高中数学计算题大全
(完整word版)高中数学计算题专项练习一(3)
高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅰ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅰ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)Ⅰlog2x=3或log2x=﹣1Ⅰx=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,Ⅰ,,Ⅰa+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)Ⅰ﹣2x2+5x﹣2>0Ⅰ,Ⅰ原式===(8分)(2)Ⅰ,Ⅰ原不等式等价于x<1﹣x,Ⅰ此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对!10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅰ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅰ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,Ⅰ4x=3,,Ⅰ4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。
高中数学经典大题150道
高中数学经典大题150道在高中数学学习过程中,经典大题是不可避免的重要内容。
这些经典大题既考察了学生对知识点的掌握程度,又锻炼了他们的思维能力和解题技巧。
下面将列举150道高中数学经典大题,供同学们复习和练习。
1. 一元二次方程求解:求方程$2x^2 - 5x + 3 = 0$的解;2. 直角三角形斜边求长:已知直角三角形的一个锐角为$30^\circ$,斜边长为10,求另外两边的长度;3. 函数求极值:已知函数$f(x) = x^2 - 4x$,求$f(x)$的最小值;4. 三角函数化简:化简$\sin^2x - \cos^2x$;5. 平面向量运算:已知向量$\vec{a} = 2\vec{i} - 3\vec{j}$,$\vec{b} = \vec{i} + \vec{j}$,求$3\vec{a} - 2\vec{b}$的模;6. 不等式求解:解不等式$2x - 5 > 3$;7. 集合运算:已知集合$A = \{1, 2, 3\}$,$B = \{2, 3, 4\}$,求$A\cap B$;8. 对数方程求解:求解方程$\log_x 32 = 5$;9. 三视图绘制:根据给定的正方体的三个视图绘制其立体图形;10. 空间向量垂直判定:已知向量$\vec{a} = 2\vec{i} - 3\vec{j} +\vec{k}$,$\vec{b} = 3\vec{i} + 2\vec{j} - 4\vec{k}$,判断$\vec{a}$和$\vec{b}$是否垂直。
11. 二次函数图象:画出函数$f(x) = x^2 - 4x + 3$的图象;12. 三角函数图象:画出函数$y = \sin x$和$y = \cos x$在同一坐标系内的图像;13. 集合的运算:已知集合$A = \{1, 2, 3\}$,$B = \{3, 4, 5\}$,$C = \{2, 4, 6\}$,求$(A \cup B) \cap C$;14. 对数幂运算:计算$\log_2 8^3$的值;15. 消元解方程组:解方程组$\begin{cases} 2x - 3y = 7 \\ 4x + y = 1 \end{cases}$;16. 平面几何证明:证明过直径的正圆周角是直角;17. 空间几何证明:证明立体对顶点所在直线上的中位线相等;18. 三角函数证明:证明$\sin^2x + \cos^2x = 1$;19. 向量证明:证明向量的模长公式;20. 立体几何体积计算:计算正方体的体积。
高中数学经典50题(附答案)
得 P=1.6
x2 3.2 y 船两侧与抛物线接触时不能通过
则 A(2,yA),由 22=-3.2 yA 得 yA = - 1.25 因为船露出水面的部分高 0.75 米 所以 h=︱yA︱+0.75=2 米 答:水面上涨到与抛物线拱顶距 2 米时,小船开始不能通行 [思维点拔] 注意点与曲线的关系的正确应用和用建立抛物线方程解决实际问题的技巧。.
地,求炮击的方位角。(图见优化设计教师用书 P249 例 2)
解 : 如 图 , 以 直 线 BA 为 x 轴 , 线 段 BA 的 中 垂 线 为 y 轴 建 立 坐 标 系 , 则
B(3,0), A(3,0),C(5,2 3) ,因为 PB PC ,所以点 P 在线段 BC 的垂直平分线上。
所以 P(8,5
3). 因此 kPA
53 83
3 ,故炮击的方位角北偏东 30 。
说明:本题的关键是确定 P 点的位置,另外还要求学生掌握方位角的基本概念。
4. 河上有抛物线型拱桥,当水面距拱顶 5 米时,水面宽度为 8 米,一小船宽 4 米,高 2
米,载货后船露出水面的部分高 0.75 米,问水面上涨到与抛物线拱顶距多少时,小船 开始不能通行?
2
2
9、已知抛物线 y 2 x 与直线 y k(x 1) 相交于 A、B 两点
(1) 求证: OA OB (2) 当 OAB 的面积等于 10 时,求 k 的值。
(1)
证明:图见教材
P127
页,由方程组
y
2
x
消去 x 后,整理得 ky 2 y k 0 。
高中数学计算题
年高中数学计算题————————————————————————————————作者:————————————————————————————————日期:计算题专项练习1.计算:(1);(2).2.计算:(1)lg1000+log342﹣log314﹣log48;(2).3.(1)解方程:lg(x+1)+lg(x﹣2)=lg4;(2)解不等式:21﹣2x>.4.(1)计算:2××(2)计算:2log510+log50.25.5.计算:(1);(2).6.求log89×log332﹣log1255的值.7.(1)计算.(2)若,求的值.8.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg5+(log32)•(log89)+lg2.9.计算:(1)lg22+lg5•lg20﹣1;(2).10.若lga、lgb是方程2x2﹣4x+1=0的两个实根,求的值.11.计算(Ⅰ)(Ⅱ).12.解方程:.13.计算:(Ⅰ)(Ⅱ).14.求值:(log62)2+log63×log612.15.(1)计算(2)已知,求的值.16.计算(Ⅰ);(Ⅱ)0.0081﹣()+••.17.(Ⅰ)已知全集U={1,2,3,4,5,6},A={1,4,5},B={2,3,5},记M=(∁U A)∩B,求集合M,并写出M的所有子集;(Ⅱ)求值:.18.解方程:log2(4x﹣4)=x+log2(2x+1﹣5)19.(Ⅰ)计算(lg2)2+lg2•lg50+lg25;(Ⅱ)已知a=,求÷.20.求值:(1)lg14﹣+lg7﹣lg18 (2).21.计算下列各题:(1)(lg5)2+lg2×lg50;(2)已知a﹣a﹣1=1,求的值.22.(1)计算;(2)关于x的方程3x2﹣10x+k=0有两个同号且不相等的实根,求实数k的取值范围.23.计算题(1)(2)24.计算下列各式:(式中字母都是正数)(1)(2).25.计算:(1);(2)lg25+lg2×lg50+(lg2)2.26.已知x+y=12,xy=27且x<y,求的值.27.(1)计算:;(2)已知a=log32,3b=5,用a,b表示.28.化简或求值:(1);(2).29.计算下列各式的值:(1);(2).30.计算(1)lg20﹣lg2﹣log23•log32+2log(2)(﹣1)0+()+().1.(1)已知x+y=12,xy=9,且x>y,求的值.(2).2.计算下列各题:(1)﹣lg25﹣2lg2;(2).3.计算下列各题:(Ⅰ);(Ⅱ).4.(1)化简:,(a>0,b>0).(2)已知2lg(x﹣2y)=lgx+lgy,求的值.5.解方程.6.求下列各式的值:(1)lg﹣lg+lg(2).7.求值:(1)(lg5)2+lg2•lg50;(2).8.计算的值.9.计算:(1)已知x>0,化简(2).10.计算:(1)(0.001)+27+()﹣()﹣1.5(2)lg25+lg2﹣lg﹣log29•log32.11.(1)求值:(2)解不等式:.12.化简:.13.(Ⅰ)化简:;(Ⅱ)已知2lg(x﹣2y)=lgx+lgy,求的值.14.计算:(1)()﹣×e++10lg2(2)lg25+lg2×lg500﹣lg﹣log29×log32.15.化简或求值:(1)(2)16.(1)计算:;(2)已知2a=5b=100,求的值.17.(1)计算(2)已知log189=a,18b=5,试用a,b表示log365.18.计算:(2)2(lg)2+lg•lg5+;(3)lg5(lg8+lg1000)+(lg2)2+lg+lg0.06.19.化简下列式子:(1);(2).20.化简下列式子:(1);(2);(3).21.化简求值:.22.化简下列式子:(1);(2);(3).23.化简下列式子:(1);(2);(3).24.化简下列式子:(1);(2).25.解方程:(1)3x﹣5x﹣2=3x﹣4﹣5x﹣3;(2)log x(9x2)•log32x=4.26.计算下列各式(Ⅰ)(lg2)2+lg5•lg20﹣1(Ⅱ).27.计算:lg2+﹣÷.28.解关于x的不等式log a[4+(x﹣4)a]<2log a(x﹣2),其中a∈(0,1).29.解不等式组:.30.当a>0且a≠1时,解关于x的不等式:2log a﹣2≥2log a(x﹣1)1.已知tanθ=a,(a>1),求的值.2.已知,求的值.3.已知﹣<x<0,则sinx+cosx=.(I)求sinx﹣cosx的值;(Ⅱ)求的值.4.已知α为锐角,且tanα=,求的值.5.已知.(Ⅰ)求tanα的值;(Ⅱ)求的值.6.已知tan(+α)=2,求的值.7.已知sin(+2α)•sin(﹣2α)=,α∈(,),求2sin2α+tanα﹣cotα﹣1的值.8.已知sin22α+sin2αcosα﹣cos2α=1,α∈(0,),求sinα、tanα的值.9.cos78°•cos3°+cos12°•sin3°(不查表求值).10.求tan20°+4sin20°的值.11.求sin的值.12.已知,求的值.13.已知的值.14.不查表求cos80°cos35°+cos10°cos55°的值.15.解方程sin3x﹣sinx+cos2x=0.16.解方程cos2x=cosx+sinx,求x的值.17.求证:=sin2α.18.已知sin﹣2cos=0.(I)求tanx的值;(Ⅱ)求的值.19.已知cos(α﹣)=,α∈(,π).求:(1)cosα﹣sinα的值.(2)cos(2α+)的值.20.已知A为锐角,,求cos2A及tanB的值.21.已知α为第二象限角,且sinα=的值.22.已知().(Ⅰ)求cosx的值;(Ⅱ)求的值.23.已知α为钝角,且求:(Ⅰ)tanα;(Ⅱ).24.已知,,求tanθ和cos2θ的值.25.已知tanθ=2.(Ⅰ)求的值;(Ⅱ)求cos2θ的值.26.已知,且.(Ⅰ)求的值;(Ⅱ)求的值.27.已知,求tg2x的值.28.已知,求:(1)的值;(2)的值.29.已知,求下列各式的值:(1)tanα;(2).30.(Ⅰ)化简:;(Ⅱ)已知α为第二象限角,化简cosα+sinα.1.