广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题 (8) Word版含答案

合集下载

2018届广东省中山市高考数学三轮复习冲刺模拟试题(8)含答案

2018届广东省中山市高考数学三轮复习冲刺模拟试题(8)含答案

an an 2
13. 设数列 { an } 的前 n 项和为 Sn ,且满足 Sn =2- an , ( n =1,2, 3,… )
( Ⅰ) 求数列 { an } 的通项公式;
( Ⅱ) 若数列 { bn } 满足 b1 =1,且 bn 1 bn an ,求数列 { bn } 的通项公式;
( Ⅲ) cn
C1 C2
n
Cn
,
试比较
Tn 与
5n 2n
1
的大小
,
并予以证明
6. 已知数列 { an} 满足 a1 1, a2 3, an 1 4an 3an 1 n N * , n 2 , (1) 证明 : 数列 { an 1 an} 是等比数列 , 并求出 { an} 的通项公式 (2) 设数列 { bn } 的前 n 项和为 Sn , 且对任意 n N * , 有 b1 b2 a1 2a2 立, 求 Sn
列 {a n} 满足
a1=x1, 且
n≥2时
a
n=y
2 n
(
1 y12
1 y22
an 1 (n 1) 2
an n2
1 ;(3) n2
在 (2) 的条件下 , 试比较
(1
关系 .
1 yn2
). 证明
1
:

n≥2时 ,
1
1
1
) (1 ) (1 ) (1
a1
a2
a3
1 ) 与 4 的大小
an
11. 数列 {a n} 满足 4a1=1,a n-1 =[(-1) nan-1 -2]a n(n ≥2),(1) 试判断数列 {1/a n +(-1) n} 是否为等比数 列 , 并证明 ;(2) 设 an 2?bn=1, 求数列 {b n} 的前 n 项和 Sn.

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题(12)201806010299

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题(12)201806010299

高考数学三轮复习冲刺模拟试题12第Ⅰ卷选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{1,2,4} D.{1,2,3,4}22.如果复数z=,则()-1+iA.|z|=2 B.z的实部为1 C.z的虚部为-1 D.z的共轭复数为1+i3.已知双曲线x y22221的一个焦点与抛物线y24x的焦点重合,且双曲线的离心率等于a b5,则该双曲线的方程为( )x24y2x yC.y xD.525212222A.B.5111xy554544n1x2x44.已知的展开式的各项系数和为32,则展开式中的系数为()xA.5 B.40 C.20 D.105.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷C的人数为A.7 B.9 C.10 D.156.把函数y 2cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是7.在区间[π,π]内随机取两个数分别记为a,b,则使得函数f(x)x22ax b2π有零点的概率为()731A.B.C.D.842148. 如果执行如图的程序框图,那么输出的值是()A.B.01 21 C .D .129.已知实数 a ,b ,c ,d 成等比数列,且函数 y ln(x 2) x 当xb 时取到极大值c ,则 ad等于( )A .1B . 0C .1 D . 210.定义在 R 上的函数 y f (x ) 是减函数,且函数 yf (x ) 的图象关于原点成中心对称,若tstf (s 22s )≤ f (2tt 2 ) 1≤ s ≤ 4, 满足不等式.则当时, 的取值范围是()s1 111A ., 1B ., 1C ., 1 D . , 14422第Ⅱ卷 非选择题(共 100分)二、填空题:本大题共 5小题,每小题 5分,共 25分.将答案填写在题中的横线上.111. 已 知 等 差 数 列的 前项 和 为 ,则 数 列 的 前 100项 和an S ,a5,S15 { }nn55a an n 1为 .1 12.已知函数 f (x ) 满足:当 x≥4时, f (x ) = ( )x ;当 x <2f (x ) = f (x 1) ,则 f (2 log 3) =______.24时13.一个几何体的三视图如图所示,则该几何体的体积 为.14.已知 a (,2) , b (3,2) ,如果 a 与 b 的夹角为角,则 的取值范围是.锐15. (考生注意:请在下列三个小题中任选一题作答,如果多做,则按所做的第一题评分.) A .(不等式选做题)若不存在实数 x 使 | x3| | x 1| a 成立,则实数 a 的取值集合是__________.B . (几何证明选做题) )如图,已知 AB 和 AC 是圆的两条弦,过 点 B 作圆的切线与 AC 的延长线相交于点D .过点 C 作 BD 的平行3 线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF =,2 则线段CD的长为________.C. (坐标系与参数方程选做题) 已知直线l1:x1tcosy t sin- 2 -x cos(t为参数)与圆C2:(为参数)的位置关系不可能是________.ysin三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.16. (本题满分12分)已知ABC的三个内角A、B、C的对边分别为a、b、c,且b2c2a2bc.(Ⅰ)求2s in B cos C sin(B C)的值;(Ⅱ)若a2,求ABC周长的最大值.17.(本题满分12分)已知函数f(x)x22(n1)x n25n7.(Ⅰ)设函数y f(x)的图像的顶点的纵坐标构成数列{a},求证:{a}为等差数列;n n(Ⅱ)设函数y f(x)的图像的顶点到x轴的距离构成数列{b},求{b}的前n项和S.n n n 18.(本题满分12分)如图,四棱锥P ABCD的底面ABCD为一直角梯形,其中BA AD,CD AD CD AD2AB,PA ABCD,底面,E PC是的中点.(Ⅰ)求证:BE//平面PAD;(Ⅱ)若BE平面PCD,求平面EBD与平面BDC夹角的余弦值.19. (本题满分12分)某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:付款方式分1期分2期分3期分4期分5期频数40 20 a10 b 已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1 万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润。

广东省2018届高考数学三轮复习冲刺模拟试题3含答案

广东省2018届高考数学三轮复习冲刺模拟试题3含答案

高考数学三轮复习冲刺模拟试题03函数02二、填空题1.定义一种运算,令,且,则函数的最大值是______.2.设函数______.3.函数f(x)的定义域为D,若对于任意的x 1,x 2∈D,当x 1<x 2时都有f(x 1)≤f(x 2),则称函数f(x)为D 上的非减函数.设f(x)为定义在[0,1]上的非减函数,且满足一下三个条件: (1)f(0)=0; (2)f(1-x)+f(x)=1 x ∈[0,1]; (3)当x ∈[0,31]时,f(x)≥23x 恒成立,则f(73)+f(95)= . 4.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x,x ≤0,则f (f (-2))=________.5.已知函数y mx =的图像与函数11x y x -=-的图像没有公共点,则实数m 的取值范围是6.已知a>0,且a ≠1,若函数2(-2+3)()=lg xx f x a 有最大值,则不筹式2(-5+7)>0a log x x 的解集为 ;7.函数f(x)=a x+2+x a 的值域为_________. 8.已知函数f (x )=⎩⎨⎧>≤--.1,log 1,1)2(x x ,x x a a 若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________。

9.定义:如果函数)(x f y =在定义域内给定区间b][,a 上存在)(00b x a x <<,满足ab a f b f x f --=)()()(0,则称函数)(x f y =是b][,a 上的“平均值函数”,0x 是它的一个均值点,如4x y =是]1,1[-上的平均值函数,0就是它的均值点.现有函数1)(2++-=mx x x f 是]1,1[-上的平均值函数,则实数m 的取值范围是 .10.已知x R ∀∈,(1+)=(1-)f x f x ,当1x ≥时,()=(1)f x l n x +,则当<1x 时,()=f x .11.已知函数y [0,+)∞,则a 的取值范围是 .12.函数212()=log (-2-3)f x x x 的单调递减区间为 .13.已知1f x -,则()=f x (x ∈ ).14.若(f x ,则()f x 的定义域为 .15.已知函数3111,0,362()21,,112x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎣⎦⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩ ,函数π()sin()22,(0)6=-+>g x a x a a ,若存在[]12,0,1x x ∈,使得12()()f x g x =成立,则实数a 的取值范围是____________.16.定义在)1,1(-上的函数⎪⎪⎭⎫ ⎝⎛--=-xy y x f y f x f 1)()(,当)0,1(-∈x 时0)(>x f .若)0(,21,11151f R f Q f f P =⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=,则P ,Q,R 的大小关系为_____________.三、解答题17.对于函数()f x 若存在0x R ∈,00()=f x x 成立,则称0x 为()f x 的不动点.已知2()=(1)-1(0)f x ax b x b a +++≠(1)当=1,=-2a b 时,求函数(f x )的不动点;(2)若对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若=()y f x 图象上A 、B 两点的横坐标是函数()f x 的不动点,且A 、B 两点关于直线2121y kx a =++对称,求b 的最小值.18.已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,且当x >0时,()0f x <又(1)2f =-.(1)判断()f x 的奇偶性;(2)求证:()f x 是R 上的减函数; (3)求()f x 在区间[-3,3]上的值域;(4)若x R ∀∈,不等式2()2()()4f ax f x f x -<+恒成立,求a 的取值范围.参考答案二、填空题 1. 【答案】54【解析】令,则∴由运算定义可知,∴当1sin 2x =,即6x π=时,该函数取得最大值54. 由图象变换可知,所求函数的最大值与函数在区间上的最大值相同.2. 【答案】52【解析】令1x =-得(1)(1)(2)f f f =-+,即1(2)(1)(1)2(1)212f f f f =--==⨯=。

