2014-2015普通校联考全部试卷高三理科数学答案

合集下载

数学_2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)(含答案)

数学_2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)(含答案)

2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)一、选择题(每小题5分,共60分)1. 已知实数R 为全集,集合A ={x|y =log 2(x −1)},B ={y|y =√4x −x 2},则(∁R A)∩B 等于( )A (−∞, 1]B (0, 1)C [0, 1]D (1, 2] 2. 复数3−i2+i 的实部与虚部之和为( )A 0B 1C 2D 33. 设随机变量ξ服从正态分布N(1, σ2),若P(ξ<2)=0.8,则P(0<ξ<1)的值为( ) A 0.6 B 0.4 C 0.3 D 0.24. 下列有关命题的说法正确的是( )A 命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B “x =−1”是“x 2−2x −3=0”的必要不充分条件C 命题“∃x ∈R 使得x 2+x −1<0”的否定是“∀x ∈R ,均有x 2+x −1>0”D 命题“已知x ,y ∈R ,若x +y ≠5,则x ≠1或y ≠4”为真命题 5. 执行如图所示的程序框图,如果输入的N 是195,则输出的P =( )A 11B 12C 13D 146. 已知四棱锥P −ABCD 的三视图如图所示,则此四棱锥的四个侧面的面积中最大的是( )A 3B 2√5C 6D 87. △ABC 中,∠A =60∘,∠A 的平分线AD 交边BC 于D ,已知AB =3,且AD →=13AC →+λAB →(λ∈R),则AD 的长为( ) A 1 B √3 C 2√3 D 38. 若函数y =2x图象上存在点(x, y)满足约束条件{x +y −3≤0x −2y −3≤0x ≥m,则实数m 的最大值为( )A 12 B 1 C 32 D 29. 已知θ为锐角,且sin(θ−π4)=√210,则tan2θ=( ) A 43 B 34 C −247 D 24710. 设等差数列{a n }的前n 项和为S n ,已知(a 8−1)3+2015(a 8−1)=1,(a 2008−1)3+2015(a 2008−1)=−1,则下列结论正确的是( )A S 2015=2015,a 2008<a 8B S 2015=2015,a 2008>a 8C S 2015=−2015,a 2008≤a 8D S 2015=−2015,a 2008≥a 811. 已知函数f(x)=sinx ,将函数f(x)图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到函数g(x)的图象,则关于f(x)g(x)有下列命题,其中真命题的个数是( ) ①函数y =f(x)⋅g(x)是偶函数; ②函数y =f(x)⋅g(x)是周期函数;③函数y =f(x)⋅g(x)的图象关于点(π2, 0)中心对称;④函数y =f(x)⋅g(x)的最大值为4√39. A 1 B 2 C 3 D 412. 已知定义在R 上的可导函数f(x)满足:f′(x)+f(x)<0,θ的终边不落在第一象限的角平分线上,则e √2−sinθ−cosθ与f(√2)的大小关系是( )Ae √2−sinθ−cosθ>f(√2) B e √2−sinθ−cosθ<f(√2) Ce √2−sinθ−cosθ=f(√2) D 不确定二、填空题(本大题有4小题,每小题5分,共20分)13. 若(x +a)6的展开式中x 3的系数为160,则∫x a a1dx 的值为________.14. 已知双曲线3y 2−mx 2=3m(m >0)的一个焦点与抛物线y =18x 2的焦点重合,则此双曲线的离心率为________.15. 已知三棱锥D −ABC 中,AB =BC =1,AD =2,BD =√5,AC =√2,BC ⊥AD ,则三棱锥的外接球的表面积为________.16. △ABC 中,BC =1,AB =√3,AC =√6,点P 是△ABC 的外接圆上的一个动点,则BP →⋅BC →的最大值为________.三、解答题(本大题共5小题,共70分)17. 已知数列{a n}的前n项和S n满足S n=a(S n−a n+1)(a为常数,且a>0),且a3是6a1与a2的等差中项.(1)求{a n}的通项公式;(2)设b n=a n log2a n,求数列{b n}的前n项和T n.18. 衡水市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括9的则被淘汰.若现有500人参加测试,学生成绩的频率分布直方图如图:(Ⅰ)求获得参赛资格的人数;(Ⅱ)根据频率直方图,估算这500名学生测试的平均成绩;(Ⅲ)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为19,求甲在初赛中答题个数的分布列及数学期望.19. 在斜三棱柱ABC−A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.(1)求证A1A⊥A1C;(2)若A1A=A1C,求二面角B−A1C−B1的余弦值.20. 已知动圆M过定点F(1, 0)且与直线x=−1相切,圆心M的轨迹为H.(1)求曲线H的方程;(2)一条直线AB经过点F交曲线H于A、B两点,点C为x=−1上的动点,是否存在这样的点C,使得△ABC是正三角形?若存在,求点C的坐标;否则,说明理由.21. 已知函数f(X)的定义域为(0, +∞)且满足2f(x)+f(1x )=2lnx+a(2x+1)x+1.(1)若a=−8,判断f(x)在定义域上的单调性;(2)若f(x)在定义域上有两个极值点x1,x2(x1≠x2),求证:f(x1)+f(x2)≥f(x)+2x−2.选考题(在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分)【选修4-1:几何证明选讲】22.如图,⊙O 是以AB 为直径的△ABC 的外接圆,点D 是劣弧BĈ的中点,连接AD 并延长,与过C 点的切线交于P ,OD 与BC 相交于点E . (1)求证:OE =12AC ;(2)求证:PDPA =BD 2AC 2.【选修4-4:坐标系与参数方程】23. 在直角坐标系xoy 中,以原点O 为极点,以x 轴正半轴为极轴,与直角坐标系xoy 取相同的长度单位,建立极坐标系,设曲线C 参数方程为{x =√3cosθy =sinθ(θ为参数),直线l 的极坐标方程为ρcos(θ−π4)=2√2.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 的最大距离,并求出这个点的坐标.【选修4-5:不等式选讲】24. 已知不等式|t +3|−|t −2|≤6m −m 2对任意t ∈R 恒成立. (1)求实数m 的取值范围.(2)若(1)中实数m 的最大值为λ,且3x +4y +5z =λ,其中x ,y ,z ∈R ,求x 2+y 2+z 2的最小值.2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)答案1. C2. A3. C4. D5. D6. C7. C8. B 9. C 10. A 11. D 12. A 13. 7314. 2 15. 6π 16. 2 17. 解:(1)根据S n =a(S n −a n +1),分别令n =1,2,3,可求得: a 1=a ,a 2=a 2,a 3=a 3; ∴ 6a +a 2=a 3; ∵ a >0;∴ 6+a =a 2,解得a =3; ∴ S n =3(S n −a n +1)①;∴ n >1时,S n−1=3(S n−1−a n−1+1)②; ∴ ①-②得:a n =3a n−1; ∴ a nan−1=3;∴ {a n }是首项为3,公比为3的等比数列; ∴ a n =3n ;(2)b n =3n log 23n =n ⋅3n log 23;∴ T n =b 1+b 2+...+b n =log 23(1⋅31+2⋅32+...+n ⋅3n ) ①; ∴ 3T n =log 23(1⋅32+2⋅33+⋯+n ⋅3n+1) ②; ∴ ①-②得:−2T n =log 23(3+32+⋯+3n −n ⋅3n+1)=log 23⋅[3(1−3n )1−3−n ⋅3n+1]=32−(n +12)3n+1; ∴ T n =−34+2n+14⋅3n+1.18. (I )获得参赛资格的人数m =(0.005+0.0043+0.032)×20×500=125 (II)平均成绩:X ¯=(40×0.0065+60×0.0140+80×0.0170+100×0.0050+120×0.0043+140×0.0032)×20=(0.26+0.84+1.36+0.5+0.516+0.448)×20=78.48 (III)设甲答对每一道题的概率为.P 则(1−p)2=19,∴ p =23, ∴ ξ可能取得值为3,4,5, P(ξ=3)=P 3+(1−P)3=13,P(ξ=4)=C 32P 2(1−p)P +C 32(1−p)p(1−p)=1027,P(ξ=5)=1−13−1027=827,∴ ξ的分布列为Eξ=3×13+4×1027+5×827=10727.19. 解:(1)∵ 平面A 1ACC 1⊥平面ABC ,AC ⊥BC , ∴ BC ⊥平面A 1ACC 1, ∴ A 1A ⊥BC ,∵ A 1B ⊥C 1C ,A 1A // CC 1 ∴ A 1A ⊥A 1B ,∴ A 1A ⊥平面A 1BC , ∴ A 1A ⊥A 1C ;(II)建立如图所示的坐标系C −xyz .设AC =BC =2, ∵ A 1A =A 1C ,则A(2, 0, 0),B(0, 2, 0),A 1(1, 0, 1),C(0, 0, 0).CB →=(0, 2, 0),CA1→=(1, 0, 1),A1B1→=AB →=(−2, 2, 0).设n 1→=(a, b, c)为面BA 1C 的一个法向量,则n 1→⋅CB →=n 1→⋅CA1→=0,则{2b =0a +c =0取a =1,n 1→=(1, 0, −1). 同理,面A 1CB 1的一个法向量为n 2→=(1, 1, −1).∴ cos <n 1→,n 2→>=|n 1→||n 2|˙=√63, ∴ 二面角B −A 1C −B 1的余弦值为√63.20. 解:(1)由题意圆心为M 的动圆M 过点(1, 0),且与直线x =−1相切, 所以圆心M 的轨迹是以(1, 0)为焦点的抛物线, ∴ 圆心M 的轨迹方程为y 2=4x .F(1, 0) 故曲线H 的方程为:y 2=4x .(2)假设存在点C ,使得△ABC 为正三角形,设A(x 1, y 1),B(x 2, y 2),C(−1, m), 直线AB 的方程.{y 2=4x x =ty +1,化简得:y 2−4ty −4=0,y 1+y 2=4t ,y 1y 2=−4 x 1+x 2=4t 2+2,得AB 的中点坐标M(2t 2+1, 2t),①当直线的斜率不存在时,t =0,A(1, 2),B(1, −2),可能C(−1, 0), AB =4,AC =BC =2√2,不可能为正三角形,②当直线的斜率存在时,M(2t 2+1, 2t),A(x 1, y 1),B(x 2, y 2),C(−1, m), |AB|=x 1+x 2+2=4t 2+2+2=4t 2+4 ∵ △ABC 是正三角形, ∴ K CM ⋅K AB =−1, 即−m−2t 2t 2+2⋅1t=−1,得m =2t 3+4t∴ C(−1, 2t 3+4t),∵ |CM|=√(2t +2t 3)2+(2t 2+2)2=(2t 2+2)√t 2+1, ∴ √32(4t 2+4)=(2t 2+2)√t 2+1,解得:t =±√2,m =2(√2)3+4√2=8√2所以存在这样的点C(−1, ±8√2),使得△ABC 是正三角形 21. 解:令1x=t ,x =1t,则:2f(1t )+f(t)=2ln 1t +a(2t +1)1t+1=−2lnt +a(t+2)t+1;∴ f(x)+2f(1x )=−2lnx +a(x+2)x+1①;又2f(x)+f(1x )=2lnx +a(2x+1)x+1②; ∴ ①②联立得f(x)=2lnx +axx+1;∴ (1)a =−8时,f(x)=2lnx −8xx+1,f′(x)=2x−8(x+1)2=(x−1)2x(x+1)2>0;∴ 函数f(x)在定义域(0, +∞)上单调递增; (2)f′(x)=2x 2+(4+a)x+2x(x+1)2;若f(x)在定义域上有两个极值点x 1,x 2(x 1≠x 2),则方程2x 2+(4+a)x +2=0有两个不等实根,且: x 1+x 2=−4+a 2,x 1x 2=1;∴ f(x 1)+f(x 2)=2lnx 1+ax 1x 1+1+2lnx 2+ax 2x 2+1=a ;∵ a =f(x)−2lnxx⋅(x +1);∴ 要证明原不等式成立,只要证明f(x)−2lnxx⋅(x +1)≥f(x)+2x−2=f(x)−2(x−1)x;也就是证明对任意的x >0,lnx ≤x −1; 令g(x)=lnx −x +1,g′(x)=1x −1=1−x x;∴ x ∈(0, 1)时,g′(x)>0,x ∈(1, +∞)时,g′(x)<0;∴ g(1)=0是g(x)的最大值,∴ g(x)≤0,即lnx −x +1≤0,lnx ≤x −1; ∴ f(x 1)+f(x 2)≥f(x)+2x−2.22. (1)证明:因为AB 为⊙O 直径,所以∠ACB =90∘,即 AC ⊥BC ,因为D 是弧BĈ的中点,由垂径定理 得OD ⊥BC ,因此OD // AC又因为点O 为AB 的中点,所以点E 为 BC 的中点,所以OE =12AC(2)证明:连接CD ,因为PC 是⊙O 的切线, 所以∠PCD =∠CAP , 又∠P 是公共角,所以△PCD ∽△PAC . 得PC PA =PD PC =CD AC,∴ PCPA ×PDPC =CDAC ×CDAC , ∴ PDPA =CD 2AC 2.因为D 是弧BC ̂的中点,所以CD =BD ,因此PD PA =BD 2AC 2. 23. 解:(1)由ρcos(θ−π4)=2√2, 得ρ(cosθ+sinθ)=4,∴ l:x +y −4=0,∵ {x =√3cosθy =sinθ,(θ为参数),∴ 消去参数得x 23+y 2=1,∴ 曲线C 的普通方程为x 23+y 2=1和直线l 的直角坐标方程为x +y −4=0; (2)在C:{x =√3cosθy =sinθ上任取一点(√3cosθ, sinθ),则点P 到直线l 的距离为d =√3cosθ+sinθ−4|√2=|2sin(θ+π3)−4|√2≤3√2,∴ 当sin(θ+π3)=−1时,d max =3√2,此时这个点的坐标为(−32,−12).24. 解:(1)∵ |t +3|−|t −2|≤|(t +3)−(t −2)|=5, 不等式|t +3|−|t −2|≤6m −m 2对任意t ∈R 恒成立, 可得6m −m 2≥5,求得1≤m ≤5, 即实数m 的取值范围为{m|1≤m ≤5}. (2)由题意可得 λ=5,3x +4y +5z =5.∵ (x 2+y 2+z 2)(32+42+52)≥(3x +4y +5z)2=25, 当且仅当x3=y4=z5时,等号成立, 即x =310,y =25,z =12 时,取等号. ∴ 50(x 2+y 2+z 2)≥25,∴ x 2+y 2+z 2≥12,即x 2+y 2+z 2的最小值为12.。