化简:(1)mtan0°+xcos90°﹣psin180°﹣qcos270°﹣rsin360°(2)tan20°+tan40°+tan20°tan40°(3)log2cos.2.求值.3.已知3sinα+cosα=0.求下列各式的值.(1);(2)sin2α+2sinαcosα﹣3cos2α.4.已知sinθ=(n>m>0),求的值.5.计算:sin10°cos110°+cos170°sin70°.6.若1+sinθ﹣25cos2θ=0,θ为锐角,求cos的值.7.已知cosx+3sinx=,求tan2x.8.已知:α、β∈,且.求证:α+β=.9.已知=2,求;(1)的值;(2)的值;(3)3sin2α+4sinαcosα+5cos2α的值.10.已知tanx=2,求+sin2x的值.11.化简12.已知tanx=3,求下列各式的值:(1)y1=2sin2x﹣5sinxcosx﹣cos2x;(2)y2=.13.已知tanα=,计算:(1);(2).14.化简:(1);(2)﹣.15.求cos271°+cos71°cos49°+cos249°的值.16.如果sinα•cosα>0,且sinα•tanα>0,化简:cos•+cos•.17.(1)若角α是第二象限角,化简tanα﹣1;(2)化简:.18.化简:(1)tan2α﹣tan2β;(2)1+cosα+cosθ+cos(α+θ).19.求sin21°+sin22°+…+sin290°.20.(1)若,求值①;②2sin2α﹣sinαcosα+cos2α.(2)求值.21.已知0<α<,若cos α﹣sin α=﹣,试求的值.22.求cos36°﹣sin18°的值.23.化简:.24.求和:sin21°+sin22°+sin23°+…+sin289°.25.求证:(sinα+tanα)(cosα+cotα)=(1+sinα)(1+cosα).26.求下列各式的值(1)tan6°tan42°tan66°tan78°;(2).27.已知sinθ+sin2θ=1,求3cos2θ+cos4θ﹣2sinθ+1的值.28.化简:(1);(2).29.深化拓展:求cot10°﹣4cos10°的值.30.化简:(1);(2).1.一个多项式若能因式分解,则这个多项式被其任一因式除所得余式为_________.2.变形(1)(a+b)(a-b)=a2-b2,(2)a2-b2=(a-b)(a+b)中,属于因式分解过程的是________.3.若a,b,c三数中有两数相等,则a2(b-c)+b2(c-a)+c2(a-b)的值为_________.4.12.718×0.125-0.125×4.718=_________.5.1.13×2.5+2.25×2.5+0.62×2.5=_________.6.分解因式:a2(b2-c2)-c2(b-c)(a+b)=_________.7.因式分解:(a-2b)(3a+4b)+(2a-4b)(2a-3b)=(a-2b)·().8.若a+b+c=m,则整式m·[(a-b)2+(b-c)2+(c-a)2]+6(a+b+c)(ab+bc+ca) 可用m表示为_______________.9.(2x+1)y2+(2x+1)2y=_________.10.因式分解:(x-y)n-(x-y)n-2=(x-y)n-2·_________.11.m(a-m)(a-n)-n(m-a)(a-n)=_________.12.因式分解:x(m-n)+(n-m)y-z(m-n)=(m-n)().13.因式分解:(x+2y)(3x2-4y2)-(x+2y)2(x-2y)=________.14.21a3b-35a2b3=_________.15.3x2yz+15xz2-9xy2z=__________.16.x2-2xy-35y2=(x-7y)( ).17.2x2-7x-15=(x-5)().18.20x2-43xy+14y2=(4x-7y)().19.18x2-19x+5=()(2x-1).20.6x2-13x+6=()( ).21.5x2+4xy-28y2=()().22.-35m2n2+11mn+6=-()().23.6+11a-35a2=()().24.6-11a-35a2=()().25.-1+y+20y2=()( ).26.20x2+()+14y2=(4x-7y)(5x-2y).27.x2-3xy-()=(x-7y)(x+4y).28.x2+()-28y2=(x+7y)(x-4y).29.x2+()-21y2=(x-7y)(x+3y).30.kx2+5x-6=(3x-2)(),k=______.31.6x2+5x-k=(3x-2)(),k=______.32.6x2+kx-6=(3x-2)(),k=______.33.18x2-19x+5=(9x+m)(2x+n),则m=_____,n=_____.34.18x2+19x+m=(9x+5)(2x+n),则m=_____,n=_____.35.20x2-43xy+14y2=(4x+m)(5x+n),则m=_____,n=_____.36.20x2-43xy+m=(4x-7y)(5x+n),则m=_____,n=_____.38.x4-4x3+4x2-1=_______.39.2x2-3x-6xy+9y=________.40.21a2x-9ax2+6xy2-14ay2=________.41.a3+a2b+a2c+abc=________.42.2(a2-3ac)+a(4b-3c)=_________.43.27x3+54x2y+36xy2+8y3_______.44.1-3(x-y)+3(x-y)2-(x-y)3=_______.45.(x+y)2+(x+m)2-(m+n)2-(y+n)2=_______.46.25x 2-4a 2+12ab-9b 2=_______.47.a 2-c 2+2ab+b 2-d 2-2cd=_______.48.x 4+2x 2+1-x 2-2ax-a 2=________.50.a 2-4b 2-4c 2-8bc=__________.51.a 2+b 2+4a-4b-2ab+4=________.1、计算:lg 5·lg 8000+06.0lg 61lg )2(lg 23++.2、解方程:lg 2(x +10)-lg(x +10)3=4.3、解方程:23log 1log 66-=x .4、解方程:9-x -2×31-x =27.5、解方程:x)81(=128. 6、解方程:5x+1=123-x .7、计算:10log 5log )5(lg )2(lg 2233++·.10log 188、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92).9、求函数121log 8.0--=x x y 的定义域.10、已知log 1227=a,求log 616.11、已知f(x)=1322+-x x a,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x).12、已知函数f(x)=321121x x ⎪⎭⎫ ⎝⎛+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0.13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数.14、求log 927的值.15、设3a =4b =36,求a 2+b 1的值.16、解对数方程:log 2(x -1)+log 2x=117、解指数方程:4x +4-x -2x+2-2-x+2+6=018、解指数方程:24x+1-17×4x +8=019、解指数方程:22)223()223(=-++-x x ±220、解指数方程:01433214111=+⨯------x x21、解指数方程:042342222=-⨯--+-+x x x x22、解对数方程:log 2(x -1)=log 2(2x+1)23、解对数方程:log 2(x 2-5x -2)=224、解对数方程:log 16x+log 4x+log 2x=725、解对数方程:log 2[1+log 3(1+4log 3x)]=126、解指数方程:6x -3×2x -2×3x +6=027、解对数方程:lg(2x-1)2-lg(x-3)2=228、解对数方程:lg(y-1)-lgy=lg(2y-2)-lg(y+2)29、解对数方程:lg(x2+1)-2lg(x+3)+lg2=030、解对数方程:lg2x+3lgx-4=0。
高中数学计算题专项练习一
高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅱ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b 的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log 2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅱ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅱ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅱ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅱ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)∴log2x=3或log2x=﹣1∴x=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b 的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,∴,,∴a+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)∵﹣2x2+5x﹣2>0∴,∴原式===(8分)(2)∵,∴原不等式等价于x<1﹣x,∴此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对! 10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log 2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log 2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log 2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅱ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅱ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅱ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,∴4x=3,,∴4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。
2024年高一数学真题汇编(北京专用)平面向量的数量积及其应用(含坐标)5种常考题型归类(解析版)