2018届广东省高考数学三轮复习冲刺模拟试题有答案(共275题)

2018届广东省高考数学三轮复习冲刺模拟试题有答案(共275题)

高考数学三轮复习冲刺模拟试题01集合一、选择题1 .已知集合,,则( ) A .B .C .D .2 .设集合{1}A x x a x R =-<∈,,B={x|1<x<5,x ∈R},若A ⋂B=φ,则实数a 的取值范围是( )A .{a|0≤a ≤6}B .{a|a ≤2,或a ≥4}C .{a|a ≤0,或a ≥6}D .{a|2≤a ≤4}3 .已知集合2A ={|log<1},B={x|0<<c}x x x,若=A B B ,则c 的取值范围是( )A .(0,1]B .[1,+)∞C .(0,2]D .[2,+)∞二、填空题4 .若不等式4+-2+1x m x≥对一切非零实数x 均成立,记实数m 的取值范围为M .已知集合{}=A x x M ∈,集合{}2=--6<0B x R x x ∈,则集合=A B ___________.5 .设集合是A={32|()=83+6a f x xax x -是(0,+∞)上的增函数},5={|=,[-1,3]}+2B y y x x ∈,则()R A B ð= ;6.试题)己知集合222{|28},{|240}xxA xB x x mx -=<=+-<, 若{|11},{|43}A B x x A B x x =-<<=-<<,则实数m 等于__________ .7 .设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈,若∅=B A ,则实数a 取值范围是___________.三、解答题8 .已知={()|1},B={()|3,0x 3}2A x,y y =-x+mx -x,y x+y =≤≤,若A B ⋂是单元素集,求实数m的取值范围.参考答案一、选择题 1. 【答案】B【解析】{(3)0}{03}P x x x x x =-<=<<,={2}{22}Q x x x x <=-<<,所以{02}(0,2)P Q x x =<<=,选B.2. 【答案】C【解析】{1}{11}A x x a x R x a x a =-<∈==-<<+,,因为=A B φ,所以有15a -≥或11a +≤,即6a ≥或0a ≤,选C.3. 【答案】D【解析】2{log 1}{01}A x x x x =<=<<.因为A B B =,所以A B ⊆.所以1c ≥,即[1,)+∞,选B.二、填空题4. {}-1<3x x ≤; 5. 【答案】(,1)(4,)-∞+∞【解析】2()=2466f 'x x ax -+,要使函数在(0,)+∞上是增函数,则2()=24660f 'x x ax -+>恒成立,即14a x x <+,因为144x x +≥=,所以4a ≤,即集合{4}A a a =≤.集合5={|=,[-1,3]}+2B y y x x ∈{15}y x =≤≤,所以{14}A B x x ⋂=≤≤,所以()=R A B ð(,1)(4,)-∞+∞.6. 【答案】32222{|28}{|230}{13}x xA x x x x x x -=<=--<=-<<,因为{|11},{|43}AB x x A B x x =-<<=-<<,所以由数轴可知{|41}B x x =-<<,即4,1-是方程2240x mx +-=的两个根,所以4123m -+=-=-,解得32m =。

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题2018060102108

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题2018060102108

高考数学三轮复习冲刺模拟试题09共150分.时间120分钟.第Ⅰ卷 (选择题40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{}24A x x =≤,{}1B x x =<,则集合B A 等于 (A ){}12x x ≤≤(B ){}1x x ≥ (C ){}2x x ≤(D )R {}-2x x ≥2.在等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是 (A )15(B )30(C )31(D )643.为得到函数sin (π-2)y x =的图象,可以将函数πsin (2)3y x =-的图象 (A )向左平移3π个单位 (B )向左平移6π个单位 (C )向右平移3π个单位(D )向右平移6π个单位4.如果()f x 的定义域为R ,(2)(1)()f x f x f x +=+-,若(1)lg3lg 2f =-,(2)lg3lg5f =+,则(3)f 等于(A )1 (B )lg3-lg2 (C )-1(D )lg2-lg35.如图所示,为一几何体的三视图, 则该几何体的体积是(A )1(B )21(C )13(D )656.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足422=-+c b a )(,且C =60°,则ab 的值为左视图俯视图111(A )348-(B )1(C )34 (D )32 7. 已知函数22,0()42,0x f x x x x ≥⎧=⎨++<⎩的图象与直线(2)2y k x =+-恰有三个公共点,则实数k 的取值范围是 (A )()02,(B)(]02,(C)()-2∞, (D)()2+∞,8.点P 是以12F F ,为焦点的椭圆上的一点,过焦点2F 作12F PF ∠的外角平分线的垂线,垂足为M 点,则点M 的轨迹是(A )抛物线 (B )椭圆 (C )双曲线 (D )圆第Ⅱ卷(非选择题110分)二、填空题:本大题共6小题,每小题5分,共30分.9.复数11i-在复平面内对应的点到原点的距离是 . 10.在给定的函数中:① 3-y x =;②xy -2=;③sin y x =;④1y x=,既是奇函数又在定义域内为减函数的是 .11.用计算机产生随机二元数组成区域-11-22x y <<⎧⎨<<⎩,对每个二元数组(,)x y ,用计算机计算22y x +的值,记“(,)x y 满足22y x + <1”为事件A ,则事件A 发生的概率为________.12.如右图所示的程序框图,执行该程序后 输出的结果是 .13.为了解本市的交通状况,某校高一年级的同学 分成了甲、乙、丙三个组,从下午13点到18点, 分别对三个路口的机动车通行情况进行了实际调查, 并绘制了频率分布直方图(如图),记甲、乙、丙 三个组所调查数据的标准差分别为321,,s s s , 则它们的大小关系为 .(用“>”连结) 开始1=i ,2=s1+=i iss 1-1= 5>i输出S 结束是否xMyQPOF 2F 114.设向量()21,a a =,()21,b b =,定义一种向量积:⊗=()21,a a ⊗()21,b b =()2211b a b a ,.已知=⎪⎭⎫ ⎝⎛3,21,=⎪⎭⎫⎝⎛0,6π,点P 在x y sin =的图象上运动,点Q 在)(x f y =的图象上运动,且满足OQ =⊗+(其中O 为坐标原点),则)(x f y =的最大值是 . 三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数)-2π(cos cos sin )(2x x x x f +=. (Ⅰ)求)3π(f 的值;(Ⅱ)求函数()f x 的最小正周期及值域.16. (本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ))(x f 在1x =-处的切线与x 轴平行,求b 的值; (Ⅱ)求)(x f 的单调区间.t13 14 15 16 17 18 0.10.3 组距频率0.2 13 14 15 16 17 18 0.10.3 组距频率0.2 13 14 15 16 17 18 0.10.3 组距频率0.2 tt甲乙丙17. (本小题满分13分) 如图,已知平面α,β,且,,,,AB PC PD C D αβαβ=⊥⊥是垂足.(Ⅰ)求证:AB ⊥平面PCD ; (Ⅱ)若1,2PC PD CD ===,试判断平面α与平面β是否垂直,并证明你的结论.18. (本小题满分13分)某学校有两个参加国际中学生交流活动的代表名额,为此该校高中部推荐了2男1女三名候选人,初中部也推荐了1男2女三名候选人.(I )若从初高中各选1名同学做代表,求选出的2名同学性别相同的概率;(II )若从6名同学中任选2人做代表,求选出的2名同学都来自高中部或都来自初中部的概率.19. (本小题满分14分)已知椭圆与双曲线122=-y x 有相同的焦点,且离心率为22. (I )求椭圆的标准方程;(II )过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若PB AP 2=,求AOB ∆的面积.20. (本小题满分14分)已知数列}{n a 的前n 项和为n S ,11=a ,满足下列条件①0≠∈∀n a N n ,*;②点),(n n n S a P 在函数22x x x f +=)(的图象上;(I )求数列}{n a 的通项n a 及前n 项和n S ; (II )求证:10121<-≤+++||||n n n n P P P P . APCDBβα参考答案一、选择题:本大题共8小题,每小题5分,共40分.1 2 3 4 5 6 7 8 CABADCAD二、填空题:本大题共6小题,每小题5分,共30分.910 11 12 1314 22①π8-1123>s s s >3四、解答题:本题共6小题,共80分.15.(本小题满分13分)已知函数)-2π(cos cos sin )(2x x x x f +=. (Ⅰ)求)3π(f 的值;(Ⅱ)求函数()f x 的最小正周期及值域. 解:(I )由已知,得2πππππ()sin cos cos()33323f =+- ……2分π31333()342f +=+……5分(II )2()sin cos sin f x x x x =+ 1cos 2sin 222x x-=+111sin 2cos 2222x x =-+ 2π1)242x =-+ 函数)(x f 的最小正周期T π=……11分值域为1-21+2[22……13分16.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R .(Ⅰ))(x f 在1x =-处的切线与x 轴平行,求b 的值; (Ⅱ)求)(x f 的单调区间.解:(Ⅰ)222()()b x f x x b -'=+.……2分依题意,由(1)0f '-=,得1b =. ……4分 经检验,1b = 符合题意.……5分(Ⅱ)① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ……6分② 当0b >时,222()()b x f x x b -'=+.令()0f x '=,得1x b 2x b =-……8分()f x 和()f x '的情况如下:x(,)b -∞-b - (,)b b -b (,)b +∞()f x ' -0 +-()f x↘ ↗ ↘故()f x 的单调减区间为(,)b -∞,,)b +∞;单调增区间为(,)b b .……11分③ 当0b <时,()f x 的定义域为{|}D x x b =∈≠-R .因为222()0()b x f x x b -'=<+在D 上恒成立, 故()f x 的单调减区间为(,)b -∞--,(,)b b ---,,)b -+∞;无单调增区间.……13分17. (本小题满分13分) 如图,已知平面,αβ,且,,,,AB PC PD C D αβαβ=⊥⊥是垂足.(Ⅰ)求证:AB ⊥平面PCD ; (Ⅱ)若1,2PC PD CD ===,试判断平面α与平面β是否垂直,并证明你的结论. PCD BβαH(Ⅰ)证明:因为,PC AB αα⊥⊂,所以PC AB ⊥. 同理PD AB ⊥.又PC PD P =,故AB ⊥平面PCD .……5分(Ⅱ)平面α与平面β垂直证明:设AB 与平面PCD 的交点为H ,连结CH 、DH . 因为α⊥PC ,所以CH PC ⊥, ……8分 在PCD ∆中,1,2PC PD CD ===,所以2222CD PC PD =+=,即090CPD ∠=. ……11分 在平面四边形PCHD 中,CH PC PD PC ⊥⊥,,所以CH PD // 又β⊥PD ,所以β⊥CH ,所以平面α⊥平面β. ……13分18. (本小题满分13分)某学校有两个参加国际中学生交流活动的代表名额,为此该校高中部推荐了2男1女三名候选人,初中部也推荐了1男2女三名候选人.(I )若从初高中各选1名同学做代表,求选出的2名同学性别相同的概率;(II )若从6名同学中任选2人做代表,求选出的2名同学都来自高中部或都来自初中部的概率解:设高中部三名候选人为A1,A2,B .初中部三名候选人为a,b1,b2 (I )由题意,从初高中各选1名同学的基本事件有 (A1,a ),(A1,b1),(A1,b2), (A2,a ),(A2,b1),(A2,b2), (B ,a ),(B ,b1),(B ,b2), 共9种 ……2分 设“2名同学性别相同”为事件E ,则事件E 包含4个基本事件,概率P(E)=94 所以,选出的2名同学性别相同的概率是94.……6分(II )由题意,从6名同学中任选2人的基本事件有(A1 ,A2),(A1,B ),(A1,a ),(A1,b1),(A1,b2), (A2,B ), (A2,a ),(A2,b1),(A2,b2),(B ,a ), (B ,b1),(B ,b2),(a ,b1),(a ,b2),(b1,b2) 共15种 ……8分 设“2名同学来自同一学部”为事件F ,则事件F 包含6个基本事件,概率P(F)=52516=所以,选出的2名同学都来自高中部或都来自初中部的概率是25. ……13分19. (本小题满分14分)已知椭圆与双曲线122=-y x 有相同的焦点,且离心率为22. (I )求椭圆的标准方程;(II )过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若2=,求AOB ∆的面积.解:(I )设椭圆方程为12222=+by a x ,0>>b a ,由2=c ,可得2=a ,2222=-=c a b既所求方程为12422=+y x……5分(II )设),(11y x A ,),(22y x B , 由PB AP 2=有⎩⎨⎧-=-=-)(12122121y y x x 设直线方程为1+=kx y ,代入椭圆方程整理,得0241222=-++kx x k )(……8分解得1228222++±-=k k k x ……10分若 12282221++--=k k k x ,12282222+++-=k k k x则 122822122822222++--⋅=++---k k k k k k 解得1412=k ……12分又AOB ∆的面积81261228221||||212221=++⋅=-⋅=k k x x OP S答:AOB ∆126……14分20. (本小题满分14分)已知数列}{n a 的前n 项和为n S ,11=a ,满足下列条件①0≠∈∀n a N n ,*;②点),(n n n S a P 在函数22xx x f +=)(的图象上;(I )求数列}{n a 的通项n a 及前n 项和n S ;(II )求证:10121<-≤+++||||n n n n P P P P .解:(I )由题意22nn n a a S +=……2分当2≥n 时2212121---+-+=-=n n n n n n n a a a a S S a整理,得0111=--+--))((n n n n a a a a……5分又0≠∈∀n a N n ,*,所以01=+-n n a a 或011=---n n a a01=+-n n a a 时,11=a ,11-=-n na a , 得11--=n n a )(,211nn S )(--=……7分011=---n n a a 时,11=a ,11=--n n a a ,得n a n =,22nn S n +=……9分(II )证明:01=+-n n a a 时,))(,)((21111n n n P ----5121==+++||||n n n n P P P P ,所以0121=-+++||||n n n n P P P P……11分011=---n n a a 时,),(22nn n P n +22121)(||++=++n P P n n ,2111)(||++=+n P P n n222222121112111211121)()()()()()(||||++++++--++=++-++=-+++n n n n n n P P P P n n n n22112132)()(++++++=n n n……13分因为 11122122+>+++>++n n n n )(,)(所以1112132022<++++++<)()(n n n综上10121<-≤+++||||n n n n P P P P……14分。