高三2014-2015学年度第二次联考(参考答案)(4月28日定稿)

高三2014-2015学年度第二次联考(参考答案)(4月28日定稿)

江西省新八校2014-2015学年度第二次联考高三数学理科试题卷参考答案一、选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

ACADA BCDAD CA二、填空题:本大题共4个小题,每小题5分,共20分.请把答案填在答题卡上.13.7114.023=+-y x 15.π10 16.),21[+∞-三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.请把答案做在答题卡上.17.解:(1)()1cos(2)3cos 21sin 23cos 212sin(2).23f x x x x x x ππ⎡⎤=-+-=+-=+-⎢⎥⎣⎦----3分 又,42x ππ⎡⎤∈⎢⎥⎣⎦,则32326πππ≤-≤x ,故当232x ππ-=, 即512x πα==时,max () 3.f x = -------------------------------------------------------------------------------6分(2)由(1)知123A ππα=-=,由2sin sin sin B C A =即2bc a =,又222222cos a b c bc A b c bc =+-=+-, 则22b c bc bc +-=即2()0b c -=,故0.b c -= c b =∴ 又123A ππα=-=所以三角形为等边三角形. 12分18.解:(1)依题意可得,任意抽取一位市民会购买口罩的概率为41, 从而任意抽取一位市民不会购买口罩的概率为43. 设“至少有一位市民会购买口罩”为事件A ,则,()6437642714313==⎪⎭⎫⎝⎛=--A P ,故至少有一位市民会购买口罩的概率6437. --------------------- 5分 (2)X 的所有可能取值为:0,1,2,3,4.-------------------------------6分()25681430404=⎪⎭⎫ ⎝⎛==C X P ,()642725610841431314==⨯⎪⎭⎫ ⎝⎛⨯==C X P ()1282725654414322224==⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C X P ,()6432561241433334==⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C X P ,()25614144=⎪⎭⎫⎝⎛==X P 所以X 的分布列为:X0 1 234P256816427 12827 643 2561 ---------------------------------------------------------------- 10分 ()125614643312827264271256810=⨯+⨯+⨯+⨯+⨯=X E 12分 或⎪⎭⎫ ⎝⎛414,B ~X ,1==∴np EX -----------------------------12分19.【解析】【方法一】(1)证明:由题意知23,D C = 则222B C D B D C B D D C+∴⊥=,, P D A B C D B D P D P D C D D ⊥∴⊥= 面而,,,..B D P DC P C PD C B D P C ∴⊥∴⊥ 面在面内,(6分) (2)过E 作EH CD ⊥交CD 于H ,再过H 作HN ⊥AB 交AB 于N ,连结EN ,则AB EN ⊥,故ENH ∠为所求角。

