2011年高考深圳二模数学(理科)参考答案及评分标准
2011年高考全国2卷理科数学(精编WORD版)有标准答案
20XX 年普通高等学校招生全国统一考试全国Ⅱ卷理科数学(必修+选修II)一、选择题:(每小题5分,共60分)1.复数1z i =+,z 为z 的共轭复数,则1zz z --=( )A.2i - B.i - C .i D.2i2.函数y =0x ≥)的反函数为( )A .24x y =(x R ∈) B.24x y =(0x ≥) C .24y x =(x R ∈) D .24y x =(0x ≥)3.下面四个条件中,使a b >成立的充分而不必要条件是( )A.1a b >+ B.1a b >- C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A.8 B.7 C.6D.55.设函数()cos f x x ω=(0ω>),将()y f x =的图象向右平移3π个单位长度后,所的图象与原图象重合,则ω的最小值等于( )A.13B.3 C.6 D.96.已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于( )A.3B . C. D .1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种 B .10种 C.18种D .20种8.曲线21x y e -=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为( )A.13 B.12 C .23 D.19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则5()2f -=( )A.12- B.14- C.14 D .1210.已知抛物线2:4C y x =的焦点为F ,直线24y x =-与C 交于,A B 两点,则cos AFB ∠=( )A .45 B .35 C .35- D.45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )A .7πB .9π C.11πD.13π12.设向量,,a b c 满足011,,,602a b a b a c b c ==⋅=---=,则c 的最大值等于( )A .2B .C .。
2011年数学二模答案
解:(1)画图正确;……………………………………………………………………2分
(2)画图正确;……………………………………………………………………4分
(3)(-2,3).……………………………………………………………………6分
20.(本题7分)
解:表格填写正确;……………………………………………………………………2分
∵k=-1,W随x的增大而减小,
∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大.…5分
(3)由题意知W=5x+(6-a)(80-x)=(a-1)x+480-80a.………………6分
∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套.
………………………………………………………………………………7分
解得:48≤x≤50.………………………………………………………2分
∵x取非负整数,∴x为48,49,50.
∴有三种建房方案:
方案①
方案②
方案③
A型
48套
49套
50套
B型
32套
31套
30套
………………………………………………………………3分
(2)设该公司建房获得利润W(万元).
由题意知W=5x+6(80-x)=480-x,………………………………………4分
13.2414.4(30+x)=6(30-x)15.(-2,1)或(2,-1)16.①③④
三、解答题(本大题共12小题,共计88分)
17.(本题6分)
解:
由②得y=6-x代入①得2x-3(6-x)=2,解得x=4.……………………3分
代入②得y=2.…………………………………………………………………5分
2011广东数学答案
2011年普通高等学校招生全国统一考试密卷数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数. 2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分. 9. 325 10. ()(2219x y -+±= 11. 3312. 13. 1014. π15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: ()2sin cos cos 2f x x x x =+sin 2cos 2x x =+ …… 1分2222x x ⎫=+⎪⎪⎝⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. (3)分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()fx 取得最大值,其值为…… 5分(2)解法1:∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+=⎪⎝⎭. …… 6分∴1cos 23θ=. (7)分∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 23θ==. ……8分∴sin 2tan 2cos 2θθθ==……9分∴22tan 1tan θθ=-……10分2tan 0θθ+-=.∴)(1tan 0θθ-+=.∴tan 2θ= 或tan θ=不合题意,舍去) ……11分∴tan 2θ=. ……12分解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭.∴1cos 23θ=. (7)分∴212cos 13θ-=. (8)分∵θ为锐角,即02πθ<<,∴cos 3θ=. (9)分∴sin 3θ==. (10)分∴sin tan cos 2θθθ== (12)分解法3:∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+=⎪⎝⎭. ∴1cos 23θ=. (7)分∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 23θ==. (8)分∴sin tan cos θθθ= (9)分22sin cos 2cos θθθ= (10)分sin 21cos 2θθ=+2=. (12)分17.(本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分∴ 60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分解得0.2,0.1a b ==.∴0.2,0.1a b == . …… 6分(2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都是一等品或2件一等品,1件二等品. …… 8分故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. ……12分18. (本小题满分14分)(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接O D ,GFEODC 1A 1B 1CBA∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点. ∵D 为A C 的中点, ∴O D 为△1AB C 的中位线,∴ 1//O D AB . …… 2分 ∵O D ⊂平面1BC D ,1⊄AB 平面1BC D , ∴1//A B 平面1BC D . …… 4分 (2)解: 依题意知,12AB BB ==,∵1⊥A A 平面ABC ,1AA ⊂平面11AA C C ,∴ 平面ABC ⊥平面11AA C C ,且平面ABC 平面11AA C C A C =.作BE AC ⊥,垂足为E ,则B E ⊥平面11AA C C , ……6分 设B C a =,在Rt △ABC中,AC ==AB BC BE AC==,∴四棱锥11-B AA C D 的体积()1111132V A C A D A A B E =⨯+126=⨯⨯a =. …… 8分依题意得,3a =,即3B C =. …… 9分 (以下求二面角1--C BC D 的正切值提供两种解法)解法1:∵11,,AB BC AB BB BC BB B ⊥⊥= ,B C ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .取B C 的中点F ,连接D F ,则D F //A B ,且112D F A B ==.∴D F ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接D G , 由于1D F BC ⊥,且DF FG F = , ∴1BC ⊥平面D F G . ∵D G ⊂平面D F G , ∴1BC ⊥D G .∴D G F ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △B G F ~Rt △1BC C ,得11G F BF C C BC =,得113213B FC C G F B C ⨯===,在Rt △D F G 中, tan D F D G F G F∠=3=.∴二面角1--C BC D3. …… 14分解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥= ,B C ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,11B A y 轴和z 轴,建立空间直角坐标系1B xyz -. 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭. ∴()13,2,0BC =- ,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC = 及n 0BD = ,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-.故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分 又平面1B C C 的一个法向量为()0,0,2AB =-,∴cos 〈n ,A B 〉= ⋅n A Bn A B200323⨯+⨯+-⨯-==. …… 12分∴sin 〈n ,A B 〉==. …… 13分∴tan 〈n ,A B〉=3.∴二面角1--C BC D 的正切值为3. …… 14分19.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1O P O Q k k =- .当0x ≠时,得21y x x-=- ,化简得22x y =. …… 2分 当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠.