人教版七年级上册数学1.4.1有理数乘法运算律练习题(无答案)
人教版七年级上册数学有理数乘除法练习题及答案
第1课时 有理数的乘法法则1.下列各组数中互为倒数的是( )A .4和-4B .-3和13C .-2和-12D .0和02.与-2的乘积为1的数是( )A .2B .-2 C.12 D .-123.下列算式中,积为正数的是( )A .-2×5B .-6×(-2)C .0×(-1)D .5×(-3)4.-12的倒数的相反数等于( )A .-2 B.12 C .-12 D .25.下列说法错误的是( )A .一个数同0相乘,仍得0B .一个数同1相乘,仍得原数C .一个数同-1相乘得原数的相反数D .互为相反数的两个数的积是16.对于式子-(-8),有以下理解:(1)可表示-8的相反数;(2)可表示-1与-8的乘积;(3)可表示-8的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0个B .1个C .2个D .3个7.用字母表示有理数乘法的符号法则.(1)若a >0,b >0,则ab ____0,若a >0,b <0,则ab ____0;(2)若a <0,b >0,则ab ____0,若a <0,b <0,则ab ____0;(3)若a >0,b =0,则ab ____0.8.计算下列各题:(1)(-35)×(-1); (2)(-15)×24;(3)-4.8×(-45); (4)⎝ ⎛⎭⎪⎫-119×(-0.6).9.计算:(1)(-5)×(-6)-8×(-1.25);(2)⎝ ⎛⎭⎪⎫-32×16+⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-53.10.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0 B.a+b<0 C.|a|<|b| D.a-b>011.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?12.东东有5张写着不同数字的卡片:-4-50+3+2他想从中取出2张卡片,使这2张卡片上数字的乘积最大.你知道应该如何抽取吗?最大的乘积是多少?13. 规定运算,a b=ab+1,求下列各式的值:(1)(-2)3;(2)[(-1)2](-3).参考答案1.C 2.D 3.B 4.D 5.D 6.A7.(1)> < (2)< > (3)=8.(1)35 (2)-360 (3)216 (4)239.(1)40 (2)34 10.D11.(1)该出租车停在出发地西面4 km 处;(2)该出租车一共行驶了164 km .12.抽取-4和-5,乘积最大,最大的乘积是20.13.(1)-5 (2)41.4.1 第2课时 有理数乘法的运算律及运用1.计算⎝ ⎛⎭⎪⎫-531×⎝ ⎛⎭⎪⎫-92×⎝ ⎛⎭⎪⎫-3115×29的结果是( ) A .-3 B .-13 C .3 D.132.下列计算中错误的是( )A .-6×(-5)×(-3)×(-2)=180B .(-36)×⎝ ⎛⎭⎪⎫16-19-13=-6+4+12=10 C .(-15)×(-4)×⎝ ⎛⎭⎪⎫+15×⎝ ⎛⎭⎪⎫-12=6 D .-3×(+5)-3×(-1)-(-3)×2=-3×(5-1-2)=-63.利用运算律计算⎝ ⎛⎭⎪⎫-993233×33时,最恰当的方案是( ) A.⎝ ⎛⎭⎪⎫100-133×33 B.⎝ ⎛⎭⎪⎫-100-133×33 C .-⎝ ⎛⎭⎪⎫99+3233×33 D .-⎝ ⎛⎭⎪⎫100-133×33 4.计算:(-8)×(-12)×(-0.125)×⎝ ⎛⎭⎪⎫-13×(-0.001)=____. 5.-23与25的和的15倍是____,-23与25的15倍的和是________.6.运用运算律简便计算:(1)999×(-15);(2)999×11845+999×⎝ ⎛⎭⎪⎫-15-999×11835.7.运用简便方法计算:(1)(-125)×(-25)×(-5)×(-2)×(-4)×(-8);(2)(-36)×⎝ ⎛⎭⎪⎫-49+56-712; (3)9989×(-18).8.逆用乘法分配律计算:(1)17.48×37+174.8×1.9+8.74×88;(2)-13×23-0.34×27+13×(-13)-57×0.34.9.观察下列等式:第1个等式:a 1=11×3=12×⎝ ⎛⎭⎪⎫1-13; 第2个等式:a 2=13×5=12×⎝ ⎛⎭⎪⎫13-15; 第3个等式:a 3=15×7=12×⎝ ⎛⎭⎪⎫15-17; 第4个等式:a 4=17×9=12×⎝ ⎛⎭⎪⎫17-19. 请解答下列问题:(1)按以上规律列出第5个等式:a 5=__________=__________;(2)用含n 的式子表示第n 个等式:a n =__________=______________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.参考答案1.B 2.C 3.D 4.-0.004 5.-4 5136.(1)-14 985 (2)07.(1)1 000 000 (2)7 (3)-1 7988.(1)1 748 (2)-13.349.(1)19×11 12×⎝⎛⎭⎫19-111 (2)1(2n -1)(2n +1) 12×⎝⎛⎭⎫12n -1-12n +1 (3)100201 1.4.2 第1课时 有理数的除法法则1. 16的倒数是( )A .6B .-6 C.16 D .-162.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫+12÷⎝ ⎛⎭⎪⎫-12=-1 B .-3÷⎝ ⎛⎭⎪⎫-13=1 C .(-5)×0÷0=0 D .2÷3×⎝ ⎛⎭⎪⎫-13=-2 3.如果一个数除以它的倒数,商是1,那么这个数是( )A .1B .2C .-1D .1或-14.倒数是它本身的数是___,相反数是它本身的数是____.5.计算:(1)(-15)÷(-3); (2)(-12)÷⎝ ⎛⎭⎪⎫-14;(3)(-12)÷⎝ ⎛⎭⎪⎫-12÷(-10).6.化简下列分数:(1)-162; (2)12-48; (3)-54-6; (4)-9-0.3.7.若a +b <0,b a >0,则下列结论成立的是( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >08.已知a 和b 一正一负,则|a |a +|b |b 的值为( )A .0B .2C .-2D .根据a ,b 的值确定9.计算:(1)⎝ ⎛⎭⎪⎫-23÷⎝ ⎛⎭⎪⎫-85÷(-0.25); (2)⎝ ⎛⎭⎪⎫-47÷⎝ ⎛⎭⎪⎫-314÷⎝ ⎛⎭⎪⎫-23;(3)(-2)÷13×(-3); (4)-2.5÷⎝ ⎛⎭⎪⎫-516×⎝ ⎛⎭⎪⎫-18÷(-4).10.若a ,b 互为相反数,c ,d 互为倒数,m 的倒数是2,求a +b -cd m的值.11.一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =11-a n -1(n ≥2,且n 为整数),则a 2 016=____.参考答案1.A 2.A 3.D 4.±1 05.(1)5 (2)48 (3)-1256.(1)-8 (2)-14(3)9 (4)307.B 8.A 9.(1)-53 (2)-4 (3)18 (4)1410.-2 11.-11.4.2 第2课时 有理数的加、减、乘、除混合运算1.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×⎝ ⎛⎭⎪⎫-94÷(-1)=32;④(-4)÷12×(-2)=16.其中计算正确的个数为( )A .4个B .3个C .2个D .1个2.计算⎝ ⎛⎭⎪⎫-14÷⎝ ⎛⎭⎪⎫-23÷⎝ ⎛⎭⎪⎫-58的结果是( )A .-53B .-35C .-56D .-653.计算4÷(-1.6)-74÷2.5的值为( )A .-1.1B .-1.8C .-3.2D .-3.94.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( )A .+B .-C .×D .÷5.计算⎝ ⎛⎭⎪⎫316-256×(-3)-145÷⎝ ⎛⎭⎪⎫-35的结果是( )A .4B .2C .-2D .-46.计算:(1)42×⎝ ⎛⎭⎪⎫-17+(-0.25)÷34;(2)-1-2.5÷⎝ ⎛⎭⎪⎫-114;(3)[12-4×(3-10)]÷4.7.计算:(1)-1÷⎝ ⎛⎭⎪⎫-18-3÷⎝ ⎛⎭⎪⎫-12; (2)-81÷13-13÷⎝ ⎛⎭⎪⎫-19; (3)-1+5÷⎝ ⎛⎭⎪⎫-16×(-6); (4)⎝ ⎛⎭⎪⎫13-12÷114÷110.8.[2016·杭州]计算6÷⎝ ⎛⎭⎪⎫-12+13时,方方同学的计算过程如下:原式=6÷⎝ ⎛⎭⎪⎫-12+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.9.计算:(1)34×⎝ ⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫-214; (2)-34÷38×⎝ ⎛⎭⎪⎫-49÷⎝ ⎛⎭⎪⎫-23; (3)1÷⎝ ⎛⎭⎪⎫16-13×16; (4)-112÷34×(-0.2)×134÷1.4×⎝ ⎛⎭⎪⎫-35.10.如果规定符号“#”的意义是a #b =a +b ab ,试求2#(-3)#4的值.11.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的几个结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a ⊗b =0,则a =0.其中正确结论的序号是____.参考答案1.C 2.B 3.C 4.C 5.B6.(1)-613(2)1 (3)10 7.(1)14 (2)-240 (3)179 (4)-438.方方同学的计算过程不正确,原式=-36,计算过程略.9.(1)12 (2)-43 (3)-1 (4)-31010.25411.①第6课时 利用计算器进行有理数的加减乘除混合运算1.在科学计算器上按顺序按3,8,×,1,5,+,3,2,=,最后屏幕上显示( )A .686B .602C .582D .5022.用计算器计算(-62.3)÷(-0.25)×940时,用带符号键(-)的计算器的按键顺序是_______________________________________________,用带符号转换键+/-的计算器的按键顺序是_____________________.3.(1)用计算器求 4.56+0.825,按键顺序及显示的结果是:4.56+________=________;(2)用计算器求(-2 184)÷14,按键顺序及显示的结果是:2 184________÷________=________.4.