广东省汕头市2015年普通高中毕业班教学质量监测理科数学试题带答案

广东省汕头市2015年普通高中毕业班教学质量监测理科数学试题带答案

绝密★启用前 试卷类型:A2014---2015年汕头市高三年级期末调研考试数学(理科)本试卷共6页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 参考公式:① 均值定理:若+∈R c b a ,,,则33abc c b a ≥++,当且仅当c b a ==取等号。

一、选择题:(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.设集合{|2}A x x =>,若ee m ln =(e 为自然对数底),则( ) A .A ∅∈ B.A m ∉ C.A m ∈ D.{}m x x A >⊆2. 我们把复数bi a -叫做复数bi a z +=()R b a ∈,的共轭复数,记作z , 若i 是 虚数单位,1z i =+,z 为复数z 的共轭复数,则1z z z ⋅+-=( )A 1B 3C .1D .1 3. 已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A . 4- B 6- C 8- D 10-4 下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(1)y x =-B .|1|y x =-C .12xy ⎛⎫= ⎪⎝⎭D .sin 2y x x =+5. 给出下列命题,其中错误命题的个数为( )(1)直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (2)直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (3)异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直; (4)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面A . 1B 2C 3D 4 6 如下图所示,程序执行后的输出结果为( )A. -1B. 0C. 1D. 27.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种 B. 120种 C. 35种 D. 34种8.设集合{}012345,,,,,M A A A A A A =,在M 上定义运算“⊗”为:i j k A A A ⊗=,其中k 为i j +被4除的余数,,0,1,2,3,4,5i j =.则满足关系式20()a a A A ⊗⊗=的()a a M ∈的个数为( )A .2B .3C .4D .5二、填空题:(本大共6小题,每小题5分,共30分,把答案填在答题卡的相应位置.) (一)必做题(9-13题)9. 计算321(321)__________x x dx --+=⎰.10. 不等式1x x -≤的解集是______________.11.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.在这些用户中,用电量落在区间[)100,250内的户数为_____________.12.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+012y x y x ,则y x z +=2的最大值和最小值之和等于13.下列关于向量c b a ,,的命题中,正确的有 。

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年普通高等学校招生全国统一考试数学理科试卷及答案

2014年普通高等学校招生全国统一考试数学理科试卷及答案

2014年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的XX、XX号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共 12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合 A={x|x22x 3 0},B={x|-2≤x<2=,则A B=A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)(1i)32.=(1i)2A.1iB.1iC. 1 iD.1 i3.设函数f(x),g(x)的定义域都为R,且f(x)时奇函数,g(x)是偶函数,则下列结论正确的是A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.已知F是双曲线C:x2my23m(m 0)的一个焦点,则点F到C的一条渐近线的距离为A.3B.3C.3mD.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A. 1B.3C.5D.78 8 8 86.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,]上的图像大致为7.执行下图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=A. 20B.16C.7D.153 5 2 88.设(0,),1 sin (0,),且tan,则2 2 cosA.3B.2C.3D.22 2 2 2x y19.不等式组的解集记为D.有下面四个命题:x 2y4p1:(x,y) D,x 2y2,p2:(x,y) D,x 2y2,P3:(x,y) D,x 2y 3,p4:(x,y) D,x 2y1.其中真命题是A.p,PB.p,pC.p,pD.p,P2314121310.已知抛物线C:y28x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个焦点,若FP 4FQ,则|QF|=A. 7B.5C.3D.22 211.已知函数f(x)=ax33x21,若f(x)存在唯一的零点x0,且x0>0,则a的取值X围为A.(2,+∞)B.(-∞,-2)C.(1,+∞)D.(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A.62B.42C.6D.4第Ⅱ卷本卷包括必考题和选考题两个部分。

2014年高考理科数学全国卷2含答案

2014年高考理科数学全国卷2含答案

绝密★启用前2014年普通高等学校招生全国统一考试理科数学(全国Ⅱ卷)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=【D 】A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =【A 】A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b ,|a-b ,则a ⋅b =【A 】 A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1, ,则AC=【B 】A. 5B.C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是【A 】 A. 0.8 B. 0.75 C. 0.6 D. 0.45 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为【C】A. 1727 B.59 C.1027 D.137.执行右图程序框图,如果输入的x,t均为2,则输出的S=【D】A. 4B. 5C. 6D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= 【D】A. 0B. 1C. 2D. 39.设x,y满足约束条件70310350x yx yx y+-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y=-的最大值为【B】A. 10B. 8C. 3D. 210.设F为抛物线C:23y x=的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为【D】A.B. C.6332 D.9411.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为【C】A.110 B.25C.D.12.设函数()xf xmπ=.若存在()f x的极值点0x满足()22200x f x m+<⎡⎤⎣⎦,则m的取值范围是【C】A. ()(),66,-∞-⋃∞B.()(),44,-∞-⋃∞C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a = 12 .(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为 1 .15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是(1,3-) .16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是 []1,1- .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12na +是等比数列,并求{}na 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+.解:(I )由131n n a a +=+得1113(22n n a a ++=+。

2014-2015学年度高三晋冀豫三省联考数学理答案

2014-2015学年度高三晋冀豫三省联考数学理答案
' # $ $ & $ & $ $ $! # /)# n3# ' ! $ ! ! 4 )# &$ ! 4 ,# & $ ' &, ! ' & $ $ $ & $ D& )J`& ,# F3# ]IN! 4 $ ! ! 4 $ ' &, ! $ 4 %IN& 4 %\4 $ ! ! -# # # -# ' $ & $ * &, ' % $ ! % &. !X&, ' , , 3# & & & & C&1 01 ' U +&1 !D & ! # $ X % &. % &, ! &$ &, % 3! ,
*) *) *) *) *) *) *) *) *) ! " ! $ ! % ,", -)/ ,"# / -$/ ,$ )/ ,"/ -$/ ,"/ ,) " 6 * 6 : ; 9 !/
$ ! )$ ! % ! * & # & $ & & & "7Pxi # 01 ' U2)% 01 3# ! # ! * &$ ) ' $ 2 & $ ' 2& ! % $ 2$' )% &$ ) !G<O.+# -$ & & '$ '&. % 4 $ & $ & # . $ U4 $ C4 ! < 4 ) ' =C4 %D & 4 ) ' $ ' ) ' ) ' % D& 4 ) 2 ; 4 , . # '# > 3# 3# 3# $ & &, ! &# % 2 ; '# > $ &U4 ! ) ' ) * !

2014-2015年福建省泉州市五校联考高三上学期期末数学试卷(理科)和答案

2014-2015年福建省泉州市五校联考高三上学期期末数学试卷(理科)和答案

【选修 4-2】矩阵与变换 21. (7 分)二阶矩阵 M 对应的变换 T 将点(2,﹣2)与(﹣4,2)分别变换成 点(﹣2,﹣2)与(0,﹣4) . ①求矩阵 M; ②设直线 l 在变换 T 作用下得到了直线 m:x﹣y=6,求 l 的方程.
A.2
B.3
C.4
D.5
二、填空题:本大题共 5 小题,每小题 4 分,共 20 分,把答案填在答题卡的相 应位置. 11. (4 分)某三棱锥的三视图如图所示,该三棱锥的体积是 .
12. (4 分)已知两个单位向量 , 的夹角为 30°, =t + , = ﹣t .若 • =0, 则正实数 t= .
8. (5 分)如图过拋物线 y2=2px(p>0)的焦点 F 的直线依次交拋物线及准线于 点 A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为( )
A.y2= x
B.y2=3x
C.y2= x
D.y2=9x
9. (5 分)设 f 为实系数三次多项式函数﹒已知五个方程式的相异实根个数如下 表所述﹕ 方程式 f(x)﹣20=0 f(x)﹣10=0 f(x)=0 f(x)+10=0 f(x)+20=0 相异实根的个数 1 3 3 1 1 ) D.10<a<20
B.∀ x∈R,2x>x2 D.a2+b2≥ ,a,b∈R )
5. (5 分)函数 y=loga(|x|+1) (a>1)的图象大致是(
A.
B.
C.
D.
6. (5 分) 科研人员在某种新型材料的研制中, 获得了一组实验数据 (如的规律,则其中最接近 的一个是( x 1.99 3 ) 4 5.1 6.12
19. (13 分)设椭圆 E:

2014~2015学年度第二学期高三年级总复习质量检测(二)数学试卷(理工类)附答案

2014~2015学年度第二学期高三年级总复习质量检测(二)数学试卷(理工类)附答案

2014~2015学年度第二学期高三年级总复习质量检测(二)数学试卷(理工类) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至9页.祝各位考生考试顺利!第 Ⅰ 卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上;2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.本卷共8小题,每小题5分,共40分. 参考公式:·如果事件A ,B 互斥,那么 ·如果事件A ,B 相互独立,那么P (A ∪B )=P (A )+P (B ). P (AB )=P (A )•P (B ).·棱柱的体积公式V 柱体=Sh , ·球的体积公式V 球=34πR 3,其中S 表示棱柱的底面积, 其中R 表示球的半径. h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设i 是虚数单位,则复数ii65-=( ). (A )6–5i (B )6+5i (C )–6+5i (D )–6–5i (2)已知命题p :x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≥0,则⌝p 是( ).(A )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≤0 (B )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≤0 (C )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)<0 (D )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)<0(3)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ).(A )10 (B )11(C )12(D )13(4)如图所示的程序框图表示求算式“2×4×8×16×32×64”的值,则判断框内可以填入( ).(A )k <132? (B )k <70? (C )k <64? (D )k <63?(5)已知双曲线C :22x a –22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ).(A )220x –25y =1 (B )25x –220y =1(C )280x –220y =1 (D )220x –280y =1(6)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b=5c ,C=2B ,则cos C=( ). (A )725 (B )725- (C )725± (D )2425(7)由曲线y=x 2,y=x 围成的封闭图形的面积为( ). (A )61 (B )31(C )32(D )1(8)在△ABC 中,若|AB +|=|AB –|,AB=2,AC=1,E ,F 为BC 边的三等分点,则AE •AF =( ).(A )98 (B )910(C )925(D )926南开区2014~2015学年度第二学期高三年级总复习质量检测(二)答 题 纸(理工类)第 Ⅱ 卷注意事项:1.用黑色墨水的钢笔或签字笔答题; 2.本卷共12小题,共110分.二、填空题:本大题共6个小题,每小题5分,共30分.请将答案填在题中横线上。

2014-2015学年普通高中高三教学质量监测 (理科数学解析版)

2014-2015学年普通高中高三教学质量监测 (理科数学解析版)