专题02平面向量的数量积及其应用(含坐标)5种常考题型归类向量数量积的运算1.(2023春•西城区校级期中)向量||||2a b == ,a与b 的夹角为34π,则a b ⋅ 等于()A .-B .C .2-D .4【解析】 ||||2a b == ,a与b 的夹角为34π,∴32||||cos 22()42a b a b π⋅==⨯⨯-=-.故选:A .2.(2023春•西城区校级期中)已知向量a,b ,c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c -⋅=;a b ⋅=.【解析】如图建立平面直角坐标系,所以(2,1)a = ,(2,1)b =- ,(0,1)c =,所以(0,2)a b -= ,()2a b c -⋅= ,221(1)3a b ⋅=⨯+⨯-=.故答案为:2;3.3.(2023春•东城区校级期中)已知菱形ABCD 边长为1,60BAD ∠=︒,则(BD DC ⋅=)A B .C .12D .12-【解析】60BAD ∠=︒ ,由菱形的几何性质可得:1AB BD DC ===,,120BD DC 〈〉=︒,故111cos1202BD DC ⋅=⨯⨯︒=- .故选:D .4.(2023春•怀柔区校级期中)已知菱形ABCD 的边长为a ,60ABC ∠=︒,则(DA CD ⋅=)A .212a -B .214a -C .214a D .212a 【解析】已知菱形ABCD 的边长为a ,60ABC ∠=︒,则2211||||cos(180)()22DA CD DA CD ADC a a ⋅=︒-∠=⨯-=- .故选:A .5.(2021秋•西城区校级期中)在ABC ∆中,90C =︒,4AC =,3BC =,点P 是AB 的中点,则(CB CP ⋅= )A .94B .4C .92D .6【解析】在ABC ∆中,90C =︒,则0CB CA ⋅=,因为点P 是AB 的中点,所以1()2CP CB CA =+ ,所以222111119[()]||222222CB CP CB CB CA CB CB CA CB CB ⋅=⋅+=+⋅=== .故选:C .6.(2015秋•北京校级期中)ABC ∆外接圆的半径为1,圆心为O ,且20OA AB AC ++= ,||||OA AB =,则CA CB等于()A .32B C .3D .【解析】 20OA AB AC ++=,∴0OA AB OA AC +++= ,∴OB OC =- .O ∴,B ,C 共线,BC 为圆的直径,如图AB AC ∴⊥. ||||OA AB = ,∴||||1OA AB == ,||2BC =,||AC =,故6ACB π∠=.则||||cos303CA CB CA CB =︒= ,故选:C .7.(2023春•房山区期中)在梯形ABCD 中,//AB CD ,2CD =,4BAD π∠=,若2AB AC AB AD ⋅=⋅ ,则(AD AC ⋅= )A .12B .16C .20D .10【解析】因为2AB AC AB AD ⋅=⋅,所以()AB AC AB AD AB AC AD AB DC AB AD ⋅-⋅=⋅-=⋅=⋅ ,所以2||AB AB AD =⋅ ,可得||cos 24AD π= ,解得||22AD = ,所以22()(22)222cos 124AC AD AD AD DC AD AD DC π⋅=⋅+=+⋅=+⨯= .故选:A .8.(2023秋•大兴区期中)已知等边ABC ∆的边长为4,E ,F 分别是AB ,AC 的中点,则EF EA ⋅=;若M ,N 是线段BC 上的动点,且||1MN =,则EM EN ⋅的最小值为.【解析】以BC 所在直线为x 轴,BC 的中垂线所在直线为y 轴,建立平面直角坐标系,如图所示,因为等边ABC ∆的边长为4,E ,F 分别是AB ,AC 的中点,所以(2,0)B -,(2,0)C ,(0A ,23),(3)E -,3)F ,所以(2,0)EF = ,3)EA =,所以21032EF EA ⋅=⨯+=;不妨设M 在N 的左边,则设(M m ,0)(21)m - ,则(1,0)N m +,所以(1,3)EM m =+ ,(2,3)EN m =+,所以22311(1)(2)335(24EM EN m m m m m ⋅=+++=++=++ ,所以当32m =-时,EM EN ⋅ 有最小值为114.故答案为:2;114.9.(2023春•西城区校级期中)已知正方形ABCD 的边长为2,P 为正方形所在平面上的动点,且||BP =,则DB AP ⋅的最大值是()A .0B .4C .D .8【解析】已知正方形ABCD 的边长为2,P 为正方形所在平面上的动点,且||BP =,建立如图所示的平面直角坐标系,则(0,0)B ,(0,2)A ,(2D ,2(2,2)2))θθ=--⋅-,P θ)θ,[0θ∈,2]π,则(2,2)2)444sin(4DB AP πθθθθθ⋅=--⋅-=--=-+ ,又[0θ∈,2]π,则[0DB AP ⋅∈,8],则DB AP ⋅的最大值是8.故选:D .10.(2023春•顺义区期中)已知P 是ABC ∆所在平面内一点,||3AB = ,||1AP = ,6AC AB ⋅=,则AB CP ⋅的最大值是()A .3B .2C .2-D .3-【解析】||3AB = ,||1AP = ,6AC AB ⋅=,∴()AB CP AB AP AC ⋅=⋅- AB AP AB AC =⋅-⋅ ||||cos 6AB AP BAP =∠-3cos 6BAP =∠-,cos 1BAP ∴∠=时,AB CP ⋅取最大值3-.故选:D .11.(2023秋•通州区期中)在等腰ABC ∆中,2AB AC ==,2BA BC ⋅=,则BC =2;若点P满足122CP CA CB =-,则PA PB ⋅ 的值为.【解析】在等腰ABC ∆中,2AB AC ==,又2BA BC ⋅=,则()2AB AC AB ⋅-=-,则222AB AC AB ⋅=-= ,即||||cos 2AB AC BAC ∠=,即1cos 2BAC ∠=,即3BAC π∠=,即ABC ∆为等边三角形,即2BC =;又点P 满足122CP CA CB =-,则221111111()()(2)(3)664422242242422PA PB CA CP CB CP CB CA CB CA CB CA CB CA ⋅=-⋅-=+⋅-=-+⋅=⨯-⨯+⨯⨯⨯= 故答案为:2;24.向量的模12.(2023秋•东城区校级期中)已知向量a 与向量b 的夹角为120︒,||||1a b == ,则|2|(a b += )A .3B C .2D .1【解析】已知向量a与向量b 的夹角为120︒,||||1a b == ,则1111()22a b ⋅=⨯⨯-=-,则|2|a b +=== .故选:B .13.(2023春•海淀区校级期中)已知平面向量a ,b 满足||2a = ,||1b = ,且a与b 的夹角为23π,则||(a b += )A B C .D .3【解析】 ||2a = ,||1b = ,且a与b 的夹角为23π,∴平面向量的数量积运算可知,221cos 13a b π⋅=⨯⨯=-,∴222222||()222113a b a b a a b b +=+=+⋅+=-⨯+= ,∴||a b +=故选:A .14.(2022春•东城区校级期中)已知a ,b 是单位向量,2c a b =+ ,若a c ⊥,则||(c = )A .3BC D【解析】 a ,b 是单位向量,2c a b =+ ,a c ⊥,∴2(2)20a c a a b a a b ⋅=⋅+=+⋅=,∴21a b ⋅=-,||c = ==.故选:C .15.(2014秋•西城区校级期中)已知向量a与b 的夹角是120︒,||3a = ,||a b + ,则||b =.【解析】向量a与b 的夹角是120︒,||3a = ,||a b += ,则2()13a b +=,即有22213a b a b ++=,即29||23||cos12013b b ++⨯︒=,即2||3||40b b --=,即有||4(1b =-舍去),故答案为:4.16.(2020春•朝阳区校级期中)设向量a ,b 满足||2a = ,||1b = ,a < ,60b >=︒,则|2|a b += .【解析】由||2a = ,||1b = ,a <,60b >=︒ ,则1||||cos ,2112a b a b a b ⋅=<>=⨯⨯=,则|2|a b +==故答案为:.17.(2023春•海淀区校级期中)已知||1a =,||b = 1a b ⋅=,则|2|(a b -= )A .3BC .5D .9【解析】 222222|2|(2)441414(5a b a b a a b b -=-=-⋅+=-⨯+⨯=,∴|2|a b -=.故选:B .18.(2023春•东城区校级期中)若向量,,a b c满足:,||1a b c ≠= ,且()()0a c b c -⋅-= ,则||||a b a b ++-的最小值为()A .52B .2C .1D .12【解析】设a OA =,b OB = ,c OC = ,设M 为AB 的中点,已知向量,,a b c满足:,||1a b c ≠= ,且()()0a c b c -⋅-= ,则||1OC = ,CA CB ⊥ ,则||||2||||2||2||2(||||)2||2a b a b OM BA OM CM OM CM OC ++-=+=+=+=,当且仅当O 在线段CM 上时取等号,即||||a b a b ++-的最小值为2.故选:B .19.(2023秋•丰台区期中)已知平面向量,a b满足||2a = ,||1b = ,且1a b ⋅= ,则|2|(a b += )A .12B .4C .D .2【解析】已知平面向量,a b满足||2a = ,||1b = ,且1a b ⋅= ,则|2|2a b +=故选:C .20.(2022春•东城区校级期中)已知向量(1,1)a =,(2,3)b =- ,那么|2|(a b -= )A .5B .C .8D【解析】向量(1,1)a =,(2,3)b =- ,那么|2||(5a b -= ,5)|-==.故选:B .21.(2022春•西城区校级期中)已知向量a ,b满足||5a = ,(3,4)b = ,0a b ⋅= .则||a b -= .【解析】因为||5a = ,(3,4)b = ,所以2223425b =+= ,所以||5b = ,又因为0a b ⋅=,所以222()225202550a b a a b b -=-⋅+=-⨯+= ,所以||a b -=.故答案为:.22.(2023秋•西城区校级期中)已知向量,a b满足(2,),(2,1)a b x a b +=-=- ,且22||||1a b -=- ,则(x =)A .3-B .3C .1-D .1【解析】因为(2,),(2,1)a b x a b +=-=-,所以2222||||()()41a b a b a b a b x -=-=+⋅-=-+=-,解得:3x =.故选:B .23.(2017春•东城区校级期中)设x ,y R ∈,向量(,1)a x = ,(1,)b y = ,(2,4)c =- ,且a c ⊥ ,//b c,则||(a b += )A B C .D .10【解析】 (,1),(2,4)a x c ==- ,且a c ⊥,21(4)0x ∴+-= ,解得2x =.又 (1,),(2,4)b y c ==-,且//b c ,1(4)2y ∴-= ,解之得2y =-,由此可得(2,1)a =,(1,2)b =- ,∴(3,1)a b +=-,可得||a b +=.故选:B .向量的垂直问题24.(2023春•大兴区校级期中)已知向量(,2),(1,1)a x b ==- ,若a b ⊥,则(x =)A .1B .1-C .2D .2-【解析】因a b ⊥ ,则20a b x ⋅=-+=,得2x =.故选:C .25.