∴曲线C 的方程为22x y =()0x ≠. …… 4分(2) 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在.设直线2l 的方程为y kx b =+, …… 5分 由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=.∵ 直线2l 与曲线C 相切,∴2480k b ∆=+=,即22kb =-. …… 6分点()0,2到直线2l的距离d =2412k +=…… 7分12⎛⎫=+⎝…… 8分12≥⨯…… 9分=…… 10分当且仅当=k =时,等号成立.此时1b =-. ……12分∴直线2l10y --=10y ++=. …… 14分 解法2:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =,则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分点()0,2到直线2l的距离d =212=…… 7分12⎛⎫=+⎝…… 8分12≥⨯…… 9分=…… 10分当且仅当3=1x =. ……12分∴直线2l10y --=10y ++=. …… 14分解法3:由22x y =,得'y x =, …… 5分 ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>,则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分 点()0,2到直线2l的距离d =2y +=…… 7分12⎛⎫=+⎝ …… 8分12≥⨯ …… 9分= (10)分当且仅当=,即11y =时,等号成立,此时1x =……12分∴直线2l的方程为10y --=或10y ++=. (14)分20.(本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵()00f =,∴0c =. …… 1分∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a-=-,得a b =. …… 2分又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立, ∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分(2) 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩…… 5分 ① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞⎪⎝⎭上单调递增; …… 6分 若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫⎪⎝⎭上单调递减.…… 7分② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<,则函数()g x 在11,2λλ+⎛⎫-⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭; (9)分当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫-⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. (10)分(3)解:① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增,又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …… 11分② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭, ()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥,此时,函数()g x 在区间()0,1上只有一个零点; …… 12分(ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分21.(本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 证明:对任意12,x x ∈R ,有()()12f x f x -=-==. ……2分由()()1212f x f x L x x -≤-,12L x x ≤-.当12x x ≠时,得L ≥.12,,x x >> 且1212x x x x +≥+,∴12121x x x x +<≤+. ……4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立.∴L 的取值范围是[)1,+∞. …… 5分(2) 证明:①∵()1n n a f a +=,1,2,n = ,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤- . …… 6分∴112233411nk k n n k a a a a a a a a a a ++=-=-+-+-++-∑()21121n L L L a a -≤++++- …… 7分1211nLa a L-=--. ……8分∵01L <<,∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). (9)分②∵12kk a a a A k++=,∴1212111kk k k a a a a a a A A k k ++++++++-=-+()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+()()12233411231k k aa a a a a k a a k k +≤-+-+-++-+ .……11分∴1122311nk k n n k A A A A A A A A ++=-=-+-++-∑()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯ ⎪ ⎪⨯⨯++⎝⎭ 1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++- 1211a a L≤--. ……14分。
2011年高考全国卷Ⅱ数学(理)试题(真题)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题上作答无效........。
3.第I 卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(2)函数y =x ≥0)的反函数为(A )y =24x (x ∈R ) (B )y =24x (x ≥0) (C )y =24x (x ∈R ) (D )y =24x (x ≥0)(3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2, 224k k S S +-=,则k =(A ) 8 (B) 7 (C) 6 (D) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (6)已知直二面角α –ι- β, 点A ∈α ,AC ⊥ ι ,C 为垂足,B ∈β,BD ⊥ ι,D为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )(A )3(B (C) (D) 1 (7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B) 10种 (C) 18种 (D)20种(8)曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为(A )13 (B )12 (C )23 (D )1(9)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x 2(1)x x =-,则5()2f -= (A )12-(B )14- (C )14 (D )12 (10)已知抛物线C:2y =4x 的焦点为F ,直线y=2x-4与C 交于A,B 两点,则cos (A) 54 (B)53 (C).—53 (D) —54(11)已知平面α截一球面得圆M,过圆心M 且与 成60 二面角的平面β截该球面得N 。
2011年全国高考2卷理科数学试题及答案
2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i2. 函数)0y x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y x x R =∈ (D) ()240y x x =≥ 3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A)2 (B)3 (C) 3(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种 8.曲线21xy e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠=(A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60o二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c r r r 满足11,,,602a b a b a c b c ===---=or r r r r r r r g ,则c r 的最大值等于(A) 2 (B)(C) (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.13. (201的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,sin 5α=,则tan 2α= .15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =, 12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011年全国高考2卷理科数学试题及标准答案