2014-2015学年普通高中高三教学质量监测理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.第Ⅰ卷一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( )A. [0,1]B. [0,1)C. (0,1]D. (0,1)[解析] ∵N =(-1,1),∴M ∩N =[0,1),故选B. [答案] B2. 设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A. (0,34) B. [34,43) C. [34,+∞)D. (1,+∞)[解析] A ={x |x 2+2x -3>0}={x |x >1或x <-3},∵函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (0)=-1<0,根据对称性可知要使A ∩B 中恰含有一个整数,则这个整数解为2,∴有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,∴⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43,选B.[答案] B3. 下列函数中,在区间(0,+∞)上为增函数的是( ) A. y =x +1 B. y =(x -1)2 C. y =2-xD. y =log 0.5(x +1)[解析] y =(x -1)2仅在[1,+∞)上为增函数,排除B ;y =2-x=⎝ ⎛⎭⎪⎫12x为减函数,排除C ;因为y =log 0.5t 为减函数,t =x +1为增函数,所以y =log 0.5(x +1)为减函数,排除D ;y =t 和t =x +1均为增函数,所以y =x +1为增函数,故选A.[答案] A4. 定积分⎰10(2x +e x )d x 的值为( ) A . e +2 B . e +1 C . eD . e -1[解析]⎰1(2x +e x )d x =(x 2+e x)⎪⎪⎪1=1+e 1-1=e ,故选C .[答案] C5. 已知函数f(x)的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f(x 2)-f(x 1)](x 2-x 1)<0恒成立,设a =f(-12),b =f(2),c =f(3),则a ,b ,c 的大小关系为( )A . c>a>bB . c>b>aC . a>c>bD . b>a>c[解析] 由于函数f(x)的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f(x)的图象本身关于直线x =1对称,所以a =f(-12)=f(52).当x 2>x 1>1时,[f(x 2)-f(x 1)](x 2-x 1)<0恒成立,等价于函数f(x)在(1,+∞)上单调递减,所以b>a>c.故选D .[答案] D6. 图中阴影部分的面积S 是h 的函数(0≤h ≤H),则该函数的大致图象是( )[解析] 由图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B .[答案] B7. 函数y =log a (x +3)-1(a>0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上(其中m ,n>0),则1m +2n 的最小值等于( )A . 16B . 12C . 9D . 8[解析] 依题意,点A 的坐标为(-2,-1),则-2m -n +1=0,即2m +n =1(m>0,n>0),所以1m +2n =(1m +2n )(2m +n)=4+(n m +4mn )≥4+2n m ×4m n =8,当且仅当n m =4m n ,即n =2m =12时取等号,即1m +2n 的最小值是8,选D .[答案] D8. 若a>b>0,c<d<0,则一定有( ) A . a c >b d B . a c <b d C . a d >b cD . a d <b c[解析] 解法一:⎭⎬⎫c<d<0⇒cd>0 c<d<0⇒c cd <d cd <0⇒1d <1c <0⇒⎭⎬⎫-1d >-1c >0a>b>0⇒-a d >-bc ⇒ad <b c .解法二:依题意取a =2,b =1,c =-2,d =-1,代入验证得A 、B 、C 均错,只有D 正确.[答案] D9. 已知直线y =mx 与函数f(x)=⎩⎪⎨⎪⎧2-(13)x,x ≤012x 2+1,x>0的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A .(3,4)B .(2,+∞)C .(2,5)D .(3,22)[解析]作出函数f(x)=⎩⎪⎨⎪⎧2-(13)x,x ≤012x 2+1,x>0的图象,如图所示.直线y =mx 的图象是绕坐标原点旋转的动直线.当斜率m ≤0时,直线y =mx 与函数f(x)的图象只有一个公共点;当m>0时,直线y =mx 始终与函数y =2-(13)x(x ≤0)的图象有一个公共点,故要使直线y =mx 与函数f(x)的图象有三个公共点,必须使直线y =mx 与函数y =12x 2+1(x>0)的图象有两个公共点,即方程mx =12x 2+1有两个不相等的正实数根,由⎩⎨⎧y =mx y =12x 2+1,可得x 2-2mx +2=0,即⎩⎨⎧Δ=4m 2-4×2>02m>0,解得m> 2.故选B . [答案] B10.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A . 5B . 6C . 7D . 8[解析]画出可行域如右图所示, 由z =2x +y 得y =-2x +z.当直线y =-2x +z 经过点A 时,z 取得最小值n =-3; 当直线y =-2x +z 经过点C 时,z 取得最大值m =3. ∴m -n =6,故选B . [答案] B11.已知函数f(x)=x 3+ax 2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则( )A . c ≤3B . 3<c ≤6C . 6<c ≤9D . c>9[解析] 由⎩⎪⎨⎪⎧ f (-1)=f (-2),f (-1)=f (-3)得⎩⎪⎨⎪⎧ 3a -b =7,4a -b =13,解得⎩⎪⎨⎪⎧a =6,b =11.则有f(-1)=f(-2)=f(-3)=c -6,由0<f(-1)≤3,得6<c ≤9. [答案] C12. 设函数f(x)=3sin πx m .若存在f(x)的极值点x 0满足x 20+[f(x 0)]2<m 2,则m 的取值范围是( )A . (-∞,-6)∪(6,+∞)B . (-∞,-4)∪(4,+∞)C . (-∞,-2)∪(2,+∞)D . (-∞,-1)∪(1,+∞) [解析] f ′(x)=3πm cos πx m , ∵f(x)的极值点为x 0,∴f ′(x 0)=0,∴3πm cos πx 0m =0, ∴πm x 0=k π+π2,k ∈Z , ∴x 0=mk +m2,k ∈Z ,又∵x 20+[f (x 0)]2<m 2,∴⎝ ⎛⎭⎪⎫mk +m 22+⎣⎢⎡⎦⎥⎤3sin ⎝ ⎛⎭⎪⎫k π+π22<m 2,k ∈Z , 即m 2⎝⎛⎭⎪⎫k +122+3<m 2,k ∈Z ,∵m ≠0,∴⎝ ⎛⎭⎪⎫k +122<m 2-3m 2,k ∈Z , 又∵存在x 0满足x 20+[f (x 0)]2<m 2,即存在k ∈Z 满足上式,∴m 2-3m 2>⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫k +122min ,∴m 2-3m 2>⎝ ⎛⎭⎪⎫122,∴m 2-3>m 24,CBFAOyx∴m 2>4,∴m >2或m <-2,故选C. [答案] C第II 卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答.二、填空题(本大题共4小题.请把正确答案填在题中的横线上)13. 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.[解析] ∵U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8}, ∴∁U A ={4,6,7,9,10},又∵B ={1,3,5,7,9}, ∴(∁U A )∩B ={7,9}. [答案] {7,9}14. 曲线y =x e x -1在点(1,1)处切线的斜率等于________.[解析] 由题意可得y ′=ex -1+x ex -1,所以曲线在点(1,1)处切线的斜率等于2.[答案] 215. 已知不等式ax 2+bx +c <0的解集为{x |-2<x <1},则不等式cx 2+bx +a >c (2x -1)+b 的解集为________.[解析] 由题意可知a >0,且-2,1是方程ax 2+bx +c =0的两个根,则⎩⎪⎨⎪⎧-b a =-1ca =-2,解得⎩⎪⎨⎪⎧b =ac =-2a ,所以不等式cx 2+bx +a >c (2x -1)+b 可化为-2ax 2+ax +a >-2a (2x -1)+a ,整理得2x 2-5x +2<0, 解得12<x <2.∴原不等式的解集为(12,2). [答案] (12,2)16. 已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8.以上命题中所有正确命题的序号为________.[解析] 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0;根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )的图象的一条对称轴;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确;由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8.故正确命题的序号为①②④.[答案] ①②④三、解答题(本大题共6小题.解答时应写出必要的文字说明、证明过程或演算步骤)17. 已知全集U =R ,集合M ={x |log 2(3-x )≤2},集合N ={x |y =(12)x 2-x -6-1}. (1)求M ,N ; (2)求(∁U M )∩N .[解] (1)由已知得log 2(3-x )≤log 24,所以⎩⎪⎨⎪⎧3-x ≤4,3-x >0,解得-1≤x <3,所以M ={x |-1≤x <3}. N ={x |(12)x 2-x -6-1≥0} ={x |(x +2)(x -3)≤0} ={x |-2≤x ≤3}.(2)由(1)可得∁U M ={x |x <-1或x ≥3}. 故(∁U M )∩N ={x |-2≤x <-1或x =3}.18. 已知命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :函数f (x )=x 2+2ax +2a 的值域为[0,+∞).若命题“p 或q ”是假命题,求实数a 的取值范围.[解] 若命题p 为真,(ax +2)(ax -1)=0,显然a ≠0, ∴x =-2a 或x =1a ,∵x ∈[-1,1],故有|-2a |≤1或|1a |≤1, ∴|a |≥1,若命题q 为真,就有(2a )2-4×2a =0, ∴a =0或a =2,∴命题“p 或q ”为假命题时,a ∈(-1,0)∪(0,1).19. 已知函数f (x )=x 2+2m ln x (m ∈R ). (1)求函数f (x )的单调区间;(2)若函数g (x )=2x +f (x )在[1,3]上是减函数,求实数m 的取值范围.[解] (1)由条件知函数f (x )的定义域为(0,+∞),f ′(x )=2x +2mx . ①当m ≥0时,f ′(x )>0,故f (x )的单调递增区间为(0,+∞); ②当m <0时,f ′(x )=2(x +-m )(x --m )x . 当x 变化时,f ′(x ),f (x )的变化情况如下:由上表可知,函数f (x )的单调递减区间是(0,-m ],单调递增区间是[-m ,+∞).(2)对g (x )=2x +x 2+2m ln x 求导,得g ′(x )=-2x 2+2x +2m x . 由已知函数g (x )在[1,3]上是减函数,则g ′(x )≤0在[1,3]上恒成立,即-2x 2+2x +2m x ≤0在[1,3]上恒成立,即m ≤1x -x 2在[1,3]上恒成立.令h (x )=1x -x 2,当x ∈[1,3]时,h ′(x )=-1x 2-2x =-(1x 2+2x )<0,由此知h (x )在[1,3]上为减函数,所以h (x )min =h (3)=-263,故m ≤-263.于是实数m 的取值范围为(-∞,-263].20. 旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为16000元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过35人,则飞机票每张收费800元;若旅行团的人数多于35人,则予以优惠,每多1人,每个人的机票费减少10元,但旅行团的人数最多不超过60人.设旅行团的人数为x 人,飞机票价格为y 元,旅行社的利润为Q 元.(1)写出飞机票价格y 与旅行团人数x 之间的函数关系式; (2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.[解] (1)依题意得,当1≤x ≤35时,y =800; 当35<x ≤60时,y =800-10(x -35)=-10x +1150; ∴y={ 800(1≤x ≤35,且x ∈N *)-10x +1150(35<x ≤60,且x ∈N *).(2)当1≤x ≤35,且x ∈N *时,Q =yx -16000=800x -16000. 则Q max =800×35-16000=12000,当35<x ≤60,且x ∈N *时,Q =yx -16000=-10x 2+1150x -16000=-10(x -1152)2+341252,所以当x =57或x =58时,Q 取得最大值,即Q max =17060. 因为17060>12000,所以当旅游团人数为57或58时,旅行社可获得最大利润,为17060元.21. 已知函数f (x )=e x-12x 2-ax (a ∈R ).(1)若函数f (x )的图象在x =0处的切线方程为y =2x +b ,求a ,b 的值;(2)若函数f (x )在R 上是增函数,求实数a 的取值范围; (3)如果函数g (x )=f (x )-(a -12)x 2有两个不同的极值点x 1,x 2,证明:a >e2.[解] (1)∵f ′(x )=e x -x -a , ∴f ′(0)=1-a .∴由题知1-a =2,解得a =-1, ∴f (x )=e x -12x 2+x . ∴f (0)=1,∴1=2×0+b ,解得b =1.(2)由题意知,f ′(x )≥0即e x -x -a ≥0恒成立, ∴a ≤e x -x 恒成立.设h (x )=e x -x ,则h ′(x )=e x -1.当x 变化时,h ′(x ),h (x )的变化情况如下表:x (-∞,0)0 (0,+∞)h ′(x ) - 0 + h (x )单调递减极小值单调递增∴h (x )min =h (0)=1, ∴a ≤1.(3)由已知g (x )=e x-12x 2-ax -ax 2+12x 2=e x -ax 2-ax ,∴g ′(x )=e x -2ax -a .∵x 1,x 2是函数g (x )的两个不同极值点(不妨设x 1<x 2),∴e x -2ax -a =0 (*)有两个不同的实数根x 1,x 2.当x =-12时,方程(*)不成立,则a =e x 2x +1,令p (x )=e x2x +1,则p ′(x )=e x (2x -1)(2x +1)2,令p ′(x )=0,解得x =12.当x 变化时,p (x ),p ′(x )的变化情况如下表: x (-∞,-12)(-12,12) 12 (12,+∞)p ′(x ) - - 0 + p (x )单调递减单调递减极小值单调递增若方程(*)有两个不同的实数根,则a >p (12)=e2, ∴a >e 2.22. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +3(x ≤0)x 2e ax (x >0).(1)若a =-1,求函数f (x )的单调递增区间;(2)对任意的正实数m ,关于x 的方程f (x )=m 恒有实数解,求实数a 的取值范围.[解] (1)当x ≤0时,f (x )=x 2+2x +3,其单调递增区间为[-1,0];当x >0时,∵a =-1,∴f (x )=x 2e -x ,∴f ′(x )=2x e -x +x 2·(-1)e -x =-x e -x (x -2), 令f ′(x )>0,得x <2,∴f (x )的单调递增区间为(0,2).综上,函数f (x )的单调递增区间为[-1,0],(0,2).(2)“方程f (x )=m 对任意正实数m 恒有实数解”等价转化为“函数f (x )的值取遍每一个正数”,注意到当x ≤0时,f (x )=x 2+2x +3=(x +1)2+2≥2, 因此,当x >0时,f (x )的值域必须包含(0,2), 以下研究x >0时的函数值域情况,当x >0时,f (x )=x 2e ax ,∴f ′(x )=2x e ax +x 2·a e ax =x e ax (ax +2),①若a ≥0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增,f (x )的值域为(0,+∞),满足要求;②若a <0,令f ′(x )>0,得0<x <-2a ,令f ′(x )<0,得x >-2a , ∴f (x )在(0,-2a )上单调递增,在(-2a ,+∞)上单调递减, ∴f (x )max =f (-2a )=(-2a )2·e -2=4a 2e 2, ∴f (x )的值域为(0,4a 2e 2],由(0,4a 2e 2]⊇(0,2)得,4a 2e 2≥2,解得-2e ≤a <0. 综上,所求实数a 的取值范围是[-2e ,+∞).。