用计算器计算下列各题:(1)-98×(-32.7);(2)36÷7.2+(-48.6)÷2.4.5.在计算器上按如图1-4-2所示的程序进行操作,表中的x与y是分别输入的6个数及相应的计算结果:按键×3=输出y(计算结果)输入x――→图1-4-2上述操作程序中所按的第三个键和第四个键应是()A.“1”和“+” B.“+”和“1”C.“1”和“-” D.“+”和“-1”6.计算(本题可用计算器计算):(1)44×441+2+1=____;(2)666×6661+2+3+2+1=____;(3)8 888×8 8881+2+3+4+3+2+1=____.7.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50 kg为标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录如下:这20袋大米共超重或不足多少千克?总质量为多少千克?8.利用计算器进行计算,将结果填写在横线上:99 999×11=____;99 999×12=____;99 999×13=____;99 999×14=____.(1)你发现了什么规律?(2)不用计算器,你能直接写出99 999×19的结果吗?参考答案1.B2.(-)62· 3÷(-)0· 25×940=62· 3+/-÷0· 25+/-×940=3.(1)0.825 5.385(2)+/-14-1564.(1)3 204.6(2)-15.25 5.B6.(1)484(2)49 284(3)4 937 2847.这20袋大米共超重0.4 kg,总质量为1 000.4 kg.8.1 099 989 1 199 988 1 299 987 1 399 986(1)(答案不唯一)规律①:第一个因数都是99 999不变,第二个因数由11逐渐加1,积的最高两位数随着第二个因数的增加由10逐渐加1,中间三位数都是999,末尾两位数由89逐渐减1;规律②:因数的规律同上,积的最高两位数比第二个因数少1,中间三位数都是999,末尾两位数与第二个因数的和为100;(2)1 899 981。
1-4-1 有理数的乘法 练习 2023—2024年人教版数学七年级上册
1.4.1 有理数的乘法一、选择题1.如果a与3互为倒数,那么a是()A.−3B.3C.−13D.132.计算:(−3)×5的结果是()A.15 B.2 C.−2D.−153.下列四个算式中运算结果为2022的是()A.2021+(−1)B.2021−(−1)C.−2021×(−1)D.2022÷(−1)4.实数a,b在数轴上的位置如图所示,下列说法一定正确的是()A.a+b<0B.|a|>|b|C.a−b>0D.ab<05.如图,现有5张写着不同数字的卡片,若从中取出2张卡片,使这2张卡片上的数字相乘的积最小,则这个最小值为()A.﹣35 B.﹣15 C.﹣14 D.﹣216.如果a+b<0,且ab>0,那么()A.a>0,b>0B.a<0,b<0C.a,b异号D.a,b异号且负数的绝对值小7.下列运算错误的是()A.(﹣2)×(﹣3)=6B.(﹣12)×6=﹣3C.(﹣5)×(﹣2)×(﹣4)=-40D.(﹣3)×(﹣2)×(﹣4)=248.若a,b互为相反数,c,d互为倒数,x是数轴上到原点的距离为3的数,则(a+b+cd)x+(﹣cd)3的值为()A.2 B.2或﹣4 C.3或﹣2 D.3二、填空题9.在有理数3,0,-1,-3中,任意取两个数相乘,积的最小值是.10.绝对值大于1而不大于3的所有负整数的积为 .11.计算:|−4|×(−2)= .12.若a <0,则|−3a|= .13.已知a 的相反数是123,b 的倒数是−212,则ab = .三、解答题14.(1)(−37)×(−79)×(−6) ;(2)(−24)×(−56+38−112) .15.已知,则a ·b 等于?16.已知有理数a ,b ,c 满足|a |a +|b |b +|c |c =1,求|abc |abc 的值.17.小强有5张卡片写着不同的数字的卡片,他想从中取出2张卡片.(1)使数字的积最小,应如何抽?最小积是多少?(2)使数字的积最大,应如何抽?最大积是多少?参考答案1.D2.D3.B4.D5.A6.B7.D8.B9.−910.611.-812.-3a13.2314.(1)解:原式= −37×79×6=-2;(2)解:原式= (−24)×(−56)+(−24)×38−(−24)×112= =20−9+2=13.15.解答:根据绝对值的非负性可以得到a+2=0、b-3=0,可以得到a=-2、b=3,所以a ·b=-2×3=-616.解:∵|a |a +|b |b +|c |c =1,∴a ,b ,c 中必有两正一负,即abc 之积为负,∴|abc |abc =﹣1.17.解:(1)抽取﹣8和4,数字的积最小,﹣8×4=﹣32;(2)抽取﹣8和﹣3.5,数字的积最大,﹣8×(﹣3.5)=28.。
人教版七年级数学(上册)全册课时练习及答案
人教版七年级数学(上册)全册课时练习及答案第一章有理数1.1正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( ) A.-4米 B.+16米 C.-6米 D.+6米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.2.3相反数1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4绝对值 第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3有理数的加减法1.3.1有理数的加法 第1课时有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2有理数的减法 第1课时有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4有理数的乘除法1.4.1有理数的乘法 第1课时有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2有理数的除法 第1课时有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5有理数的乘方1.5.1乘方 第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1整式第1课时用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( ) A.(m +0.8n)元 B.0.8n 元 C.(m +n +0.8)元 D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1从算式到方程3.1.1一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD 的长.4.3角4.3.1角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数 1.1正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法 第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)283 2.B 3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。
1.4.1.2有理数的乘法运算律【预习练】-2021-2022学年七年级数学上册(人教版)(含答案)
1.4.1.2有理数的乘法运算律【课前预习练】 -2021-2022学年七年级数学上册(人教版)一、选择题1、算式411010.05810.0454⎛⎫-⨯-+=-+- ⎪⎝⎭.这个运算过程应用了 ( )A .加法结合律B .乘法结合律C .乘法交换律D .乘法分配律2、利用分配律计算981009999⎛⎫-⨯ ⎪⎝⎭时,正确的方法可以是( )A .-981009999⎛⎫-+⨯ ⎪⎝⎭B .-981009999⎛⎫--⨯ ⎪⎝⎭C .981009999⎛⎫-⨯ ⎪⎝⎭D .11019999⎛⎫--⨯ ⎪⎝⎭ 3、用分配律计算131448123⎛⎫⎛⎫--⨯-⎪ ⎪⎝⎭⎝⎭,去括号后正确的是( ) A .143143812-⨯-- B .1434144383123-⨯-⨯-⨯C .1434144383123-⨯+⨯-⨯D .1434144383123-⨯+⨯+⨯ 4、观察算式(-4)×17×(-25)×14,在解题过程中,能使运算变得简便的运算律是( )A .乘法交换律B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律5、算式(﹣48)×0.125+48×118可以化为( ) A .-48×(﹣18+118) B .48×(18+118) C .48×(﹣18+118) D .48×(﹣18﹣118)6、计算)85614331()24(-+-⨯-的结果是( )A .21B .-21C .-12D .6 7、下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2 B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7) C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 二、填空题8、有理数乘法运算律:乘法交换律: ;乘法结合律: ;分配律: . 9、运用运算律填空.(1) -2×(-3)=(-3)×( )(2) [(-3)×2]×(-5)=(-3)×[ × ];(3) (-5)×[(-2)+(-3)=(-5)×( )+( )×(-3).10、(1)(-2)×[(-78)×5]= =_________;(2)1945×16=(20-______)×16=16×20-16×_______=________=________; (3)3.1416×7.5944+3.1416×(-5.5944)=3.1416×( )=•______ =_______. 11、写出下列运算中每一步所依据的运算律或法则:(﹣0.4)×(﹣0.8)×(﹣1.25)×2.5 =﹣(0.4×0.8×1.25×2.5)(第一步) =﹣(0.4×2.5×0.8×1.25)(第二步)=﹣[(0.4×2.5)×(0.8×1.25)](第三步) =﹣(1×1)=﹣1.第一步: ;第二步: ;第三步: .12、计算:972021)92(2021⨯--⨯=_____________ 13、计算 112()(12)423-+⨯-= . 14、在等式3215⨯-⨯=的两个方格中分别填入一个数,使这两个数互为相反数且使等式成立,则第一个方格内的数是________. 