2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z的共轭复数,则1zz z --=(A ) -2i (B) -i (C ) i (D) 2i2. 函数)0y x =≥的反函数为(A )()24x y x R =∈ (B) ()204x y x =≥ (C)()24y x x R =∈ (D) ()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是(A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k=(A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A) 13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A ) 2(B ) 3 (C) 3 (D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B ) 10种 (C) 18种 (D ) 20种8.曲线21x y e=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A) 13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭ (A) 12- (B) 14- (C) 14 (D) 1210.已知抛物线C:24y x =的焦点为F,直线24y x =-与C 交于A、B 两点,则cos AFB ∠=(A ) 45 (B ) 35 (C ) 35- (D) 45- 11.已知平面α截一球面得圆M,过圆心M且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) (C) (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.13. (201-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈ ⎪⎝⎭,sin α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E、F分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =, 12CF FC =,则面AE F与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
2011年深圳二模理科数学答案(word版)
2011年深圳市高三年级第二次调研考试 数学(理科)试题参考答案及评分标准说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.4、只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题共8个小题;每小题5分,共40分.二、填空题:本大题共7小题,每小题5分,满分30分.第9~13题为必做题,第14、15题为选做题,两题全答的,只计算前一题的得分.9. 10 10.⎪⎭⎫⎝⎛-21,21 11. 4 12.⎪⎭⎫⎢⎣⎡∞+,41 13. 55 14.θρsin 2= 15.︒30三、解答题:本大题共6小题,满分80分.16.(本小题满分12分)设函数⎪⎭⎫⎝⎛π-+=2sin sin )(x x x f ωω,R ∈x . (1)若21=ω,求)(x f 的最大值及相应的x 的集合;(2)若8π=x 是)(x f 的一个零点,且100<<ω,求ω的值和)(x f 的最小正周期.解 (1)x x x x x f ωωωωcos sin 2sin sin )(-=⎪⎭⎫ ⎝⎛π-+=, ……………………1分当21=ω时,⎪⎭⎫⎝⎛-=42sin 22cos 2sin )(πx x x x f =-, ……………………2分而142sin 1≤⎪⎭⎫⎝⎛π-≤-x ,所以)(x f 的最大值为2, ……………………4分此时,π+π=π-k x 2242,∈k Z ,即π+π=k x 423,Z ∈k , 相应的x 的集合为},423|{Z ∈π+π=k k x x . …………………6分 (2)(法一)因为⎪⎭⎫ ⎝⎛-=4sin 2)(πωx x f ,所以,8π=x 是)(x f 的一个零点⇔048sin 8=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛πππωf ,……………8分 即π=π-πk 48ω,Z ∈k ,整理,得28+=k ω,又100<<ω,所以10280<+<k ,141<<-k ,而Z ∈k ,所以0=k ,2=ω,…10分⎪⎭⎫ ⎝⎛π-=42sin 2)(x x f ,)(x f 的最小正周期为π. ……………………12分(法二)8π=x 是)(x f 的一个零点⇔08cos 8sin 8=π-π=⎪⎭⎫⎝⎛πωωf ,即18tan =πω. ……………………8分 所以48π+π=πk ω,Z ∈k ,整理,得28+=k ω, 又100<<ω,所以10280<+<k ,141<<-k ,而Z ∈k ,所以0=k ,2=ω, …10分⎪⎭⎫ ⎝⎛π-=42sin 2)(x x f ,)(x f 的最小正周期为π. ……………………12分17.(本小题满分12分)为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是我市雷电天气高峰期,在31天中平均发生雷电14.57天(如图7).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为X ,求X 的数学期望和方差.解 (1)设8月份一天中发生雷电天气的概率为p ,由已知47.03157.14==p . ……………2分 因为每一天发生雷电的概率均相等,且相互独立, 所以,在大运会开幕后的前3天比赛中,恰好有2天 发生雷电天气的概率)47.01(47.0223-⨯⨯=C P351231.0=35.0≈. ……………6分(2)由已知X ~)47.0,12(B . …………………8分所以,X 的数学期望64.547.012)(=⨯=X E . ………………………………10分X 的方差9892.247.0147.012)()=-(⨯⨯=X D .…………………………12分2468图718.(本小题满分14分)如图8,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 互相垂直,如图9.(1)求证:平面⊥BDE 平面BEC ;(2)求平面ABCD 与平面EFB 所成锐二面角的大小. 证明(1)(法一)因为平面⊥ADEF 平面ABCD , 且平面 ADEF 平面AD ABCD =, 又在正方形ADEF 中,AD ED ⊥,所以,⊥ED 平面ABCD .………………2分 而⊂BC 平面ABCD ,所以,BC ED ⊥. ………………3分 在直角梯形ABCD 中,2=CD ,22+=AD AB BD 2)(22=+-=AD AB CD BC ,所以,222CD BC BD =+,所以,BD BC ⊥. ………………4分 又ED ,⊂BD 平面BDE ,D BD ED = , 所以,⊥BC 平面BDE . ………………6分 而⊂BC 平面BEC ,所以,平面⊥BDE 平面BEC . ……………7分(法二)同法一,得⊥ED 平面ABCD . …………………………………2分 以D 为原点,DA ,DC ,DE 分别为x ,y z 轴,建立空间直角坐标系. 则)0,0,0(D ,)0,1,1(B ,)0,2,0(C ,)1,0,0(E .…………………………3分所以,)0,1,1(-=, )0,1,1(=,)1,0,0(=,000111)1(=⨯+⨯+⨯-=⋅,010010)1(=⨯+⨯+⨯-=⋅,所以,⊥,⊥. ………………………………5分 又DB ,DE 不共线,DB ,⊂DE 平面BDE ,所以,⊥BC 平面BDE . ………………………6分 而⊂BC 平面BEC ,所以,平面⊥BDE 平面BEC . …………………………7分 解 (2)(法一)因为AD EF //,⊄EF 平面ABCD ,⊂AD 平面ABCD ,所以,//EF 平面ABCD . …………………………………9分 因为平面EFB 与平面ABCD 有公共点B ,FE D CBA图8所以可设平面 EFB 平面BG ABCD =,CD G ∈.因为//EF 平面ABCD ,⊂EF 平面EFB ,平面 EFB 平面BG ABCD =, 所以BG EF //. ……………………………10分 从而,AD BG //,又DG AB //,且1=AB ,2=CD ,所以G 为CD 中点,ABGD 也为正方形……12分 易知⊥BG 平面ECD ,所以EG BG ⊥,DG BG ⊥.所以,EGD ∠是平面ABCD 与平面EFB 所成锐二面角的平面角, 而︒=∠45EGD ,所以平面ABCD 与平面EFB 所成锐二面角为︒45. …………………………14分 (法二)由(1)知,平面ABCD 的一个法向量是)1,0,0(=m .………………9分 设平面EFB 的一个法向量为),,(z y x =n ,因为)0,0,1(==,)1,1,1()1,0,0()0,1,1(-=-=-=所以,⎪⎩⎪⎨⎧=-+=⋅==⋅.0,0z y x EB x n n 取1=y ,得1=z ,所以)1,1,0(=n ……………11分设平面ABCD 与平面EFB 所成锐二面角为θ, 则2221||||cos ==⋅=n m n m θ. …………………………13分 所以平面ABCD 与平面EFB 所成锐二面角为︒45. ……………………14分 19.(本小题满分14分)平面直角坐标系中,已知直线l :4=x ,定点)0,1(F ,动点),(y x P 到直线l 的距离是到定点F 的距离的2倍. (1)求动点P 的轨迹C 的方程;(2)若M 为轨迹C 上的点,以M 为圆心,MF 长为半径作圆M ,若过点)0,1(-E 可作圆M 的两条切线EA ,EB (A ,B 为切点),求四边形EAMB 面积的最大值. 解(1)设点P 到l 的距离为d ,依题意得||2PF d =,即:()2212|4y x x +-=-|, ……………………………………2分整理得,轨迹C 的方程为13422=+y x . ……………………………………4分 (2)(法一)设()00,y x M ,圆M :()()22020r y y x x =-+-,其中2020)1(||y x MF r +-==由两切线存在可知,点E 在圆M 外, 所以,()()()20202020101y x y x +->-+--,即00>x ,又()00,y x M 为轨迹C 上的点,所以200≤<x .而|4|212||0-==x d MF ,所以,2||1<≤MF ,即21<≤r .…………………6分 由(1)知,()0,1-E 为椭圆的左焦点,根据椭圆定义知,4||||=+MF ME , 所以r ME -=4||,而r MF MB ==||||,所以,在直角三角形MEB 中,r r r EB 242)4(||22-=--=,r r MB EB S MEB 24||||21Δ-=⋅=, 由圆的性质知,四边形EAMB 面积S S MEB 22Δ==即23422r r S +-=(21<≤r ).令2342r r y +-=(21<≤r ),则)43(2862--=+-='r r r r y , 当341<<r 时,0>'y ,2342r r y +-=单调递增; 当234<<r 时,0<'y ,2342r r y +-=单调递减. 