,当往返的总路程未知时,可以运用设数法去解决问题(注意:所设数为往返速度的公倍数,比较容易计算)。
【变式2】2. 王师傅加工一批零件,前3天加工了148个,后4天加工了167个。
王师傅平均每天加工多少个零件?【例3】一个水果店三种水果的单价平均是1.6元,已知香蕉比苹果贵0.2元,比柚子便宜0.5元,请你算一算每种水果的单价多少元?思路引导根据已知条件给出平均价钱是1.6元,这样就可以求出三种水果单价和的钱数,即1.6×3=4.8(元),在此基础上再根据三种水果单价的数量之间的关系,列出方程,可以用下面的线段图表示上述关系。
四年级下数学《平均数与条形统计图》知识点总结归纳
四年级下数学《平均数与条形统计图》知识点总结归纳
一、平均数
1.定义:平均数是所有数的和除以数的个数。
2.计算方法:
•直接相加法:将所有数值相加,然后除以数值的数量。
•移多补少法:将多的数值移到较少的数值上,使所有数值相等。
1.平均数的性质:
•平均数大于或等于最小值,小于或等于最大值。
•当所有数值相等时,平均数等于所有数值中的任何一个。
•平均数可以反映一组数据的总体“平均水平”。
1.平均数的应用:
•比较不同类别的数据大小和它们之间的对比关系。
•表示数据的分布情况。
•在实际生活中,可以用平均数来估算平均水平。
二、条形统计图
1.定义:条形统计图是用直条的长短来表示相互独立的统计指标数值大小和它们
之间的对比关系。
2.制作方法:
•确定统计指标和数据。
•确定直条的分类和间隔。
•绘制直条并标注数据。
•写上标题和时间。
1.条形统计图的优点:
•可以直观地看出各类别的数据大小和它们之间的对比关系。
•可以比较不同类别的数据,便于分析和比较。
•可以表示出数据的分布情况。
1.条形统计图的局限性:
•不容易表示数据的变化趋势。
•容易受到直条间隔的影响,可能导致误导。
•如果数据量很大,制作会比较困难和繁琐。
1.条形统计图的应用:
•展示不同类别数据的数量和对比关系。
•比较不同时间段或不同地区的同类数据。
•分析数据的分布情况,了解数据的集中趋势和离散程度。
小学四年级数学教案 求平均数9篇
小学四年级数学教案求平均数9篇求平均数 1教学目标(一)使学生理解平均数的概念.(二)掌握简单的的方法.(三)培养学生分析、概括的能力.教学重点和难点平均数是个比较抽象的概念,它和平均分的意义不完全一样,平均数实际上每一份不一定一样多,而平均分是指实际上每份都一样多.因此理解平均数的概念是难点,让学生理解并掌握的方法是教学重点.教学过程设计(一)复习准备口答:1.小华4天读完60页书,平均每天读几页?2.五一班有42人,平均分成6个组,每个组有多少人?3.小明期中测验语文和数学两科成绩共得180分,平均每科成绩多少分?师:上述1,2两题都是把一个数平均分成几份,求1份是多少.实际上它们每一份都一样多,而第3题是把两个数的和平均分成两份,每一份是它们的平均数,而不是原来每份实际的数,所以“求几个数的平均数”与“把一个数平均分成几份,求1份是多少”,既有联系又有区别.(二)学习新课1.新课引入.在日常生活、工农业生产中,经常用到平均数的概念,如平均速度、平均成绩、平均产量等.怎样理解平均数的概念,如何求出几个数的平均数呢?这就是我们今天要研究的课题.(板书:平均数)2.出示例2.用4个同样的杯子装水,水面的高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?3.分析,教师演示,学生观察、思考.教师拿出盛水的4个同样的杯子,标明刻度.师:这4个杯子水面高度相等吗?生:这4个杯子水面高度不相等.师:求4个杯子水面的平均高度是什么意思?生:平均高度就是4个杯子里的水面一样高.师:怎样才能找出4杯水的平均高度呢?出示挂图(即课本中的下图)放在4个杯子后面,指出红线标明的地方(4厘米)就是平均高度.教师演示,把水多的杯子倒一些到水少的杯子,使4杯水同样多,得到平均高度.师:这平均高度是每杯水的实际高度吗?它是怎样得到的呢?通过演示使学生明确,它不是每杯水的实际高度,而是把4个杯子里的水平均分的结果.师:如果我们不倒水,能算出这个平均高度吗?小组讨论.从而明确:要求4个杯子水的平均高度,要先把4个杯子的水面高度加起来,再除以4,相当于把4个杯子里的水合在一起,再平均倒在4个杯子里,看每个杯子水面的高度是多少.用算式表示就是(6+3+5+2)÷4.教师板书:(6+3+5+2)÷4=16÷4=4(厘米)答:4个杯子水面平均高度是4厘米.说说括号里求什么?为什么除以4?得到的结果表示什么.要强调4厘米是平均数.4.做29页上的“做一做”中的第1,2,3题.订正时让学生讲出思考过程.5.总结规律.师:从刚才做的几道题中,你能说一说的一般方法吗?通过学生的回答概括为:求几个数的平均数,先要求出这几个数的总数,然后再找出要把它平均分成的份数,最后用总数除以总份数就可以得到平均数.6.出示例3.学生默读例3,理解题意,明确条件和问题.师:如何比较哪一组平均身高高一些?怎样计算出高多少?启发学生想:如一个一个地比,非常麻烦,而且不容易比清楚.先算出各组的平均身高,就容易比较了.让学生运用从例2中学到的方法,自己求出两组各自的平均身高,再求出哪一个组的平均身高高一些,高多少.师:如果不求平均身高,直接用各组所有人数的和进行比较行不行?为什么?使学生明确,由于两组人数和每人身高不一样,不能直接比较,只能用平均身高进行比较.(三)巩固反馈1.选择正确列式,并说明理由.一辆汽车第一天行53千米,第二天行58千米,第三天上午行30千米,下午行27千米.平均每天行多少千米?A.(53+58+30+27)÷3B.(53+58+30+27)÷42.光明小学五年级3个班为灾区人民捐款750元,六年级4个班为灾区人民捐款1210元.平均每个年级捐款多少元?这两个年级平均每班捐款多少元?