三、解答题 15、计算(1)(﹣8)×(﹣43)×(﹣0.125)×54. (2)()()13-24--3.2537⎛⎫⎛⎫⨯+⨯⨯ ⎪ ⎪⎝⎭⎝⎭16、(1)计算:(﹣41+65﹣92)×(﹣36). (2)计算:)322141(+--×24-54×(-2.5)×(-8).17、有时灵活运用分配律可以简化有理数的运算,使计算又快又准,例如逆用分配律ab +ac =a (b +c ),可使运算大大简便,试逆用分配律计算下列各题:(1)(-56)×(-32)+51×(-32); (2)(-6)×⎪⎭⎫ ⎝⎛-731+()-6×337;(3)112×57-(-57)×212+(-52)×57. (4)25×(34)-(-25)×(12)+25×(14-)18、学习有理数得乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下: 小明,原式12491249452492555=-⨯=-=-; 小军:原式2424449(5)49(5)(5)24925255⎛⎫=+⨯-=⨯-+⨯-=- ⎪⎝⎭; (1)根据上面的解法对你的启发,请你再写一种解法; (2)用你认为最合适的方法计算:1519816-⨯1.4.1.2有理数的乘法运算律【课前预习练】-2021-2022学年七年级数学上册(人教版)(含答案)一、选择题1、算式411010.05810.0454⎛⎫-⨯-+=-+-⎪⎝⎭.这个运算过程应用了( )A.加法结合律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D2、利用分配律计算981009999⎛⎫-⨯⎪⎝⎭时,正确的方法可以是()A.-981009999⎛⎫-+⨯⎪⎝⎭B.-981009999⎛⎫--⨯⎪⎝⎭C.981009999⎛⎫-⨯⎪⎝⎭D.11019999⎛⎫--⨯⎪⎝⎭【答案】A3、用分配律计算131448123⎛⎫⎛⎫--⨯-⎪ ⎪⎝⎭⎝⎭,去括号后正确的是()A.143143812-⨯--B.1434144383123-⨯-⨯-⨯C.1434144383123-⨯+⨯-⨯D.1434144383123-⨯+⨯+⨯【答案】D【提示】根据乘法分配律可以将括号去掉,本题得以解决,注意符号的变化.【详解】解:131448123⎛⎫⎛⎫--⨯-⎪ ⎪⎝⎭⎝⎭=1434144383123-⨯+⨯+⨯,故选D.4、观察算式(-4)×17×(-25)×14,在解题过程中,能使运算变得简便的运算律是( ) A .乘法交换律 B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律【答案】C【提示】利用交换律和结合律计算可简便计算.【详解】原式=[(-4)×(-25)](17×28)=100×4=400, 所以在解题过程中,能使运算变得简便的运算律是乘法交换律、结合律. 故选C .5、算式(﹣48)×0.125+48×118可以化为( ) A .-48×(﹣18+118) B .48×(18+118) C .48×(﹣18+118) D .48×(﹣18﹣118) 【答案】C【分析】首先将0.125化为18,然后将48提出来即可得出结果. 【详解】原式=()111111-48+48=48-+8888⎛⎫⨯⨯⨯ ⎪⎝⎭, 故选:C .6、计算)85614331()24(-+-⨯-的结果是( ) A .21B .-21C .-12D .6【分析】根据乘法分配律:(a+b )c=ac+bc 可得.故选:A7、下列运算过程中,有错误的是()A.(3﹣412)×2=3﹣412×2 B.﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C.91819×16=(10﹣119)×16=160﹣1619D.[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B、原式=﹣(4×125×7),不符合题意;C、原式=(10﹣119)×16=160﹣1619,不符合题意;D、原式=3×[(﹣25)×(﹣2)],不符合题意.故选:A.二、填空题8、有理数乘法运算律:乘法交换律:;乘法结合律:;分配律:.【答案】ab=ba (ab)c=a(bc)a(b+c)=ab+ac;9、运用运算律填空.(1) -2×(-3)=(-3)×()(2) [(-3)×2]×(-5)=(-3)×[ ×];(3) (-5)×[(-2)+(-3)=(-5)×( )+( )×(-3).【答案】(1) -2 (2)(-5) (3) -2 -510、(1)(-2)×[(-78)×5]= =_________;(2)1945×16=(20-______)×16=16×20-16×_______=________=________;(3)3.1416×7.5944+3.1416×(-5.5944)=3.1416×()=•______ =_______.【答案】(1)-2×5×(-78)780(2)1515320-31531645(3)7.5944-5.5944 3.1416×2 6.283211、写出下列运算中每一步所依据的运算律或法则:(﹣0.4)×(﹣0.8)×(﹣1.25)×2.5=﹣(0.4×0.8×1.25×2.5)(第一步)=﹣(0.4×2.5×0.8×1.25)(第二步)=﹣[(0.4×2.5)×(0.8×1.25)](第三步)=﹣(1×1)=﹣1.第一步:;第二步:;第三步:.【解题思路】根据有理数的乘法,即可解答.【解答过程】解:写出下列运算中每一步所依据的运算律或法则:(﹣0.4)×(﹣0.8)×(﹣1.25)×2.5=﹣(0.4×0.8×1.25×2.5)(第一步)=﹣(0.4×2.5×0.8×1.25)(第二步)=﹣[(0.4×2.5)×(0.8×1.25)](第三步)=﹣(1×1)=﹣1.第一步:确定积的符号,并把绝对值相乘;第二步:乘法的交换律; 第三步:乘法的结合律.故答案为:确定积的符号,并把绝对值相乘;乘法的交换律;乘法的结合律.12、计算:972021)92(2021⨯--⨯=_____________ 【分析】根据乘法分配律的逆运算进行计算即可 解:原式=2021)1(2021)9792(2021-=-⨯=--⨯13、计算 112()(12)423-+⨯-= . 【解析】()11212423⎛⎫-+⨯-⎪⎝⎭=()()()112=121212423⨯--⨯-+⨯- =-3+6-8=-514、在等式3215⨯-⨯=的两个方格中分别填入一个数,使这两个数互为相反数且使等式成立,则第一个方格内的数是________. 【答案】3【提示】根据乘法分配律可得: 332(3)15⨯-⨯-=.【详解】根据乘法分配律可得:332(3)15⨯-⨯-=故答案为3三、解答题 15、计算(1)(﹣8)×(﹣43)×(﹣0.125)×54. (2)()()13-24--3.2537⎛⎫⎛⎫⨯+⨯⨯ ⎪ ⎪⎝⎭⎝⎭解:(1)原式=﹣8×0.125×43×54=﹣53. (2)原式=()()734 3.251131337⎛⎫⎛⎫-⨯-⨯⨯-=⨯-=- ⎪ ⎪⎝⎭⎝⎭;16、(1)计算:(﹣41+65﹣92)×(﹣36). (2)计算:)322141(+--×24-54×(-2.5)×(-8).(1)【答案】﹣13【提示】先利用乘法分配律展开,再依次计算乘法和加减运算可得.【详解】原式=﹣14×(﹣36)+56×(﹣36)﹣29×(﹣36)=9﹣30+8 =17﹣30 =﹣13.(2)计算:)322141(+--×24-54×(-2.5)×(-8).解:原式=)322141(+--×24-54×)25(-×(-8) =-14×24-12×24+23×24-54×52×8=-6-12+16-25 =-43+16 =-27.17、有时灵活运用分配律可以简化有理数的运算,使计算又快又准,例如逆用分配律ab +ac =a (b +c ),可使运算大大简便,试逆用分配律计算下列各题:(1)(-56)×(-32)+51×(-32); (2)(-6)×⎪⎭⎫ ⎝⎛-731+()-6×337;(3)112×57-(-57)×212+(-52)×57. (4)25×(34)-(-25)×(12)+25×(14-)【分析】利用乘法分配律的逆运算进行计算.解:(1)(-56)×(-32)+51×(-32)=(-32)×(-56+51)=-32×(-5)=160.(2)(-6)×(-317)+(-6)×337=-6×(-317+337)=-6×(-317+247)=-6×(-1)=6.(3)112×57-)75(-×212+)25(-×57=57×)25212211(-+=57×32=1514.(4)25×34﹣25×12+25×(﹣14)=25×(34﹣12﹣14)=25×0=0.18、学习有理数得乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下: 小明,原式12491249452492555=-⨯=-=-; 小军:原式2424449(5)49(5)(5)24925255⎛⎫=+⨯-=⨯-+⨯-=- ⎪⎝⎭; (1)根据上面的解法对你的启发,请你再写一种解法; (2)用你认为最合适的方法计算:1519816-⨯ 【答案】(1)见解析;(2)11592- 【分析】(1)把244925写成(50-125),然后利用乘法分配律进行计算即可得解; (2)把151916-写成(116-20),然后利用乘法分配律进行计算即可得解.【详解】解:(1)2449(5)25⨯-=50(5)125⎛⎫-⨯- ⎪⎝⎭=150(5)(5)25⨯--⨯- =12505-+=24954-; (2)1519816-⨯=120816⎛⎫-⨯ ⎪⎝⎭=1820816⨯-⨯ =11602- =11592-。
【初中数学】人教版七年级上册第2课时 有理数的乘法运算律(练习题)