所以,在34=r 时,y 取极大值,也是最大值,此时3916244342223max=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=S . ……………………………14分(法二)同法一,四边形EAMB 面积r r S S MEB 2422Δ-==,其中21<≤r ……10分所以39163242)24(23=⎪⎭⎫⎝⎛-++≤-⋅⋅=n n n r r r S . 由r r 24-=,解得)2,1[34∈=r ,所以3916max =S . …………………14分 20.(本小题满分14分)执行下面框图所描述的算法程序,记输出的一列数依次为1a ,2a ,…,n a ,*N ∈n ,2011≤n .(注:框图中的赋值符号“=”也可以写成“←”或“:=”) (1)若输入2=λ,写出输出结果;(2)若输入2=λ,求数列}{n a 的通项公式; (3)若输入2>λ,令1--=n n n pa pa c ,求常数p (1±≠p ),使得}{n c 是等比数列.解 (1)输出结果是:0,22,2.……3分 (2)(法一)由程序框图可知,01=a ,nn a a -λ=+11,*N ∈n ,2010≤n .所以,当2=λ时,nn a a -=+211, …………………5分nnn n a a a a --=--=-+2112111, 而}{n a 中的任意一项均不为1,(否则的话,由11=+n a 可以得到1=n a ,…,与101≠=a 矛盾), 所以,11112111--=--=-+n n n n a a a a , 111111-=---+n n a a (常数),*N ∈n ,2010≤n . 故⎭⎬⎫⎩⎨⎧-11n a 是首项为1-,公差为1-的等差数列,………………………7分所以,n a n -=-11,数列}{n a 的通项公式为na n 11-=,*N ∈n ,2011≤n …8分(法二)当2=λ时,由程序框图可知,01=a ,212=a ,323=a ,434=a ,…猜想nn a n 1-=,*N ∈n ,2011≤n . ……………………………………5分 以下用数学归纳法证明:①当1=n 时,101111a n n ==-=-,猜想正确; ②假设k n =(*N ∈n ,2010≤n )时,猜想正确.即kk a k 1-=……………7分 那么,当1+=k n 时,由程序框图可知,11)1(12111+-+=--λ=+k k kk a a k k -=.即1+=k n 时,猜想也正确. 由①②,根据数学归纳法原理,猜想nn a n 1-=正确,*N ∈n ,2011≤n .……8分(3)(法一)当2>λ时,)(11111222111p p pa p p p a p p a p pa a p p a pa p a c n n n n nn n n n -λ-⎪⎪⎭⎫ ⎝⎛-λ-⋅=+λ-+λ-=--λ--λ=--=+++, 令112=-λp p ,则p p 1+=λ,012=+λ-p p ,242-λ±λ=p .…………10分图10此时,1122=-⎪⎪⎭⎫⎝⎛+=-λp p p p p p , …………………………………12分 所以n n c p c 21=+,*N ∈n ,2011≤n ,又01≠=p c ,故存在常数242-λ±λ=p (2>λ),使得}{n c 是以p 为首项,2p 为公比的等比数列. ………………………………14分(法二)当2>λ时,令x p p -=1,即012=+λ-p p ,解得242-λ±λ=p …10分因为nn a a -λ=+11,*N ∈n ,2010≤n .所以n nn n n n n n a p a p a p pa a p pa p a p a -λ-⋅=-λ-=-λ+λ-=--λ=+2111-, ① nn n n n n n n a pa p a p p pa p a p a a ppa -λ-⋅=-λ+λ-⋅=-λ+λ-=--λ=-+1111121,② …12分 ①÷②,得11211--⋅=--++n nn n pa pa p pa p a , 即n n c p c 21=+,*N ∈n ,2011≤n ,又01≠=p c ,故存在常数242-λ±λ=p (2>λ)使得}{n c 是以p 为首项,2p 为公比的等比数列. …………………………………14分21.(本小题满分14分)已知函数)(x f 满足如下条件:当]1,1(-∈x 时,)1ln()(+=x x f ,且对任意R ∈x ,都有1)(2)2(+=+x f x f .(1)求函数)(x f 的图象在点))0(,0(f 处的切线方程;(2)求当]12,12(+-∈k k x ,*N ∈k 时,函数)(x f 的解析式;(3)是否存在]12,12(+-∈k k x k ,2011210,,,,=k ,使得等式 201724019)](2[201220110+⨯=-∑=kk k k x f x 成立?若存在就求出k x (2011210,,,, =k ),若不存在,说明理由.解 (1)]1,1(-∈x 时,)1ln()(+=x x f ,11)(+='x x f , …………………………2分 所以,函数)(x f 的图象在点))0(,0(f 处的切线方程为)0)(0()0(-'=-x f f y , 即x y =.………………3分(2)因为1)(2)2(+=+x f x f ,所以,当]12,12(+-∈k k x ,*N ∈k 时,]1,1(2-∈-k x ,………………………4分1)2(2)(+-=x f x f 12)4(22++-=x f 122)6(223+++-=x f=1222)2(221+++++-=-- k k k k x f 12)12ln(2-++-=k k k x 。
2011年深圳市高级中学4月高考模拟理科数学试卷含答案
2011年深圳市高级中学4月高考模拟 数学试卷(理科) 2011.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合22{|10},{|log 0}A x x B x x =->=>,则A ∩B 等于( )A .{|1}x x >B .{|0}x x >C .{|1}x x <-D .{|11}x x x ><-或2.若命题甲:23x y ≠≠或;命题乙:5x y +≠,则( )A .甲是乙的充分非必要条件B .甲是乙的必要非充分条C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 3.某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右图所示,则中位数与众数分别为( )A .23,21B .23,23C .23,25D .25,254.已知向量(2,1)=--a ,10⋅=a b ,||-a b ||=b ( )A . B.C. 20D. 405.某程序框图如右图所示,现输入如下四个函数,则可以输出的函数是( )A .2()f x x = B .1()f x x=C .()x f x e =D .()sin f x x =6.已知函数32()2,()log ,()x f x x g x x x h x x x =+=+=+的零点依次为,,a b c ,则,,a b c 的大小顺序正确的是( ) A .b c a >> B .b a c >>C .a b c >>D .c b a >>7.已知20x mx n -+=的两根为,αβ,且12αβ<<<,则22m n+的取值范围是( ) A .[12,)+∞B .()12,+∞C .[13,)+∞D .()13,+∞D EACB8.对于集合M 、N ,定义{|}M N x x M x N -=∈∉且,()(),{|3}x M N M N N M A y y x R ⊕=-⋃-==∈设,()2{|12;},B y y x x R ==--+∈A B ⊕=则( )A .[0,2)B .(0,2]C .()(,0]2,-∞⋃∞D .(),0[2,)-∞⋃+∞二、填空题:本大题共7小题,考生作答6小题,每题5分,共30分) (一)必做题(9~13题)9.已知||3z i z =-+,则复数z = .10.一个几何体的三视图如图所示,那该几何体的体积为 . 11.已知曲线22:C x y m +=恰有三个点到直线125260x y ++=距离为1,则m = .12.如图,||3,||2OAB OA OB ∆==中,点P 在线段AB 的垂直平分线上,记向量(),,,O A a O B b O P c c a b===⋅-则的值为 .13.若自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,则称n 为“给力数”,例如:32是“给力数”,因32+33+34不产生进位现象;23不是“给力数”,因23+24+25产生进位现象,设小于1000的所有“给力数”的各个数位上的数字组成集合A ,则用集合A 中的数字可组成无重复数字的三位偶数的个数为 。
2011高考全国2卷数学理科试题及答案详解
2011年普通高等学校招生全国统一考试 全国卷2理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂[来源:Z§xx§]足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于(A)3 (B)3 (C)3(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友 每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种[来源:学科网](8)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为 (A)13 (B)12 (C)23(D)1(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于 (A)2 (B)3 (c)2 (D)1第Ⅱ卷 注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年广东高考理科数学试题及标准答案