小组讨论后得出:平均每个年级捐款多少元?(750+1210)÷2两个年级平均每班捐款多少元?(750+1210)÷(3+4)强调是把哪几个数平均分、分成多少份,要认真审题,找出所需要的总数及总份数,再求出它们的平均数.(四)作业练习七第1,2题.课堂教学设计说明平均数是统计中的一个重要概念.小学里所讲的平均数一般是指算术平均数,也就是一组数量的和除以这组数量的个数所得的商.因为这个平均数不是实际的数,与过去学的平均分的意义不完全一样,因而平均数的概念比较抽象.在日常工作、生活中要经常用到如平均产量、平均速度等等,因此首先要建立平均数的概念,再分析的方法.本节课设计既要体现学生的主体作用,又重视学习方法的指导.首先通过简单的口答题,初步认识平均数的意义,分清平均数与平均分的联系与区别.为学新课做好铺垫.新课分为四个层次.第一个层次学习例2.求4个杯子水面的平均高度.通过教师的演示,提问,学生在观察、讨论的基础上,理解平均高度的意义,建立平均数的概念.第二个层次是指导列式计算.在实际中,求几个数的平均数,都不可能像杯子倒水那样操作,因此引导学生要通过计算来解决.第三个层次,让学生做书上的“做一做”几个题,启发学生总结出求几个数的平均数的一般算法.第四个层次,通过例3让学生运用学过的方法类推、自己计算,从而加深对平均数的理解,熟练地掌握计算方法.练习的设计有所提高和变化,要让学生分清把哪几个数平均分,分成多少份,为以后学习复杂的问题打下基础.板书设计例2 用同样的4个杯子装水,水面的高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?(6+3+5+2)÷4=16÷4=4(厘米)答:这4个杯子水面的平均高度是4厘米.例3 四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表.(单位是厘米)eq \x(统计表)(1)第一组平均身高是多少?(136+142+140+135+137+144)÷6=834÷6=139(厘米)(2)第二组平均身高是多少?(132+141+133+138+145+135+142)÷7=966÷7=138(厘米)(3)第一组平均身高比第二组高多少?139-138=1(厘米)答:第一小组平均身高高一些,高1厘米.求平均数 2课题:教学要求使学生进一步理解的意义,学会较复杂的的方法。
大学统计学复习资料5平均数
一.填空题1. 变量值的次数多少对平均数的影响有(权衡轻重的作用)的作用,所以又称为(权数)。
2. 一般来说,(算术 )平均数是统计中最常用的一种平均指标。
3. 加权算术平均数受(变量值)和(权数)两个因素的影响。
4. 权数有两种表现形式,即 权数和 权数,由此产生了计算加权算术平均数的两种公式,即 和 。
绝对数 比重 ∑Xf/∑f ∑x (f/∑f )5.权数在平均数的形成中起着一种 作用,在 情况下,简单算术平均数与加权算术平均数计算的结果相同。
权衡轻重 各组权数相等的6. 平均指标说明分配数列中各变量值分布的 趋势,变异指标说明各变量值的 趋势。
集中 离散7.中位数是位于数列 位置的那个标志值,众数是在总体中出现次数 的那个标志值。
中位数和众数也可称为 平均数。
中点 最多 位置8. 已知三种产品的合格率分别为49%,36%和79%,则这三种产品平均合格率为 。
54.7%9. 变异指标的种类有 、 、 、和 。
全距 平均差 方差和标准差 离散系数10. 直接用平均差和标准差比较两个变量数列平均数的代表性的前提条件是两个变量数列的 相等。
平均水平11. 在平均指标的计算过程中,其平均值的大小受各标志大小影响的平均指标是和 。
算术平均数 调和平均数12. 标准差系数是 与 之比,其计算公式为 。
标准差 算术平均数x V σσ=13. 通常,被称为位置平均数的集中趋势的测度值是 ______________ 。
众数;中位数14. 已知一组数据的中位数为10,众数为12,则均值为_____________,该组数据呈_____________ 分布。
9 ; 左15.算术平均数有两个重要的数学性质,用公式表示为:________和________。
0)(=-∑x x ∑=-最小2)(x x16. 某柜组9名售货员,日销商品件数分别为:5、6、7、8、9、10、11、12、13。
则中位数为________。
人教版八年级上册数学平均数、中位数、众数期末复习知识点
人教版八年级上册数学平均数、中位数、众
数期末复习知识点
一、平均数、中位数、众数的概念
1.平均数
平均数是指在一组数据中所有数据之和再除以数据的个数。
2.中位数
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。
3.众数
众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
二、平均数、中位数、众数的区别
1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。
2.总数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
3.中位数仅与数据的排列有关,一般来说,部分数据
的变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。
三、平均数、中位数、众数的联系
众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。
只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。
由为您提供的人教版八年级上册数学平均数、中位数、众数期末复习知识点,祝您学习愉快!