人教版七年级上册第2课时 有理数的乘法运算律(270)1.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(−15);(2)999×11845+999×(−15)−999×1835.2.计算:(1)−13×23−0.34×27+13×(−13)−57×0.34;(2)3113×4112−1113×4112×2−9.5×1113.3.算式3.14×(−2.5)×4=3.14×(−2.5×4)运用了()A.乘法交换律B.乘法结合律C.乘法交换律和结合律D.分配律 4.算式(14−16+112)×12=14×12−16×12+112×12运用了()A.乘法交换律B.乘法结合律C.乘法交换律和结合律D.分配律5.算式−25×14+18×14−39×(−14)=(−25+18+39)×14是逆用了()A.加法交换律B.乘法交换律C.乘法结合律D.分配律6.计算:(1)1.6×(−145)×(−2.5)×(−38);(2)(527+79−23)×(−81).7.算式(−0.125)×15×(−8)×(−45)=[(−0.125)×(−8)]×[15×(−45)]运用了()A.乘法结合律B.乘法交换律C.分配律D.乘法交换律和结合律 8.写出下列运算中每一步所依据的运算律或法则:(−0.4)×(−0.8)×(−1.25)×2.5=−(0.4×0.8×1.25×2.5) (第一步)=−(0.4×2.5×0.8×1.25) (第二步)=−[(0.4×2.5)×(0.8×1.25)] (第三步)=−(1×1)=−1.第一步: ;第二步: ;第三步: .9.计算:(−2.5)×0.37×1.25×(−4)×(−8)= .10.阅读材料,回答问题.(1+12)×(1−13)=32×23=1; (1+12)×(1+14)×(1−13)×(1−15) =32×54×23×45=(32×23)×(54×45)=1×1=1. 根据以上信息,计算:(1+12)×(1+14)×(1+16)×… ×(1+120)×(1−13)×(1−15)×(1−17)×…×(1−121) 11.运用分配律计算(−3)×(−8+2−3),有下列四种不同的结果,其中正确的是()A.−3×8−3×2−3×3B.−3×(−8)−3×2−3×3C.(−3)×(−8)+3×2−3×3D.(−3)×(−8)−3×2−(−3)×3 12.(−758)×8可化为()A.−7×58×8B.−7×8+58C.−7×8+58×8D.−7×8−58×8 13.下列计算(−55)×99+(−44)×99−99正确的是()A.原式=99×(−55−44)=−9801B.原式=99×(−55−44+1)=−9702C.原式=99×(−55−44−1)=−9900D.原式=99×(−55−44−99)=−1960214.学习有理数的乘法后,老师给同学们出了这样一道题目:计算:492425×(−5),看谁算得又快又对.有两位同学的解法如下:小明:原式=−124925×5=−12495=−24945; 小军:原式=(49+2425)×(−5)=49×(−5)+2425×(−5)=−24945.(1)对于以上两种解法,你认为谁的解法较好?(2)你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:1915×(−8).16参考答案1(1)【答案】999×(−15)=(1000−1)×(−15)=−15000+15=−14985(2)【答案】999×11845+999×(−15)−999×1835\(=999\times\left[ 118{\dfrac{4}{5}}+\left(-{\dfrac{1}{5}}\right)-18{\dfrac{3}{5}}\right]\)=999×100=999002(1)【答案】解:−13×23−0.34×27+13×(−13)−57×0.34=−13×(23+13)−0.34×(27+57)=−13−0.34=−13.34. (2)【答案】解: 3113×4112−1113×4112×2−9.5×1113=3113×4112−1113×4112−1113×4112−9.5×1113=4112×(3113−1113)−1113×(4112+9.5) =(41+12)×20−(11+13)×51=820+10−561−17=252.3.【答案】:B4.【答案】:D5.【答案】:D6(1)【答案】解:1.6×(−145)×(−2.5)×(−38)=−(1.6×145×2.5×38)=−85×38×95×52=−2710.(2)【答案】解:(527+79−23)×(−81)=527×(−81)+79×(−81)−23×(−81)=−15−63+54=−24.7.【答案】:D8.【答案】:有理数乘法法则;乘法交换律;乘法结合律9.【答案】:−37【解析】:(−2.5)×0.37×1.25×(−4)×(−8)=−(2.5×0.37×1.25×4×8)=−(2.5×4×1.25×8×0.37)=−[(2.5×4)×(1.25×8)]×0.37=−37.10.【答案】:解:(1+12)×(1+14)×(1+16)×…×(1+120)×(1−13)×(1−15)×(1−17)×…×(1−1 21 )=32×54×76×…×2120×23×45×67×…×2021=(32×23)×(54×45)×(76×67)×…×(2120×2021)=1.11.【答案】:D12.【答案】:D【解析】:−758×8=(−7−58)×8=−7×8−58×813.【答案】:C14(1)【答案】小军的解法较好(2)【答案】还有更好的解法,解法如下: 492425×(−5)=(50−125)×(−5)=50×(−5)−125×(−5)=−250+15=−2494 5(3)【答案】191516×(−8)=(20−116)×(−8)=20×(−8)−116×(−8)=−160+12=−1591 2。
人教版七年级数学上册第1章有理数1.4.1有理数的乘法习题新版
1.4.1有理数的乘法学校:___________姓名:___________班级:___________ 一.选择题(共10小题)1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3 3.已知:a=﹣2+(﹣10),b=﹣2﹣(﹣10),c=﹣2判断正确的是()A.a>b>c B.b>c>a C.c>b >a D.a>c>b4.下列各数中,与﹣2的积为1的是()AB.2 D.﹣25.如果□×(﹣3)=1,则“□”内应填的实数是()AB.3 C.﹣3 D6.四个互不相等的整数的积为4,那么这四个数的和是()A.0 B.6 C.﹣2 D.2 7.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 8.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1的值为()AB.49! C.2450 D.2!9.若|a|=4,|b|=5,且ab<0,则a+b 的值是()A.1 B.﹣9 C.9或﹣9 D.1或﹣110.观察算式(﹣425)×28,在解题过程中,能使运算变得简便的运算律是()A.乘法交换律B.乘法结合律C.乘法交换律、结合律D.乘法对加法的分配律二.填空题(共10小题)11.计算= .12.绝对值不大于3的所有整数的积是.13.若|a|=3,|b|=5,ab<0,则a+b= .14.若m<n<0,则(m+n)(m﹣n)0.(填“<”、“>”或“=”)15.如果a>0,b<0,那么ab 0(填“>”、“<”或“=”).16.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c= .17.在数﹣5,4,﹣3,6,﹣2中任取三个数相乘,其中最大的积是.18.某同学把7×(□﹣3)错抄为7×□﹣3,抄错后算得答案为y,若正确答案为x,则x﹣y= .19.若a、b为有理数,ab>0,则= .20.课本29页有这样一组算式:(﹣1)×3= ,(﹣2)×3= ,(﹣3)×3= ,当我们利用前面所发现的规律,完成这三个填空以后,由这个三个算式可以归纳得出有理数乘法法则的具体内容是.参考答案与试题解析一.选择题(共10小题)1.解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.2.解:(﹣1)×(﹣2)=2.故选:A.3.解:a=﹣2+(﹣10)=﹣12,b=﹣2﹣(﹣10)=﹣2+10=8,c=﹣2×∵812,∴b>c>a,故选:B.4.解:∵﹣2×(﹣2)=4,﹣2×2=﹣4,﹣2﹣1,﹣2=1,∴与﹣2的积为1故选:B.5)×(﹣3)=1,故选:D.6.解:∵1×2×(﹣1)×(﹣2)=4,∴这四个互不相等的整数是1,﹣1,2,﹣2,和为0.故选:A.7.解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选:A.49=2450故选:C.9.解:∵|a|=4,|b|=5,且ab<0,∴a=4,b=﹣5;a=﹣4,b=5,则a+b=1或﹣1,故选:D.10.解:原式=[(﹣4)×(﹣25)] 28)=100×4=400,所以在解题过程中,能使运算变得简便的运算律是乘法交换律、结合律.故选:C.二.填空题(共10小题)111212)(﹣12)=﹣3+6﹣8=﹣5.故答案为:﹣5.12.解:绝对值不大于3的所有整数是:±3,±2,±1,0,它们的积是:(﹣1)×(﹣2)×(﹣3)×1×2×3×0=0.故答案是:0.13.解:∵ab<0,∴a、b异号,又∵|a|=3,|b|=5,∴a=±3,b=±5,有两种情况:当a=3时,b=﹣5,则a+b=﹣2;当a=﹣3时,b=5,则a+b=2;∴a+b=2或﹣2,故答案为2或﹣2.14.解:∵m<n<0,∴m+n<0,m﹣n<0,∴(m+n)(m﹣n)>0.故答案是>.15.解:因为a>0,b<0,由异号得负,所以ab<0.答案:<16.解:4的所有因数为:±1,±2,±4,由于abc=4,且a、b、c是互不相等的整数,当c=4时,∴ab=1,∴a=1,b=1或a=﹣1,b=﹣1,不符合题意,当c=﹣4时,∴ab=﹣1,∴a=1,b=﹣1或a=﹣1,b=1,∴a+b+c=﹣4,当c=2时,∴ab=2,∴a=1,b=2或a=2,b=1,不符合题意,舍去,a=﹣1,b=﹣2或a=﹣2,b=﹣1,∴a+b+c=﹣1当c=﹣2时,∴ab=﹣2,∴a=﹣1,b=2或a=2,b=﹣1,∴a+b+c=﹣1当c=1时,ab=4,∴a=1,b=4或a=4,b=1,不符合题意舍去,a=﹣1,b=﹣4或a=﹣4,b=﹣1∴a+b+c=﹣4,∴当c=﹣1时,∴ab=﹣4,∴a=2,b=﹣2或a=﹣2,b=2,∴a+b+c=﹣1a=﹣1,b=4或a=4,b=﹣1∴a+b+c=2,不符合题意综上所述,a+b+c=﹣1或﹣4故答案为:﹣4或﹣1.17.解:最大的积=﹣5×6×(﹣3)=90.故答案为:90.18.解:根据题意得,7×(□﹣3)=x①,7×□﹣3=y②,①﹣②得,x﹣y=7×(□﹣3)﹣7×□+3=7×□﹣21﹣7×□+3=﹣18.故答案为:﹣18.19.解:∵ab>0,∴a、b同号,当a、b同为负数时,原式=﹣1﹣1+1=﹣1,当a、b同为正数时,原式=1+1+1=3,故答案为:﹣1或3.20.解:(﹣1)×3=﹣3,(﹣2)×3=﹣6,(﹣3)×3=﹣9,两数相乘,异号得负,并把绝对值相乘,故答案为:﹣3,﹣6,﹣9,两数相乘,异号得负,并把绝对值相乘.。
人教版七年级数学上册第一章 1.4.1.3有理数的乘法运算律 同步测试题