2011年普通高等学校招生全国统一考试(广东卷)数学(理科) 试卷类型:A 成本文参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yxy b xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则AB 的元素个数为A.0 B.1 C.2 D.33.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a b A.4 B.3 C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D上的动点,点A 的坐标为(2,1),则=⋅z OM OA 的最大值为 A .42 B .32 C .4 D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为A.63B.93C.123D.1838.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2011年高考全国卷2理科数学试题及答案(已排版)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i (2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ (3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = (A )8 (B )7 (C )6 (D )5 (5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23 (B)33 (C)63(D) 1 (7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友 每位朋友1本,则不同的赠送方法共有 (A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为(A)13 (B)12 (C)23(D)1(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=(A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于(A)2 (B)32 第Ⅱ卷(第Ⅱ卷共l0小题,共90分。
2011年 广东省数学(理科)高考真题试卷 附有答案
2011年普通高等学校招生全国统一考试(广东卷)数学(理科)参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程y b x a =+ 中系数计算公式121()()()nii i nii xx y y b xx ==--=-∑∑ , ay b x =- . 其中,x y 表示样本均值.n 是正整数,则()nna b a b -=-12(n n aab --++ (2)1n n abb--+).一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i -【解析】B ;依题意得211z i i==-+,故选B .2.已知集合{(,)|A x y =,x y 为实数,且}221x y +=,{(,)|B x y =,x y 为实数,且}y x =,则A B 的元素个数为A .0B .1C .2D .3 【解析】C;题意等价于求直线y x =与圆221x y +=的交点个数,画大致图像可得答案为C . 3. 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则⋅(2)=c a +bA .4B .3C .2D .0 【解析】D;因为a ∥b 且a ⊥c ,所以b ⊥c ,从而⋅⋅⋅(2)=20c a +b c a +c b =,故选D . 4. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()()f x g x +是偶函数 B .()()f x g x -是奇函数 C .()()f x g x +是偶函数 D .()()f x g x -是奇函数 【解析】A;依题意()(),()()f x f x g x g x -=-=-,故()|()|()|()|f x g x f x g x -+-=+,从而()|()|f x g x + 是偶函数,故选A .5. 在平面直角坐标系xO y上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D上的动点,点A 的坐标为,则z O M O A =⋅的最大值为A .B .C .4D .3【解析】C;目标函数即z y =+,画出可行域如图所示,代入端点比较之,易得当2x y ==时z 取得最大值4,故选C .6. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军, 乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获 得冠军的概率为A .12B .35C .23D .34【解析】D;设甲队获得冠军为事件A ,则A 包含两种情况:(1)第一局胜;(2)第一局负但第二局胜;故所求概率1113()2224P A =+⨯=,从而选D .7. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为A .B .C .1D .1【解析】B ;该几何体是以正视图所在的平行四边形为底面,高为3的四棱柱,又平行四边形的底边长为3,所以面积S =从而所求几何体的体积V S h ==故选B . 8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有a b S ∈,则称S 关于数的乘法是封闭的. 若T ,V 是Z 的两个不相交的非空子集,T V Z = 且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的 B . ,T V 中至多有一个关于乘法是封闭的 C . ,T V 中有且只有一个关于乘法是封闭的 D . ,T V 中每一个关于乘法都是封闭的 【解析】A;因为T V Z = ,故必有..1∈T 或1∈V ,不妨设1∈T ,则令1c =,依题意对,a b T ∀∈,有a b T ∈,从而T 关于乘法是封闭的;(其实到此已经可以选A 了,但为了严谨,我们往下证明可以有一个不封闭以及可以两个都封闭),取T N =,则V 为所有负整数组成的集合,显然T 封闭,但V 显然是不封闭的,如(1)(2)2V -⨯-=∉;同理,若{T =奇数},{V =偶数},显然两者都封闭,从而选A .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2011年高考全国卷2理科数学试题及答案(已排版)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
..........3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i (2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ (3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于(A)3(B)3(C)3(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友 每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为(A)13 (B)12 (C)23(D)1(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于第Ⅱ卷(第Ⅱ卷共l0小题,共90分。
深圳中学2011届高三级第二阶段考试(理数)
试卷类型:A深圳中学2011届高三年级第二次阶段考试理科数学 2010-12.本试卷共4页,20小题,满分150分.考试用时120分钟.注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室 号、座位号填写在答题卡上,用2B 铅笔将试卷类型和考生号填涂在答题卡相 应位置上。
2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应的题目选项的答案信息 点涂黑;如需改动,用橡皮擦干净后,再填涂其他答案,答案不能答在试卷 上.3.非选择题必须用黑色手迹的钢笔或签字笔作答,答案必须写在答题卡各题目 指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答 案,不准使用铅笔和涂改液.不按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁。
第Ⅰ卷(选择题共40分)一. 选择题(本大题共8小题,每小题5分,共40分.在每小题的4个选项中,只有一项 是符合题目要求的)1.已知集合}1,0,1{-M ,{}M x x y y N ∈==,|2,则集合N 的真子集个数为( ) A. 3; B .4; C .7; D. 8 2.下列全称命题为真命题的是( )A. 所有的素数是奇数 B .11,2≥+∈∀x R x C .对每一个无理数x ,x 2也是无理数 D .所有的平行向量均相等 3.已知函数)6(sin 22cos 1)(2π--+=x x x f ,其中x ∈R ,则下列结论中正确的是( )A .f(x)是最小正周期为万的偶函数B .f(x)的一条对称轴是3π=⋅xC .f(x)的最大值为2D .将函数x y 2sin 3=的图象左移6π得到函数f(x)的图象4.抛物线y=-x 2上的点到直线4x+3y-8=0距离的最小值是( ) A.34 B. 57 C. 58D .3 5.已知数列{}n a 为等差数列,且π41821=++a a a ,则cos(a 2+a 12)的值为( ) A.23B. 23-C. .21D. 21-6.某店一个月的收入和支出总共记录了N 个数据a 1,a 2,…,N a ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A. A>O,V=S-TB. A<O,V=S-TC. A>O,V=S+TD. A<O,V=S+T7.已知圆()()111:221=-++y x C ,圆C 2与圆C 1关于直线x-y-l =O 对称,则圆C 2的方程为( )A. (x+2)2+(y-2)2=1B. (x-2)2 +(y+2)2=1C. (x+2)2+(y+2)2=1D. (x-2)2 +(y-2)2=18.已知f(x)为R 上的可导函数,且f(x )<f'(x)对于x ∈R 恒成立,则有( )A. ()()()02010,0)2(20102f e f f e f ⋅>⋅<B. )0()2010(),0()2(20102f e f f e f ⋅>⋅>C. )0()2010(),0()2(20102f e f f e f ⋅<⋅>D. )0()2010(),0()2(20102f e f f e f ⋅<⋅<第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.将答案填在答卷指定位置上. 9.设a>O ,a ≠1,函数f(x)=()32log 2+-x x a 有最小值,则不等式()01log >-x a 的解集为 .10.已知)4('cos 2sin )(2πxf x x f +⋅=,则)4('πf =11. 已知i 、j 为互相垂直的单位向量,j i b j i a λ+=-=,2,且a 与b 的夹角为锐角,则实数λ的取值范围是____12. 已知函数f(x)=x 2-1,集合]0)()(|),((≤+=y f x f y x M ,}0)()(){,{(≥-=y f x f y x N 则集合N M 所表示的平面区域的面积是____.13. 若圆x 2+y 2-4x-4y-lO=O 上至少有三个不同点到直线l :ax+by=0的距离为22,则直线l 的斜率的取值区间为____14. 