相关标签搜索:八年级数学期末试卷。
四年级数学下册期末总复习《8单元平均数与条形统计图》必记知识点
四年级数学下册期末总复习《8单元平均数与条形统计图》必记知识点一、平均数1.定义:1.平均数是一组数据的总和除以这组数据的个数所得的商。
2.公式:平均数= 总数量÷ 总份数2.意义:1.描述一组数据的整体情况或作为不同组数据进行比较的一个标准。
2.尤其在两组数据个数不相等的情况下,平均数能更好地反映一组数据的总体情况。
3.求平均数的方法:1.移多补少法:在总数不变的前提下,从多的数中拿出一部分分给少的数,使它们变成相同的数。
2.公式法:使用上述公式进行计算。
4.应用:1.比赛计分时,一般采取去掉一个最高分和一个最低分,再求剩余数据的平均数。
二、条形统计图1.定义:1.条形统计图是用直条的长短表示数量的多少,能清楚地看出数量的多少。
2.分类:1.单式条形统计图:表示单一项目的数量。
2.复式条形统计图:可以比较多个项目的数量。
3.复式条形统计图又分为纵向和横向两种形式。
3.绘制方法:1.确定单位长度表示的数量。
2.根据数据的多少画出长短不同的直条。
3.注明图例和数据。
4.注意事项:1.直条的宽度应相同,直条间的间隔应相等。
2.单位长度需统一。
3.必须标明图例。
5.应用:1.可以直观地展示不同项目之间的数量关系。
三、平均数与条形统计图的结合•在分析数据时,可以使用条形统计图来展示数据的分布情况,并通过平均数来进一步描述数据的整体情况或进行不同组数据的比较。
四、总结•平均数和条形统计图都是数学中常用的统计工具,它们能帮助我们更好地理解和分析数据。
通过掌握平均数的定义、意义和求法,以及条形统计图的绘制方法和应用,我们可以更准确地理解和表达数据中的信息。
小学四年级下册数学讲义第八章 平均数与条形统计图 人教新课标版(含解析)
人教版小学四年级数学下册同步复习与测试讲义第八章平均数与条形统计图【知识点归纳总结】1. 平均数的含义及求平均数的方法1.平均数:是指在一组数据中所有数据之和再除以数据的个数.2.平均数的求解方法:用所有数据相加的总和除以数据的个数,需要计算才得求出.【经典例题】例1:参加某次数学竞赛的女生和男生人数的比是1:3,这次竞赛的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是()A、82分B、86分C、87分D、88分分析:根据题意,可找出数量间的相等关系:女生的平均成绩×1+男生的平均成绩×3=全班平均成绩×4,设女生的平均成绩是x,列并解方程即可.解:设女生的平均成绩是x,因为总成绩不变,由题意得,x×1+3×80=82×(1+3),x+240=328,x=328-240,x=88;或:[82×(1+3)-80×3]÷1,=(328-240)÷1,=88(分);答:女生的平均成绩是88分.故选:D.点评:解答此题关键是先求出全班的总成绩和男生的总成绩,然后求出女生的总成绩,进而求出女生的平均成绩.2.平均数问题求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数…”平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数.解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.【经典例题】例1:在抗震救灾的日子里,解放军张叔叔前4天在一线共奋战了74小时,后3天平均每天在一线工作15小时,这一周,张叔叔平均每天在一线工作多少小时?分析:根据题意可以求出张叔叔在7天一共工作了几小时,用总的小时数除以总天数,就是要求的答案.解:(74+15×3)÷(4+3),=(74+45)÷7,=119÷7,=17(小时);答:这一周,张叔叔平均每天在一线工作17小时.点评:此题是典型的解答平均数应用题,关键在于确定“总数量”以及和总数量对应的总份数.例2:甲、乙、丙三种糖果每千克分别是14元、10元、8元.现把甲种糖果4千克,乙种糖果3千克,丙种糖果5千克混合在一起,问买2千克这种混合糖果需多少元?分析:用三种糖混合糖的总钱数除以总千克数就是三种糖混合后的平均价,再用平均价乘2千克就是要求的答案.解:甲、乙、丙三种糖混合后的平均价是:(14×4+10×3+8×5)÷(4+3+5),=126÷12,=10.5(元),买2千克混合糖果的价钱是:10.5×2=21(元),答:买2千克这种混合糖果需21元.点评:解答此题的关键是根据平均数的意义,先求出甲、乙、丙三种糖混合后的平均价,那2千克混合糖的价钱即可求出.3. 两种不同形式的单式条形统计图1.条形图定义:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.它可以表示出每个项目的具体数量.2.单式条形统计图只表示一种数据的变化情况,比较简单.【经典例题】例1:看图回答问题.(1)哪个季度的月平均销售量多?多多少?(2)从统计图中你还能发现什么信息?分析:(1)先分别求出第一季度和第三季度的月平均销售量,再比较哪个季度的月平均销售量多,进而求出多的具体的数量即可;(2)从统计图中我还能发现以下信息:一月销售120箱,二月销售110箱,三月销售130箱,七月销售195箱,八月销售190箱,九月销售185箱;其中二月销售的箱数最少,七月销售的箱数最多;等等.解:(1)第一季度的月平均销售量:(120+110+130)÷3,=360÷3,=120(箱),第三季度的月平均销售量:(195+190+185)÷3,=570÷3,=190(箱),190>120,190-120=70(箱);答:第三季度的月平均销售量多,多70箱.(2)从统计图中我还能发现以下信息:一月销售120箱,二月销售110箱,三月销售130箱,七月销售195箱,八月销售190箱,九月销售185箱;其中二月销售的箱数最少;七月销售的箱数最多;等等.点评:此题主要考查从条形统计图中获取信息,并根据信息解决问题;也考查了求平均数的方法:平均数=总数量÷总份数.4.两种不同形式的复式条形统计图复式条形统计图:是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来.从复式条形统计图中很容易看出两者数量的多少.复式条形统计图分类:根据直条的方向可以分为横向复式条形统计图和纵向复式条形统计图.