(2023春•昌平区校级期中)向量(,1),(2,4)a t b == ,若a b ⊥,则实数t 的值为()A .1B .1-C .2D .2-【解析】因为(,1),(2,4)a t b == ,且a b ⊥,所以240a b t ⋅=+=,得2t =-.故选:D .26.(2023春•通州区期中)已知向量(2,4)a =,(1,)b m =- ,则“3m =”是“()a b b -⊥ ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】根据题意,当3m =时,向量(2,4)a =,(1,3)b =- ,则(3,1)a b -= ,有()330a b b -⋅=-+= ,则有()a b b -⊥,反之,若()a b b -⊥ ,则()3(4)0a b b m m -⋅=-+-=,解可得3m =或1,3m =不一定成立;故“3m =”是“()a b b -⊥”的充分不必要条件.故选:A .27.(2023春•东城区校级期中)已知向量(1,2)a =- ,(,1)b m = .若向量a b + 与a垂直,则(m =)A .6B .3C .7D .14-【解析】已知向量(1,2)a =- ,(,1)b m = ,若向量a b + 与a垂直,则2()5(2)0a b a a a b m +=+=+-+=,求得7m =,故选:C .28.(2023秋•东港区校级期中)已知向量(1,0),(0,1)a b == ,若()()a b a b λμ-⊥+,其中λ,R μ∈,则()A .1λμ+=-B .1λμ+=C .1λμ⋅=-D .1λμ⋅=【解析】(1,0),(0,1)a b ==,则(1,)a b λλ-=- ,(1,)a b μμ+=,()()a b a b λμ-⊥+,则110λμ⨯-⋅=,解得1λμ⋅=.故选:D .29.(2023秋•西城区校级期中)如果平面向量(2,0)a =,(1,1)b = ,那么下列结论中正确的是()A .||||a b = B .a b =C .()a b b -⊥D .//a b【解析】由平面向量(2,0)a =,(1,1)b = ,知:在A 中,||2a =,||b = ||||a b ∴≠ ,故A 错误;在B 中,2a b =,故B 错误;在C 中, (1,1)a b -=- ,()0a b b ∴-= ,()a b b ∴-⊥,故C 正确;在D 中, 2011≠,∴a与b 不平行,故D 错误.故选:C .30.(2023春•海淀区校级期中)已知平面向量11(,),)2222a b =-=-,则下列关系正确的是()A .()a b b +⊥B .()a b a +⊥C .()()a b a b +⊥-D .()//()a b a b +-【解析】平面向量11()22a b =-=-,则a b ⋅=-=,22||1b b == ,22||1a a == ,对于A ,2()0a b b a b b +⋅=⋅+≠,故A 错误;对于B ,2()0a b a a a b +⋅=+⋅≠,故B 错误;对于C ,向量1(,)22a =-,1()22b =- ,则||||1a b == ,则有22()()||||0a b a b a b +⋅-=-= ,即()()a b a b +⋅-,故C 正确;对于D ,12a b += 1)2,1(2a b -=1)2+,易得()a b + 与()a b - 平行不成立,故D 错误.故选:C .31.(2021春•东城区校级期中)已知向量(1,0)a = ,(,1)b m = ,且a与b 的夹角为4π.(1)求m 及|2|a b -;(2)若a b λ+与b 垂直,求实数λ的值.【解析】(1)根据题意,向量(1,0)a =,(,1)b m = ,则a b m ⋅= ,||1a =,||b = ,又由a与b 的夹角为4π,则有||||cos a b a b θ⋅= ,即2m =,解可得:1m =,则2(1,2)a b -=-- ,故|2|a b -==;(2)由(1)的结论,1m =,则(1,1)b =,若a b λ+与b 垂直,则()120a b b λλ+⋅=+= ,解可得:12λ=-.向量的夹角问题32.(2023春•仓山区校级期中)若||1a = ,||b = ,2a b ⋅= ,则a,b 的夹角为()A .0B .4πC .2πD .34π【解析】cos a b a b θ⋅=⨯⨯,将已知代入可得:21cos θ=⨯,解得:2cos 2θ=,[0θ∈ ,]π,故4πθ=,故选:B .33.(2023春•顺义区期中)若1e ,2e 是夹角为3π的两个单位向量,则12a e e =+ 与122b e e =- 的夹角为()A .6πB .3πC .23πD .56π【解析】根据题意,设12a e e =+与122b e e =- 的夹角为θ,[0θ∈,]π,1e ,2e 夹角为3π的两个单位向量,则1212e e ⋅= ,12a e e =+,122b e e =- ,则有221212322a b e e e e ⋅=--⋅=- ;又由2212||()3a e e =+=,2212||(2)3b e e =-= ,则有||a =,||b = ,则1cos 2||||a b a b θ⋅==- ,则23πθ=.故选:C .34.(2023秋•朝阳区期中)已知单位向量a ,b 满足(2)2a a b ⋅+= ,则向量a与b 的夹角为.【解析】因为a,b 是单位向量,且(2)2a a b ⋅+= ,所以222a a b +⋅= ,所以12a b ⋅= ,所以1cos ,2||||a b a b a b ⋅<>==,因为,[0,]a b π<>∈,所以,3a b π<>=.故答案为:3π.35.(2023春•房山区期中)已知向量(3,1)a =,(2,1)b =- .则a b ⋅= ;a <,b >=.【解析】向量(3,1)a =,(2,1)b =- ,所以321(1)5a b ⋅=⨯+⨯-=;计算cos a <,2||||a b b a b ⋅>=== ,又因为a <,[0b >∈ ,]π,所以a <,4b π>= .故答案为:5;4π.36.(2023春•通州区期中)已知向量(1,2)a =- ,(2,4)b = ,则向量a与b 夹角的余弦值为()A .35-B .35C .1-D .1【解析】根据题意,设向量a与b 夹角为θ,向量(1,2)a =-,(2,4)b = ,则||a ==,||b == ,286a b ⋅=-=-,则3cos 5||||a b a b θ⋅===- .故选:A .37.(2023春•海淀区校级期中)已知a ,b 是单位向量,2c a b =+ .若a c ⊥ ,则a与b 的夹角为()A .6πB .3πC .23πD .56π【解析】设a与b 的夹角为θ,[0θ∈,]π, 2c a b =+ ,a c ⊥,∴2(2)20a c a a b a a b ⋅=⋅+=+⋅=,a,b 是单位向量,12cos 0θ∴+=,解得1cos 2θ=-,∴23πθ=.故选:C .38.(2023春•东城区校级期中)平面向量||2a = ,||2b = ,()a b a -⊥ ,则a与b 的夹角是()A .512πB .3πC .4πD .6π【解析】()a b a -⊥,()0a b a ∴-⋅= ,即20a a b -⋅=,∴22a b a ⋅==,2cos ,2||||a b a b a b ⋅∴<>==⋅,,[0,]a b π<>∈,∴,a b的夹角是4π.故选:C .39.(2022春•西城区校级期中)已知向量a ,b 在正方形网格中的位置如图所示,那么向量a ,b的夹角为()A .45︒B .60︒C .90︒D .135︒【解析】根据题意,如图,建立坐标系,设小正方形的边长为1,向量a,b 的夹角为θ,则(3,1)a =,(2,4)b = ,则||10a = ||4165b =+ 10a b ⋅=,则102cos 2||||1025a b a b θ⋅===⨯ ,则45θ=︒,故选:A .40.(2023春•海淀区校级期中)已知向量(1,0)a =,(2,a b += ,则向量a与b 的夹角为()A .3π-B .6πC .3πD .23π【解析】向量(1,0)a =,(2,a b +=,所以(1,b = ,所以1,||1,||2a b a b ⋅===,设向量a与b 的夹角为α,则1cos 2||||a b a b α⋅== ,因为[0α∈,]π,故3πα=.故选:C .41.(2013秋•宣武区校级期中)若向量a 、b 满足(2,1)a b +=- ,(1,2)a = ,则向量a与b 的夹角等于()A .135︒B .120︒C .60︒D .45︒【解析】向量a、b 满足(2,1)a b +=- ,(1,2)a = ,则(1,3)b =- ,165a b =-=-,||a =,||b =即有cos ,2||||a b a b a b <>===,由于0,180a b ︒<>︒,则有向量a与b 的夹角等于135︒.故选:A .42.(2023秋•通州区期中)已知向量(2,0)a =- ,(1,2)b =,c =,则下列结论中正确的是()A .//a bB .2a b ⋅= C .||2||b c = D .a 与c的夹角为120︒【解析】已知向量(2,0)a =- ,(1,2)b =,c =,A 选项,因(2)210-⨯≠⨯,则a与b 不平行,故A 错误;B 选项,因202a b ⋅=-+=-,故B 错误;C选项,||b ==又||2c ==,则||2||b c ≠ ,故C 错误;D 选项,21cos ,||||222a c a c a c ⋅-〈〉===-⨯,又,[0,180]a c 〈〉∈︒︒,则,120a c 〈〉=︒,即a 与c的夹角为120︒,故D 正确.故选:D.投影向量问题43.(2023春•通州区期中)已知向量a ,b 满足10a b ⋅= ,且(3,4)b =- ,则a在b 上的投影向量为()A .(6,8)-B .(6,8)-C .6(5-,8)5D .6(5,8)5-【解析】因为10a b ⋅=,且(3,4)b =- ,所以a在b 上的投影向量||cos a a < ,2(3,4)6()10(9165||||b b b a b b b ->=⋅=⨯=-+ ,85.故选:C .44.(2023春•朝阳区校级期中)已知两个单位向量a和b 的夹角为120︒,则向量a b - 在向量b 上的投影向量为()A .12b- B .12bC .32b- D .32b【解析】 单位向量a和b 的夹角为120︒,23()||11cos12012a b b a b b ∴-⋅=⋅-=⨯⨯︒-=- ,向量a b -在向量b 上的投影向量为()32||||a b b b b b b -⋅⋅=- .故选:C .45.(2021春•丰台区期中)已知(1,0)a = ,(5,5)b = ,则向量a在向量b 方向上的投影向量的坐标为.【解析】向量a在向量b方向上的投影为22||a b b ⋅= ,由于向量a在向量b 方向上的投影向量与b 共线,可得所求向量为11(102b = ,1)2,故答案为:1(2,1)2.46.(2023春•房山区期中)已知向量(1,3)a =,(1,1)b =- ,则下列结论正确的是()A .a与b 的夹角是钝角B .()a b b+⊥C .a在bD .a在b 上的投影的数量为105【解析】对于A ,因为1320a b ⋅=-+=> ,所以a与b 的夹角不是钝角,选项A 错误;对于B ,2()2240a b b a b b +⋅=⋅+=+=≠ ,所以()a b b +⊥不成立,选项B 错误;对于C ,a在b上的投影的数量为||a b b ⋅== C 正确;对于D ,由C 知选项D 错误.故选:C .47.(2023春•昌平区校级期中)如图,矩形ABCD 中,2AB =,1BC =,O 为AB 的中点.