2014-2015北京示范校联考 高三年级综合能力测试 理科数学 参考答案

2014-2015北京示范校联考 高三年级综合能力测试 理科数学 参考答案

# = 7#0## <! #" 1 #&! #& = 7#&# %! #" # y< %! ¸¹ # qC 8 #1 ! t# 9! #" 1 ! 9! #" #" !# # < 9! #" "$$" # 1 # Q< ! " " #&! #&!
8 #1 ! t# 0T <! e! O¯°±P # e! O¯°±² # # 0> " < 9! #" #" !# # # 0> " %$# $# $" $# pppppppppppppppppppppppppppppppppp ! $k " # " # = 7# # $! $ 0! $! $ &! Q <! #" <! # 1 1 1# ? 6 71 $" $# # &! # &! $ $ " # (Gº» 7" l 71# S# Q 7 3JKLs ,! ppppp ! <! #" # ,# % ,k ? 6 71 $# $1 ! ! iMGjk ! # $! % k" ! / /! !# ,# %# ## '" 1 !&! 0 ,&# 0 %&, 0 #&% 0 '&' 1%-ppppp , k " ! ( .# .# ¼! ) »¿@¦ÀÁ ( & & & & & & & 1%# " '* !# ## ' 3<½¾ / ! !# ## '" # # # # Á ( 8& 9) bÃÄ & = 0 ! & = & & & & & & 1 3# 7 2) >0! > =1 = 0! 1 0! 1 =# = 0! * 0! * 71 >1 > ># > ! ! '&#" '&," ! # " bc 74 ) t# »! À* = = 0!# '&," 0! '&%" 0 . 0#0!1 ># >0!* # pppppppppppppppppppppppppppppppppp ' k # # # # # # # # # Á ( 8& Å= Å= b à Ä& & & 0# = 0! = 0! = 0# = 0# = = 0! 7 =# = 0! # = 0# k-== 71 ! # " bc 74 ) t# » ,! À* -ppppppppppppppp . k = = 0!# = 0#* '&#" ( .# O# jÆÇ3! ) & & & & '* !# ## ' 3d!N ! ! ! ! '& #" '& ," ! '& #" '0 ," pppppppp k 0 , '& #" 1 ! ( # # È¿ ( '1' t # !"#$ ! %&'( !! ) ! + " * % *

2014--2015学年高三数学上学期期末统考试题(理)

2014--2015学年高三数学上学期期末统考试题(理)