①一般在数据种类较多,数据又不是非常大时使用纵向复式条形统计图;②在数据种类较少,每类数据又比较大时,使用横向复式条形统计图.这两种统计图的本质是一样的,只是表现形式不同.【特点】用直条的长短表示数量的多少.【优点】能清楚地看出数量的多少,便于比较两组数据的多少.复式条形统计图画法:1.准备尺子,铅笔,橡皮等画图工具.2.注意写单位,画纵坐标和横坐标,还有日期名字和横坐标上的“0”.3.假如位置有限,例如说0到10,到20,假如你写到200,位置绝对有限,你可以在0的上面画波浪线,然后写100(当然其他数也可以,但最标准的还是画闪电线).4.例如上图两者要有不同的颜色,假如没有色笔,第一个可以用阴影填充,第二个可以涂得严严实实或一个不涂,一个涂阴影.5.在每个图的上方都要写标题.【经典例题】例1:(1)从图上看出男生人数最多的是科技小组,女生人数最少的是数学小组,科技小组的总人数最多,数学小组的总人数最少.(2)通过计算,三个兴趣小组的总人数有39人,男生人数比女生人数多15人.数学小组再增加22人就和科技小组的人数一样多.分析:由图可知:数学小组男生有20人,女生有16人;文艺小组男生有18人,女生有27人;科技小组男生有39人,女生有19人.由以上数据求解.解:(1)39>20>18;科技小组的男生最多;16<19<27;数学小组的女生最少;数学:20+16=36(人);文艺:18+27=45(人);科技:39+19=58(人);58>45>36;科技小组的总人数最多,数学小组的总人数最少.(2)总人数:36+45+58=139(人);男生:20+18+39=77(人);女生:16+27+19=62(人);77-62=15(人);58-36=22(人);三个兴趣小组的总人数有139 人,男生人数比女生人数多15人.数学小组再增加22人就和科技小组的人数一样多.故答案为:科技,数学,科技,数学;139,15,22.点评:本题是复式条形统计图,这类题目先根据图例读出出数量,再由问题找出合适的数据求解.【同步测试】单元同步测试题一.选择题(共8小题)1.一个调查数据被呈现在一扇形图里,下面条形图()与这个扇形图显示的是相同的数据.A.B.C.D.2.一组数据中最大的数是26,最小的是18.下面的数中,()可能是这组数据的平均数.A.30B.23C.123.体操队原来有8名队员,平均体重35千克,现在增加1名体重是38千克的队员,现在体操队队员的平均体重是()A.35千克B.比35千克多一些C.比35千克少一些D.无法确定4.天利家园小区去年年底全部改用节能灯,赵阿姨家上半年节约用电40.2千瓦时,王伯伯家第三季度共节约18千瓦时.()家平均每月节约用电多.A.王伯伯家B.赵阿姨家C.两家一样多5.明明数学、英语、语文的平均分是95分,期中英语是91分,语文96分,数学是()分.A.90B.95C.986.在下面的两幅统计图中,用来表示某地1~6月份的晴天天数的变化情况最为合适的是()A.B.7.踢毽子比赛,小红所在的小组平均每人踢36个,小丽所在的小组平均每人踢32个下面说法正确的是()A.小红一定比小丽踢得多B.小红一定比小丽踢得少C.小红和小丽踢的个数一定相同D.无法确定谁踢得多8.如图,()可以表示下面哪种情况的统计.A.4个学生期末数学考试成绩B.四年级喜欢各项运动的男女生人数C.小明1﹣﹣8岁的身高D.蛋糕店的草莓蛋糕和芒果蛋糕最近5天的销售情况二.填空题(共8小题)9.五年级(1)班同学的身高情况分三段统计,结果如图.(1)这个班身高在1.50~1.59米范围内的男女生相差人.(2)从图中可以看出这个班男生共有人.(3)将合适答案的序号填在横线上.全班同学从高到矮排成一行,张林在第11个,他的身高可能是.A.1.49米B.1.58米C.1.61米10.常用的条形统计图有和两种,条形统计图可以清楚地看出数量的.11.如果条形统计图的纵轴是用0.5厘米表示40人,那么4厘米应表示人,在这个统计图上有一个直条上标有160人,那这个直条的高度应是厘米.12.西西期末三门功课,语文、英语平均分数是94分,要想平均分数提高2分,他的数学应考分.13.一桶水,需要2个人一起抬.3个人要把水从离家180米的地方抬回家,平均每个人要抬米.14.四年级的学生参加体能测试,其中7名同学的成绩如下:80,90,80,76,74,80,80(单位:分).他们的平均成绩是分.15.王大伯攒了一箱鸭蛋,共50个.他任意取出5个鸭蛋称得质量分别为76g、86g、81g、74g、83g,这箱鸭蛋大约重千克.16.3个数的平均数为10,如果把其中一个数改为9,这时3个数的平均数是11,这个被改动的数原来是.三.判断题(共5小题)17.纵向复式条形统计图比横向复式条形统计图表示的更明白..(判断对错)18.甲、乙、丙三个数的平均数是A,且甲>乙>丙,则A>丙.(判断对错)19.在生活中统计一组数据,可以制成条形统计图表示.(判断对错)20.一分钟跳绳,小丽前两次跳的平均数是120下,要使三次跳的平均数是125下,她第三次应跳135下(判断对错)21.小亮身高150cm,他在平均水深135cm的河中游泳,不会有危险.(判断对错)四.操作题(共1小题)22.德凯小学开展体育活动,小明对五(1)班同学的锻炼情况做了统计,并绘制了下面两幅统计图.(1)五(1)班参加体育锻炼的有人,参加的人数最多.(2)根据条件把条形统计图补充完整.五.应用题(共6小题)23.一辆汽车前2小时一共行160千米,后2小时分别行了70千米和50千米,这辆汽车平均每小时行多少千米?24.一批货物重9.8吨,运走了3.5吨.剩下的分3次运完,平均每次运多少吨?25.第一中学三个年级共有912名学生,每个年级有8个班,平均每个班有多少名学生?26.小明计划8天读完一本114页的故事书.前3天读了39页.如果要按计划读完,他从第4天起平均每天要读多少页?27.小萱、小丽、小红、小含四名同学,他们四人的平均身高是132厘米,小明的身高是142厘米,请你帮他们算一算,他们五人的平均身高是多少厘米?28.小文参加舞蹈比赛,7位评委的打分分别是:89分、99分、64分、90分、95分、88分、93分,去掉一个最高分和一个最低分,小文的平均得分是多少?参考答案与试题解析一.选择题(共8小题)1.【分析】由扇形统计图可知:白色占总数的50%,深颜色和浅颜色各占总数的25%;在条形统计图上白色的直条的高度是深色和浅色的2倍,而深色和浅色的直条高度相同.【解答】解:白色占总数的50%,深颜色和浅颜色各占总数的25%;画出条形统计图就是:故选:A.