人教版七年级数学上册第一章 1.4.1.3有理数的乘法运算律 同步测试题一、选择题1.在2×(-7)×5=-7×(2×5)中,运用了( )A .乘法交换律B .乘法结合C .分配律D .乘法交换律和乘法结合律2.计算(1-12+13+14)×(-12),运用哪种运算律可避免通分( ) A .加法交换律 B .加法结合律 C .乘法交换律 D .分配律3.算式(-32)×(-314)×23的值为( ) A .14 B .1112 C .114 D .1344.在运用分配律计算3.96×(-99)时,下列变形较合理的是( )A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)5.计算1357×316,最简便的方法是( ) A .(13+57)×316 B .(14-27)×316 C .(16-227)×316 D .(10+357)×3166.计算(-55)×99+(-44)×99-99正确的是( )A .原式=99×(-55-44)=-9 801B .原式=99×(-55-44+1)=-9 702C .原式=99×(-55-44-1)=-9 900D .原式=99×(-55-44-99)=-19 602二、填空题7.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(________)=[4×(8×125)-5]×25(________)=4 000×25-5×25(________)=99875.8.计算:(-8)×(-2)+(-1)×(-8)-(-3)×(-8)=-8×[(________)+(________)-(________)]=-8×________=________.9.计算:25×(-0.125)×(-4)×(-45)×(-8)×54=[25×(________)]×[(-0.125)×(________)]×[(________)×________]=________×1×(________)=________.三 、解答题10.运用运算律进行简便运算:(1)(-10)×13×(-110)×6;(2)36×(-34-59+712);(3)(-5)×(+223)+7×(-223)-(+12)×(-223).11.某场馆建设需烧制半径为0.24 m ,0.37 m ,0.39 m 的三个圆形钢筋环,问:需要钢筋多少米?(π取3.14)12.计算:-48×(12-3-58+56-112).13.用简便方法计算:(1)(-8)×(-43)×(-1.25)×54;(2)(-112-136+16)×(-36);(3)0.7×149+234×(-15)+0.7×59+14×(-15);(4)9978×(-4)-(12-13-56)×24.14.请你参照黑板上老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×11845+999×(-15)-999×1835.15.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2 020这个数说给第一位同学,第一位同学将它减去它的12的结果告诉第二位同学,第二位同学再将听到的结果减去它的13的结果告诉第三位同学,第三位同学再将听到的结果减去它的14的结果告诉第四位同学……照这样的方法直到全班40人全部传完,最后一位同学将听到的结果告诉李老师,你知道最后的结果吗?参考答案一、选择题1.在2×(-7)×5=-7×(2×5)中,运用了(D )A .乘法交换律B .乘法结合C .分配律D .乘法交换律和乘法结合律2.计算(1-12+13+14)×(-12),运用哪种运算律可避免通分(D) A .加法交换律 B .加法结合律 C .乘法交换律 D .分配律3.算式(-32)×(-314)×23的值为(D ) A .14 B .1112 C .114 D .1344.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)5.计算1357×316,最简便的方法是(C )A .(13+57)×316B .(14-27)×316C .(16-227)×316D .(10+357)×3166.计算(-55)×99+(-44)×99-99正确的是(C )A .原式=99×(-55-44)=-9 801B .原式=99×(-55-44+1)=-9 702C .原式=99×(-55-44-1)=-9 900D .原式=99×(-55-44-99)=-19 602二、填空题7.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(乘法交换律)=[4×(8×125)-5]×25(乘法结合律)=4 000×25-5×25(分配律)=99875.三 、解答题8.计算:(-8)×(-2)+(-1)×(-8)-(-3)×(-8)=-8×[(-2)+(-1)-(-3)]=-8×0=0.9.计算:25×(-0.125)×(-4)×(-45)×(-8)×54=[25×(-4)]×[(-0.125)×(-8)]×[(-45)×54] =-100×1×(-1)=100.10.运用运算律进行简便运算:(1)(-10)×13×(-110)×6; 解:原式=(10×110)×(13×6) =2.(2)36×(-34-59+712); 解:原式=36×(-34)-36×59+36×712=-27-20+21=-26.(3)(-5)×(+223)+7×(-223)-(+12)×(-223). 解:原式=(-5)×223-7×223+12×223=(-5-7+12)×223=0×223=0.11.某场馆建设需烧制半径为0.24 m ,0.37 m ,0.39 m 的三个圆形钢筋环,问:需要钢筋多少米?(π取3.14)解:2π×0.24+2π×0.37+2π×0.39=2π×(0.24+0.37+0.39)=2π×1=2π≈6.28(m).答:需要钢筋约6.28 m.12.计算:-48×(12-3-58+56-112). 解:原式=-48×12-3×(-48)-58×(-48)+56×(-48)-112×(-48) =-24+144+30-40+4=114.13.用简便方法计算:(1)(-8)×(-43)×(-1.25)×54; 解:原式=-(8×1.25)×(43×54) =-10×53=-503.(2)(-112-136+16)×(-36);解:原式=(-112)×(-36)+(-136)×(-36)+16×(-36) =3+1-6=-2.(3)0.7×149+234×(-15)+0.7×59+14×(-15); 解:原式=(0.7×149+0.7×59)+[234×(-15)+14×(-15)] =0.7×(149+59)+(-15)×(234+14) =0.7×2+(-15)×3=1.4+(-45)=-43.6.(4)9978×(-4)-(12-13-56)×24. 解:原式=(100-18)×(-4)-(12-8-20) =-400+12+16 =-38312.14.请你参照黑板上老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×11845+999×(-15)-999×1835. 解:(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×[11845+(-15)-1835] =999×100=99 900.15.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2 020这个数说给第一位同学,第一位同学将它减去它的12的结果告诉第二位同学,第二位同学再将听到的结果减去它的13的结果告诉第三位同学,第三位同学再将听到的结果减去它的14的结果告诉第四位同学……照这样的方法直到全班40人全部传完,最后一位同学将听到的结果告诉李老师,你知道最后的结果吗?解:2 020×(1-12)×(1-13)×(1-14)×…×(1-140) =2 020×12×23×34×…×3940=2 020×140101=2.。
人教版七年级数学上册有理数的乘法测试题
人教版7年级数学考试题测试题人教版初中数学第一章有理数1.4.1有理数的乘法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.12018的倒数是A.2018 B.–2018 C.–12018D.12018【答案】A2.一个数和它的倒数相等,则这个数是A.1 B.–1 C.±1 D.±1和0 【答案】C【解析】∵1×1=1,(–1)×(–1)=1,∴一个数和它的倒数相等的数是±1.故选C.3.计算–2×34×0.5的结果是A.34B.–43C.–34D.43【答案】C【解析】原式=3132424-⨯⨯=-.故选C.学科*网4.(–2)×3的结果是A.–6 B.–5 C.–1 D.1 【答案】A【解析】原式=–6,故选A.5.观察算式(–4)×17×(–25)×28,在解题过程中,能使运算变得简便的运算律是A.乘法交换律B.乘法结合律C.乘法交换律、结合律D.乘法对加法的分配律【答案】C二、填空题:请将答案填在题中横线上.6.一个数的倒数是–113,这个数是__________.【答案】3 4 -【解析】因为,一个数的倒数是–113,所以这个数是34-.故答案为:34-.7.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x–y+xy.例如,3*2=3–2+3×2=7,则2*1=_________.【答案】3【解析】∵对于任意有理数x,y满足x*y=x–y+xy,∴2*1=2–1+2×1=1+2=3. 学科*网故答案为:3.8.写出下列运算中每一步所依据的运算律或法则:(–0.4)×(–0.8)×(–1.25)×2.5=–(0.4×0.8×1.25×2.5)(第一步)=–(0.4×2.5×0.8×1.25)(第二步)=–[(0.4×2.5)×(0.8×1.25)](第三步)=–(1×1)=–1.第一步:____________;第二步:____________;第三步:____________.【答案】乘法法则;乘法交换律;乘法结合律【解析】写出下列运算中每一步所依据的运算律或法则:(−0.4)×(−0.8)×(−1.25)×2.5=−(0.4×0.8×1.25×2.5)(第一步)=−(0.4×2.5×0.8×1.25)(第二步)=−[(0.4×2.5)×(0.8×1.25)](第三步)=−(1×1)=−1.第一步:乘法法则;第二步:乘法交换律;第三步:乘法结合律.学科*网故答案为:乘法法则;乘法交换律;乘法结合律.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.计算:25×34–(–25)×12+25×(–14). 【答案】25【解析】原式=25×34+25×12+25×(–14) =25×[34+12+(–14)] =25.10.()()38424-⨯-⨯- 【答案】2 【解析】()()38424-⨯-⨯- =38424-⨯⨯ =86-=2.11.求下列各数的倒数:(1)34-;(2)223;(3)–1.25;(4)5.12.计算:(1)–13×23–0.34×27+13×(–13)–57×0.34;(2)3113×4112–1113×4112×2–9.5×1113. 【答案】(1)–13.34;(2)252.附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
2021-2022学年七年级上册数学人教版习题课件 1.4.1 第3课时 有理数乘法的运算律
解:-7 (3)(-5)×(+713 )+7×(-713 )-(+12)×(-713 ).