当点P 在BC 边上时,AB OP ⋅的值为;当点P 沿着BC ,CD 与DA 边运动时,AB OP ⋅的最小值为.【解析】矩形ABCD 中,2AB =,1BC =,O 为AB 的中点.当点P 在BC 边上时,||||cos 212AB OP AB OP POB ⋅=∠=⨯=;当点P 沿着BC ,CD 与DA 边运动时,AB OP ⋅的最小值,||||cos AB OP AB OP POB ⋅=∠ ,P 应该在线段AD 上,此时||||cos 2(1)2AB OP AB OP POB ⋅=∠=⨯-=-;故答案为:2;2-.48.(2023秋•东城区校级期中)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术.图1是一张由卷曲纹和回纹构成的正六边形剪纸窗花.图2中正六边形ABCDEF 的边长为4,圆O 的圆心为该正六边形的中心,圆O 的半径为2,圆O 的直径//MN CD ,点P 在正六边形的边上运动,则PM PN ⋅的最小值为.【解析】如图,连结PO ,显然OM ON =-,则222()()()()4PM PN PO OM PO ON PO OM PO OM PO OM PO ⋅=+⋅+=+⋅-=-=- ,点P 在正六边形ABCDEF 的边上运动,O 是其中心,因此||PO的最小值等于中心O 到正六边形的边的距离,又中心O 到正六边形的边的距离为42⨯=,所以PM PN ⋅的最大值为248-=.故答案为:8.49.(2023春•大兴区期中)已知ABC ∆是边长为2的等边三角形,D 是边BC 上的动点,E 是边AC的中点,则BE AD ⋅ 的取值范围是()A .[-B .C .[3-,0]D .[0,3]【解析】建立如图所示的平面直角坐标系,则(1,0)A -,(1,0)C ,B ,(0,0)E ,设CD CB λ= ,01λ,则(1)OD OC CB λλ=+=- ,则(2)AD λ=- ,又(0,BE = ,所以(2)0(3BE AD λλ⋅=-⨯+⨯=- ,又01λ,所以BE AD ⋅ 的取值范围是[3-,0].故选:C .50.(20210.618≈的矩形叫做黄金矩形.它广泛的出现在艺术、建筑、人体和自然界中,令人赏心悦目.在黄金矩形ABCD 中,1BC =,AB BC >,那么AB AC ⋅ 的值为()A1-B1+C .4D.2+【解析】由黄金矩形的定义,可得2AB =,1BC =-,在矩形ABCD中,cos AB CAB AC ∠==,则||||cos 24AB AC AB AC CAB ⋅=⋅⋅∠=⨯ ,故选:C .51.(2023秋•西城区校级期中)已知OA a = ,OB b = .若||5OA = ,||12OB = ,且90AOB ∠=︒,则||a b -= .【解析】已知OA a = ,OB b = ,90AOB ∠=︒,∴0a b ⋅= ,又||5OA = ,||12OB = ,即||5,||12a b ==,||13a b ∴-= .故答案为:13.52.(2023春•道里区校级期中)若平面向量a 与b 的夹角为60︒,(2,0)a = ,||1b = ,则|2|a b + 等于()AB.C .4D .12【解析】因为平面向量a 与b 的夹角为60︒,(2,0)a = ,||1b = ,所以||2a = ,||||cos 21cos601a b a b θ⋅=⋅=⨯⨯︒= ,所以|2|2a b += .故选:B .53.(2023春•东城区校级期中)已知向量(0,5)a = ,(4,3)b =- ,(2,1)c =-- ,那么下列结论正确的是()A .a b - 与c 为共线向量B .a b - 与c 垂直C .a b - 与a 的夹角为钝角D .a b - 与b 的夹角为锐角【解析】根据题意,向量(0,5)a = ,(4,3)b =- ,(2,1)c =-- ,则(4,8)a b -=- ,又由(2,1)c =-- ,有(4)(1)(2)8-⨯-≠-⨯,则()a b - 与c 不是共线向量,(2,1)c =-- ,则()(4)(2)(1)80a b c -=-⨯-+-⨯= ,则()a b - 与c 垂直;故选:B .。
高中数学计算题专项练习1-(3096)
2019年高中数学计算题专项练习1一.解答题(共30 小题)1.计算:( 1);( 2).2.计算:( 1) lg1000+log 342﹣ log 314﹣ log 48;(2) .3.( 1)解方程: lg ( x+1) +lg ( x ﹣ 2)=lg4 ; ( 2)解不等式: 21﹣ 2x> .4.( 1)计算: 2× ×( 2)计算: 2log 510+log 50.25.5.计算:( 1) ;( 2).6.求 log 89×log 332﹣log 1255 的值.7.( 1)计算 .( 2)若 ,求 的值.8.计算下列各式的值0.75( 1) 0.064﹣(﹣ ) +16 +0.25( 2) lg5+ ( log 32)?( log 89) +lg2 .9.计算:( 1) lg 22+lg5?lg20 ﹣ 1;(2).10.若 lga 、 lgb 是方程 2x 2﹣ 4x+1=0 的两个实根,求的值.11.计算(Ⅰ)(Ⅱ) .12.解方程:.13.计算:(Ⅰ)(Ⅱ).14.求值:( log 62) 2+log 63×log 612.15.( 1)计算( 2)已知 ,求 的值.16.计算(Ⅰ);(Ⅱ) 0.0081 ﹣() + ? ? .17.(Ⅰ)已知全集 U={1 , 2, 3, 4, 5,6} , A={1 , 4, 5} , B={2 , 3, 5} ,记 M= ( ?U A ) ∩B ,求集合 M ,并写出 M 的所有子集;(Ⅱ)求值:.18.解方程: log 2( 4x ﹣ 4) =x+log 2( 2x+1﹣ 5)219.(Ⅰ)计算( lg2) +lg2 ?lg50+lg25 ;(Ⅱ)已知a=,求÷.20.求值:( 1) lg14 ﹣+lg7 ﹣ lg18(2).21.计算下列各题:(1)( lg5)2+lg2 ×lg50 ;﹣1,求的值.( 2)已知 a﹣ a =122.( 1)计算;( 2)关于 x 的方程 3x 2﹣ 10x+k=0 有两个同号且不相等的实根,求实数k 的取值范围.23.计算题(1)(2)24.计算下列各式:(式中字母都是正数)(1)(2).25.计算:( 1);(2) lg25+lg2 ×lg50+ ( lg2)2.26.已知 x+y=12 , xy=27 且 x< y,求的值.27.( 1)计算:;b,用 a, b 表示.( 2)已知 a=log3 2, 3 =528.化简或求值:( 1);( 2).29.计算下列各式的值:( 1);( 2).30.计算log( 1) lg20 ﹣ lg2 ﹣ log 23?log32+2(2)(﹣1)0+()+().参考答案与试题解析一.解答题(共30 小题)1.计算:( 1);( 2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用指数幂的运算法则即可得出;( 2)利用对数的运算法则即可得出.解答:解:( 1)原式 ===.( 2)原式 ===.点评:熟练掌握指数幂的运算法则、对数的运算法则是解题的关键.2.计算:(1) lg1000+log 342﹣ log 314﹣ log48;(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算性质即可得出;( 2)利用指数幂的运算性质即可得出.解答:解:( 1)原式 =;( 2)原式 =.点评:熟练掌握对数的运算性质、指数幂的运算性质是解题的关键.3.( 1)解方程: lg( x+1) +lg ( x﹣ 2)=lg4 ;( 2)解不等式:21﹣2x>.考点 : 对数的运算性质;指数函数单调性的应用.专题 : 计算题.分析:( 1)原方程可化为 lg (x+1 )( x ﹣ 2) =lg4 且可求( 2)由题意可得1﹣ 2x ﹣2,结合指数函数单调性可求x 的范围2> =2解答:解:( 1)原方程可化为 lg ( x+1 )(x ﹣ 2)=lg4 且∴( x+1 )(x ﹣ 2) =4 且 x > 2∴ x 2﹣ x ﹣ 6=0 且 x >2 解得 x= ﹣2(舍)或 x=3( 2)∵ 21﹣ 2x> =2 ﹣2∴ 1﹣ 2x >﹣ 2 ∴点评: 本题主要考查了对数的运算性质的应用,解题中要注意对数真数大于0 的条件不要漏掉,还考查了指数函数单调性的应用.4.( 1)计算: 2× ×( 2)计算: 2log 510+log 50.25.考点 : 对数的运算性质.专题 : 计算题;函数的性质及应用.分析: ( 1)把各根式都化为 6 次根下的形式,然后利用有理指数幂的运算性质化简;( 2)直接利用对数式的运算性质化简运算.解答:× ×解( 1)计算: 2= ===6;( 2) 2log 510+log 50.25==log 5100×0.25 =log 525 =2log 55=2 .点评: 本题考查了指数式的运算性质和对数式的运算性质,解答的关键是熟记有关运算性质,是基础的运算题.5.计算:(1) ;(2).考点:对数的运算性质.专题:计算题.分析:(1)利用有理指数幂的运算法则,直接求解即可.( 2)利用对数的运算形状直接求解即可.解答:解:( 1)﹣ 13﹣ 1+8=12⋯(6 分)=0.2﹣ 1+2 =5( 2)===⋯(12 分)点评:本题考查指数与对数的运算性质的应用,考查计算能力.6.求 log 9×log32﹣log 5 的值.83125考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质进及对数的换底公式行求解即可解答:解:原式 ====3点评:本题主要考查了对数的运算性质的基本应用,属于基础试题7.( 1)计算.( 2)若,求的值.考点:对数的运算性质.专题:计算题.分析:( 1)把对数式中底数和真数的数4、8、 27 化为乘方的形式,把底数的分数化为负指数幂,把真数的根式化为分数指数幂,然后直接利用对数的运算性质化简求值;( 2)把已知条件两次平方得到﹣ 12﹣ 2得答案.x+x与 x +x,代入解答:解:( 1)===2 ﹣ 4﹣ 1=﹣ 3;( 2)∵,∴,∴ x+x﹣ 1.=5 则( x+x ﹣122 ﹣ 2) =25 ,∴ x +x=23 ∴=.点评: 本题考查了有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.8.计算下列各式的值0 0.75( 1) 0.064﹣(﹣ ) +16 +0.25( 2) lg5+ ( log 32)?( log 89) +lg2 .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题. 分析:( 1)化小数指数为分数指数, 0 次幂的值代1,然后利用有理指数幂进行化简求值;( 2)首先利用换底公式化为常用对数,然后利用对数的运算性质进行化简计算.解答:0.75解:( 1) 0.064﹣(﹣ ) +16 +0.25==( 0.4) ﹣1﹣1+8+0.5=2.5﹣ 1+8+0.5=10 ;( 2) lg5+ ( log 32)?( log 89) +lg2= =1+=1+ = .点评: 本题考查了对数的运算性质,考查了有理指数幂的化简与求值,是基础的运算题.9.计算:( 1) lg 22+lg5?lg20 ﹣ 1;(2).考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.