【点评】抓住扇形统计图、条形统计图的绘制特点,即可解决此类问题.2.【分析】因为在一组数中有最大的数,也有最小的数,根据平均数的含义:平均数是指在一组数据中所有数据之和再除以数据的个数;所以平均数比最大的数小,比最小的数大;进而得出结论.【解答】解:根据移多补少求平均数的含义可知:在一组数据中,平均数要比最大的数小,比最小的数大,30、23和12中只有23是大于18小于26的数,所以可能是这组数据的平均数.故选:B.【点评】解答此题应明确平均数的含义,根据平均数的含义进行判断即可.3.【分析】根据题意,用35乘8,求出体操队原来有8个队员的总体重,再加上38千克,即可求出现在体操队队员的平均体重,用现在体操队员的总重量除以总人数,列式解答即可.【解答】解:(35×8+38)÷(8+1)=318÷9≈35.3(千克)35.3>35答:现在体操队队员的平均体重比35千克多一些.故选:B.【点评】解答此题应根据平均数的意义,进行分析、解答即可.4.【分析】首先用40.2除以6,求出赵阿姨家平均每月节约的用电量;然后用18除以(3×3)求出王伯伯家平均每月节约的用电量;最后比较大小,判断出谁家平均每月节约用电多即可.【解答】解:40.2÷6=6.7(千瓦时)18÷(3×3)=18÷9=2(千瓦时)6.7>2答:赵阿姨家平均每月节约用电多.故选:B.【点评】此题主要考查了平均数的含义以及求法的应用.5.【分析】用三科的平均分乘3计算出三科的总成绩,再减去语文和英语成绩之和就是数学的成绩.【解答】解:95×3﹣(96+91)=285﹣187=98(分)答:数学得了98分.故选:C.【点评】此题主要考查平均数计算的灵活运用.关键是用平均分乘科数计算出三科的总成绩.6.【分析】根据折线统计图和条形统计图的特点进行判断.折线统计图可以清楚地反应实物的增减变化情况;条形统计图可以清楚地反应具体的数量.据此判断即可.【解答】解:根据统计图的特点,折线统计图可以清楚地反应实物的增减变化情况;条形统计图可以清楚地反应具体的数量.所以,要反应某地1~6月份的晴天天数的变化情况选折线统计图最为合适.故选:A.【点评】本题主要考查各种统计图的特点.7.【分析】根据平均数的意义可知,平均数只是反映的是一组数据的集中趋势,不表示这组数据中某一个具体数据,据此解答即可.【解答】解:根据平均数的意义可知,虽然知道小红所在的小组平均每人踢36个,比小丽所在的小组平均每人踢32个多,但是平均数只不表示这组数据中某一个具体数据,所以无法确定谁踢得多.故选:D.【点评】解答本题关键是深刻理解平均数的意义和计算方法.8.【分析】根据复式条形统计图的特点和作用,复式条形统计图可以反映两种或两种以上数量的多少,据此解答即可.【解答】解:A,表示4个学生期末数学考试成绩,用单式条形统计图;B,表示四年级喜欢各项运动的男、女生人数,必须用复式条形统计图;C,表示小明1﹣﹣8岁的身高,用单式统计图;D,表示蛋糕店的草莓蛋糕和芒果蛋糕最近5天的销售千克,可以用复式条形统计图,但是统计图中只有4项,所以不符合题意.故选:B.【点评】此题考查的目的是理解掌握条形统计图的特点及作用.二.填空题(共8小题)9.【分析】(1)用身高在1.50~1.59米范围内的男生人数减去女生人数即可解答;(2)把三段的男生人数加起来即可解答;(3)全班同学从高到矮排成一行,张林在第11个,因为男生身高在1.50~1.59米范围内的人数有12人;所以张林身高在1.50~1.59米范围内;即他的身高可能是1.58米.【解答】解:(1)12﹣10=2(人);答:这个班身高在1.50~1.59米范围内的男女生相差2人.(2)3+12+6=15+6=21(人);答:这个班男生共有21人.(3)班同学从高到矮排成一行,张林在第11个,因为男生身高在1.50~1.59米范围内的人数有12人;所以张林身高在1.50~1.59米范围内;即他的身高可能是1.58米;填B.故答案为:2,21,B.【点评】本题主要考查了学生根据统计图中的数据,以及分析数量关系,解答问题的能力.10.【分析】常用的条形统计图有单式和复式两种,条形统计图能很容易看出数量的多少;由此解答即可.【解答】解:常用的条形统计图有单式和复式两种,条形统计图可以清楚地看出数量的多少;故答案为:单式,复式,多少.【点评】此题应根据条形统计图分类和特点进行解答.11.【分析】在同一个条形统计图中,用固定的长度表示一定数量,本题中0.5厘米表示40人,看4厘米中有多少个这样的单位,然后乘以这个单位长底代表的人数就行了,用160人除以每个单位长度代表的人数,看有多少个单位长度,然后乘以这个单位长度的厘米数就行了.【解答】解:由题意知,4÷0.5×40=320(人),160÷40×0.5=2(厘米),故答案为:320,2.【点评】此题考查统计图纵轴的长度和单位长度代表的量之间的关系.12.【分析】根据“平均成绩×科目的数量=总成绩”算出语文、数学、英语三门功课的总成绩以及语文、英语两门功课的总成绩,进而用语文、数学、英语三门功课的总成绩减去语文和英语两门功课的总成绩即可求出数学成绩.【解答】解:(94+2)×3﹣94×2=96×3﹣188=288﹣188=100(分)答:他的数学应考100分.故答案为:100.【点评】解答此题的关键是:先根据平均数的计算方法求出三门课程的总成绩,然后分别减去语文、英语的成绩即可.13.【分析】一桶水总是有两个人抬,所以抬水的人共走了180×2=360米,然后根据平均数的意义,用360除以3就是平均每人要抬水的米数,据此解答即可.【解答】解:180×2÷3=360÷3=120(米)答:平均每人要抬120米.故答案为:120.【点评】本题的难点是理解一桶水总是有两个人抬,所以抬水的人共走了2个180米,而不是1个180米.14.【分析】先求出7名同学的的总成绩,再用总成绩除以7,即得他们的平均成绩.【解答】解:(80+90+80+76+74+80+80)÷7=560÷7=80(分)答:他们的平均成绩是80分.故答案为:80.【点评】此题考查了平均数的意义及求法,平均数=总数÷份数.15.【分析】用这5个鸭蛋的总克数除以5就是这5个鸭蛋平均每个的克数;再用平均每个的克数乘50后换算单位即可求得这箱鸭蛋大约一共重多少千克.【解答】解:(76+86+81+74+83)÷5=400÷5=80(克)80×50=4000(克)4000克=4千克答:这箱鸭蛋大约一共重4千克.故答案为:4.【点评】本题是考查平均数的意义及求法.