解:0
10.用简便方法计算(-23)×25-6×25+18×25+25, 逆用分配律正确的是( B ) A.25×(-23-6+18) B.25×(-23-6+18+1) C.-25×(23+6+18) D.-25×(23+6-18+1)
过程如下:(-24)×(13 -14 -16 )=(-24)×13 -(-24)×14 -(-24)×16 . ((12))他 他这 所样 依做 据正 的确 运吗 算? 律答 是:_分___配正____律确,_;这种运算律用字母表示为a_(_b_+__c_)_=__a_b_+__a.c
9.计算:解:(1)原式=(-12 )×(-23 )×(-34 )×…×(-19090 )=-1100 (2)2020×(1-12 )×(1-13 )×…×(1-20120 )= 2020×12 ×23 ×34 ×…×22001290 =2020×20120 =1
数学
七年级上册 人教版
第1章 有理数
1.4.1 有理数的乘法
第3课时 有理数乘法的运算律
1.式子(13 -135 +25 )×3×5=(13 -135 +25 )×15=5-3+6 中, 运用的运算律是( D ) A.乘法交换律及结合律 B.乘法交换律及分配律 C.加法结合律及分配律 D.乘法结合律及分配律
15.运用运算律进行简便计算:
(1)(-172 -56 +1)×(-36);
解:15
(2)(-5)×425 +7×(-425 )-(-12)×425 +425 ;
解:425
24 (3)99925
人教版数学七年级上册:1.4.1 第2课时《有理数乘法的运算律及运用》练习课件(附答案)
(2)999×118 4 +999×(-1 )-999×18 3 .
5
5
5
解:原式=(118 4 - 1 -18 3 )×999=100×999= 55 5
99900.
16.某儿童服装店老板以 32 元的价格购进 30 件衣 服,针对不同的顾客,30 件衣服的售价不完全相 同.若以 47 元为标准,将超出的钱数记为正,不足 的钱数记为负,记录结果如下表: 售出件数 7 6 3 5 4 5
简便的是( C )
A.(2+ 1 )×(-98) B.(3-19 )×(-98)
20
20
C. 41×(-100+2) D. 41×(-90-8)
20
20
7.算式(-0.125)×7×(-8)的值为( D )
A.-7000 B.7000 C.-7 D.7
8.在算式每一步的后面填上该步运用的运算律:
(8
4.计算:
(1)(-4)×(-18)×(-25);
解:原式=-1800.
(2) 4 ×(- 25 )×(- 7 );
5
6
10
解:原式= 7 . 3
(3) 5 ×(-1.2)×(- 1 );
4
9
解:原式= 1 . 6
(4)-0.01× 1 ×(-15)×0×(-2019). 2016
解:原式=0.
快速对答案
1C
7D
乘法交换律
2C
8 乘法结合律
分配律
3
①④ ② 0
9 详细答案
点击题序
4
详细答案 点击题序
10 D
5D
11 D
6C
12 D
提示:点击 进入习题
13 -6
人教版七年级数学上册 有理数的加减乘除混合运算专题训练 (无答案)
有理数的加减乘除混合运算专题训练 小专题(一)有理数的加减运算1.用适当的方法计算:(1)0.36+(-7.4)+0.5+(-0.6)+0.14; (2)(-2.125)+(+315)+(+518)+(-3.2);(3)(-235)+(+314)+(-325)+(+234)+(-112)+(+113).(4)计算:(-112)+(-571320)-(-112)+42720.2.计算:(1)213+635+(-213)+(-525); (2)(-913)-|-456|+|0-516|-23;(3)635+24-18+425-16+18-6.8-3.2. (4)-478-(-512)+(-412)-318;(5)-12-16-112-120-130-142-156-172;(6)1-2-3+4+5-6-7+8+…+97-98-99+100.小专题(二) 有理数的加减运算有理数加减运算的简便方法归纳 方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).方法2 同号结合法——把正数和负数分别结合相加 【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.方法3 同分母结合法【例3】 (1)-23-35+78-13-25+18;(2)-479-(-315)-(+229)+(-615).方法4 凑整法——分数相加,把相加得整数的数结合相加 【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18|+78.方法5 分解法——将一个数拆分成两个数的和或差 【例5】 计算:-156+(-523)+2434+312.方法6 裂项相消法【例6】 观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10= ; (2)计算12+16+112+120+…+19 900的值为 .易错点 分解带分数时弄错符号 【例7】 计算:634+313-514-312+123.强化训练1.计算(能用简便方法计算的尽量用简便方法):(1)(-7)-(+5)+(-4)-(-10); (2)-9+6-(+11)-(-15);(3)3.5-4.6+3.5-2.4; (4)|-12|-(-2.5)-(-1)-|0-212|;(5)34-72+(-16)-(-23)-1; (6)0.25+112+(-23)-14+(-512);(7)12+(-23)+45+(-12)+(-13); (8)-212+(+56)+(-0.5)+(+116);小专题(三) 有理数的乘除运算有理数混合运算的简便方法归纳 方法1 运用乘法的交换律和结合律 【例1】 计算:531×(-29)×(-3115)×(-92).方法2 正用分配律【例2】 计算:(14-16+124)×(-48).方法3 逆用分配律【例3】 计算:4×(-277)-3×(-277)-6×277.方法4 除法变乘法,再利用分配律 【例4】 计算:(16-27+23)÷(-542).强化训练 计算:(1)54×(-95)+38×(-95)-8×95; (2)(-13)×(-134)×113×⎝⎛⎭⎫-167;(3)⎝⎛⎭⎫29-14+118×(-36); (4)⎝⎛⎭⎫13+16-25÷⎝⎛⎭⎫-130;(5)⎝⎛⎭⎫79-56+318×18+3.95×6-1.45×6.2.运用运算律进行简便运算:(1)(-10)×13×(-110)×6; (2)36×(-34-59+712);(3)(-5)×(+223)+7×(-223)-(+12)×(-223).3.计算:-48×(12-3-58+56-112).4.用简便方法计算:(1)(-8)×(-43)×(-1.25)×54; (2)(-112-136+16)×(-36);(3)0.7×149+234×(-15)+0.7×59+14×(-15); (4)9978×(-4)-(12-13-56)×24.5.(河北中考)请你参照黑板上老师的讲解,用运算律简便计算:(1)999×(-15); (2)999×11845+999×(-15)-999×1835.6.【注重阅读理解】阅读下列材料: 计算:124÷(13-14+112).解法一:原式=124÷13-124÷14+124÷112=124×3-124×4+124×12=1124.解法二:原式=124÷(412-312+112)=124÷212=124×6=14.解法三:原式的倒数=(13-14+112)÷124=(13-14+112)×24=13×24-14×24+112×24=4.所以原式=14.(1)上述得到的结果不同,你认为解法一是错误的; (2)请你选择合适的解法计算:(-142)÷(16-314+23-27).7.计算:(1)2÷15×(-5); (2)(-12)×(-14)÷(-65);(3)(-34)÷54÷(-310); (4)(-23)×(-58)÷14;(5)(-212)÷(-5)×(-313); (6)-313÷213×(-2).8.计算:(1)(-247)×(-156)÷(-1121); (2)|-223|×(-18)÷(-3);(3)-321625÷(-8×4); (4)(-81)÷214×49÷(-16);(5)178÷(-10)×(-313)÷(-334); (6)(-1018)÷94×49÷(-2);(7)317×(317÷713)×722÷1121.9.有两个数-4和+6,它们相反数的和为a ,倒数的和为b ,和的倒数为c ,求a÷b÷c 的值. . 10.计算:(1)-6+4÷(-2); (2)(-3)-(-15)÷(-3);(3)(-3)×4+(-24)÷6; (4)(-42)÷(-7)-(-6)×4;(5)22×(-5)-(-3)÷(-15); (6)(1+13)÷(13-1)×38.11.计算:(1)(-2878+1479)÷7; (2)(梧州中考)-5×2+3÷13-(-1);(3)(-1313)÷5-123÷5+13×15; (4)-|-13|-|-34×23|-|12-13小专题(四) 有理数的混合运算1.计算:(1)-(3-5)×32÷(-1)3; (2)-0.75×(-32)÷(-94);(4)(12-58-14)×(-24); (5)24÷(32-43)-62122×22;(6)(-5)÷(-97)×45×(-94)÷7; (7)0.7×1949+234×(-14)+0.7×59+14×(-14);(8)391314×(-14); (9)1318÷(-7);(10)(-5)-(-5)÷10×110×(-5); (11)(-12)÷(-4)-27÷(-3)×(-13);(13)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18;(16)(-48)×(-16-116+34)-1.85×6+3.85×6.。