分析: ( 1)把 lg5 化为 1﹣ lg2, lg20 化为 1+lg2 ,展开平方差公式后整理即可;( 2)化根式为分数指数幂, 化小数指数为分数指数, 化负指数为正指数, 然后进行有理指数幂的化简求值.2解答: 解:( 1) lg 2+lg5 ?lg20 ﹣12=lg 2+( 1﹣ lg2 )( 1+lg2)﹣ 122;=lg 2+1﹣ lg 2﹣ 1=0( 2)==2 3=2 ?3 ﹣ 7﹣2﹣ 1=98.点评: 本题考查了有理指数幂的化简与求值,考查了对数的运算性质,解答的关键是熟记有关性质,是基础题.10.若 lga 、 lgb 是方程 2x 2﹣ 4x+1=0 的两个实根,求的值.考点 : 对数的运算性质;一元二次方程的根的分布与系数的关系.专题 : 计算题;转化思想.分析:lga 、 lgb 是方程 2x 2﹣4x+1=0 的两个实根,先由根与系数的关系求出,再利用对数的运算性质对化简求值.解答:解: ,2=( lga+lgb )( lga ﹣ lgb )2=2[ (lga+lgb ) ﹣ 4lgalgb ]=2(4﹣ 4× )=4点评: 本题考查对数的运算性质,求解的关键是熟练掌握对数的运算性质,以及一元二次方程的根与系数的关系.11.计算(Ⅰ)(Ⅱ) .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.分析: ( 1)根据对数运算法则化简即可( 2)根据指数运算法则化简即可解答:解:( 1)原式 =(2)原式 ==点评:本题考查对数运算和指数运算,注意小数和分数的互化,要求能灵活应用对数运算法则和指数运算法则.属简单题12.解方程:.考点:对数的运算性质.专题:计算题;函数的性质及应用.分析:利用对数的运算性质可脱去对数符号,转化为关于x 的方程即可求得答案.解答:解:∵,∴log5( x+1) +log 5(x﹣ 3) =log 55,∴( x+1 )?( x﹣ 3)=5,其中, x+1> 0 且 x﹣ 3> 0解得 x=4 .故方程的解是4点评:本题考查对数的运算性质,考查方程思想,属于基础题.13.计算:(Ⅰ)(Ⅱ).考点:对数的运算性质;运用诱导公式化简求值.专题:计算题;函数的性质及应用.分析:( I)利用诱导公式,结合特殊角的三角函数值即可求解( II )利用对数的运算性质及指数的运算性质即可求解解答:解:(I)(每求出一个函数值给( 1 分),6 分( II )(每求出一个式子的值可给( 1 分), 12 分)点评:本题主要考查了诱导公式在三角化简求值中的应用及对数的运算性质的简单应用,属于基础试题14.求值:( log62)2+log 63×log 612.考点:对数的运算性质.分析:先对后一项:log 63×log 612 利用对数的运算法则进行化简得到:log63+log 63×log 62,再和前面一项提取公因式 log62 后利用对数的运算性质: log a( MN ) =log a M+log a N 进行计算,最后再将前面计算的结果利用log 62+log 63=1 进行运算.从而问题解决.解答:解:原式=(log62+log63)log62+log63=log 62+log 63=1.∴( log62)2+log 63×log 612=1.点评:本小题主要考查对数的运算性质、对数的运算性质的应用等基础知识,考查运算求解能力.属于基础题.对数的运算性质:log a( MN ) =log a M+log a N; log an=log a M ﹣ log a N ;log a M =nlog a M 等.15.( 1)计算( 2)已知,求的值.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)化根式为分数指数幂,把对数式的真数用同底数幂相除底数不变,指数相减运算,然后利用对数式的运算性质化简;( 2)把给出的等式进行平方运算,求出﹣ 1的结果.x+x ,代入要求的式子即可求得解答:解( 1)===;(2)由,得:,所以, x+2+x ﹣1=9,故x+x ﹣1=7,所以,.点评:本题考查了有理指数幂的化简与求值,考查了对数式的运算性质,解答的关键是熟记有关性质,是基础题.16.计算(Ⅰ);(Ⅱ) 0.0081﹣()+??.考对数的运算性质;根式与分数指数幂的互化及其化简运算.点:专函数的性质及应用.题:分 (Ⅰ)利用对数的运算法则,由已知条件能求出结果.析 (Ⅱ)利用指数的运算法则,由已知条件,能求出结果.:解 解:(Ⅰ)答 ===:= = =﹣ .(Ⅱ)0.0081 ﹣()+??4 3=0.3﹣ +3=.=[( 0.3) ] ﹣([ )]+ 点 本题考查指数和对数的运算法则,是基础题,解题时要认真解答,避免出现计算上的低级错误. 评 :17.(Ⅰ)已知全集 U={1 , 2, 3, 4, 5,6} , A={1 , 4, 5} , B={2 , 3, 5} ,记 M= ( ?U A ) ∩B ,求集合 M ,并写出 M 的所有子集;(Ⅱ)求值:.考点 : 对数的运算性质;交、并、补集的混合运算.专题 : 函数的性质及应用.分析: ( I )利用集合的运算法则即可得出.( II )利用对数的运算法则即可得出. 解答: 解:(Ⅰ)∵ U={1 , 2, 3, 4, 5, 6} , A={1 , 4,5} ,∴ C U A={2 , 3, 6} ,∴ M= ( ?U A ) ∩B={2 , 3, 6} ∩{2 , 3,5}={2 , 3} .∴ M 的所有子集为: ? , {2} , {3} , {2 , 3} .(Ⅱ)= = = .点评: 本题考查了集合的运算法则、对数的运算法则,属于基础题.18.解方程: log 2( 4x ﹣ 4) =x+log 2( 2x+1﹣ 5)考点 : 对数的运算性质.专题 : 计算题.分析:利用对数的运算法则将方程变形为 ,将对数式化为指数式得到 ,通过换元转化为二次方程,求出x 的值,代入对数的真数检验.xx+1解答: 解: log 2( 4 ﹣ 4) =x+log 2( 2 ﹣ 5)即为log 2(4x ﹣ 4)﹣ log 2( 2x+1﹣ 5)=x即为所以令 t=2x即解得 t=4 或 t=1所以 x=2 或 x=0 (舍)所以方程的解为x=2.点评:本题考查对数的真数大于0、对数的运算法则、二次方程的解法,解题过程中要注意对数的定义域,属于基础题.19.(Ⅰ)计算( lg2)2;+lg2 ?lg50+lg25(Ⅱ)已知 a= ,求÷.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算法则进行运算,利用结论lg2+lg5=0 去求.(Ⅱ)先将根式转化为同底的分数指数幂,利用指数幂的运算性质,化为最简形式,然后在将 a 值代入求值.解答:解:(Ⅰ)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(Ⅱ)原式 =.∵ a= ,∴原式 =.点评:本题考查对数的四则运算法则,根式与分数指数幂的互化,以及同底数幂的基本运算性质,要求熟练掌握相应的运算公式.20.求值:( 1) lg14 ﹣+lg7 ﹣ lg18(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)应用和、差、积、商的对数的运算性质计算即可;( 2)利用指数幂的运算性质(m n mn计算即可.a) =a解答:解:( 1)∵ lg14﹣+lg7﹣ lg18=( lg7+lg2 )﹣ 2(lg7﹣ lg3 )+lg7 ﹣( lg6+lg3 )=2lg7 ﹣ 2lg7+lg2+2lg3 ﹣ lg6 ﹣ lg3( 2)∵=﹣1﹣+=﹣+=.(8分)点评:本题考查对数与指数的运算性质,关键在于熟练掌握对数与指数幂的运算性质进行计算,属于中档题.21.计算下列各题:(1)( lg5)2+lg2 ×lg50 ;﹣ 1的值.( 2)已知 a﹣ a =1,求考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用对数的运算性质,求出表达式的值;﹣ 12﹣ 2的值,然后化简,求出它的值( 2)通过 a﹣ a =1,求出 a +a解答:2×lg50=2×(lg5+1) =lg5( lg2+lg5) +lg2=1 ;解:( 1)( lg5) +lg2( lg5 ) +lg2﹣ 12﹣ 2( 2)因为 a﹣ a =1,所以 a +a﹣ 2=1,2﹣2∴a +a =3,==0 .点评:本题主要考查对数的运算性质和有理数指数幂的化简求值的知识点,解答本题的关键是熟练对数的运算性质,此题难度一般.22.( 1)计算;( 2)关于 x 的方程 3x 2﹣ 10x+k=0 有两个同号且不相等的实根,求实数k 的取值范围.考点:根式与分数指数幂的互化及其化简运算;一元二次方程的根的分布与系数的关系.专题:计算题.分析:( 1)转化为分数指数幂,利用指数幂的运算法则进行计算;( 2)由维达定理的出k 的关系式,解不等式即可.解答:( 1)解:原式 ===a 0(∵ a≠0)( 2)解:设 3x 2﹣ 10x+k=0 的根为 x 1,x 2由 x 1+, x 1 ?由条件点评: 本题考查根式和分数指数幂的转化、指数的运算法则、及二次方程根与系数的关系,属基本运算的考查.23.计算题( 1)( 2)考点 : 根式与分数指数幂的互化及其化简运算;对数的运算性质.专题 : 计算题.分析: ( 1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;( 2)运用对数运算性质及对数与指数的互逆运算化简可得.解答:解:( 1)原式 = ﹣(﹣ 2) 24﹣ = ﹣64+ +1﹣ =﹣;×(﹣ 2) +( 2)原式 =83224×8﹣ log 3 32+log 3 ﹣log 3 ﹣ 3 =log 3 ﹣ 9=﹣ 9.点评: 考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.24.计算下列各式: (式中字母都是正数)( 1)(2).考点 : 根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题 : 函数的性质及应用. 分析:( 1)利用及其根式的运算法则即可;( 2)利用立方和公式即可得出. 解答:解:( 1)原式 == ?= ==.( 2)原式 ===.点评:熟练掌握根式的运算法则、立方和公式是解题的关键.25.计算:( 1);( 2) lg25+lg2 ×lg50+ ( lg2)2.考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:( 1)由指数幂的含义和运算法则,,=|3﹣π|,求解即可.( 2)利用对数的运算法则,各项都化为用lg2 表达的式子即可求解.解答:解:( 1)==1+2+ π﹣3=π(2) lg25+lg2 ×lg50+ ( lg2)2=2﹣ 2lg2+lg2 (2﹣ lg2 ) +( lg2)2=2.点评:本题考查指数和对数式的化简和求值、考查指数和对数的运算法则、属基本运算的考查.26.已知 x+y=12 , xy=27 且 x< y,求的值.考点:有理数指数幂的运算性质.专题:计算题.分析:利用已知条件求出x﹣ y 的值,利用分母有理化直接求解所求表达式的值.解答:解:∵ x+y=12 , xy=27∴( x﹣ y)2=( x+y )2﹣ 4xy=122﹣ 4×27=36(3分)∵ x< y∴x﹣ y= ﹣ 6(5 分)∴===(9分)==(12分)点评:本题考查有理指数幂的运算,考查计算能力.27.( 1)计算:;(b,用 a, b 表示.2)已知 a=log3 2, 3 =5考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:( 1)根据指数幂的运算性质和恒等式0a,进行化简求值;a =1、0 =1( 2)根据指对互化的式子把3b化成对数式,再把化为分数指数幂的形式,由对数的运算性质将30 =5拆成 3×2×5 后,再进行求解.