已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b ∈R .满足2)2(),()()(=+=⋅f a bf b af b a f ()*)(2,N n n f a n n ∈=*).(2)2(,N n f b n n n ∈=.考查下列结论:①f(0)=f(1);②f(x)为偶函数;③数列{}n a 为等比数列;④{}n b 为等差数列,其中正确的是 .三. 解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分12分) 当a ∈R 时,解关于x 的不等式:a x <⋅-1116.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB-ccosB . (1)求cosB 的值;(2)若2=⋅BC BA ,且22=b ,求a 和c 的值.17.(本小题满分14分)已知函数f(x)=alnx-ax-3(a ∈R).(1)当a>O 时,求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数]2)('[)(23mx f x x x g ++=在区间(t ,3)上总不是单调函数,求m 的取值范围.18.(本小题满分14分)如图,直线y=kx+b 与椭圆1422=+y x 交于以B 两点,记△AOB的面积为S .(Ⅰ)求在k=O ,O<b<l 的条件下,S 的最大值; (Ⅱ)当2||=AB ,S=1时,求直线AB 的方程,19.(本题满分14分)对于定义在区间D 上的函数f(x),若存在闭区间D b a ⊆],[和常数c ,使得对任意x 1∈[a ,b],都有f(x 1)=c ,且对任意x 2∈D ,当],[2b a x ∉时,f(x 2)>c 恒成立,则称函数f(x ) 为区间D 上的“平底型”函数.(1)判断函数|2||1|)(.1-+-=x x x f 和|2|)(2-+=x x x f 是否为R 上的“平底型”函数? 并说明理由;(2)设f(x)是(Ⅰ)中的“平底型”函数,k 为非零常数,若不等式)(||||||x f k k t k t ⋅≥++- 对一切t ∈R 恒成立,求实数x 的取值范围;(3)若函数n x x mx x g +++=2)(2是区间[-2,+∞)上的“平底型”函数,求m 和n 的值.20.(本题满分14分)已知数列{}n a 满足0>n a ,且对切n ∈N *有231nini S a-∑=,其中∑==ni i n a S 1(Ⅰ)对一切n ∈N *,用a n+1表示S n ; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)求证:321<∑=knk ak理科数学参考答案第Ⅰ卷(选择题共40分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题的4个选项中,只有一项 是符合题目要求的) A 卷B 卷二、填空题:本大题共6小题,每小题5分,共30分,将答案填在答卷指定位置上.9.{}2|>x x 10. 12- 11. )21,2()2,(---∞12.π l3.]32,32[+- 14. ①③④三. 解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分12分)当a ∈R 时,解关于x 的不等式:a x <-11解:原不等式01)1(>-+-⇔x a ax 0)]1()[1(>+--⇔a ax x …(3分)(1)当a=O 时,原不等式101<⇔<-⇔x x .............................. (5分) (2)当a>O 时,原不等式10)]11()[1(<⇔>+--⇔x a x x 或ax 11+>................ (8分) (3)当a<O 时,原不等式1110)]11()[1(<<+⇔<+--⇔x aa x x ................... (11分)综上可得:当a=O 时,原不等式的解集为}1|{<x x ;当a>O 时,原不等式的解集为}111|{ax x +><或; 当a<O 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<+111|x a x …………(12分) 16.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB-ccosB . (1)求cosB 的值:(2)若2=⋅BC BA ,且22=b ,求a 和c 的值. (1)解:由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===则B C R B A R C B R cos sin 2cos sin 6cos sin 2-= 故B C B A C B cos sin cos sin 3cos sin -= 可得B A B C C B cos sin 3cos sin cos sin =+ 即B A C B cos sin 3)sin(=+可得B A A cos sin 3sin =,又0sin =/A , 因此31cos =B ……6分 (2)解;由2=⋅BC BA ,可得2cos =B ac又31cos =B ,故ac=6, 由B ac c a b cos 2222-+= 可得1222=+c a所以0)(2=-c a ,即a=c ,所以6==c a ……12分17.(本小题满分14分)已知函数f(x)=alnx-ax-3(a ∈R).(1)当a>0时,求函数f(x)的单调区间: (2)若函数y=f (x )的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数]2)('[)(23mx f x x x g ++=在区间(t ,3)上总不是单调函数,求m 的取值 范围;解.(1))0()1()('>-=x xx a x f 当a>O 时,f(x)的单调增区间为(0,1],减区间为[1,+∞): …………5分(2)12)2('=-=af 得a=-2, f(x)=-2lnx+2x-3x x m x x g 2)22()(23-++=∴, 2)4(3)('2-++=∴x m x x g …7分∵g(x)在区间(t ,3)上总不是单调函数,且g ’(0)=一2⎩⎨⎧><∴0)3('0)('g t g ……9分由题意知;对于任意的t ∈[l ,2],g'(t )<0恒成立,所以,⎪⎩⎪⎨⎧><<0)3('0)2('0)1('g g g ,9.337-<<-∴m …………14分 18.(本小题满分14分)如图,直线y=kx+b 与椭圆1422=+y x 交于A ,B 两点,记△AOB 的面积为S .(1)求在k=O ,O<b<l 的条件下,S 的最大值; (2)当2||=AB ,S=1时,求直线AB的方程.(1)解:设点A 的坐标为(x 1,b ),点B 的坐标为(x 2,6), …1分由1422=+b x ,解得22,112b x -±=, ……3分 所以1112||2122221=-+≤-⋅=-⋅=b b b b x x b S …5分 当且仅当22=b 时,S 取到最大值1. …6分 (2)解:由⎪⎩⎪⎨⎧=++=,14,22y x b kx y ……7分 得01241222=-++⎪⎭⎫ ⎝⎛+b kbx x k ,1422+-=∆b k ,① ……8分 241141||1||2222112=++-⋅+=-⋅+=k b k k x x k AB .② …9分 设O 到AB 的距离为d ,则1||2==AB Sd ,又因为21||kb d +=, 所以b 2 =k 2+l ,……10分 代入②式并整理,得04124=+-k k ,解得23,2122==b k ,代入①式检验,△>0, 故直线AB 的方程是2622+⋅⋅=x y 或2622-=x y 或2622⋅+⋅-=x y ,或 2622-⋅-=x y .……l4分(一条直线1分) 19.(本题满分14分),对于定义在区间D 上的函数f(x),若存在闭区间D b a ⊆],[和常数c ,使得对任意x ∈[a ,b],都有f(x 1)=c ,且对任意x 2 ∈D ,当],[2b a x ∉时,f(x 2)>c 恒成立,则称函数f(x)为区间D 上的“平底型”,函数.(1)判断函数|2||1|)(1-+-=x x x f 和|2|)(2-+=x x x f 是否为R 上的“平底型”函数?并说明理由;(2)设f(x)是(1)中的“平底型”函数,后为非零常数,若不等式)(||||||x f k k t k t ⋅≥++- 对一切t ∈R 恒成立,求实数x 的取值范围;(3)若函数.22)(⋅+++=n x x mx x g 是区间[-2,+∞)上的“平底型”函数,求m 和n的值,解:(1)对于函数|2||1|)(1-+-=x x x f ,当x∈[l ,2]时,f 1(x)=1.当x<l 或x>2时,1|)2()1(|)(1=--->x x x f 恒成立,故f 1(x)是“平底型”函数,对于函数|2|)(2-+=x x x f ,当x∈(—∞,2]时,f 2(x)=2: 当x∈(2,+∞)时, f 2(x)=2x-2>2.所以不存在闭区间[a ,b],使当],[b a x ∉时,f(x)>2恒成立.故f 2(x)不是“平 底型”函数, …4分(Ⅱ)若)(||||||x f k k t k t ⋅≥++-对一切t ∈R 恒成立,则)(|||)||(|min x f k k t k t ⋅≥++-.所以)(||||2x f k k ⋅≥.又k≠O,则f (x)≤2. 则2|2||1|≤-+-x x ,解得2521≤≤x .故实数x 的范围是]25,21[.…………5分 (Ⅲ)因为函数n x x mx x g +++=2)(2 是区间[-2,+∞)上的“平底型”函数,则存在区间),2[],[+∞-⊆b a 和常数c ,使得c n x x mx =+++.2.2恒成立,所以.22)(2c mx n x x -=++恒成立,即⎪⎩⎪⎨⎧==-=n c m c m 22221.解得⎪⎩⎪⎨⎧=-==111n c m 或⎪⎩⎪⎨⎧==-=111n c m . 当⎪⎩⎪⎨⎧=-==111n c m 时,|1|)(++=x x x g当x∈[-2,-l]时,g(x)=-l ,当x∈(-1,+∞)时,g(x)=2x+l>-1恒成立,此时,g(x)是区间[-2,+∞)上的“平底型”函数.当⎪⎩⎪⎨⎧==-=111n c m 时,|1|)(++-=x x x g当x∈[-2,-1]时,g(x)=-2x-1≥1,当x ∈(-1,+∞)时,g(x)=1.此时,g(x)不是区间[-2,+∞)上的“平底型”函数, 综上分析,m=l ,n=l 为所求, …………14分 20.(本题满分14分)已知数列{}n a 满足0>n a ,且对切n ∈N *有231nini S a-∑=,其中∑==ni i n a S 1(Ⅰ)对一切n ∈N *,用a n+1表示S n ; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)求证:321<∑=knk a k解:(I)2213111213123n n n n i n i n i n i S S a S a S a -=⇒⎪⎪⎩⎪⎪⎨⎧==+++=+=∑∑)2()(113111n n n n n n n S a a a S S a +=⇒+=+++++,即 ⇒=-⇒+=++++n n n n n n S a a S a a 22.121121 )(21.121++-=n n n a a S ………… 4分 (II)1111212222+++++⇒-==-n n n n n n S a S s a a 121+++=n n a a ,从而由⇒+=+=⎪⎪⎩⎪⎪⎨⎧+++nn n n n n a a S a a S 21211221)(2112211=-⇒-+-=++++n n n n n n n a a a a a a a所以数列{}n a 是首项a 1=1,公差为1的等差数列,故n a n = ……………9分(Ⅲ)当n>2时,有1.2)1(112-+⋅-⋅<⋅=k k k k k k a k k ).11.1(2k k --=,所以有 112221<+=∑∑==k n k k nk a k a k 32311122<-=⎪⎭⎫ ⎝⎛--+∑=n k k n k .……14分。