人教版七年级数学上册第一章有理数1.4.1有理数的乘法同步练习题
1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.计算(-3)×9的结果是( )A .6B .27C .-12D .-272.-5的倒数是( )A .-15B .15C .-5D .53.计算:-2021×2021×0×(-2021)=________.4.计算:(1)(-0.25)×(-8); (2)(+5)×(+2021)×(-10);(3)(+113)×(-34)×(-1.2)×5. 5.我们用有理数的运算研究下面的问题.规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天下降4 cm ,那么3天后的水位变化用算式表示正确的是( )A .(+4)×(+3)cmB .(+4)×(-3)cmC .(-4)×(+3)cmD .(-4)×(-3)cm6.两数相乘,若积为正数,则这两个数( )A .都是正数B .都是负数C .都是正数或都是负数D .一个是正数,一个是负数7.下列说法中正确的是( )A .积比每一个因数都大B .两数相乘,如果积为0,那么这两个因数异号C .两数相乘,如果积为0,那么这两个因数至少有一个为0D .两数相乘,如果积为负数,那么这两个因数都为正数8.如果5个有理数(其中至少有一个正数)的积是负数,那么这5个因数中,正数的个数是( )A .1B .2或4C .5D .1或3命题点2 有理数的乘法运算 [热度:90%]9.-114的倒数乘14的相反数,其结果为( ) A .5 B .-5 C.15 D .-1510.两个负数相乘的结果为6,这两个数不可能为( )A .-12和12B .-2和-3C .-1和-6D .-1和-6或-2和-311.按如图所示的程序计算,若输入的数是-2,则输出的数是________.12.两张卡片上各印有一个有理数,其中一张卡片上的数减去-2后所得数的绝对值为5,另一张卡片上的数在数轴上的对应点与表示-2的点之间的距离为3个单位长度,则这两张卡片上的数的积为________________.13.在图中填上适当的数.图1-4-214.在数-6,1,-3,6,-2中任取两个数相乘,其中最大的积是________.命题点 3 多个有理数的乘法运算 [热度:85%]15.下列各式中积为正的是( )A .2×3×5×(-4)B .2×(-3)×(-4)×(-3)C .(-2)×0×(-4)×(-5)D .(+2)×(+3)×(-4)×(-5)16.计算0.24×116×(-514)的结果是( ) A .1 B .-25 C .-110D .0.1 17.计算(-531)×(-92)×(-3115)×29的结果是( ) A .-3 B .-13 C .3 D.1318.计算:(1)214×(-134)×(-23)×(-87); (2)(-5)×(-8)×0×(-10)×(-15). 19.小强有5张写着不同数的卡片,他想从中取出3张卡片. 1 -8 0 -3.5 +4(1)若使卡片上的数的积最小,则应如何抽?最小是多少?(2)若使卡片上的数的积最大,则应如何抽?最大是多少?20.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50千克为标准,将超过的千克单位(千克)-0.7 -0.5 -0.2 0 +0.4 +0.5 +0.7 袋数 1 3 4 5 3 3 1这20袋大米共超重或不足多少千克?总质量为多少千克?21.四个整数a ,b ,c ,d 互不相等,且a ×b ×c ×d =25,则a +b +c +d 的值为( )A .0B .6C .10D .1622.⑨多多在学习《有理数》这一章时遇到了这样一道趣味题:“整数a ,b ,c ,d ,e ,f 的积为-36,a ,b ,c ,d ,e ,f 互不相等,求a +b +c +d +e +f 的值.”多多思考了很长时间也没有找到解题思路,聪明的你能求出答案吗?第2课时 有理数的乘法运算律1.算式3.14×(-2.5)×4=3.14×(-2.5×4)运用了( )A .乘法交换律B .乘法结合律C .乘法交换律和结合律D .分配律2.算式(-+)×12=×12-×12+×12运用了( )A .乘法交换律B .乘法结合律C .乘法交换律和结合律D .分配律3.算式-25×14+18×14-39×(-14)=(-25+18+39)×14逆用了( )A .加法交换律 B.乘法交换律C .乘法结合律D .分配律4.计算:(1)1.6×(-1)×(-2.5)×(-); (2)(+-)×(-81).5.算式(-0.125)×15×(-8)×(-)=[(-0.125)×(-8)]×[15×(-)]运用了( )A .乘法结合律B .乘法交换律C .分配律D .乘法交换律和结合律6.写出下列运算中每一步所依据的运算律或法则:(-0.4)×(-0.8)×(-1.25)×2.5=-(0.4×0.8×1.25×2.5) (第一步)=-(0.4×2.5×0.8×1.25) (第二步)=-[(0.4×2.5)×(0.8×1.25)] (第三步)=-(1×1)=-1.第一步:________________;第二步:______________;第三步:________________.7.计算:(-2.5)×0.37×1.25×(-4)×(-8)=________.8.阅读材料,回答问题.(1+)×(1-)=×=1;(1+)×(1+)×(1-)×(1-)=×××=(×)×(×)=1×1=1.根据以上信息,计算:(1+)×(1+)×(1+)×…×(1+)×(1-)×(1-)×(1-)×…×(1-).9.运用分配律计算(-3)×(-8+2-3),有下列四种不同的结果,其中正确的是( )A.-3×8-3×2-3×3 B.-3×(-8)-3×2-3×3C.(-3)×(-8)+3×2-3×3 D.(-3)×(-8)-3×2-(-3)×310.(-7)×8可化为( )A.-7××8 B.-7×8+C.-7×8+×8 D.-7×8-×811.下列计算(-55)×99+(-44)×99-99正确的是( )A.原式=99×(-55-44)=-9801B.原式=99×(-55-44+1)=-9702C.原式=99×(-55-44-1)=-9900D.原式=99×(-55-44-99)=-1960212.学习有理数的乘法后,老师给同学们出了这样一道题目:计算:49×(-5),看谁算得又快又对.有两名同学的解法如下:小明:原式=-×5=-=-249;小军:原式=(49+)×(-5)=49×(-5)+×(-5)=-249.(1)对于以上两种解法,你认为谁的解法较好?(2)你认为还有更好的解法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(-8).13.请你参考黑板中老师的讲解,用运算规律简便计算:(1)999×(-15);(2)999×118+999×(-)-999×18.14.计算:(1)-13×-0.34×+×(-13)-×0.34;(2)31×41-11×41×2-9.5×11.。
人教版七年级数学上册1.4.有理数的乘法运算律
(3) 3(4)(5)
60
(2) (6) 5
30
(4) 3(4)(5)
60
乘数交换位置
(1) 5 (6)
(2) (6) 5
30
30
一般地,有理数乘法中,两个数相乘, 交换因数的位置,积相等.
乘法交换律:ab ___b_a____
(3) 3(4)(5)
60
(4) 3(4)(5)
60
三个数相乘,先把前两个数相乘,或者 先把后两个数相乘,积相等. 乘法结合律:(ab)c __a_(_b_c_)____
问题2 阅读,并思考:
53 (7) 5(4) 20
5 3 5(7) 15 35 20
即 53 (7) 5 3 5(7)
在上述运算过程中,你得到什么规律呢?
分配律:
一般地,一个数同两个数的和相乘,等于把 这个数分别同这两个数相乘,再把积相加.
a(b c) __a_b___a_c__
分配律: a(b c) __a_b__a_c__
课后作业 1.从课后习题中选取;
2.完成练习册本课时的习题。
例 用两种方法计算:
1 4
1 6
1 2
12
解法1: 解法2:
强化练习
计算:
(1) (85)(25)(4)
(2)
9 10
1 15
30
(3)(-19) (98) 0 (25)
(4) 0.2
0.4
ቤተ መጻሕፍቲ ባይዱ
2
1 2
1 5
(5)100 4 1 0.25
课堂小结
乘法交换律:ab __b_a__ 乘法结合律: (ab)c __a_(_bc_)__
R·七年级上册
人教版七年级上册数学第1章 有理数 有理数的乘法运算律
所以(m※n)※x≠m※(n※x), 故“※”运算不满足(m※n)※x=m※(n※x).
②当m,n为何值时,满足m※n=n※m?
解:m※n=m+n1=mnn+1, n※m=n+m1 =mnm+1, 故当 m=n≠0 或者 mn=-1 时,m※n=n※m.
【点拨】对于分配律,有时正用可以简化计算,有时 逆用可以简化计算.
(2)999×11845+999×-15-999×1835. 解:原式=999×[11845+(-15)-1835] =999×100
=99 900.
【点拨】对于分配律,有时正用可以简化计算,有时逆 用可以简化计算.
15.阅读材料,回答下列问题: 1+12×1-13=32×23=1; 1+12×1+14×1-13×1-15=32×54×23×45=23×32×45×54=1×1=1. 根据以上信息,请求出下式的结果: 1+12×1+14×1+16×…×1+210×1-13×1-15× 1-17×…×1-211.