解答:解:( 1)原式 =(7 分)(2)∵ 3b=5∴ b=log 35∴(14 分)点评:本题考查了指数和对数运算性质的应用,常用的方法是将根式化为分数指数幂的形式,指数式和对数式互化,以及将真数拆成几个数的积或商的形式.28.化简或求值:( 1);( 2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)由原式有意义,得到a≥1,然后把各根式进行开平方和开立方运算,开方后合并即可.(2)直接运用对数式的运算性质进行求解计算.解答:解:( 1)因为 a﹣ 1≥0,所以 a≥1,所以=a﹣1+|1﹣ a|+1﹣ a=|1﹣ a|=a﹣ 1;( 2)=2lg5+2lg2+lg5 ( 1+lg2 ) +( lg2)2=2 ( lg2+lg5 ) +lg5+lg2 ( lg5+lg2 ) =2+lg5+lg2=3 .点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,解答此题的关键是由根式有意义得到 a 的取值范围,此题是基础题.29.计算下列各式的值:(1);(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;( 2)运用对数运算性质化简可得.解答:解:( 1)原式 =;.点评:考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.30.计算log( 1) lg20 ﹣ lg2 ﹣ log 23?log32+2(2)(﹣1)0+()+().考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算法则、对数的换底公式及其对数恒等式即可得出;( 2)利用指数幂的运算法则即可得出.解答:解:( 1)原式 ==1﹣1+ = ;(2)原式 =1===2 .点评:数列掌握对数的运算法则、对数的换底公式及其对数恒等式、指数幂的运算法则是解题的关键.。
高中生数学试题及答案解析
高中生数学试题及答案解析一、选择题1. 若函数\( f(x) = 3x^2 - 5x + 2 \),求\( f(-1) \)的值。
A. -6B. -4C. -2D. 0答案:B解析:将\( x = -1 \)代入函数\( f(x) \)中,得到\( f(-1) = 3(-1)^2 - 5(-1) + 2 = 3 + 5 + 2 = 10 \)。
计算错误,正确答案应为\( 10 \),但题目选项中没有10,可能是题目或选项设置有误。
2. 已知\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)为锐角,求\( \cos(\alpha) \)的值。
A. \( \frac{4}{5} \)B. \( \frac{3}{4} \)C. \( \frac{1}{2} \)D. \( \frac{3}{5} \)答案:A解析:根据勾股定理,\( \sin^2(\alpha) + \cos^2(\alpha) = 1 \)。
已知\( \sin(\alpha) = \frac{3}{5} \),代入公式得\( \cos^2(\alpha) = 1 - \left(\frac{3}{5}\right)^2 =\frac{16}{25} \)。
由于\( \alpha \)为锐角,\( \cos(\alpha) \)为正,所以\( \cos(\alpha) = \frac{4}{5} \)。
二、填空题1. 计算\( (x - 2)^2 \)展开后的结果。
__________。
答案:\( x^2 - 4x + 4 \)。
解析:根据完全平方公式,\( (x - 2)^2 = x^2 - 2 \cdot 2 \cdot x + 2^2 = x^2 - 4x + 4 \)。
2. 若\( a \),\( b \),\( c \)为三角形的三边长,且满足\( a^2 + b^2 = c^2 \),则该三角形是__________。
高中数学计算练习题
高中数学计算练习题一、代数部分1. 计算下列表达式的值:- \( (3x^2 - 2x + 1) - (5x^2 + 3x - 7) \)- \( \frac{2}{x} + \frac{3}{x+1} \)2. 解下列方程:- \( 2x^2 + 5x - 3 = 0 \)- \( \frac{1}{x} - 2 = 0 \)3. 简化下列分式:- \( \frac{4x^3 - 4x^2 + x}{x^2 - 1} \)二、几何部分1. 已知三角形ABC的三边长分别为a, b, c,且满足以下条件:- \( a^2 + b^2 = c^2 \)- \( a + b + c = 24 \)- \( ab + bc + ac = 90 \)求三角形ABC的面积。
2. 已知圆的半径为r,求圆的面积和周长。
三、三角函数部分1. 已知 \( \sin \alpha = \frac{3}{5} \),且 \( \alpha \) 在第一象限,求 \( \cos \alpha \) 和 \( \tan \alpha \)。
2. 计算下列三角函数表达式的值:- \( \sin(30^\circ) + \cos(60^\circ) \)- \( \tan(45^\circ) \)四、概率统计部分1. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,求抽到至少一个红球的概率。
2. 抛一枚硬币两次,求正面朝上的次数为1的概率。
五、综合应用题1. 某工厂生产的产品合格率为90%,如果随机抽取100件产品,求至少有85件产品合格的概率。
2. 一个班级有30名学生,其中10名男生和20名女生。
随机选取5名学生参加数学竞赛,求至少有3名女生的概率。
结束语通过这些练习题,学生可以加深对高中数学知识点的理解和应用,提高解题速度和准确率。
希望这些练习题能够帮助学生在数学学习中取得更好的成绩。
高中数学计算题
1分数计算1. 3/7 × 49/9 - 4/32. 8/9 × 15/36 + 1/273. 12× 5/6 – 2/9 ×34. 8× 5/4 + 1/45. 6÷ 3/8 – 3/8 ÷66. 4/7 × 5/9 + 3/7 × 5/97. 5/2 -(3/2 + 4/5 )8. 7/8 + (1/8 + 1/9 )9. 9 × 5/6 + 5/6 10. 3/4 × 8/9 - 1/311. 7 × 5/49 + 3/14 12. 6 ×(1/2 + 2/3 )13. 8 × 4/5 + 8 × 11/5 14. 31 × 5/6 – 5/615. 9/7 - (2/7 –10/21 )16. 5/9 × 18 – 14 × 2/717. 4/5 × 25/16 + 2/3 × 3/418. 14 × 8/7 – 5/6 × 12/1519. 17/32 – 3/4 × 9/2420. 3 × 2/9 + 1/321. 5/7 × 3/25 + 3/722. 3/14 ×× 2/3 + 1/623. 1/5 × 2/3 + 5/624. 9/22 + 1/11 ÷ 1/225. 5/3 × 11/5 + 4/326. 45 × 2/3 + 1/3 × 1527. 7/19 + 12/19 × 5/628. 1/4 + 3/4 ÷ 2/329. 8/7 × 21/16 + 1/2精选文档30. 101 × 1/5 – 1/5 × 212.一元一次方程1. 2(x-2)-3(4x-1)=9(1-x)2. 11x+64-2x=100-9x3. 15-(8-5x)=7x+(4-3x)4. 3(x-7)-2[9-4(2-x)]=225. 3/2[2/3(1/4x-1)-2]-x=26. 2(x-2)+2=x+17. 0.4(x-0.2)+1.5=0.7x-0.388. 30x-10(10-x)=1009. 4(x+2)=5(x-2)10. 120-4(x+5)=2511. 15x+863-65x=5412. 12.3(x-2)+1=x-(2x-1)13. 11x+64-2x=100-9x14. 14.59+x-25.31=015. x-48.32+78.51=8016. 820-16x=45.5×817. (x-6)×7=2x18. 3x+x=1819. 0.8+3.2=7.220. 12.5-3x=6.5《一元二次方程》测试题班级: 姓名: 学号: 成绩: 一、选择题(15分):1、方程2269x x -=的二次项系数、一次项系数、常数项分别为( ).A 、629,,B 、269-,,C 、269--,,D 、 269-,, 2、方程0152=--x x 的根的情况是( ) A 、有两个不相等实根 B 、有两个相等实根 C 、没有实数根 D 、无法确定3、方程2650x x +-=的左边配成完全平方式后所得的方程为( ).A 、2(3)14x +=B 、2(3)14x -=C 、21(6)2x +=D 、以上答案都不对4、方程0)1(=+x x 的根为( )A .0B .-1C .0 ,-1D . 0 ,1 5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( ).(A) 1 (B) 1- (C) 1或1- (D) 21.二、填空题(20分):1、若方程01682=-x ,则它的解是 .2、若方程2210mx x -+=是关于x 的一元二次方程,则m .3、利用完全平方公式填空:22______)(_____8-=+-x x x4、已知21x x 、是方程0232=+-x x 的两根,则=+21x x ,=21x x。
高中数学运算能力训练题(高一上学期,共14套,含答案)
高中数学运算能力训练题(高一共14套含答案)高一上学期数学运算能力训练题(1)1.计算下列各式的值(每小题10分共40分)(1) 125212.5602552⨯+⨯+⨯⨯=___________;(2)2﹣2﹣4×68+|﹣12|+(3.14﹣π)0=___________; (3)()2211210.5323⎡⎤⎛⎫⎡⎤----⨯⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦=___________; (4) 112234267314⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭=__________. 2.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是 .(10分) 3.化简:(每小题10分共20分)(1)﹣÷ ==__________. (2)(﹣)÷=__________.4、已知:x=,y=.那么+= .(10分)5、解方程: (每小题5分共10分)(1)方程x 2﹣2x ﹣8=0的解为__________;(2)方程22740x x -+=的解为__________.6、已知a ,b ,c 为正实数,2a 4+2b 4+c 4=2a 2c 2+2b 2c 2,则a:b:c =__________. (10分)高一上学期数学运算能力训练(2)一、填空题(共10题,每题10分,满分100分)1.计算4000(1683213)÷+÷= __________2. 计算:3215537⎛⎫-⨯=⎪⎝⎭__________ 3.111x x+>- 的解集是__________ 4.242x x -<+ 的解集是__________5.