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题5

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题5

高考数学三轮复习冲刺模拟试题05共150分。

时长120分钟。

第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集{1,2,3,4}U =,集合{1,2}A =,那么集合U A ð为(A ){3}(B ){3,4} (C ){1,2} (D ){2,3}(2) “1a =”是“直线20x y +=与直线(1)40x a y +++=平行”的(A ) 充分不必要条件 (B ) 必要不充分条件 (C ) 充要条件 (D ) 既不充分也不必要条件(3)已知ABCD 为平行四边形,若向量AB =a ,AC =b ,则向量BC 为(A )-a b (B )a +b(C )-b a (D )--a b(4)执行如图所示的程序框图,输出的结果是56, 则判断框内应填入的条件是 (A )5?n ≤ (B )5?n < (C )5?n > (D )5?n ≥(5)已知一个几何体的三视图如图所示(单位:cm), 那么这个几何体的侧.面积是(A )2(B )2(C )2(4 (D )2(6)已知点(2,1)A ,抛物线24y x =的焦点是F ,若抛物线上存在一点P ,使得PA PF+最小,则P 点的坐标为 (A )(2,1)(B )(1,1)(C )1(,1)2(D )1(,1)4(7)对于函数)(x f y =,部分x 与y 的对应关系如下表:数列n 满足1,且对任意,点1+n n 都在函数的图象上,则201320124321x x x x x x ++++++ 的值为(A )9394 (B )9380 (C )9396 (D )9400(8)已知定义在R 上的函数()f x 的对称轴为3x =-,且当3x ≥-时,()23x f x =-.若函数()f x 在区间(1,)k k -(k ∈Z )上有零点,则k 的值为(A )2或7- (B )2或8- (C )1或7- (D )1或8-第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

广东省普通高中2018届高考数学三轮复习冲刺模拟试题(35)201805300323

广东省普通高中2018届高考数学三轮复习冲刺模拟试题(35)201805300323

广东省中山市普通高中2017-2018学年高一数学1月月考试题一选择题(本大题共12个小题,每题5分共60分)1.设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=( )A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 2.设a =π0.3,b =log π3,c =30,则a ,b ,c 的大小关系是( )A .a >b >cB .b >c >aC .b >a >cD .a >c >b3.下列函数中,既是奇函数又是增函数的为( ) A. 1y x =+ B. 2y x =- C. 1y x=D. ||y x x = 4. 若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( )A .正数B .负数C .非负数D .与m 有关5.若函数⎩⎨⎧>≤+=1,lg 1,1)(2x x x x x f ,则f(f(10)= ( )A.lg101B.1C.2D.06 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 非奇非偶函数7 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A 1B 1或32 C 1,32或 D8.若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是( )A .a =-1或a =3B .a =-1C .a =3D .a 不存在9 下列函数与x y =A 2x y = B xx y 2=x a a y log =10、偶函数)(x f y =在区间[0,4]上单调递减,则有( )A 、)()3()1(ππ->>-f f fB 、)()1()3(ππ->->f f fC 、)3()1()(ππf f f >->-D 、)3()()1(ππf f f >->-11、若函数)(x f 满足)()()(b f a f ab f +=,且n f m f ==)3(,)2.(,则)72(f 的值为( ) A 、n m +B 、n m 23+C 、n m 32+D 、23n m +12.当0<a <1时,函数①y =a |x |与函数②y =log a |x |在区间(-∞,0)上的单调性为( )A .都是增函数B .都是减函数C .①是增函数,②是减函数D .①是减函数,②是增函数二填空题(本大题共4小题,每题4分共16分)13.函数y =(13)x -3x在区间[-1,1]上的最大值为________.14.化简11410104848++的值等于_________15.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b =________.16.函数y =lg x +1x -1的定义域为________.三、解答题(本大题共6个题,17-21题每题12分,22题14分共74分,要求写出必要的过程) 17(本小题12分)设A={x }01)1(2{,04222=-+++==+a x a x x B x x ,其中x ∈R,如果A ⋂B=B ,求实数a 的取值范围。