深圳市高级中学2011届第二次高考模拟(理数)
深圳市高级中学2011届第二套高考模拟试卷理科数学一、选择题(本大题共8小题,每小题5分,共40分。
每小题只有一个正确答案)。
1.若},13|{},2|||{<∈=<∈=xR x B x R x A 则=B A A .(-2,2) B .(-2,-1) C .(0,2) D . (-2,0) 2.已知),,0(πα∈且2cos sin 2αα+=,则cos sin αα-的值为 A .2- B .26-C .2D .263.已知a 、b 、c 成等差数列,则直线0=+-c by ax 被曲线02222=--+y x y x 截得的弦长的最小值为A .2B .1C .22D .2 4.程序框图如图,如果程序运行的结果为S =132,那么判断框中应填入A. 10?k ≤ B .10?k ≥ C .11?k ≤ D .11?k ≥5.已知D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0=++CP BP PA ,设λ=||||PD AP ,则λ的值为A .1B .21 C .2 D .41 6.设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤--≥+-0004402y x y x y x ,若目标函数)0,0(>>+=b a by ax z 的最大值为6,则2w ab =的最大值为A .9B .6C .3D . 27.在直三棱柱ABC —A 1B 1C 1中,1,1,2BAC AB AC AA D π∠====和E 分别为棱AC 、AB上的动点(不包括端点),若1C E ⊥,1D B 则线段DE 长度的取值范围为 A .]23,22[B .)1,33[C .)1,22[ D .]22,32[8. 设函数,0),1(0],[)(⎩⎨⎧<+≥-=x x f x x x x f 其中][x 表示不超过x 的最大整数,如]2,1[-=-2,]2.1[=1,]1[=1,若直线y=)0(>+k k kx 与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是A .]31,41( B .]41,0( C .]31,41[ D .)31,41[二、填空题(本大题共6小题分,每小题5分,共30分。
2011年全国高考2卷理科数学试题及答案
2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2。
选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3。
填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A ) -2i (B) —i (C) i (D) 2i2. 函数)0y x =≥的反函数为(A )()24x y x R =∈ (B) ()204x y x =≥(C )()24y x x R =∈ (D) ()240y x x =≥ 3。
下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C )22a b > (D ) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B ) 7 (C) 6 (D ) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A ) 13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A )2(B )(C)7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A ) 4种 (B) 10种 (C ) 18种 (D ) 20种8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年深圳市高三年级第二次调研考试 数学(理科)试题参考答案及评分标准说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.4、只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题共8个小题;每小题5分,共40分.二、填空题:本大题共7小题,每小题5分,满分30分.第9~13题为必做题,第14、15题为选做题,两题全答的,只计算前一题的得分.9. 10 10.⎪⎭⎫⎝⎛-21,21 11. 4 12.⎪⎭⎫⎢⎣⎡∞+,41 13. 55 14.θρsin 2= 15.︒30三、解答题:本大题共6小题,满分80分.16.(本小题满分12分)设函数⎪⎭⎫⎝⎛π-+=2sin sin )(x x x f ωω,R ∈x . (1)若21=ω,求)(x f 的最大值及相应的x 的集合;(2)若8π=x 是)(x f 的一个零点,且100<<ω,求ω的值和)(x f 的最小正周期.解 (1)x x x x x f ωωωωcos sin 2sin sin )(-=⎪⎭⎫ ⎝⎛π-+=, ……………………1分当21=ω时,⎪⎭⎫⎝⎛-=42sin 22cos 2sin )(πx x x x f =-, ……………………2分而142sin 1≤⎪⎭⎫⎝⎛π-≤-x ,所以)(x f 的最大值为2, ……………………4分此时,π+π=π-k x 2242,∈k Z ,即π+π=k x 423,Z ∈k , 相应的x 的集合为},423|{Z ∈π+π=k k x x . ……………………6分(2)(法一)因为⎪⎭⎫⎝⎛-=4sin 2)(πωx x f , 所以,8π=x 是)(x f 的一个零点⇔048sin 8=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛πππωf , ……………………8分即π=π-πk 48ω,Z ∈k ,整理,得28+=k ω, 又100<<ω,所以10280<+<k ,141<<-k ,而Z ∈k ,所以0=k ,2=ω,…10分⎪⎭⎫ ⎝⎛π-=42sin 2)(x x f ,)(x f 的最小正周期为π. ……………………12分(法二)8π=x 是)(x f 的一个零点⇔08cos 8sin 8=π-π=⎪⎭⎫⎝⎛πωωf ,即18tan =πω. ……………………8分 所以48π+π=πk ω,Z ∈k ,整理,得28+=k ω, 又100<<ω,所以10280<+<k ,141<<-k ,而Z ∈k ,所以0=k ,2=ω, …10分⎪⎭⎫ ⎝⎛π-=42sin 2)(x x f ,)(x f 的最小正周期为π. ……………………12分17.(本小题满分12分)为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是我市雷电天气高峰期,在31天中平均发生雷电14.57天(如图7).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为X ,求X 的数学期望和方差.解 (1)设8月份一天中发生雷电天气的概率为p ,由已知47.03157.14==p . ……………2分 因为每一天发生雷电的概率均相等,且相互独立, 所以,在大运会开幕后的前3天比赛中,恰好有2天发生雷电天气的概率)47.01(47.0223-⨯⨯=C P351231.0=35.0≈. ……………6分(2)由已知X ~)47.0,12(B . …………………8分所以,X 的数学期望64.547.012)(=⨯=X E . ………………………………10分X 的方差9892.247.0147.012)()=-(⨯⨯=X D . ………………………………12分2468图718.(本小题满分14分)如图8,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 互相垂直,如图9.(1)求证:平面⊥BDE 平面BEC ;(2)求平面ABCD 与平面EFB 所成锐二面角的大小. 证明(1)(法一)因为平面⊥ADEF 平面ABCD , 且平面 ADEF 平面AD ABCD =, 又在正方形ADEF 中,AD ED ⊥,所以,⊥ED 平面ABCD . ………………2分 而⊂BC 平面ABCD ,所以,BC ED ⊥. ………………3分 在直角梯形ABCD 中,2=CD ,22+=AD AB BD 2)(22=+-=AD AB CD BC ,所以,222CD BC BD =+,所以,BD BC ⊥. ………………4分 又ED ,⊂BD 平面BDE ,D BD ED = , 所以,⊥BC 平面BDE . ………………6分 而⊂BC 平面BEC ,所以,平面⊥BDE 平面BEC . ……………7分(法二)同法一,得⊥ED 平面ABCD . …………………………………2分 以D 为原点,DA ,DC ,DE 分别为x ,y z 轴,建立空间直角坐标系.则)0,0,0(D ,)0,1,1(B ,)0,2,0(C ,)1,0,0(E . …………………………………3分所以,)0,1,1(-=BC , )0,1,1(=DB ,)1,0,0(=DE ,000111)1(=⨯+⨯+⨯-=⋅DB BC ,010010)1(=⨯+⨯+⨯-=⋅DE BC ,所以,DB BC ⊥,DE BC ⊥. …………………………………5分 又DB ,DE 不共线,DB ,⊂DE 平面BDE ,所以,⊥BC 平面BDE . …………………………………6分 而⊂BC 平面BEC ,所以,平面⊥BDE 平面BEC . …………………………………7分FE D CBA图8解 (2)(法一)因为AD EF //,⊄EF 平面ABCD ,⊂AD 平面ABCD ,所以,//EF 平面ABCD . …………………………………9分 因为平面EFB 与平面ABCD 有公共点B ,所以可设平面 EFB 平面BG ABCD =,CD G ∈.