要记住总数、个数及平均数三者之间的关系.16.【分析】先用原来的平均数乘3,先求出原来3个数的和,同理再求出后来3个数的和,两次和的差就是9比原数多了多少,进而求出原数.【解答】解:11×3﹣10×3=33﹣30=39﹣3=6答:这个被改动的数原来是6.故答案为:6.【点评】解决本题根据总数量=平均数×总份数,求出和的变化,从而得出改动的数是怎么变化的,从而解决问题.三.判断题(共5小题)17.【分析】条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据;可以是纵向的,也可以是横向的.进而判断即可.【解答】解:根据条形统计图的特点可知:条形统计图的条形可以表示两种不同的数量,可以是纵向的,也可以是横向的.故答案为:×.【点评】此题考查了条形统计图的分类和特点.18.【分析】一组数的平均数要大于这组数中最小的数,要小于这组数中最大的数,由此判断.【解答】解:甲、乙、丙三个数的平均数是A,且甲>乙>丙,由此可知,甲数最大,丙数最小,那么:甲>A>丙;原题说法正确.故答案为:√.【点评】解决本题关键是明确:一组数的平均数要大于这组数中最小的数,要要小于这组数中最大的数.19.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【解答】解:在生活中统计一组数据,能够比较数量的多少;所以可以制成条形统计图表示,所以原题说法正确.故答案为:√.【点评】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.20.【分析】要求小丽第三次应跳多少下,根据题意,先求出三次跳绳的总次数,然后求出前两次跳绳的总次数,用三次跳的总次数﹣前两次跳的总次数,即可得出结论.【解答】解:125×3﹣120×2=375﹣240=135(下)答:她第三次应跳135下.故答案为:√.【点评】此题是考查平均数知识的灵活运用情况,做题时应认真审题,找出前后数量间的关系,进而列式解答即可得出结论.21.【分析】平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小,河水的平均水深是135cm,可能有的地方水深超过150厘米,下水游泳可能存在危险,据此解答即可.【解答】解:平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小,河水的平均水深是135cm,可能有的地方水深超过135厘米,甚至超过150厘米,所以小亮下水游泳可能有危险,所以题干说法不正确.故答案为:×.【点评】此题主要考查了平均数的含义的应用,解答此题的关键是要明确:平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小.四.操作题(共1小题)22.【分析】(1)观察条形统计图发现,参加篮球的有20人;再观察扇形统计图可知,把总人数看成单位“1”,参加篮球的人数占总人数的40%,用20人除以40%即可求出参加体育锻炼的有多少人;比较扇形统计图上各部分的扇形占的区域,面积最大就是人数最多的,由此求解;(2)用(1)求出的总人数,分别乘各种运动占总人数的百分数,求出各种运动的人数,然后根据条形统计图的画法,画出条形统计图.【解答】解;(1)20÷40%=50(人)观察扇形统计图发现参加篮球锻炼的人数最多;即:五(1)班参加体育锻炼的有50人,参加篮球的人数最多.(2)足球:50×20%=10(人)其它:50×30%=15(人)乒乓球:50×(1﹣40%﹣30%﹣20%)=50×10%=5(人)统计图如下:故答案为:50,篮球.【点评】解决本题需要结合两种统计图的特点,找出需要的数据,求出各类体育运动的人数,从而解决问题.五.应用题(共6小题)23.【分析】平均速度=总路程÷总时间,总时间是(2+2)小时,总路程是(160+70+50),据此可列式解答.【解答】解:(160+70+50)÷(2+2)=(230+50)÷(2+2)=280÷4=70(千米/小时).答:这辆汽车平均每小时行70千米.【点评】本题考查了学生对平均速度=总路程÷总时间关系式的掌握情况.24.【分析】根据原有的吨数﹣运走的吨数=剩下的吨数,先求出剩下了多少吨,再除以次数3,即可得出平均每次运走多少吨.【解答】解:(9.8﹣3.5)÷3=6.3÷3=2.1(吨)答:平均每次运2.1吨.【点评】此题解答的关键是求出剩下的数量,然后根据平均数问题解答即可.25.【分析】用3×8求出共有班的个数,再用共有的学生人数除以共有的班数就是平均每个班有多少名学生.【解答】解:912÷(3×8)=912÷24=38(名)答:平均每个班有38名学生.【点评】此题主要考查了平均数的计算方法,总数÷总份数=平均数.26.【分析】先用114减去39求出剩下的页数,然后再除以剩下的天数5就是他从第4天起平均每天要读的页数.【解答】姐:(114﹣39)÷(8﹣3)=75÷5=15(页)答:他从第4天起平均每天要读15页.【点评】解答此题应根据平均数、数量和总数三者之间的关系进行解答.关键是求出剩下的页数.27.【分析】根据题干,四人的平均身高是132厘米,则他们的身高之和是132×4=528厘米,再加上小明的身高,即可求出5个人的总身高,再除以5,就是5人的平均身高.【解答】解:(132×4+142)÷5=(528+142)÷5=670÷5=134(厘米)答:5人的平均身高是134厘米.【点评】此题主要考查的是平均数的计算方法的应用.28.【分析】由题意知,共有7个得分,按从大到小顺序排列为:99、95、93、90、89、88、64.要求小文最后的平均得分是多少分,先求得去掉一个最高分(99)和一个最低分(64)后5个得分的和是多少,再除以5即可.【解答】解:(95+93+90+89+88)÷5=455÷5=91(分)答:小文的平均得分是91分.【点评】此题考查一组数据的平均数的求解方法:总数÷份数=平均数.。
数学-最新小升初专题复习九+平均数问题+
平均数问题知识典例(注意咯,下面可是黄金部分!)知识清单平均数的理解和实际问题中平均数的求法:把一个(总)数平均分成几个相等的数,相等的数的数值就叫做这个(总)数的平均数。
例如,24平均分成四个数:6,6,6,6,数6就叫做24分成四份的平均数。
又如,24平均分成六个数:4,4,4,4,4,4,数4就叫做24分成六份的平均数。
由此可见,平均数是相对于“总数”和分成的“份数”而言的。