2014--2015学年高三数学第一学期统一检测试题(理)姓名: 分数:注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的班别、姓名、考号填写在答题卡的密封线内.2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷上.3、非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液;不按以上要求作答的答案无效. 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合2{|30}M x x x =-=,集合{|21,}N x x n n Z ==-∈,则MN =( )A 、{3}B 、{0}C 、{0,3}D 、{-3}2、设复数31iz i-=-(i 是虚数单位),则复数z 的共轭复数z =( ) A 、12i - B 、i 21+ C 、2i - D 、2i +3、下列四个函数中,既是奇函数又在定义域上单调递增的是( )A 、()ln f x x =B 、()2sin f x x x =+C 、1()f x x x=+D 、()x x e f e x -=+ 4、已知实数x y ,满足2201x y x y x +≤⎧⎪-≤⎨⎪≤≤⎩,,, 则23z x y =-的最大值是( )A 、-6B 、-1C 、4D 、6 5、执行如图1所示的程序框图,输出的z 值为( )A 、3B 、4C 、5D 、66、某几何体的三视图如图2所示(单位:cm ),则其体积和表面积分别是( )A 、6π3cm 和12(1)π+2cm B 、6π3cm 和12π2cm C 、12π3cm 和12(1)π+2cm D 、12π3cm 和12π2cm7、平面内有4个红点,6个蓝点,其中只有一个红点和两个蓝点共线,其余任三点不共线,过这十个点中的任两点所确定的直线中,至少过一红点的直线的条数是( )A 、30B 、29C 、28D 、278、已知集合{1,3,7,,(21)}()n n A n N *=-∈,若从集合n A 中任取(1,2,3,,)k k n =个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),记123n n S T T T T =++++.例如当n =1时,1{1}A =,11=T ,11=S ;当2n =时,}3,1{2=A ,311+=T ,312⨯=T ,213137S =++⨯=. 则n S =( )A 、21n- B 、2121n -- C 、(1)121n n -+- D 、(1)221n n +-二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9、函数()f x = 的定义域为 .10、若等比数列{}n a 满足243520,40a a a a +=+=,则3a = .11、在104)1(xx +的展开式中,常数项是 .(用数字作答)12、曲线32361y x x x =++-的切线中,斜率最小的切线方程为 .13、在平面直角坐标系xoy 中,已知点A 是半圆2240x y x +-=(24)x ≤≤ 上的一个动点,点C 在线段OA 的延长线上.当20OA OC ∙=时,则点C 的纵坐标的取值范围是 .14、(坐标系与参数方程选做题)在极坐标系中,曲线(0)4πθρ=≥与4cos ρθ=的交点的极坐标为 .15、(几何证明选讲选做题)如图3,在ABC ∆中,∠ACB =90°,CE ⊥AB 于点E ,以AE 为直径的圆与 AC 交于点D ,若BE =2AE =4,CD =3,则AC = ;三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)已知函数)6sin()(π+=x A x f ,(A >0,x ∈R )的最大值为2.(1)求f (π)的值;(2)若3sin 5θ=-,)0,2(πθ-∈,求)62(πθ+f .17、(本小题满分12分)一次考试中,5名同学的语文、英语成绩如下表所示:(1)根据表中数据,求英语分y 对语文分x 的线性回归方程;(2)要从4名语文成绩在90分(含90分)以上的同学中选出2名参加一项活动,以ξ表示选中的同学的英语成绩高于90分的人数,求随机变量ξ的分布列及数学期望.E ξ(线性回归方程a x b yˆˆˆ+=中,∑∑==---=ni ini i ix xy y x xb 121)())((ˆ,x b y aˆˆ-=,其中,x y 为样本平均值,b ˆ,a ˆ的值的结果保留二位小数.)18、(本小题满分14分)如图4,在四棱锥P —ABCD 中,P A ⊥平面ABCD ,12PA AB BC AD ===,四边形ABCD 是直角梯形,90ABC BAD ∠=∠=︒.(1)求证: CD ⊥平面P AC ;(2)求二面角A —PD —C 的余弦值.19、(本小题满分14分)已知数列{}n a 满足11=a ,n a a na n n n =-++11,*N n ∈;(1)求数列{}n a 的通项公式;(2)设2n n nb a =,数列{}n b 的前n 项和为n T ,求n T ;(3)证明:22221232n a a a a ++++<.20、(本小题满分14分)已知椭圆C :12222=+by a x (0>>b a )的离心率为12,椭圆短轴的一个端点与两个焦点构成的三C 的右焦点的动直线l 与椭圆C 相交于A 、B 两点.(1)求椭圆C 的方程; (2)若线段AB 中点的横坐标为12,求直线l 的方程; (3)若线段AB 的垂直平分线与x 轴相交于点D . 设弦AB 的中点为P ,||AB 的取值范围.21、(本小题满分14分)已知函数x a ax x x f )12(ln )(2+-+=,其中a 为常数,且0≠a . (1)当1a =时,求()f x 的单调区间;(2)若()f x 在1x =处取得极值,且在(]e ,0上的最大值为1,求a 的值.2014--2015学年高三数学第一学期统一检测试题(理)参考答案一、选择题:8【解析】当3n =时,3{1,3,7}A =,1213711,13173731T T =++==⨯+⨯+⨯=,313721T =⨯⨯=,所以311312163S =++=.由于131221,21S S =-=-,636421S ==- ,所以猜想(1)12322121n n nn S +++++=-=-.二、填空题:9、(,3][1,)-∞-+∞ 10、8 11、45 12、320x y --= 13、[5,5]- 14、(0,0)(2分),)4,22(π(3分) 15、83三、解答题:16、(本小题满分12分) 解:因为函数()sin 6f x A x π⎛⎫=+ ⎪⎝⎭的最大值为2,所以2A =, (2分) 即()2sin 6f x x π⎛⎫=+⎪⎝⎭. (1)1()2sin 2sin 21662f ππππ⎛⎫=+=-=-⨯=- ⎪⎝⎭ (5分)(2)因为3sin 5θ=-,,02πθ⎛⎫∈- ⎪⎝⎭,所以4cos 5θ=== (7分)3424sin 22sin cos 25525θθθ⎛⎫==⨯-⨯=- ⎪⎝⎭ (8分)2247cos 22cos 121525θθ⎛⎫=-=⨯-= ⎪⎝⎭(9分)所以26f πθ⎛⎫+⎪⎝⎭2sin 22sin 2cos 2cos 2sin 333πππθθθ⎛⎫=+=+ ⎪⎝⎭ (11分)24172225225⎛⎫=⨯-⨯+⨯= ⎪⎝⎭ (12分) 17、(本小题满分12分)解:(1) 879091929591,5x ++++== (1分)868989929490,5y ++++== (2分) 2522221()(4)(1)01434,i i x x =-=-+-+++=∑ 51()()(4)(4)(1)(1)0(1)124435,iii x x y y =--=-⨯-+-⨯-+⨯-+⨯+⨯=∑351.03,34b =≈ (4分) 73.39103.190ˆˆ-=⨯-≈-=x b y a, (5分) 故回归直线方程为 1.03 3.73y x =-. (6分) (2)随机变量ξ的可能取值为0,1,2. (7分)22241(0);6C P C ξ=== 1122242(1);3C C P C ξ=== 22241(2).6C P C ξ===故ξ的分布列为(10分)所以1612321610=⨯+⨯+⨯=ξE . (12分) 18、(本小题满分14分)(1)证明:∵P A ⊥平面ABCD ,且CD ⊂平面ABCD , ∴CD ⊥P A . (1分) 又∵AB =BC ,∠ABC =90°, ∴∠BAC =45°,又∠BAD =90°,故∠CAD =45° (2分)过C 作CE //AB ,交AD 于E ,则CE =AB =DE ,∠CED =∠BAD =90°, ∴∠CDA =45° (3分)又∠CAD =45°, ∴∠ACD =90°,即CD ⊥AC . (4分)∵P A ⊂平面P AC ,AC ⊂平面P AC ,且P A ∩AC=A , ∴CD ⊥平面P AC . (6分)(2)方法一:∵P A ⊥平面ABCD ,且CE ⊂平面ABCD , ∴CE ⊥P A .由(1)知CE ⊥AD ,又P A ⊂平面P AD ,AD ⊂平面P AD ,且P A ∩AD=A ,∴CE ⊥平面P AD . (7分) 过E 作EF ⊥PD 于F ,连结CF . ∵CE ⊥平面P AD ,且PD ⊂平面P AD , ∴CE ⊥PD .又EF ⊥PD ,且CE ∩EF=E , ∴PD ⊥平面CEF .又CF ⊂平面CEF ,∴CF ⊥PD . (8分) ∴∠CFE 是二面角A —PD —C 的平面角. (10分) 设P A =AB =BC =a ,则AD =2a ,CE =DE =a ,a PD 5=.由∆P AD ∽∆EFD ,得DP DE PA EF =,所以a DP PA DE EF 55=⨯=. (11分) 所以a EF CE CF 53022=+=, (12分)∴cos EF CFE CF ∠==,即二面角A —PD —C(14分) 方法二:建立如图所示的空间直角坐标系, 设P A =AB =BC =a ,则AD =2a .所以A (0,0,0),B (a ,0,0),P (0,0,a ) D (0,2a ,0),C (a ,a ,0). (7分)所以),,(a a a --=,)0,,(a a -=. ……………(8分) 设平面PCD 的法向量为(,,)x y z =n ,则0n CP n CD ⎧∙=⎪⎨∙=⎪⎩,即00x y z x y --+=⎧⎨-+=⎩,得⎩⎨⎧==x z x y 2,,令x =1,得y =1,z =2,所以(1,1,2)=n 是平面PCD 的一个法向量. (10分)又平面P AD 的一个法向量为(1,0,0)=m (11分)设向量n 和m 所成角为θ,则cos θ∙===n m n m (13分) ∴即二面角A —PD —C的余弦值为6. (14分)19、(本小题满分14分) 解:(1)由n a a na n n n =-++11,得1(1)n n n a na ++=,即11+=+n na a n n , (1分) 当2≥n 时,312412321123212341n n n n a a a a a n n a a a a a n n-----⋅⋅⋅⋅⋅=⨯⨯⨯⨯⨯- (2分) 即na n a n 111==; (3分) 因为1111==a 11a =,所以na n 1=(*N n ∈) (4分) (2)由nnn a b 2=与n a n 1=,得n n n b 2⋅= (5分)∴231222322n n T n =⨯+⨯+⨯++⋅ ① (6分) 23412122232(1)22n n n T n n +=⨯+⨯+⨯++-⋅+⋅ ② (7分) ①-②得23122222n n n T n +-=++++-⋅ (8分)∴1(1)22n n T n +=-⋅+ (9分) (3)证明:当n =1时,2121<=a 显然成立; (10分)当2≥n 时,n n n n na n 111)1(1122--=-<=, (11分) ∴2222123n a a a a ++++=22221111123n ++++111111223(1)n n<++++∙∙-∙. (12分)1111111()()()112231n n =+-+-++--122n=-<; (13分) 综上,得22221232n a a a a ++++<. (14分)20、(本小题满分14分)解:(1)设椭圆C 的焦距长为2c ,依题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+==⨯⨯=222322121c b a c b a c ,解得⎪⎩⎪⎨⎧===132c b a (3分)所以椭圆C 的方程为22143x y +=. (4分)(2)由(1)知椭圆C 的右焦点(1,0),显然直线l 的斜率存在,设为k , 则直线l 的方程为(1)y k x =-. (5分)将(1)y k x =-代入22143x y +=,整理得,2222(34)84120k x k x k +-+-=, 0)1(1442>+=∆k ,设11(,)A x y ,22(,)B x y,则1,2x =, ∴2122834k x x k +=+, 212241234k x x k -⋅=+ (6分) 因为AB 中点的横坐标为12,所以2143422221=+=+kk x x,解得k =. (7分) 所以,直线l的方程1)y x =+. (8分) (3)显然直线l 的斜率存在,由(2)知2122834k x x k +=+,212241234k x x k -=+,所以AB 的中点为22243(,)3434k kP k k-++. (9分)所以(AB x ==2212(1)43k k +=+. (10分) 当0≠k 时,直线PD 的方程为222314()4343k k y x k k k +=--++, 由0y =,得2243k x k =+, 则22(,0)43k D k +, 所以3k DP =11分)所以2234312(1)43DP k k ABk +==++= 又因为211k +>,所以21011k <<+. 所以104<; (12分) 当k =0时,显然0||=DP 0||=AB ; (13分)故DP AB的取值范围是⎪⎭⎫⎢⎣⎡41,0. (14分)21、(本小题满分14分)解:显然函数)(x f 的定义域为(0,+∞).(1)当1a =时,x x x x f 3ln )(2-+=,xx x x f 132)(2+-=' (1分)令0)(='x f ,解得121,12x x ==. 当102x <<时,0)(>'x f ,所以函数()f x 在)21,0(上单调递增; (2分) 当112x <<时,0)(<'x f ,所以函数()f x 在)1,21(上单调递减; (3分) 当1x >时,0)(>'x f ,所以函数()f x 在),1(+∞上单调递增; (4分)所以)(x f 的单调递增区间为)21,0(,1+∞(,);单调递减区间为)1,21(. (5分)(2)因为xx ax x x a ax x f )1)(12(1)12(2)(2--=++-=' 令0)(='x f ,解得1211,2x x a==因为)(x f 在1x =处取得极值,所以12x x ≠,即21≠a . (6分) ①当0<a ,即0212<=ax 时, 因为当10<<x 时,0)(>'x f ,所以)(x f 在(0,1)上单调递增;当e x ≤<1时,0)(<'x f 所以)(x f 在(1,e]上单调递减;故)(x f 在区间(]e ,0上的最大值为(1)f .由(1)1f =,解得2a =-. (8分)②当21>a ,即12102<=<ax 时, 因为当a x 210<<时,0)(>'x f ,所以)(x f 在)21,0(a上单调递增; 当121<<x a 时,0)(<'x f ,所以)(x f 在)1,21(a上单调递减;当e x ≤<1时,0)(>'x f ,所以)(x f 在(1,e]上单调递增;故)(x f 在区间(]e ,0上的最大值1只可能在ax 21=或x =e 处取得.因为2111111()ln ()(21)ln 10222224f a a a a a a a a=+-+=--<, 所以由1)12(ln )(2=+-+=e a ae e e f ,解得2121>-=e a . (10分) ③当2121<<a e ,即e ax <=<2112时, 因为当10<<x 时,0)(>'x f ,所以)(x f 在(0,1)上单调递增; 当a x 211<<时,0)(<'x f 所以)(x f 在)21,1(a上单调递减; 当e x a ≤<21,0)(>'xf ,所以)(x f 在⎥⎦⎤⎝⎛e a ,21上单调递增; 故)(x f 在区间(]e ,0上的最大值1只可能在x =1或x =e 处取得. 因为0)1()12(1ln )1(<+-=+-+=a a a f , 所以由1)12(ln )(2=+-+=e a ae e e f ,解得2121>-=e a (舍去). (12分) ④当e a 210≤<,即e ax ≥=212时, 因为当10<<x 时,0)(>'x f ,所以)(x f 在(0,1)上单调递增; 当e x <<1时,0)(<'x f 所以)(x f 在(1,e )上单调递减; 故)(x f 在区间(]e ,0上的最大值1只可能在x =1处取得.因为0)1()12(1ln )1(<+-=+-+=a a a f ,所以此时a 无解. (13分) 综上所述,12a e =-或2a =-. (14分)。