深圳市2018届高三高考数学模拟试题(8)及答案

深圳市2018届高三高考数学模拟试题(8)及答案

2018高考高三数学3月月考模拟试题08共 150 分.时间 120 分钟。

第I 卷(选择题)一、选择题1.函数22x y x =-的图象大致是( )2.已知a 是函数12()2log f x x x=-的零点,<<00x a ,则0()f x 的值满足( )A .0()f x =0B .0()f x >0C .0()f x <0D .0()f x 的符号不确定3.已知不等式组110x y x y y +≤⎧⎪-≥-⎨⎪≥⎩表示的平面区域为M ,若直线y =KX -3k 与平面区域M 有公共点,则k 的取值范围是( )A. 10,3⎛⎤ ⎥⎝⎦B. 1,3⎛⎤-∞ ⎥⎝⎦ C.1,03⎡⎤-⎢⎥⎣⎦D. 1,3⎛⎤-∞- ⎥⎝⎦4.在△ ABC 中,角 A 、B 、C 的对边分别为 a 、b 、c ,如果 cos(2)2sin sin 0B C A B ++<,那么三边长a 、b 、c 之间满足的关系是( ) A .22ab c > B .222a b c +< C .22bc a > D .222b c a +< 5.下列命题中,错误..的是 ( ) (A ) 一条直线与两个平行平面中的一个相交,则必与另一个平面相交(B )平行于同一平面的两个不同平面平行(C )如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面β (D )若直线l 不平行平面α,则在平面α内不存在与l 平行的直线6.函数22cos y x =的一个单调增区间是( )A . ππ2⎛⎫ ⎪⎝⎭,B .π02⎛⎫ ⎪⎝⎭,C .π3π44⎛⎫ ⎪⎝⎭,D . ππ44⎛⎫- ⎪⎝⎭,7.在是 ( )A .锐角三角形B .钝角三角形C .直角三角形 D. 等腰直角三角形8.当21x 0≤<时,x a x log )41(<,那么a 的取值范围是( )A .)410(,B .)1,41( C .(1, 4) D . (2, 4 )9.已知函数)3(log )(25.0a ax x x f +-=在),2[+∞单调递减,则的取值范围( ) A.]4,(-∞ B.),4[+∞ C. ]4,4[- D. ]4,4(-10.在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a b≥时,a b a ⊕=;当a b<时,a b b ⊕=2。

广东省深圳市2018届高考模拟测试数学试卷及解析

广东省深圳市2018届高考模拟测试数学试卷及解析

………○………学校:______………○………广东省深圳市2018届高考模拟测试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.(1−i)(−2+i)i 3= ( )A. 3+iB. −3−iC. −3+iD. 3−i2.的值为 ( )A .0B .1C .D .3.有以下四个命题: 其中真命题的序号是 ( ) ①若且,则; ②若且,则; ③若且,则;④若且,则.①② ③④ ① ④ ②③4.设满足约束条件,则取值范围是 ( )A .B .C .D .5.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:如果A 、B 两个节目要相邻,且都不排在第3号位置,则节目单上不同的排序方式有( )种 A. 192 B. 144 C. 96 D. 726.已知为非零向量,命题,命题的夹角为锐角,则命题是命题的( )A.充分不必要的条件B. 既不充分也不必要的条件C.充要条件D. 必要不充分的条件 7.已知圆的图象分别交于862lim22+--→x x x x 21-31//,//m n αβ//αβ//m n ,m n αβ⊥⊥αβ⊥m n ⊥,//m n αβ⊥//αβm n ⊥//,m n αβ⊥αβ⊥//m n 、A 、B 、C 、D ,x y 04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩231x y x +++[3,11][2,6][3,10][1,5]→→b a ,0:>•→→b a p →→b 、a q :p q答案第2页,总20页……○……○的值为 ( )A. 16B. 8C. 4D. 28.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n(n∈N +)个整点,则称函数f(x)为n 阶整点函数.有下列函数:①f(x)=sin2x ; ②g(x)=x 3③ℎ(x)=(13)x ;④ϕ(x)=lnx ,其中是一阶整点函数的是( )A. ①②③④B. ①③④C. ①④D. ④第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)9.双曲线x 29−y 216=1的一个焦点到一条渐近线的距离为______________10.若为等差数列中的第8项,则二项式展开式中常数项是第 项11.如图,棱长为的正方体中,为中点,则直线与平面所成角的正切值为 ;若正方体的八个顶点都在同一球面上,则此球的表面积为 .12.在中,分别为三个内角A 、B 、C 所对的边,设向量,若向量,则角A 的大小为13.顺义二中对文明班的评选设计了五个方面的多元评价指标,并通过经验公式来计算各班的综合得分,的值越高则评价效果越好.若某班在自测过程中各项指标显示出,则下阶段要把其中一个指标的值增加个单位,而使得的值增加最多,那么该指标应为 .(填入中的某个字母)14.一种计算装置,有一个数据入口和一个运算出口,执行某种运算程序.n ,0,2,4--n x x )2(2+a 1111D C B A ABCD -M BC M D 1ABCD ABC ∆c b a ,,→m (),,b c c a =--→n (),b c a =+→→⊥n m e d c b a ,,,,ed c b a S 1++=S a b e d c <<<<<01S e d c b a ,,,,A B AB MC D ABCD 1…………外…………………内………(1)当从口输入自然数时,从口得到实数,记为; (2)当从口输入自然数时,在口得到的结果是前一结果倍.当从口输入时,从口得到 ;要想从口得到,则应从口输入自然数 . 三、解答题(题型注释)15.(1)、已知函数若角 (2)函数的图象按向量平移后,得到一个函数g(x)的图象,求g(x)的解析式.16.如图,直角三角形的顶点坐标,直角顶点,顶点在轴上,点为线段的中点(Ⅰ)求边所在直线方程;(Ⅱ)为直角三角形外接圆的圆心,求圆的方程;(Ⅲ)若动圆过点且与圆内切,求动圆的圆心的轨迹方程.17.如图,四棱锥中,底面是边长为2的正方形,,且,为中点.A 1B 31=)1(f 31A )2(≥n n B )(n f 3)1(21)1(2)1(+----n n n f 的A 3B B 23031A .)2sin()42cos(21)(ππ+-+=x x x f ).(,53cos αααf 求在第一象限且=x x x x f cos sin 32cos 2)(2-=(,)m π=-16ABC (20)A -,(0,B -C x P OA BC M ABC M N P M N N ABCD P -ABCD CD PD BC PB ⊥⊥,2=PA E PD答案第4页,总20页外…………○…………装…………○…………订………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题内…………○…………装…………○…………订………(Ⅱ)求二面角的大小;(Ⅲ)在线段上是否存在点,使得点到平 面的距离为?若存在,确定点的位置; 若不存在,请说明理由.18.(本题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.(Ⅰ)求小球落入A 袋中的概率P(A);(Ⅰ)在容器入口处依次放入4个小球,记为落入A 袋中小球的个数,试求的概率和的数学期望.19.对任意都有 (Ⅰ)求和的值.(Ⅰ)数列满足:=+,数列是等差数列吗?请给予证明; (Ⅰ)令试比较与的大小.20.已知:在函数的图象上,以为切点的切线的倾斜角为. (Ⅰ)求,的值;(Ⅱ)是否存在最小的正整数,使得不等式对于恒成立?如果存在,请D ACE --BCF E PAF 552F x mx x f -=3)(),1(n N 4πm n k 1993)(-≤k x f ]3,1[-∈x求出最小的正整数;如果不存在,请说明理由;(Ⅲ)求证:(,). k )21(2|)(cos )(sin |tt f x f x f +≤+R x ∈0>t答案第6页,总20页……装…………○※不※※要※※在※※装※……装…………○参数答案1.B【解析】1.根据复数概念及运算法则,即可求解. 由题意得,复数(1−i )(−2+i )i3=−1+3i −i=(−1+3i )⋅i−i⋅i=−3−i ,故选B.2.C【解析】2. 试题分析:22211lim lim (2)(4)42x x x x x x →→-===----。

广东省普通高中2018届高考数学三轮复习冲刺模拟试题(55)201805300323

广东省普通高中2018届高考数学三轮复习冲刺模拟试题(55)201805300323

高考数学三轮复习冲刺模拟试题17常用逻辑用语一、选择题1 .已知命题p :关于x 的函数221f (x )x ax =+-在[3,+∞)上是增函数;命题q :关于x 的方程x 2-a x +4=0有实数根。

若p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是( ) A .(-12,4)(4,+∞) B .(-12,4][4,+∞)C .(-∞,-12)(-4,4)D .[-12,+∞)2 .下列命题中是假命题的是( )A .都不是偶函数B .有零点C .D .上递减3 . “lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件 4 .如果命题“p 且q”是假命题,“¬p”也是假命题,则 ( )A .命题“¬p 或q”是假命题B .命题“p 或q”是假命题C .命题“¬p 且q”是真命题D .命题“p 且¬q”是真命题 5 .已知条件2|1:|>+x p ,条件a x q >|:|,且p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是( )A .10≤≤aB .31≤≤aC .1≤aD .3≥a6 . “0ϕ=”是“函数()sin()f x x ϕ=+为奇函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7 .设a ,b ∈R ,那么“>1ab”是“>>0a b ”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8 .下列命题中是假命题的是( )A .(0,),>2x x sin x π∀∈B .000,+=2x R sin x cos x ∃∈C . ,3>0xx R ∀∈D .00,=0x R lg x ∃∈9 .有关下列命题的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1” B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0” D .命题“若x=y,则sinx=siny ”的逆否命题为真命题 10.下列有关命题的叙述,错误的个数为①若p ∨q 为真命题,则p ∧q 为真命题。