R版七年级上
第一章有理数
1.4 有理数的乘除法 第2课时 有理数的乘法运算律
提示:点击 进入习题
1C
2B
3B
4D
5B
答案显示
6B 7C
8D
提示:点击 进入习题
9C
10 B
答案显示
13 见习题
14 见习题
11 见习题
15 见习题
12 见习题
16 见习题
1.n个不等于零的有理数相乘,积的符号( C ) A.由因数的个数决定 B.由正因数的个数决定 C.由负因数的个数决定 D.由负因数的大小决定
结果是( )
人教版数学七年级上册1.4.1《有理数的乘法运算律》训练(有答案)
人教版数学七年级上册 1.4.1《有理数的乘法运算律》训练(有答案)课时3 有理数的乘法运算律基础训练知识点(有理数的乘法运算律)1.(﹣12-14-16)×(﹣24)=(﹣12)×(﹣24)+(﹣14)×(﹣24)+(﹣16)×(﹣24)①=12+6+4②以上运算()A.运用了乘法结合律B.运用了乘法交换律C.①运用了分配律D.②运用了分配律2.用简便方法计算﹣6×(﹣12)×(﹣0.5)×(﹣4)的结果是()A.6B.3C.2D.13.下列变形不正确的是()A.5×(﹣6)=(﹣6)×5B.(14-12)×(﹣12)=(﹣12)×(14-12)C.(﹣16+13)×(﹣4)=(﹣4)×(﹣16)+13×4D.(﹣2.5)×(﹣16)×(﹣4)=[(﹣25)×(﹣4)]×(﹣16)4.下列计算正确的是()A.(﹣4)×(﹣3)×(﹣2)×(﹣2)=4×3×2×2=48B.(﹣12)×(13-14)=﹣4+3:=﹣1C.(﹣9)×5×(﹣4)×0=9×5×4=180D.﹣2×5﹣2×(﹣1)﹣(﹣2) ×2=﹣2×(5+1﹣2)=﹣85.﹣0.01×13×(﹣200)=13×[(﹣0.01)×______]=______.6.计算:(1)(﹣4)×(﹣7)×(﹣25);(2)(﹣16+34-112)×(﹣48)(3)(﹣273)×(﹣4)+(+273)×(﹣7)﹣(+273)×(﹣3).7.[2019山东枣庄峄城区期中]学习了有理数的乘法后,老师给同学们布置了这样=(50-125)×(﹣5)=50×(﹣5)-125×(﹣5)=﹣250+1 5=﹣2494 5(3)191516×(﹣8)=(20-116)×(﹣8)=20×(﹣8)-116×(﹣8)=﹣160+1 2=﹣15912课时3 有理数的乘法运算律提升训练1.[2019河北邯郸二十三中课时作业]用分配律计算(﹣3)×(4﹣12),下列计算过程正确的是()A.(﹣3)×4+(﹣3)×(﹣1 2 )B.(﹣3)×4-(﹣3)×(﹣12)C.3×4﹣(﹣3)×(﹣12)D.3×4×3×(﹣12)2.[2019陕西汉中市实验中学课时作业]在运用分配律计算3.96×(﹣99)时,下列变形较为简便的是()A.(3+0.96)×(﹣99)B.(4﹣0.04)×(﹣99)C.3.96×(﹣100+1)D.3.96×(﹣90﹣9)3.[2019河南南阳三中课时作业]计算下列各题:(1)(﹣12+23-14)×|24|(2)91718×(﹣54)(3)317×2122×(317-713)×(﹣722)(4)﹣1.53×0.75+0.53×34-3.4×0.754.[2019江西临川一中课时作业]阅读下面的材料:(1+12)×(1-13)=32×23=1,(1+12)×(1+14)×(1-13)×(1-15)=1×1=1根据以上信息,求出下式的结果.(1+12)×(1+14)×(1+16)×…×(1+120)×(1-13)×(1-15)×(1-17)×…×(1-121).5.[2019安徽合肥三十八中课时作业]已知x,y为有理数,如果规定一种新的运算※,定义x※y=xy+1.根据运算符号的意义完成下列各题.(1)求2※4的值;(2)求1※4※0的值;(3)任意选取两个有理数(至少有一个为负数)分别填入□※〇与〇※□的□与〇内,并比较两个运算结果,你能发现什么?(4)根据以上方法,设a,b,c为有理数,请与其他同学讨论a※(b—c)与a ※b+a※c的关系,并用式子把它表示出来.参考答案1.A2.C3.【解析】(1)(﹣12+23-14)×|24|=(﹣12+23-14)×24=(﹣12)×24+23×24-14×24=﹣12+16-6 =﹣2(2)91718×(﹣54)=(10-118)×(﹣54)=10×(﹣54)-118×(﹣54)=﹣540+3 =﹣537(3)317×2122×(317-713)×(﹣722)=﹣1×(2122×227-2122×223)=﹣1×(3-7)=﹣1×(﹣4)=4.(4)﹣1.53×0.75+0.53×34-3.4×0.75=﹣1.53×34+0.53×34-3.4×34=(﹣1.53+0.53-3.4)×3 4=(﹣4.4)×3 4=﹣3.34.【解析】(1+12)×(1+14)×(1+16)×…×(1+120)×(1-13)×(1-15)×(1-17)×…×(1-121)=1×1×1×…×1=15.【解析】(1)2※4=2×4+1=9. (2)1※4=1×4+1=5,(1※4)※0=5※0=5×0+1=1.(3)答案不唯一,如:选5和﹣1. ﹣1※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4,发现运算结果相等,即□※〇=〇※□.(4)a※(b+c) =a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1.所以a※(b+c)+1=a※b+a※c.《有理数的乘法》拓展有理数乘法法则,实际上是一种规定(或说定义),要完全理解这样规定的科学性、合理性,怎样接受(或说承认,不拒绝)有理数乘法法则呢?乘数是正数的情况下是由实际问题得出的,乘数是负数时(所谓难就难在这里),则利用“把一个因数换成它的相反数,所得的积是原来的积的相反数”(本质是定义的另一种形式).这一结论所以比较容易为学生接受,是因为看起来,它好像是从实际中总结出来的.为什么说是“好像”呢?看下面的总结过程:由实际问题可以很容易得出:3×2=6①(-3)×2=-6②比较①,②就得到“把一个因数,换成它的相反数,所得的积是原来的积是相反数.”①,②确是由实际问题得出的,但是要得出上述法则有些牵强,举的例子是“被乘数”改变符号,而结论是“因数”改变符号.为了弥补这个不足之处,我们增加了有理数乘法的应用问题,验证法则的合理性.例1填空题:(1)五个数相乘,积为负,则其中正因数有____个.(2)四个各不相等的整数a,b,c,d,它们的积abcd=25,那么a+b+c+d=____.分析:(1)五个数相乘积为负,说明五个数中,负因数的个数是1个,3个或5个.(2)因为25=1×5×5,又a,b,c,d是四个各不相等的整数,所以这四个数只能是±1和±5.解:(1)五个数相乘积为负,说明五个数中,负因数的个数为奇数,即1个,3个或5个.∴正因数有4个,2个或0个.(2)∵a,b,c,d是四个各不相等的整数,且abcd=25=1×5×5,∴a,b,c,d只能是+1,-1,+5,-5这四个数.∴a+b+c+d=0.说明:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一个因数为0,积就为0.例2填空题:(1)(-0.001)×(-0.01)×(-0.1)×(-100)= __________;(2)2(16)(72.8)0(8)3-⨯-⨯⨯-=__________;(3)377(1)(24)4812--⨯-=__________.分析:(1)是4个不为0的数相乘,0.01×100=1,要注意小数点的位置;(2)是4个数相乘,其中有一个因数是0;(3)因为377777148124812--=--,三个分数的分子均为7,所以同时正用又逆用乘法分配律才是最佳的解题方法.解:(1)(-0.001)×(-0.01)×(-0.1)×(-100)=0.0001;(2)2 (16)(72.8)0(8)03-⨯-⨯⨯-=;(3)377(1)(24) 4812--⨯-例3计算:124 ( 1.4)(1)(1)( 5.5)()1137-⨯+⨯-⨯-⨯+.分析:这是5个非0的数相乘,其中有3个负因数,应当先确定积的符号,然后把绝对值相乘.绝对值相乘时,要注意运用乘法的交换律和结合律,此题把小数化为分数计算较简便.解:原式21214 (1)(1)(1)(5)()511327 =-⨯+⨯-⨯-⨯+=﹣8说明:几个不为0的数相乘时,确定积的符号是第一步,要使计算简便,关键在绝对值的计算.求积的绝对值时要注意运用乘法交换律和结合律;当因数是小数时,一般要化为分数再相乘;当因数是带分数时,要化为假分数再相乘;在化简时,能约分的要约分.例4计算2449(5)25⨯-.分析:此题若直接相乘很麻烦,根据它的特点:可以把被乘数拆成两项,然后用乘法分配律计算.解:2449(5)25⨯-说明:(1)此题利用分解思想把244925拆成15025-,然后运用分配律,可使运算简便,这是一个重要的方法技巧.(2)不要漏项,即可把乘数与括号内的每一项都相乘.(3)相乘时,符号不要弄错.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4. 1.3 有理数乘法运算率(第十四课时)
A 级)
1.计算⎝ ⎛⎭⎪⎫-531×⎝ ⎛⎭⎪⎫-92×⎝ ⎛⎭⎪⎫-3115×29
的结果是 ( )
'
A .-3
B .-13
C .3 D.13
2.下列计算中错误的是
( ) A .-6×(-5)×(-3)×(-2)=180 B .(-36)×(16-19-13
)=-6+4+12=10 C .(-15)×(-4)×(+15)×(-12
)=6 D .-3×(+5)-3×(-1)-(-3)×2=-3×(5-1-2)=-6
3.利用裂项技巧计算⎝
⎛⎭⎪⎫-993233×33时,最恰当的方案可以是 ( )
A.⎝ ⎛⎭⎪⎫100-133×33
B.⎝ ⎛⎭⎪⎫-100-133×33 C .-⎝
⎛⎭⎪⎫99+3233×33 D .-
⎝ ⎛⎭
⎪⎫100-133×33 4.已知(-ab )·(-ab )·(-ab )>0,则
( )
A .ab <0
B .ab >0
C .a >0,b <0
D .a <0,b <0 :
5.计算:(-8)×(-12)×(-0.125)×⎝ ⎛⎭
⎪⎫-13×(-0.001)=__________. 6.-23与25的和的15倍是______,-23与25
的15倍的和是________. 7.计算:2 016×(-29)-2 016×79
=________. 8.运用简便方法计算:
(1)(-125)×(-25)×(-5)×(-2)×(-4)×(-8);
(2)(-36)×⎝ ⎛⎭
⎪⎫-49+56-712; (3)9989×(-18).
)
B 级)
9.逆用乘法分配律计算:
(1)17.48×37+174.8×1.9+8.74×88; (2)-13×23-0.34×27+13
×(-13)-57
×0.34.
~
10.已知x ,y 为有理数,如果规定一种新运算※,定义x ※y =xy +1,根据运算符号的意
义完成下列各题.
(1)求2※4; (2)求1※4※0;
(3)求(-5)※(-3)※(-2); (4)若3※a =13,你能求出a 的值吗?
C 级)
[
11.观察下列等式:
第1个等式:a 1=11×3=12×⎝ ⎛⎭
⎪⎫1-13; 第2个等式:a 2=13×5=12×⎝ ⎛⎭
⎪⎫13-15; 第3个等式:a 3=15×7=12×⎝ ⎛⎭
⎪⎫15-17; 第4个等式:a 4=17×9=12×⎝ ⎛⎭
⎪⎫17-19;…… 请解答下列问题:
(1)按以上规律列出第5个等式:a5=________=________;
(2)用含n的式子表示第n个等式:a n=____________=____________(n为正整数);
(3)求a1+a2+a3+a4+…+a100的值.。