知道了被均分的“总数”和均分的“份数”,就可以求出平均数:总数÷份数=平均数。
“平均数”这个数学概念在我们的日常生活和工作中经常用到。
例如,某次考试全班同学的“平均成绩”,几件货物的“平均重量”,某辆汽车行驶某段路程的“平均速度”等等,都是我们经常碰到的求平均数的问题。
根据求平均数的一般公式可以得到它们的计算方法:全班同学的总成绩÷全班同学人数=平均成绩,几件货物的总重量÷货物件数=平均重量,一辆汽车行驶的路程÷所用的时间=平均速度。
【例一】李明第一、二两次测验的数学平均成绩是65分,第三次测验后,三次平均成绩是75分,第三次得多少分?【变式1-1】陈林上学期期末考试成绩:语文80分,音乐92分,体育81分,美术85分,数学成绩比五科平均成绩高6分。
请你算一算陈林的数学成绩和五科平均成绩分别是多少?【变式1-2】学生练习篮球投篮个数统计如下表:【变式1-3】有甲、乙、丙3个数,甲、乙两数的和是90,甲、丙两数的和是82,乙、丙两数的和是86,甲、乙、丙三个数的平均数是多少?【例二】某小学举行歌咏比赛,六名评委对某位选手打分如下:【变式2-1】某公司的10名销售员,去年完成的销售额如下表求销售额的平均数。
【变式2-2】有25个儿童分橘子,平均每人分到7个橘子,又来了一些儿童,大家重新分这些橘子,平均每人只分到5个。
又来了几个儿童?【变式2-3】甲地到乙地的全程是60千米,小明骑自行车从甲地到乙地每小时行15千米,从乙地到的甲地每小时行10千米,求小明往返的平均速度。
人教八年级数学平均数加权平均数中位数众数极差和方差归纳与复习
平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
【精品】数学五年级-复习第八讲-平均数与条形统计图-基础版(教师版)人教版
第8讲平均数与条形统计图【知识点归纳总结】1. 平均数的含义及求平均数的方法1.平均数:是指在一组数据中所有数据之和再除以数据的个数.2.平均数的求解方法:用所有数据相加的总和除以数据的个数,需要计算才得求出.2. 平均数问题求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数…”平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数.解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.3. 两种不同形式的单式条形统计图1.条形图定义:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.它可以表示出每个项目的具体数量.2.单式条形统计图只表示一种数据的变化情况,比较简单.典例精讲【典例1】(2020秋•海安市期末)第一小组的学生称体重,最重的50千克,最轻的26千克。
下面()千克可能是这组学生的平均体重。
A.31B.25C.14【分析】平均数大于这组数据的最小值并且小于最大值,观察选项,只有31比26大的同时比50小。
【解答】解:第一小组的学生称体重,最重的50千克,最轻的26千克。
31千克可能是这组学生的平均体重。
故选:A。
【点评】解答此题的关键是掌握平均数的性质。
【典例2】(2020秋•昆山市期中)水果店第一天卖出45箱苹果,第二天上午卖出24箱,下午卖出22箱,第三天卖出41箱。
平均每天卖出44箱苹果。
【分析】根据求平均数的方法,先求出这三天一共卖出苹果多少箱,然后用这三天卖出苹果的总箱数除以3;即可解答。
【解答】解:(45+24+22+41)÷3=132÷3=44(箱)答:平均每天卖出44箱苹果。
故答案为:44。
【点评】此题考查的目的是理解平均数的意义,掌握求平均数的方法及应用。
二年级数学平均分常用知识点
二年级数学平均分常用知识点
在二年级的数学学习中,以下是一些常用的平均分知识点:
1. 平均数的概念:平均数是一组数据中所有数值的总和除以数据的个数。
2. 求平均数的方法:将所有数值相加,然后除以数据的个数。
3. 平均数的应用:可以用来衡量一组数据的典型值。
例如,可以用平均分来评价学生
的学业水平。
4. 平均数的估算:当给定一组数据时,可以使用估算的方法来找到一个近似的平均数。
一种常见的估算方法是将数据的范围分成若干个等距的部分,然后选择每个部分的中
间值作为估算的平均数。
5. 平均数的比较:当比较两组数据的平均数时,平均数较大的组被认为具有更高的值。
这常用于比较两个班级或两个学生的成绩。
6. 平均数的问题解决:可以通过将问题转化为平均数的计算来解决一些实际问题。
例如,如果知道一组数据的平均数和总和,可以通过反推找到缺失的数据。
这些是二年级数学平均分的一些常用知识点,希望对你有帮助!如果还有其他问题,
欢迎继续提问。
小学数学复习必备公式大全平均数
小学数学复习必备公式大全:平均数
平均数:
基本公式:
①平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
①求出总数量以及总份数,利用基本公式①进行计算。
②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。
复习求平均数
⑶小芳和爸爸爬山 ,去的时候用12分钟, 平均每分钟走50米,回来了用8分钟,他 们往返平均每分钟走多少米?
考试的平均成绩是90.7 分,是否每人都得90.7分?为什么? ⑵一辆汽车前5小时平均每小时行48千米, 后6小时平均每小时行50.5千米。这辆汽 车平均每小时行多少千米? 要求:请你估猜一下这辆汽车平均速度在 什么范围之内?为什么?
特点: 平均数是介于最大数与最小数之间的数, 求平均数实质上就是移多补少,使它们同样 多。
⒉一辆汽车前5小时平均每小时行48千米,后6小 时平均每小时行50.5千米。这辆汽车平均每 小时行多少千米? 思考:以下两种解法,你认为哪种方法是正确的? 为什么? 解1:(48×5+50.5×6)÷(5+6)≈49.36(千米) 解2:(48+50.5)÷2 = 49.25(千米) 思考方法:平均每小时行几千米 =总千米数÷总时间
⒈⑴某小学自愿捐书给希望小学,捐赠情 况如下表。求出平均每人捐书多少本?
每人捐书本数 1 2 3 4
人
数
100
75
50
25
⑵ 一个钢铁厂一号高炉前3天每天产钢 354.5吨,后5天共产钢1800.5吨。一号 高炉平均每天产钢多少吨?