广东省普通高中2018届高考数学三轮复习冲刺模拟试题(56)201805300323

广东省普通高中2018届高考数学三轮复习冲刺模拟试题(56)201805300323

高考数学三轮复习冲刺模拟试题18导数01一、选择题1 .函数的图象与x 轴所围成的封闭图形的面积为( )( )A .B .1C .2D .2 .已知函数2()=f x x cos x -,则(0.6),(0),(-0.5)f f f 的大小关系是 ( )A .(0)<(0.6)<(-0.5)f f fB .(0)<(-0.5)<(0.6)f f fC .(0.6)<(-0.5)<(0)f f fD .(-0.5)<(0)<(0.6)f f f3 .定义在R 上的可导函数f(x),且f(x)图像连续,当x ≠0时, 1'()()0f x x f x -+>,则函数1()()g x f x x -=+的零点的个数为( )A .1B .2C .0D .0或24 .已知函数))((R x x f ∈满足1)1(=f ,且)(x f 的导函数21)('<x f ,则212)(+<x x f 的解集为( ) A .{}11<<-x x B .{}1-<x x C .{}11>-<x x x 或D .{}1>x x二、填空题5 .若f(x)在R 上可导,f(x)=x 2+2f’(2)+3,则⎰=3dx)x (f .6 .若不等式1|ln |3≥-x ax 对任意]1,0(∈x 都成立,则实数a 取值范围是________. 7 .计算1-1(2+)x x e dx ⎰= ;8 .曲线1xy =与直线y=x 和y=3所围成的平面图形的面积为_________.9 .设10x m e dx =⎰,11en x dx -=⎰,则m 与n 的大小关系为______.10.已知函数d cx bx x x f +++=23)(在区间[1,2]-上是减函数,那么b c +的最大值为________________; 参考答案 一、选择题 1. 【答案】A【解析】根据积分的应用可求面积为02211()(1)cos S f x dx x dx xdx ππ--==++⎰⎰⎰2021113()sin 1222x x xπ-=++=+=,选A.2. 【答案】B【解析】因为函数2()=f x x cos x -为偶函数,所以(0.5)(0.5)f f -=,()=2f 'x x sin x +,当02x π<<时,()=20f 'x xs i n x +>,所以函数在02x π<<递增,所以有(0)<(0.5)<(0.6)f f f ,即(0)<(0.5)<(f f f -,选B.3. 【答案】C【解析】由1'()()0f x x f x -+>,得'()()0x f x f x x+>,当0x >时,'()()0xf x f x +>,即(()'0x f x >,函数()xf x 此时单调递增。

广东省普通高中2018届高考数学三轮复习冲刺模拟试题(47)201805300323

广东省普通高中2018届高考数学三轮复习冲刺模拟试题(47)201805300323

高考数学三轮复习冲刺模拟试题09不等式一、选择题1 .设x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥≤0y ,0x 0y -x 02-y -x 3,若目标函数z=ax+by(a>0,b>0)的最大值为2,则a 1+b 1的最小值为 ( )A .625 B .38 C .2 D .42 . ,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log zz -=,则( )A .x y z <<B .z x y <<C .z y x <<D .y x z <<3 .设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是( )A .50B .60C .70D .1004 .设3=2a log ,=2b ln ,12=5c -,则( )A .<<a b cB .<<b c aC .<<c a bD .<<c b a5 .9831log ,log 24a b c ===,则,,a b c 的大小关系是( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>6 .已知实数x y ,满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,,,则2z x y =-的最小值是( )A .7B .-5C .4D .-77 .若0,,>c b a 且324)(-=+++bc c b a a ,则c b a ++2的最小值为( )A .13-B .13+C .232+D .232-8 .设x ,y 满足⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z +=( )A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值二、填空题9.已知的最小值是5,则z 的最大值是______.10.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤142y x y x y ,则y x z +=3的最大值为__________.11.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 . 12.若关于x 的不等式211+()022n x x -≥对任意*n N ∈在(-,]x λ∈∞上恒成立,则实 常数λ的取值范围是 ; 13.已知132log a =,062b =.,43c =log ,则,,a b c 的大小关系为______________.14.非负实数x,y 满足⎩⎨⎧≤-+≤-+03042y x y x ,则3x y +的最大值为_______.三、解答题15.已知函数f (x )=x 2+2x+a (共10分)(1)当a=21时,求不等式f (x )>1的解集;(4分) (2)若对于任意x ∈[1,+∞),f (x )>0恒成立,求实数a 的取值范围;(6分)参考答案一、选择题 1. C 2. 【答案】A【解析】因为,,x y z 均为正实数,所以22log 1xx =->,即2log 1x <-,所以102x <<。

广东省深圳市2018届高考模拟测试数学试题(精编含解析)

广东省深圳市2018届高考模拟测试数学试题(精编含解析)

2018高考高三数学3月月考模拟试题03第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,选出符合题目要求的一项。

1.()A. B. C. D.【答案】B【解析】【分析】根据复数概念及运算法则,即可求解.【详解】由题意得,复数,故选B.【点睛】本题考查了复数的运算,其中熟记复数的基本概念和复数的四则运算法则是解答复数问题的关键,着重考查了推理与运算能力.2.的值为( )A. 0B. 1C.D.【答案】C【解析】试题分析:。

故选C。

考点:本题主要考查函数的极限。

点评:简单题,函数极限计算中,注意约去“零因子”。

3.关于直线与平面,有以下四个命题:①若且,则;②若且,则;③若且,则;④若且,则;其中正确命题的序号是()A. ①②B. ③④C. ①④D. ②③【答案】D【解析】试题分析:若且,则可能平行也可能异面,也可以相交,故①错误;若且则一定垂直,故②正确;若且,则一定垂直,故③正确;若且,则可能平行也可能异面,也可以相交.故选D.考点:空间中直线与平面之间的位置关系4.设满足约束条件,则取值范围是()A. B. C. D.【答案】A【解析】试题分析:由z==1+2×,表示(x,y),与(-1,-1)连线的斜率,画出可行域,由图得当过A(0,4)时,z有最大值11,当过B在直线y=x上时,z有最小值3故选A。

考点:本题主要考查简单线性规划问题,直线的斜率。

点评:小综合题,解题过程中,将转化成1+2×,利用直线的斜率进一步解题。

5.某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:如果A、B两个节目要相邻,且都不排在第3号位置,则节目单上不同的排序方式有( )种A. 192B. 144C. 96D. 72【答案】B【解析】【分析】由题意知两个截面要相邻,可以把这两个与少奶奶看成一个,且不能排在第3号的位置,可把两个节目排在号的位置上,也可以排在号的位置或号的位置上,其余的两个位置用剩下的四个元素全排列.【详解】由题意知两个节目要相邻,且都不排在第3号的位置,可以把这两个元素看成一个,再让它们两个元素之间还有一个排列,两个节目可以排在两个位置,可以排在两个位置,也可以排在两个位置,所以这两个元素共有种排法,其他四个元素要在剩下的四个位置全排列,所以所有节目共有种不同的排法,故选B.【点睛】本题考查了排列组合的综合应用问题,其中解答时要先排有限制条件的元素,把限制条件比较多的元素排列后,再排没有限制条件的元素,最后再用分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力.6.已知为非零向量,命题,命题的夹角为锐角,则命题是命题的( )A. 充分不必要的条件B. 既不充分也不必要的条件C. 充要条件D. 必要不充分的条件【答案】D【解析】试题分析:若,则的夹角为锐角是假命题,因为,cos0=1>0,;但反之,的夹角为锐角,一定有,即命题是命题的必要不充分的条件,故选D。