因为//EF 平面ABCD ,⊂EF 平面EFB ,平面 EFB 平面BG ABCD =,所以BG EF //. ………………………………10分 从而,AD BG //,又DG AB //,且1=AB ,2=CD ,所以G 为CD 中点,ABGD 也为正方形. ……12分 易知⊥BG 平面ECD ,所以EG BG ⊥,DG BG ⊥.所以,EGD ∠是平面ABCD 与平面EFB 所成锐二面角的平面角, 而︒=∠45EGD ,所以平面ABCD 与平面EFB 所成锐二面角为︒45. ………………………………14分 (法二)由(1)知,平面ABCD 的一个法向量是)1,0,0(=m . ……………………9分 设平面EFB 的一个法向量为),,(z y x =n ,因为)0,0,1(==DA EF ,)1,1,1()1,0,0()0,1,1(-=-=-=DE DB EB所以,⎪⎩⎪⎨⎧=-+=⋅==⋅.0,0z y x x EF n n 取1=y ,得1=z ,所以)1,1,0(=n .……………………11分设平面ABCD 与平面EFB 所成锐二面角为θ, 则2221||||cos ==⋅=n m n m θ. ……………………………………13分 所以平面ABCD 与平面EFB 所成锐二面角为︒45. ………………………………14分 19.(本小题满分14分)平面直角坐标系中,已知直线l :4=x ,定点)0,1(F ,动点),(y x P 到直线l 的距离是到定点F 的距离的2倍.(1)求动点P 的轨迹C 的方程;(2)若M 为轨迹C 上的点,以M 为圆心,MF 长为半径作圆M ,若过点)0,1(-E 可作圆M 的两条切线EA ,EB (A ,B 为切点),求四边形EAMB 面积的最大值. 解(1)设点P 到l 的距离为d ,依题意得||2PF d =,即()2212|4y x x +-=-|, ……………………………………2分整理得,轨迹C 的方程为13422=+y x . ……………………………………4分 (2)(法一)设()00,y x M ,圆M :()()22020r y y x x =-+-,其中2020)1(||y x MF r +-== 由两切线存在可知,点E 在圆M 外,所以,()()()20202020101y x y x +->-+--,即00>x ,又()00,y x M 为轨迹C 上的点,所以200≤<x .而|4|212||0-==x d MF ,所以,2||1<≤MF ,即21<≤r . ………………………6分 由(1)知,()0,1-E 为椭圆的左焦点,根据椭圆定义知,4||||=+MF ME ,所以r ME -=4||,而r MF MB ==||||, 所以,在直角三角形MEB 中,r r r EB 242)4(||22-=--=,r r MB EB S MEB 24||||21Δ-=⋅=, 由圆的性质知,四边形EAMB 面积S S MEB 22Δ==即23422r r S +-=(21<≤r ).令2342r r y +-=(21<≤r ),则)43(2862--=+-='r r r r y , 当341<<r 时,0>'y ,2342r r y +-=单调递增; 当234<<r 时,0<'y ,2342r r y +-=单调递减. 所以,在34=r 时,y 取极大值,也是最大值,此时3916244342223max=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=S . ………………………………14分(法二)同法一,四边形EAMB 面积r r S S MEB 2422Δ-==,其中21<≤r .……10分所以39163242)24(23=⎪⎭⎫⎝⎛-++≤-⋅⋅=n n n r r r S . 由r r 24-=,解得)2,1[34∈=r ,所以3916max =S . ……………………………14分 20.(本小题满分14分)执行下面框图所描述的算法程序,记输出的一列数依次为1a ,2a ,…,n a ,*N ∈n ,2011≤n .(注:框图中的赋值符号“=”也可以写成“←”或“:=”)(1)若输入2=λ,写出输出结果; (2)若输入2=λ,求数列}{n a 的通项公式; (3)若输入2>λ,令1--=n n n pa pa c ,求常数p (1±≠p ),使得}{n c 是等比数列.解 (1)输出结果是:0,22,2. (3)(2)(法一)由程序框图可知,01=a ,nn a a -λ=+11,*N ∈n ,≤n 所以,当2=λ时,nn a a -=+211, …………………5分 nnn n a a a a --=--=-+2112111, 而}{n a 中的任意一项均不为1, (否则的话,由11=+n a 可以得到1=n a , …,与101≠=a 矛盾),所以,11112111--=--=-+n n n n a a a a , 111111-=---+n n a a (常数),*N ∈n ,2010≤n . 故⎭⎬⎫⎩⎨⎧-11n a 是首项为1-,公差为1-的等差数列, ……………………………………7分 所以,n a n -=-11,数列}{n a 的通项公式为n a n 11-=,*N ∈n ,2011≤n .………8分(法二)当2=λ时,由程序框图可知,01=a ,212=a ,323=a ,434=a ,……猜想nn a n 1-=,*N ∈n ,2011≤n . …………………………………………………5分以下用数学归纳法证明: ①当1=n 时,101111a n n ==-=-,猜想正确; ②假设k n =(*N ∈n ,2010≤n )时,猜想正确.即kk a k 1-=,……………………7分 那么,当1+=k n 时,由程序框图可知,11)1(12111+-+=--λ=+k k k k a a k k -=.即1+=k n 时,猜想也正确. 由①②,根据数学归纳法原理,猜想nn a n 1-=正确,*N ∈n ,2011≤n . …………8分图10(3)(法一)当2>λ时,)(11111222111p p pa p p p a p p a p pa a p p a pa p a c n n n n nn n n n -λ-⎪⎪⎭⎫ ⎝⎛-λ-⋅=+λ-+λ-=--λ--λ=--=+++, 令112=-λp p ,则p p 1+=λ,012=+λ-p p ,242-λ±λ=p . ………………10分此时,1122=-⎪⎪⎭⎫ ⎝⎛+=-λp p p p p p , ……………………………………12分 所以n n c p c 21=+,*N ∈n ,2011≤n ,又01≠=p c ,故存在常数242-λ±λ=p (2>λ),使得}{n c 是以p 为首项,2p 为公比的等比数列. …………………………………14分(法二)当2>λ时,令x p p -=1,即012=+λ-p p ,解得242-λ±λ=p ,…10分因为nn a a -λ=+11,*N ∈n ,2010≤n .所以nnn n n n n n a p a p a p pa a p pa p a p a -λ-⋅=-λ-=-λ+λ-=--λ=+2111-, ① n n n n n n n n a pa p a p p pa p a p a a ppa -λ-⋅=-λ+λ-⋅=-λ+λ-=--λ=-+1111121,② ……12分 ①÷②,得11211--⋅=--++n nn n pa pa p pa p a , 即n n c p c 21=+,*N ∈n ,2011≤n ,又01≠=p c ,故存在常数242-λ±λ=p (2>λ)使得}{n c 是以p 为首项,2p 为公比的等比数列. …………………………………14分21.(本小题满分14分)已知函数)(x f 满足如下条件:当]1,1(-∈x 时,)1ln()(+=x x f ,且对任意R ∈x ,都有1)(2)2(+=+x f x f .(1)求函数)(x f 的图象在点))0(,0(f 处的切线方程;(2)求当]12,12(+-∈k k x ,*N ∈k 时,函数)(x f 的解析式;(3)是否存在]12,12(+-∈k k x k ,2011210,,,,=k ,使得等式 201724019)](2[201220110+⨯=-∑=k kk kx f x成立?若存在就求出k x (2011210,,,, =k ),若不存在,说明理由.解 (1)]1,1(-∈x 时,)1ln()(+=x x f ,11)(+='x x f , ………………………………2分 所以,函数)(x f 的图象在点))0(,0(f 处的切线方程为)0)(0()0(-'=-x f f y ,即x y =.…3分(2)因为1)(2)2(+=+x f x f ,所以,当]12,12(+-∈k k x ,*N ∈k 时,]1,1(2-∈-k x , ……………………………4分1)2(2)(+-=x f x f 12)4(22++-=x f 122)6(223+++-=x f=1222)2(221+++++-=-- k k k k x f 12)12ln(2-++-=k k k x .………6分(3)考虑函数)(2)(x f x x g k -=,]12,12(+-∈k k x ,N ∈k ,则12)2(21222)(+--=+--='k x k x k x x g k k k,当k x k 212<<-时,0)(<'x g ,)(x g 单调递减; 当k x 2=时,0)(='x g ;当122+<<k x k 时,0)(>'x g ,)(x g 单调递增;所以,当]12,12(+-∈k k x ,N ∈k 时,12)12()2()(+-=≥k k k g x g ,当且仅当k x 2=时,12)12()2()(+-==k k k g x g . …………………………………10分所以,]12)12[()()](2[2011201102011+-≥=-∑∑∑===k k k k k kk kk x g x f x而n n k n nk k+-++⋅+⋅=+-∑=2)12(2321]12)12[(210,令n n n S 2)12(232121-++⋅+⋅= ,则1322)12(23212+-++⋅+⋅=n n n S , 两式相减得,13212)12(22222221+--⋅++⋅+⋅+⋅=-n n n n S62)32(2)12(12)12(222111121---=----⋅+⋅=++-n n n n n .所以,62)32(1+-=+n n n S ,故2017240192011]12)12[(201220112011+⋅=+=+-∑=S k k k . …………………………12分 所以,20172401912)12[()()](2[120110201102011+⋅=+-≥=-+===∑∑∑n k k k k k kk kk x g x f x.当且仅当k x k 2=2011,,2,1,0, =k 时,20172401912)12[()()](2[120112011020110+⋅=+-==-+===∑∑∑n k k k k k kk kk x g x f x.所以,存在唯一一组实数k x k 2=,2011,,2,1,0 =k ,使得等式201724019)](2[12011+⋅=-+=∑n k kk kx f x成立. …………………………………14分。