⒉⑴李军期末考试语文、数学、自然三科 的平均成绩是87分,如果加上外语,四科 的平均成绩是89.5分。李军外语考了多少 分? (2)三个数的平均数是12,其中两个数是10和 14,第三个数是几? (3)有三个数,甲、乙的平均数是21.5,乙、 丙的平均数是22.5,甲、丙的平均数是 16。这三个数各是多少?
三年级数学平均数问题应用题复习
平均数问题例题1、用4个同样的杯子装水,水面的高度分别是6厘米,5厘米,9厘米,8厘米。
这4个杯子里的水面的平均高度是多少厘米?[分析与解答]根据“平均数=总数量÷总份数”这个数量关系式,可以根据以知条件先求出4个杯子里水的总高度,再用总高度除以杯子的个数就可以求出平均每个杯子里水的高度。
列式如下:这道题还可以这样想:先把水面高度5厘米设为一个基数,把其他三个杯子中高度多于5厘米的数相加得(6-5)+(9-5)+(8-5)=8(厘米),再平均分成4份,每份又多分到8÷4=2(厘米),再与5厘米相加,同样得到7(厘米)。
试一试1、用4个同样的杯子装水,水面的高度分别是8厘米、5厘米、4厘米、3厘米。
这4个杯子里面的平均高度是多少厘米?例题2、工人叔叔修机器,第一天修了4台,第二天修了6台,第三天上午修了3台,下午修了2台。
平均每天修了多少台?[分析与解答]根据题意,要求平均每天修的台数,要先求出三天一共修的总台数。
在用总台数除以天数3,就可以得到平均每天修的台数。
想一想:为什么总数中有4个数相加,却要除以3?试一试2、光华化肥厂一月份生产化肥2800吨,二月份上半月生产化肥1600吨,下半月生产化肥1700吨,三月份生产化肥3500吨。
这三个月平均每个月生产化肥多少吨?例题3、幼儿园教育小朋友做红花,小画做7朵,小方做9朵,小林和小宁合做13朵。
平均每个人做多少朵?[分析与解答]根据已知条件,先求出做花的总朵数,再用花的总朵数除以人数就可以求出平均每个人做花的朵数。
试一试3、一个书架上第一层放了46本书,第二层和第三层共放了70本书,第四层放了52本书,平均每层放了多少本书?例题4、小明读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完,小明平均每天读多少页书?[分析与解答]根据已知条件,先求出这本书的总页数:25×4+40×6=340(页),再求读完这本书所用的天数:4+6=10(天),最后求出小明平均每天读的页数。
第七单元复习求平均数
第七单元复习统计---求平均数教学目的:1.进一加强对统计工作重要性的认识。
2.通过复习使学生进一步理解和掌握平均数应用题的结构特征和解题规律,能正确熟练地解答平均数应用题。
复习过程一.铺垫孕伏1.教师提问引入。
加强对统计工作重要性的认识.(课件演示孩子们这段时间你们辛苦了,这个学期我们的复习已经接近尾声,现在只剩下统计这部分内容了,老师这里就收集了一张我校五年级上期各班数学成绩的统计表,我们来看一看,大家会看吗?从表格中你获取到了哪些信息?(告诉了我们每班的人数,每班的总分数和班平均数)我们在对考试成绩进行评估时常常需要求出数据的平均数,这节课我们就来复习求平均数的问题。
(板书课题:复习求平均数)老师今天对某初级中学三个年级每个班的人数进行收集和整理,我们一一起来看一看:(请一人读题)二.整理复习求平均数。
1.教学例1.(1)例1:某初级中学7个班的学生人数如下:初中一年级:一班40人,二班38人;初中二年级:一班40人,二班40人;初中三年级:一班41人,二班38人,三班36人。
要求这七个班的平均人数,该怎样算?(让生独立在书上列式解答,然后提问以下问题。
)你是怎么想的,为什么要这样列式?(因为问题是求这七个班的平均人数要求这七个班的平均人数,必须知道必须知道总人数和班级数。
)(40+38+40+40+41+38+36)÷7=273÷7=39(人)你是用什么做被除数的?(总人数)什么做除数的?(班级数)为什么用7作除数?(因为是求每班多少人,7是份数)能直接相除吗?(不能,因为总人数没有直接告诉我们。
所以要把7个班的人数加起来。
)7个班的人数相加,你有更简便的方法吗?(很好,这样可以计算得更快)你能说出这道题的数量关系吗?(总人数÷班级数=平均数)答:这七个班的平均数是39人。
(41+40×3+38×2+36)÷7=273÷7=39(人)或(40×6+33)÷7=273÷7=39(人)⑥师:刚才我们复习了已知总人数,班级数,求平均数的问题,那孩子们你们能不能调换这个题的条件和问题,把它改编成另外两道不同的应用题呢?试试看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数复习要点:
概念:
1.平均数等于除以
2.个数乘以平均数等于
3.合计数除以平均数等于
4.五个数值求出平均数,需要使平均数增长10,若只能改变五个
数字中的一个数字,那这个数字应该
5.一堆水果包含两类为苹果和香蕉,苹果价格为5元/斤,香蕉价
格为7元/斤,那么这堆水果平均价格为6元/斤,对吗?
应用题:
1、甲班级男同学22人,他们平均体重是39KG,后来转来两
名男同学,这两个男同学体重分别为42kg、60KG,现
在这个班平均体重多少kg?
2、某小组6人数学竞赛,有2人得75分,有3人得80分,1
人得72分,求小组平均成绩?
3、某3个数字平均数为2,如把其中一个数改为4,平均数就
变成3了,求改动的数字原来是多少?
4、把甲级和乙级糖混在一起,平均每千克卖7元,已知甲级
糖有4千克,每千克8元;乙级糖有2千克,乙级糖每千
克多少钱?
5、一位同学考试成绩中,除了数学外,其他几门平均成绩是
94,若把数学算上,平均分为95,已知他数学得了100分,求共考了几门课?
6、小红测试跳绳,前四次分别为180、180、175、185
下,第五次对全部五次的平均数还多32下,求全部五次
平均数是多少?
7、三个数,甲乙平均数81,甲丙平均数85,乙丙平均数86,
求三个数的平均数?
8、小明骑自行车以每小时15KM完成甲到乙的路程,返回时
每小时10KM,求平均速度?。