广东省深圳市普通高中学校2018届高考高三数学4月月考模拟试题 (8) 含答案 精品

广东省深圳市普通高中学校2018届高考高三数学4月月考模拟试题 (8) 含答案 精品

2018高考高三数学4月月考模拟试题08一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.在复平面内,复数ii4332-+-(i 是虚数单位)所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 设集合}032|{2<--=x x x M ,{}22<=xx N ,则N C M R ⋂等于( )A .[]1,1-B .)0,1(-C .[)3,1D .)1,0(3.两个变量x ,y 与其线性相关系数r 有下列说法(1)若r>0,则x 增大时,y 也相应增大; (2)若r<0,则x 增大时,y 也相应增大; (3)若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.其中正确的有( )A. ①B. ②③C. ①③D. ①②③ 4.“2πϕ=”是“函数()x x f cos =与函数()()ϕ+=x x g sin 的图像重合”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5. 观察这列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,则第2013个数是( )7. 在平面直角坐标系xOy 中,圆的方程为8150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是( )A . 403k ≤≤B . <0k 或4>3kC . 3443k ≤≤D . 0k ≤或4>3k8.用()S M 表示有限集合M 的子集个数,定义在实数集R 上的函数(),()0,M S M x M f x x M∈⎧=⎨∉⎩若{}1A =集合,集合{}2,3B =,()()()()A B A B F x f x f x f x =--则的值域为( )A .{}4,6,0B .{}4,0C .{0}D .{}4,69. 抛物线24y x =的焦点为F ,点,A B 在抛物线上,且2π3AFB ∠=,弦AB 中点M 在准线l 上的射影为||||,AB M M M ''则的最大值为( ) ABCD10. 如图,已知正方体1111ABCD A BC D -的棱长为1,动点P 在此正方体的表面上运动,且,(0PA x x =<<,记点P 的轨迹的 长度为()f x ,则函数的图像()f x 可能是( )第Ⅱ卷二、填空题:本大题有4小题,每小题5分,共20分.把答案填在答题卷的相应位置. 11.为了“城市品位、方便出行、促进发展”市某部门问卷调查了n 个市民,其中赞成修建穿江隧道的市民占80如图,其中年龄在[)20,30岁的有400人,[)40,50岁的有m 人, 则n= , m=13. 经过原点()0,0做函数233)(x x x f +=的切线,则切线方程为 。

广东省深圳市普通高中学校2018届高考高三数学3月月考

广东省深圳市普通高中学校2018届高考高三数学3月月考

2018高考高三数学3月月考模拟试题01第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集}{1,2,3,4U =,集合{}{}1,2,2,4A B ==,则()U A B =ð(A ){}1,2 (B ){}2,3,4 (C ){}3,4 (D ){}1,2,3,4【答案】B因为{}{}1,2,2,4A B ==,所以{34}U A =,ð,即()U A B =ð}{=2,3,4,选B.(2)2i 1-i=为虚数单位,则 (A )1+i (B )-1+i(C )1-i(D )-1-i【答案】A22(1)2(1)11(1)(1)2i i i i i i ++===+--+,选A. (3)一个几何体的三视图如图所示,则该几何体的体积为(A )1(B )13 (C )12(D )32【答案】B由三视图可知,该几何体是四棱锥,以俯视图为底,高为1,俯视图的面积为11=1⨯,使用四棱锥的体积为111133⨯⨯=,选B. (4)右图是2013年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,则去年一个最高分和一个最低分后,所剩数据的平均数和方差分别为(A )84,4.84 (B )84,1.6 (C )85,1.6 (D )85,4【答案】C数据中的最高分为93,最低分为79.所以平均分为184(23)855++=,方差为2221[3(8485)(8685)(8785)] 1.65-+-+-=,所以选C. (5)已知向量(1,2)=a ,(,6)x =b ,且a ∥b ,则x 的值为(A )1 (B )2 (C )3 (D )4【答案】C因为a ∥b ,所以1620x ⨯-=,解得3x =,选C.(6)执行如图所示的程序框图,若输出结果为3,则可输入的实数x 值的个数为(A )1 (B )2 (C )3 (D )4 【答案】C由题意知221,2log ,2x x y x x ⎧-≤=⎨>⎩。

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题(2)2018060102101

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题(2)2018060102101

高考数学三轮复习冲刺模拟试题 02一、选择题:本大题共 10小题,每小题 5分,共 50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 设全集U{1,3,5,6,8}, A {1,6}, B {5,6,8} ,则 (C A ) B( )UA .{6}B .{5,8}C .{6,8}D .{3,5,6,8}(2) 若 x R ,则“ x 0 ”是“ x 0 ”的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件(3) 直线 x 2y1 0关于直线 x 1对称的直线方程是( )A . x 2y 1B . 2x y 1 0C . 2x y 3 0D . x 2y3 0(4) 已知 k4 ,则函数 y cos 2x k (cos x1) 的最小值是()A .1B . 1C . 2k 1D . 2k1 1(5)已知是等比数列,, ,则 a a a a a a( )a 2 2aan51 2 2 3 n n 14A .16(14n) B .16(1 2n)3232 (1 2 )nn C .(1 4 ) D . 33(6) 已知向量 ae ,| a |1,对任意tR ,恒有| a te || a e |,则A . a eB . a(a e )C . e(a e )D . (a e ) (a e )(7) 若 P 是两条异面直线l ,m 外的任意一点,则()A .过点 P 有且仅有一条直线与l ,m 都平行B .过点 P 有且仅有一条直线与l ,m 都垂直C .过点 P 有且仅有一条直线与l ,m 都相交D .过点 P 有且仅有一条直线 与l ,m 都异面(8) 若a 0,b 0,且当x0,y ,时,恒有ax by 1,则以a,b为坐标点P(a,b)所形x y 1- 1 -成的平面区域的面积等于1A .B .24C .1D .2(9) 如图,在正三棱柱中已知 , 在棱 上,且 ,若 与平ABCA B CAB 1 D BBBD 1AD1 1 11面所成的角为 ,则 的余弦值为AA C C1 11 A .B . 2 2 26 C .D . 410 42, ≥ 1 x x(10)设 f (x ) , ( ) 是二次函数,若的值域是 ,则 的值域是(g x f (g (x )) 0,∞g (x )x ,x 1) A .∞,11,∞B .∞,10,∞C .CMEM D .1,∞非选择题部分 (共 100分)二、 填空题: 本大题共 7小题, 每小题 4分, 共 28分. (11) 已知抛物线C : x 2 2 py ( p 0) 上一点 A (m ,4) 到其焦点的距离为17 ,则 m =.4(12) 已知复数 z 134i , zt i ,且 z A z 是实数,则实数t = .212(13) 甲、乙两人进行乒乓球比赛,比赛规则为“3局 2胜”,即以先赢 2局者为胜,根据经验, 每局比赛中甲获胜的概率为 0.6,则本次比赛甲获胜的概率是.(14) 一个空间几何体的三视图如右图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的表面积为.- 2 -(15) 曲线 y x 3 2x 2 4x 2 在点 ( 1,3)处的切线方程是. (16) 在 ABC 中,AC 2BC 6OABCOA 3OB 4OC 0,, 已 知 点是内 一 点 , 且 满 足, 则2OC BA BC.(17) 设等差数列的前项和为,则 ,, , 成等差数列.类比以 an SS S S SS S Snn4841281612T上结论有:设等比数列的前项积为 ,则 ,, , 成等比数列.bn T T16nn4T12三、解答题:本大题共 5小题,共 72分。

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题(8)

广东省深圳市普通高中2018届高考数学三轮复习冲刺模拟试题(8)