2014-2015联考理科综合卷 解析

2014-2015联考理科综合卷 解析

2014-2015高三年级综合能力测试(一)解析2014.12数学(理科)1.解析:选A点评:本题属于集合问题,考点为解一元二次不等式和集合的运算,考法常规,难度也较低,大多数学生应该可以轻松得分。

唯一需要注意的是集合B的限制条件是整数集,个别学生如果没有注意,可能会按照实数集来计算。

2.解析:选B点评:本题属于双曲线的问题,考点为双曲线的a,b,c之间关系,难度同样很低,属于送分题,基本所有学生都应该能得分。

3.解析:选B点评:本题属于二项式问题,考点为二项式的通项公式,难度很低,只要学生掌握基本公式就可以得分。

但大部分学校都还没有复习到这个知识点,会有一些学生因为基础不扎实而忘记公式,导致失分。

4.解析:选D。

点评:本题属于框图问题,考点为循环结构的终止判断条件,题目是最简单的形式,只要对知识正确理解的学生都应该稳定得分。

5.解析:选B点评:本题属于零点问题,考点为函数零点问题与构造函数求交点问题的转化,难度不大。

部分学生可能因为对绝对值函数的图像记忆不清晰导致画错图,从而出错。

6.解析:选A。

点评:本题属于逻辑问题,考点为一元二次不等式的解集与系数成比例的关系,有一定难度,学生可能忽略无解和解集为R的情况,以及比例为负数的情况导致错选。

需要加强学生对不等式的各种性质的理解和掌握。

7.解析:选C。

点评:本题属于线性规划问题,考点为可行域范围的确定。

有一定难度,只要将两条动直线的问题转化为动点在两条定直线所确定的区域之内即可。

需要学生理解可行域的几何意义,对学生灵活运用知识的能力有一定要求。

基础不是很扎实的学生容易找不到入手点。

8.解析:选D点评:本题属于函数与不等式问题,考点为利用单调性解不等式及不等式恒成立的条件。

难度较大,部分同学能够利用单调性解出x<a\2,但很多同学会在恒成立问题上无从下手,不知道x和a该如何确定变量与参数的关系,从而导致无法继续下去。

但作为选择题可以采取给a赋值的方法来选出答案,前提是能利用单调性解出x<a\2。

2014-2015学年高三理科数学9月检测参考答案

2014-2015学年高三理科数学9月检测参考答案

合阳中学2014-2015学年高三理科数学9月检测参考答案一、BADDC DCACA二、11、12、 0或13、14、20 15、A.; B.4; C.;三、16、(1)B={x|2m<x<1};(2)-≤m≤1;(3)-≤m<-1或<m≤2解析:解:∵不等式x2-(2m+1)x+2m<0⇔(x-1)(x-2m)<0.(1)当m<时,2m<1,∴集合B={x|2m<x<1}.(2)若A∪B=A,则B⊆A,∵A={x|-1≤x≤2},①当m<时,B={x|2m<x<1},此时-1≤2m<1⇒-≤m<;②当m=时,B=Ø,有B⊆A成立;③当m>时,B={x|1<x<2m},此时1<2m≤2⇒<m≤1;综上所述,所求m的取值范围是-≤m≤1.(3)∵A={x|-1≤x≤2},∴R A={x|x<-1或x>2},①当m<时,B={x|2m<x<1},若R A∩B中只有一个整数,则-3≤2m<-2⇒-≤m<-1; ②当m=时,不符合题意;③当m>时,B={x|1<x<2m},若R A∩B 中只有一个整数,则3<2m≤4,∴<m≤2.综上知,m 的取值范围是-≤m<-1或<m ≤2. 17.(本小题满分12分)18、解析 :解:(1)函数的定义域为,值域为R(2)(3)当设当所以19.解:(1)令a=b=0,则f(0)=[f(0)]2∵ f(0)≠0 ∴ f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴ )x (f 1)x (f =-由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0∴ 0)x (f 1)x (f >-=又x=0时,f(0)=1>0∴ 对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)x x (f )x (f )x (f )x (f )x (f 121212>-=-⋅= ∴ f(x 2)>f(x 1) ∴ f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x) 又1=f(0),f(x)在R 上递增 ∴ 由f(3x-x 2)>f(0)得:x-x 2>0 ∴ 0<x<320、解:(1)当x ∈(-1,0)时,-x ∈(0,1). 由f (x )为R 上的奇函数,得f (-x )=-f (x )=2-x +12-x -1=2x +11-2x, ∴f (x )=2x +12x -1,x ∈(-1,0).又由f (x )为奇函数,得f (0)=0,f (-1)=-f (1),且f (-1)=f (1), ∴f (-1)=0,f (1)=0,故f (x )在区间[-1,1]上的解析式为f (x )=0,x =±1.,x ∈(-1,1),(2)∵x ∈(0,1),∴f (x )=2x +12x -1=2x +12x +1-2=1-2x +12. 又∵2x∈(1,2),∴1-2x +12∈0,31. 若存在x ∈(0,1),满足f (x )>m ,则m <31, 故实数m 的取值范围为-∞,31. 21题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东城区普通校2014-2015学年第一学期联考试卷答案
高三 数学(理科)
命题校:北京市第五十中学分校 2014年11月
第Ⅰ卷
一、
选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的.
第Ⅱ卷
二、
填空题:本大题共6小题,每小题5分,共30分.
11. 022,2>++∈∀x x R x 12.
7
1 13.
2 , 22
1
-+n 14. 2 3
π
-
15. 3 {}320=≤≤y y |y ,或 16. ① ④
三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程
或演算步骤.
17.(14分)已知函数x x x x x f 22332sin cos sin cos )(++=
(Ⅰ)已知ααππ
α求1且2
,)(),(=∈f .
(Ⅱ)求()f x 在区间⎥⎦

⎢⎣⎡20π,上的最大值和最小值.
解析:
(Ⅰ)
2
6
221212323212+-
=+-+=++=)sin(cos sin sin cos sin )(π
x x x x
x x x f
4)3
(=∴π
f ---------------------------------6分
(Ⅱ)设22y 则6
2+=-
=u x u sin ,π
],[],,[65620π
ππ-∈∴∈u x
当.
max 4时,3
,即2
==
=
y x u π
π
--------------------------12分
当.min 1时,0,即6==-=y x u π
-----------------------14分
18.(14分)已知}{n a 中,21=a ,cn a a n n +=+1(c 是常数, ,3,2,1=n ),
且321,,a a a 成公比不为1的等比数列.
(Ⅰ)求c 的值; (Ⅱ)求}{n a 的通项公式.
19. (14分) 已知函数()ln ()f x x a x a R =-∈
(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.
解:函数)(x f 的定义域为),
0(+∞,x
a
x f -=1)('. (Ⅰ)当2=a 时,x x x f ln 2)(-=,)0(2
1)('>-
=x x
x f ,
(1)1,(1)1'∴==-f f ,
()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,
即20+-=x y . ------------------------------6分 (Ⅱ)由)0(1)('>-=-
=x x
a x x a x f 可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;
(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x
()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.
综上:当0≤a 时,函数()f x 无极值
当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值. ------14分
20. (14分) 如图,ACD ∆是等边三角形,ABC ∆是等腰直角三角形,
︒=∠90ACB ,2且,于点交=AB E AC BD .
(Ⅰ)求CBE ∠cos 的值;(Ⅱ)求AE .
解:(1)因为∠BCD=90°+60°-150°,CB=AC=CD , 所以∠CBE=15°,
所以
; --------------7分
(2)在△ABE 中,AB=2,
由正弦定理
故。

-------------------14分
21. (14分)已知函数)0(ln 2)1(2)(2>++-=a x a x a x x f .
(I )求)(x f 的单调区间;
(II )若0)(≤x f 在区间],1[e 上恒成立,求实数a 的取值范围.
解:(I )222(1)22(1)()
'()(0)
x a x a x x a f x x x x -++--==>,
由'()0f x =得12,1x a x ==,
当01a <<时,在(0,)x a ∈或(1,)x ∈+∞时'()0f x >,在(,1)x a ∈时'()0f x <, 所以()f x 的单调增区间是(0,)a 和(1,)+∞,单调减区间是(,1)a ; 当1a =时,在(0,)x ∈+∞时'()0f x ≥,所以()f x 的单调增区间是(0,)+∞; 当1a >时,在(0,1)x ∈或(,)x a ∈+∞时'()0f x >,在(1,)x a ∈时'()0f x <. 所以()f x 的单调增区间是(0,1)和(,)a +∞,单调减区间是(1,)a .------8分 (II )由(I )可知()f x 在区间[1,e]上只可能有极小值点, 所以()f x 在区间[1,e]上的最大值在区间的端点处取到,
即有(1)12(1)0f a =-+≤且2
(e)e 2(1)e 20f a a =-++≤,
解得. 2
222--≥e e
e a ------------------------------------14分。

相关文档
最新文档