高考数学三轮复习冲刺模拟试题08150分。

时长120分钟。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 集合2{6},{30}A x x B x x x =∈≤=∈->N | N | ,则AB =A. {1,2}B. {3,4,5}C.{4,5,6}D.{3,4,5,6} 2.等差数列{}n a 中, 2343,9,a a a =+= 则16a a 的值为A. 14B. 18C. 21D.273. 某程序的框图如图所示,执行该程序,若输入的x 值为5,则输出的y 值为A. 12B. 1C. 2D.1-4. 已知0a >,下列函数中,在区间(0,)a 上一定是减函数的是A. ()f x ax b =+ B. 2()21f x x ax =-+C. ()xf x a = D. ()log a f x x =5. 不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为A. 0B. 1C. 2D.3 6. 命题:p ∃,α∈R sin(π)cos αα-=;命题:q 0,m ∀>双曲线22221x y m m-=.则下面结论正确的是A. p 是假命题B.q ⌝是真命题C. p ∧q 是假命题D. p ∨q 是真命题 7.已知曲线()ln f x x =在点00(,())x f x 处的切线经过点(0,1)-,则0x 的值为A. 1eB. 1C. eD.108. 抛物线24y x =的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM∆为等边三角形时,其面积为A.二、填空题:本大题共6小题,每小题5分,共30分.9. 在复平面上,若复数1+i b (b ∈R )对应的点恰好在实轴上,则b =_______. 10.若向量,a b 满足||||||1==+=a b a b ,则⋅a b 的值为______. 11.某几何体的三视图如图所示,则它的体积为______. 12.在ABC ∆中,若4,2,a b ==1cos 4A =,则______.c = 13.已知函数22, 0,(), 0xa x f x x ax a x ⎧-≥⎪=⎨++<⎪⎩有三个不同的零点,则实数a 的取 值范围是_____.14.已知函数()y f x =,任取t ∈R ,定义集合:{|t A y =()y f x =,点(,())Pt f t ,(,())Q x f x满足||PQ ≤. 设,t t M m 分别表示集合t A 中元素的最大值和最小值,记()t t h t M m =-.则 (1) 若函数()f x x =,则(1)h =______; (2)若函数π()sin2f x x =,则()h t 的最小正周期为______. 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15. (本小题满分13分)已知函数2()2cos )f x x x =--.(Ⅰ)求π()3f 的值和()f x 的最小正周期;(Ⅱ)求函数在区间ππ[,]63-上的最大值和最小值.16. (本小题满分13分)在某大学自主招生考试中,所有选报II 类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E 五个等级.某考场考生的两科考试成绩的侧视图数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人. (I )求该考场考生中“阅读与表达”科目中成绩为A 的人数;(II )若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A. 在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.17. (本小题满分14分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又30CAD ∠=,4PA AB ==,点N 在线段PB 上,且13PN NB =. (Ⅰ)求证:BD PC ⊥;(Ⅱ)求证://MN 平面PDC ;(Ⅲ)设平面PAB 平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.18. (本小题满分13分)函数31()3f x x kx =-,其中实数k 为常数. (I) 当4k =时,求函数的单调区间;(II) 若曲线()y f x =与直线y k =只有一个交点,求实数k 的取值范围.19. (本小题满分14分)已知圆M :227(3x y +=,若椭圆C :22221x y a b +=(0a b >>)的右顶点为圆M 的.(I )求椭圆C 的方程;(II )已知直线l :y kx =,若直线l 与椭圆C 分别交于A ,B 两点,与圆M 分别交于G ,H 两点(其中点G 在线段AB 上),且AG BH =,求k 的值.20. (本小题满分13分)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=.(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;(Ⅱ)已知点(9,3),(5,3)H L ,若点M 满足(),()M H L M ττ==,求点M 的坐标; (Ⅲ)已知0P 0000(,)(,)x y x y ∈∈Z Z 为一个定点,点列{}i P 满足:1(),i i P P τ-=其中1,2,3,...,i n =,求0n P P 的最小值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)2π1()2)1322f =--=………………2分 因为2()2cos )f x x x =--222(3sin cos cos )x x x x =-+- 22(12sin 2)x x =-+-…4分212sin 2x x =-+cos22x x =+………………6分π= 2sin(2)6x +………………8分所以 ()f x 的周期为2π2ππ||2T ω===………………9分 (II )当ππ[,]63x ∈-时, π2π2[,]33x ∈-,ππ5π(2)[,]666x +∈- 所以当6x π=-时,函数取得最小值()16f π-=-………………11分当6x π=时,函数取得最大值()26f π=………………13分16.解: (I)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有100.2540÷=人………………2分所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为9. 0 10. 21-11.16 12.4 13. 4a >14.2,240(10.3750.3750.150.025)400.0753⨯----=⨯=………………4分(II )求该考场考生“数学与逻辑”科目的平均分为1(400.2)2(400.1)3(400.375)4(400.25)5(400.075)2.940⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=……8分(Ⅲ)因为两科考试中,共有6人得分等级为A ,又恰有两人的两科成绩等级均为A , 所以还有2人只有一个科目得分为A ………………9分设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A 的同学,则在至少一科成绩等级为A 的考生中,随机抽取两人进行访谈,基本事件空间为{Ω={甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件……11分设“随机抽取两人进行访谈,这两人的两科成绩等级均为A ”为事件B ,所以事件B 中包含的基本事件有1个,则1()6P B =. ………………13分 17.解:(I )证明:(I) 因为ABC ∆是正三角形,M 是AC 中点, 所以BM AC ⊥,即BD AC ⊥………………1分又因为PA ABCD ⊥平面,BD ⊂平面ABCD ,PA BD ⊥………………2分 又PAAC A =,所以BD ⊥平面PAC ………………4分又PC ⊂平面PAC ,所以BD PC ⊥………………5分(Ⅱ)在正三角形ABC 中,BM =6分 在ACD ∆,因为M 为AC 中点,DM AC ⊥,所以AD CD =30CAD ∠=,所以,DM =:3:1BM MD =………………8分 所以::BN NP BM MD =,所以//MN PD ………………9分又MN ⊄平面PDC ,PD ⊂平面PDC ,所 以//MN 平面PDC ………………11分 (Ⅲ)假设直线//l CD ,因为l ⊂平面PAB ,CD ⊄平面PAB , 所以//CD 平面PAB ………………12分又CD ⊂平面ABCD ,平面PAB 平面ABCD AB =,所以//CD AB ……………13分这与CD 与AB 不平行,矛盾所以直线l 与直线CD 不平行………………14分18.解:(I )因为2'()f x x k =-………………2分当4k =时,2'()4f x x =-,令2'()40f x x =-=,所以122,2x x ==-'(),()f x f x 随x 的变化情况如下表:……4分所以()f x 的单调递增区间是(,2)-∞-,(2,)+∞ 单调递减区间是(2,2)-………………6分(II )令()()g x f x k =-,所以()g x 只有一个零点………………7分 因为2'()'()g x f x x k ==-当0k =时,3()g x x =,所以()g x 只有一个零点0 ………………8分 当0k <时,2'()0g x x k =->对R x ∈成立,所以()g x 单调递增,所以()g x 只有一个零点………………9分当0k >时,令2'()'()0g x f x x k ==-=,解得1x =2x =10分 所以'(),()g x g x 随x 的变化情况如下表:()g x 有且仅有一个零点等价于(0g <………………11分即2(03g k =<,解得904k <<………………12分 综上所述,k 的取值范围是94k <………………13分 19.解:(I)设椭圆的焦距为2c ,因为a =,c a =1c =………………2分 所以1b =所以椭圆C :2212x y +=………………4分(II )设A (1x ,1y ),B (2x ,2y )由直线l 与椭圆C 交于两点A ,B ,则22220y kx x y =⎧⎨+-=⎩ 所以22(12)20k x +-=, 则120x x +=,122212x x k =-+………………6分所以AB ==8分 点M)到直线l的距离d =………………10分则2272231k GH k=-+………………11分 显然,若点H 也在线段AB 上,则由对称性可知,直线y kx =就是y 轴,矛盾, 因为AG BH =,所以AB GH =………………12分所以22228(1)724()1231k k k k +=-++解得21k =,即1k =±………………14分20.解: (I)因为x ∆+=3(,y x y ∆∆∆故1,2x y ∆=∆=或2,1x x ∆=∆=,所以点(0,0)的“相关点”有8个………………1分又因为22()()5x y ∆+∆=,即2211(0)(0)5x y -+-=所以这些可能值对应的点在以(0,0)3分 (II)设(,)M M M x y ,因为(),()M H L M ττ==所以有|9||3|3M M x y -+-=,|5||3|3M M x y -+-=………………5分HGBA所以|9||5|M M x x -=-,所以7,M x =2M y =或4M y = 所以(7,2)M 或(7,4)M ………………7分(III)当*2,N n k k =∈时,0||n P P 的最小值为0………………8分当=1n 时,可知0||n P P 9分当=3n 时,对于点P ,按照下面的方法选择“相关点”,可得300(,+1)P x y :000(,)P x y →100200300(+2,+1)(+1,+3)(,+1)P x y P x y P x y →→故0||n P P 的最小值为1………………11分当231,,*, N n k k k =+>∈时,对于点P ,经过2k 次变换回到初始点000(,)P x y ,然后经过3次变换回到00(,+1)n P x y ,故0||n P P 的最小值为1综上,当=1n 时,0||n P P 当*2,N n k k =∈时,0||n P P 的最小值为0当21*, N n k k =+∈时,0||n P P 的最小值为1 ………………13分。

广东省深圳市普通高中学校2018届高三数学3月月考模拟试题01

广东省深圳市普通高中学校2018届高三数学3月月考模拟试题01

2018高考高三数学3月月考模拟试题01第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集}{1,2,3,4U =,集合{}{}1,2,2,4A B ==,则()U A B =ð(A ){}1,2 (B ){}2,3,4 (C ){}3,4 (D ){}1,2,3,4【答案】B因为{}{}1,2,2,4A B ==,所以{34}U A =,ð,即()U A B =ð}{=2,3,4,选B.(2)2i 1-i=为虚数单位,则 (A )1+i (B )-1+i(C )1-i(D )-1-i【答案】A22(1)2(1)11(1)(1)2i i i i i i ++===+--+,选A. (3)一个几何体的三视图如图所示,则该几何体的体积为(A )1(B )13 (C )12(D )32【答案】B由三视图可知,该几何体是四棱锥,以俯视图为底,高为1,俯视图的面积为11=1⨯,使用四棱锥的体积为111133⨯⨯=,选B. (4)右图是2013年在某大学自主招生面试环节中,七位评委为某考生打出的 分数的茎叶图,则去年一个最高分和一个最低分后,所剩数据的平均数和方差分别为 (A )84,4.84 (B )84,1.6 (C )85,1.6 (D )85,4 【答案】C数据中的最高分为93,最低分为79.所以平均分为184(23)855++=,方差为2221[3(8485)(8685)(8785)] 1.65-+-+-=,所以选C. (5)已知向量(1,2)=a ,(,6)x =b ,且a ∥b ,则x 的值为(A )1 (B )2 (C )3 (D )4 【答案】C因为a ∥b ,所以1620x ⨯-=,解得3x =,选C.(6)执行如图所示的程序框图,若输出结果为3,则可输入的实数x 值的个数为(A )1 (B )2 (C )3 (D )4 【答案】C由题意知221,2log ,2x x y x x ⎧-≤=⎨>⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学三轮复习冲刺模拟试题08150分。

时长120分钟。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 集合2{6},{30}A x x B x x x =∈≤=∈->N | N | ,则AB =A. {1,2}B. {3,4,5}C.{4,5,6}D.{3,4,5,6} 2.等差数列{}n a 中, 2343,9,a a a =+= 则16a a 的值为A. 14B. 18C. 21D.273. 某程序的框图如图所示,执行该程序,若输入的x 值为5,则输出的y 值为A. 12B. 1C. 2D.1-4. 已知0a >,下列函数中,在区间(0,)a 上一定是减函数的是A. ()f x ax b =+ B. 2()21f x x ax =-+C. ()xf x a = D. ()log a f x x =5. 不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为A. 0B. 1C. 2D.3 6. 命题:p ∃,α∈R sin(π)cos αα-=;命题:q 0,m ∀>双曲线22221x y m m-=.则下面结论正确的是A. p 是假命题B.q ⌝是真命题C. p ∧q 是假命题D. p ∨q 是真命题 7.已知曲线()ln f x x =在点00(,())x f x 处的切线经过点(0,1)-,则0x 的值为 A. 1eB. 1C. eD.108. 抛物线24y x =的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM∆为等边三角形时,其面积为A.B. 4C. 6D.二、填空题:本大题共6小题,每小题5分,共30分.9. 在复平面上,若复数1+i b (b ∈R )对应的点恰好在实轴上,则b =_______. 10.若向量,a b 满足||||||1==+=a b a b ,则⋅a b 的值为______. 11.某几何体的三视图如图所示,则它的体积为______. 12.在ABC ∆中,若4,2,a b ==1cos 4A =,则______.c = 13.已知函数22, 0,(), 0xa x f x x ax a x ⎧-≥⎪=⎨++<⎪⎩有三个不同的零点,则实数a 的取 值范围是_____.14.已知函数()y f x =,任取t ∈R ,定义集合:{|t A y =()y f x =,点(,())Pt f t ,(,())Q x f x满足||PQ ≤. 设,t t M m 分别表示集合t A 中元素的最大值和最小值,记()t t h t M m =-.则 (1) 若函数()f x x =,则(1)h =______;(2)若函数π()sin 2f x x =,则()h t 的最小正周期为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数2()2cos )f x x x =--. (Ⅰ)求π()3f 的值和()f x 的最小正周期; (Ⅱ)求函数在区间ππ[,]63-上的最大值和最小值.16. (本小题满分13分)在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅侧视图读与表达”两个科目的考试,成绩分为A,B,C,D,E 五个等级. 某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人. (I )求该考场考生中“阅读与表达”科目中成绩为A 的人数;(II )若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A. 在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.17. (本小题满分14分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又30CAD ∠=,4PA AB ==,点N 在线段PB 上,且13PN NB =. (Ⅰ)求证:BD PC ⊥;(Ⅱ)求证://MN 平面PDC ;(Ⅲ)设平面PAB 平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.18. (本小题满分13分)函数31()3f x x kx =-,其中实数k 为常数. (I) 当4k =时,求函数的单调区间;(II) 若曲线()y f x =与直线y k =只有一个交点,求实数k 的取值范围.19. (本小题满分14分)已知圆M :227(3x y +=,若椭圆C :22221x y a b +=(0a b >>)的右顶点为圆M 的(I )求椭圆C 的方程;(II )已知直线l :y kx =,若直线l 与椭圆C 分别交于A ,B 两点,与圆M 分别交于G ,H 两点(其中点G 在线段AB 上),且AG BH =,求k 的值.20. (本小题满分13分)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=.(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;(Ⅱ)已知点(9,3),(5,3)H L ,若点M 满足(),()M H L M ττ==,求点M 的坐标; (Ⅲ)已知0P 0000(,)(,)x y x y ∈∈Z Z 为一个定点,点列{}i P 满足:1(),i i P P τ-=其中1,2,3,...,i n =,求0n P P 的最小值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)2π1()2)132f =--=………………2分 因为2()2cos )f x x x =--222(3sin cos cos )x x x x =-+- 22(12sin )x x =-+…4分 212sin x x =-cos2x x =+………………6分π= 2sin(2)6x +………………8分所以 ()f x 的周期为2π2ππ||2T ω===………………9分 (II )当ππ[,]63x ∈-时, π2π2[,]33x ∈-,ππ5π(2)[,]666x +∈- 所以当6x π=-时,函数取得最小值()16f π-=-………………11分当6x π=时,函数取得最大值()26f π=………………13分16.解: (I)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有100.2540÷=人………………2分所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为9. 0 10. 21-11.16 12.4 13. 4a >14.2,240(10.3750.3750.150.025)400.0753⨯----=⨯=………………4分(II )求该考场考生“数学与逻辑”科目的平均分为1(400.2)2(400.1)3(400.375)4(400.25)5(400.075)2.940⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=……8分(Ⅲ)因为两科考试中,共有6人得分等级为A ,又恰有两人的两科成绩等级均为A , 所以还有2人只有一个科目得分为A ………………9分设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A 的同学,则在至少一科成绩等级为A 的考生中,随机抽取两人进行访谈,基本事件空间为{Ω={甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件……11分设“随机抽取两人进行访谈,这两人的两科成绩等级均为A ”为事件B ,所以事件B 中包含的基本事件有1个,则1()6P B =. ………………13分 17.解:(I )证明:(I) 因为ABC ∆是正三角形,M 是AC 中点, 所以BM AC ⊥,即BD AC ⊥………………1分又因为PA ABCD ⊥平面,BD ⊂平面ABCD ,PA BD ⊥………………2分 又PAAC A =,所以BD ⊥平面PAC ………………4分又PC ⊂平面PAC ,所以BD PC ⊥………………5分(Ⅱ)在正三角形ABC 中,BM =………………6分 在ACD ∆,因为M 为AC 中点,DM AC ⊥,所以AD CD =30CAD ∠=,所以,3DM =,所以:3:1BM MD =………………8分 所以::BN NP BM MD =,所以//MN PD ………………9分又MN ⊄平面PDC ,PD ⊂平面PDC ,所 以//MN 平面PDC ………………11分 (Ⅲ)假设直线//l CD ,因为l ⊂平面PAB ,CD ⊄平面PAB , 所以//CD 平面PAB ………………12分又CD ⊂平面ABCD ,平面PAB 平面ABCD AB =,所以//CD AB ……………13分这与CD 与AB 不平行,矛盾所以直线l 与直线CD 不平行………………14分18.解:(I )因为2'()f x x k =-………………2分当4k =时,2'()4f x x =-,令2'()40f x x =-=,所以122,2x x ==-'(),()f x f x 随x 的变化情况如下表:……4分所以()f x 的单调递增区间是(,2)-∞-,(2,)+∞ 单调递减区间是(2,2)-………………6分(II )令()()g x f x k =-,所以()g x 只有一个零点………………7分 因为2'()'()g x f x x k ==-当0k =时,3()g x x =,所以()g x 只有一个零点0 ………………8分 当0k <时,2'()0g x x k =->对R x ∈成立,所以()g x 单调递增,所以()g x 只有一个零点………………9分当0k >时,令2'()'()0g x f x x k ==-=,解得1x =2x =10分 所以'(),()g x g x 随x 的变化情况如下表:()g x 有且仅有一个零点等价于(0g <………………11分即2(03g k =<,解得904k <<………………12分 综上所述,k 的取值范围是94k <………………13分 19.解:(I)设椭圆的焦距为2c ,因为a =,c a =1c =………………2分 所以1b =所以椭圆C :2212x y +=………………4分(II )设A (1x ,1y ),B (2x ,2y )由直线l 与椭圆C 交于两点A ,B ,则22220y kx x y =⎧⎨+-=⎩所以22(12)20k x +-=, 则120x x +=,122212x x k =-+………………6分所以AB ==8分 点M)到直线l的距离d =………………10分则GH =………………11分 显然,若点H 也在线段AB 上,则由对称性可知,直线y kx =就是y 轴,矛盾, 因为AG BH =,所以AB GH =………………12分所以22228(1)724()1231k k k k +=-++解得21k =,即1k =±………………14分20.解: (I)因为x ∆+=3(,y x y ∆∆∆故1,2x y ∆=∆=或2,1x x ∆=∆=,所以点(0,0)的“相关点”有8个………………1分又因为22()()5x y ∆+∆=,即2211(0)(0)5x y -+-=所以这些可能值对应的点在以(0,0)3分 (II)设(,)M M M x y ,因为(),()M H L M ττ==所以有|9||3|3M M x y -+-=,|5||3|3M M x y -+-=………………5分HGBA所以|9||5|M M x x -=-,所以7,M x =2M y =或4M y = 所以(7,2)M 或(7,4)M ………………7分(III)当*2,N n k k =∈时,0||n P P 的最小值为0………………8分当=1n 时,可知0||n P P 9分当=3n 时,对于点P ,按照下面的方法选择“相关点”,可得300(,+1)P x y :000(,)P x y →100200300(+2,+1)(+1,+3)(,+1)P x y P x y P x y →→故0||n P P 的最小值为1………………11分当231,,*, N n k k k =+>∈时,对于点P ,经过2k 次变换回到初始点000(,)P x y ,然后经过3次变换回到00(,+1)n P x y ,故0||n P P 的最小值为1综上,当=1n 时,0||n P P 当*2,N n k k =∈时,0||n P P 的最小值为0当21*, N n k k =+∈时,0||n P P 的最小值为1 ………………13分。

相关文档
最新文档