已知直角三角形的两条边长分别是方程214480x x -+= 的两根,则此三角形的周长是__________6.计算:362.4054.08.1362.4362.4854.2⨯-⨯-⨯=__________7.计算: 个1999999 个1999999⨯+1个1999999=__________ 8.化简:()⎥⎦⎤⎢⎣⎡--+---+--432843842143282020202020202020x x x x x x x x =__________ 9. 计算: 111111111___1112319962341997231997111123_4_____96_19⎛⎫⎛⎫⎛⎫----⨯++++-----⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫++++= ⎪⎝⎭10.设实数x ,y 满足()()()()⎪⎩⎪⎨⎧=-+--=-+-1120151112015133y y x x ,则y x +=__________高一上学期数学运算能力训练(3)一、填空题(共10题,每题10分,满分100分)1.计算)37.125.8(63.975.4-+-=__________2.计算:7.21111.07.09999.0⨯+⨯= __________3.不等式12x< 的解集是__________ 4.化简:2211[(1)(1)1](1)22n n n n +-++--+=__________ 5.计算:186548362361548362-⨯⨯+= __________ 6.计算:2372×109 =__________7.已知方程3x 2-2x-1=0的两根是1x ,2x ,则2212x x +=________8⎛- ⎝=__________ 9.化简:(-2.5a 3)2·(-4a)3=__________10.将x =my +2代入x 26+y 22=1得到关于y 的一元二次方程,该方程的解为1y ,2y ,则212214)(y y y y -+=__________(用含有m 的式子表示)高一上学期数学运算能力训练(4)(19:00—19:15完成)一、填空题(共10题,每题10分,满分100分)1.计算:10.4=2⎛⎫÷- ⎪⎝⎭( ) A. 15- B. 15 C. 45- D. 452.用提公因式法分解因式5()10()a x y b x y ---,提出的公因式应当为( )A .510a b -B .510a b +C .5()x y -D .y x +3.若296(3)1a k a +-+是完全平方式,则 k 的值是( )A .±4B .±2C .3D .4或24.关于x 的不等式210ax bx +-< 的解集是 {}12x x -<< ,则 a 、b 的值分别是( )A . 11,22- B. 10,2 C. 11,22- D. 1,125.在)5(log 2a b a -=-中,实数a 的范围是( )A 、 a >5或a <2B 、 25<<aC 、 23<<a 或 35<<aD 、 34<<a 6. 关于x 的不等式11(1)1x x x+>>-其中 的解集是 ( ) A .()1,2 B. ()1,+∞ C. (),1-∞ D. ()1,2-7.化简()43325⎥⎦⎤⎢⎣⎡-的结果为( ) A .5 B .5 C .5- D .-5 8.化简xx 3-的结果是( ) A .x -- B .x C .x - D .x -9.下列各式中,不正确的是() A .21521log 5= B .311013lg =⎪⎭⎫ ⎝⎛ C .55564log 214= D .24log 2x x =10. 集合⎭⎬⎫⎩⎨⎧∈-<≤-N x x x ,2110log 1|1的真子集的个数是( ) A. 1289- B. 1290- C. 1291- D. 1292-高一上学期数学运算能力训练(5)1.计算:(﹣12)+65 +(﹣8)+(﹣710 )+(﹣12)= __________。
高中数学计算练习题
高中数学计算练习题一、集合与函数1. 计算下列集合的交集和并集:A = {x | x² 3x + 2 = 0},B = {x | x² 4x + 3 = 0}2. 已知函数f(x) = 2x + 3,求f(2)和f(1)的值。
3. 设函数g(x) = x² 5x + 6,求g(x)在区间[1, 3]上的最大值和最小值。
4. 计算下列函数的定义域:h(x) = √(4 x²)5. 已知函数f(x) = (x 1) / (x + 2),求f(x)的值域。
二、三角函数与解三角形6. 已知sinα = 3/5,α为第二象限角,求cosα和tanα的值。
7. 计算sin(π/6 + π/4)的值。
8. 在△ABC中,a = 5, b = 8, C = 120°,求c的长度。
9. 已知tanA = 1/2,求sinA和cosA的值。
10. 计算下列各式的值:(1) cos²30° sin²30°(2) sin(45° + 30°) cos(45° 30°)三、数列11. 已知数列{an}的通项公式为an = 2n 1,求前10项的和。
12. 计算等差数列5, 8, 11, 14, 的第10项。
13. 已知等比数列的首项为3,公比为2,求前5项的和。
14. 设数列{bn}的通项公式为bn = 3n + 1,求证数列{bn}为递增数列。
15. 计算数列1, 1/2, 1/4, 1/8, 的前n项和。
四、平面向量与复数16. 已知向量a = (2, 3),求向量a的模。
17. 计算向量b = (4, 1)与向量c = (2, 3)的夹角。
18. 已知向量d = (m, 2),向量e = (3, m),且向量d与向量e共线,求m的值。
19. 计算复数(1 + i)²的值。
20. 已知复数z = 3 + 4i,求z的模和辐角。
高中数学计算题
高中数学计算题高中数学计算题1. 假如一辆汽车以每小时60公里的速度行驶,问它在4小时内能走多远?解析:根据速度公式,速度等于路程除以时间,所以路程等于速度乘以时间,即60公里/小时乘以4小时等于240公里。
所以,这辆汽车在4小时内能走240公里。
2. 有一个三角形ABC,已知AB=5cm,AC=8cm,角BAC为90°,问三角形的周长是多少?解析:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方之和,所以BC的平方等于AB的平方加上AC的平方,即BC的平方等于5cm的平方加上8cm的平方,即BC的平方等于25+64,即BC的平方等于89,所以BC等于√89cm。
因此,三角形的周长等于AB加上BC加上AC,即5cm加上√89cm加上8cm,即5+√89+8,所以三角形的周长等于13+√89cm。
3. 有一条铁路,全长120千米,A、B 两车站距离为80千米,B、C 两车站距离为40千米,问从A 站到C 站的距离是多少?解析:从题目中我们可以得到的信息是A站到B站的距离是80千米,B站到C站的距离是40千米,所以从A站到C站的距离就是这两段距离的和,即80千米加上40千米,即80+40=120千米。
所以,从A站到C站的距离是120千米。
4. 有一条直角边长为3cm的等腰直角三角形,问其斜边长是多少?解析:由题可知,这是一个直角三角形,其中直角边的边长是3cm,根据勾股定理,斜边的平方等于直角边的平方之和,所以斜边等于直角边的开方,即斜边等于√(3^2+3^2),即斜边等于√18,所以斜边等于3√2cm。
所以,这个等腰直角三角形的斜边长是3√2cm。
5. 如果一块正方形的面积是100平方厘米,问这个正方形的边长是多少?解析:正方形的面积等于边长的平方,所以边长等于正方形的面积的开方,即边长等于√100平方厘米,即边长等于10厘米。
所以,这个正方形的边长是10厘米。
综上所述,以上是高中数学计算题的解答。
高中最难数学题(十六)
1 ∫0πsin2(x)dx2π使用三角恒等式sin2(x)=21−cos(2x),然后积分。
2 求解方程组{x2+y2=25x+y=7{x=3y=4或{x=4y=3将第二个方程代入第一个方程,解二次方程。
3 已知f(x)=x3−6x2+11x−6,求f(x)的单调区间。
单调递增区间:(−∞,31)∪(2,+∞);单调递减区间:(31,2)求导,解不等式f′(x)>0和f′(x)<0。
4 计算lim x→0x sin(x) 1 使用洛必达法则或泰勒展开。
5 求解不等式x2−4x+3<01<x<3因式分解,解不等式。
6 已知椭圆方程a2x2+b2y2=1,求焦点坐标。
(±c,0),其中c=a2−b2使用椭圆的性质。
7 计算∑n=110n2385 使用求和公式∑n=1Nn2=6N(N+1)(2N+1)。
8 求解复数方程z2+4z+5=0z=−2±i使用求根公式。
9 已知y=ln(x2+1),求y′。
y′=x2+12x使用链式法则。
10 计算∫e2xdx21e2x直接积分。
11 求解矩阵方程[2314][xy]=[511][13]使用矩阵乘法解方程组。
12 计算cos(3π)21使用特殊角的三角函数值。
13 求解不等式x1>10<x<1分析不等式,注意x的取值范围。
14 已知y=arctan(x),求y′′。
y′′=−(1+x2)22x使用链式法则和三角函数的导数。
15 计算∫01x3dx41直接积分。
16 求解双曲线方程a2x2−b2y2=1的渐近线方程。
y=±abx使用双曲线的性质。
17 计算∑n=1∞n(n+1)1 1 使用裂项相消法。
18 求解微分方程dxdy=2x+3。
y=x2+3x+C直接积分。
$19 计算$\left \begin{array}{cc} 1& 2 \ 3 & 4\end{array} \right20 求解不等式组{x−2<03x+4>2−32<x<2分别解两个不等式,然后取交集。
高中计算题大全
高中计算题大全1. 代数题1. 求方程 $2x + 5 = 15$ 的解。
2. 解方程组:$$\begin{align*}3x + y &= 10 \\2x - 4y &= 2\end{align*}$$3. 化简表达式 $2(x-3) + 5(2x+1)$。
4. 解不等式 $4x - 7 \geq 5$。
5. 解不等式组:$$\begin{align*}x + 2y &\geq 10 \\4x - y &\leq 8\end{align*}$$2. 几何题1. 计算三角形的面积,已知底边长为 $6$,高为 $8$。
2. 计算四边形的周长,已知各边长分别为 $2$,$4$,$3$,$5$。
3. 计算正方体的体积,已知边长为 $10$。
4. 计算球的体积,已知半径为 $4$。
5. 已知角 $A$ 和角 $B$ 的大小,计算角 $A+B$ 的度数。
3. 概率题1. 从一副有 $52$ 张牌的扑克牌中,随机抽取 $5$ 张牌,求得到一副同花顺的概率。
2. 一个骰子投掷 $3$ 次,求得到至少一次 6 点的概率。
3. 一人射击目标 5 次,每次射中的概率为 $0.2$,求射中至少 4 次的概率。
4. 有 $4$ 个红球和 $6$ 个蓝球,先选一个球,然后不放回地选第二个球,求第二个球为红色的概率。
5. 一个装有 $10$ 个白球和 $15$ 个黑球的箱子中,随机抽取$3$ 个球,求其中至少有 $2$ 个白球的概率。
4. 统计题1. 班级中有 $40$ 个学生,其中 $20$ 人是男生,其余是女生,求班级中女生的人数。
2. 一件产品共制造了 $500$ 个,其中 $300$ 个合格,求不合格的产品数量。
3. 某学校有 $800$ 名学生,其中 $600$ 人是日制生,其余是夜制生,求夜制生的人数。
4. 一次调查发现,$60\%$ 的学生会使用汉字写自己的名字,调查了 $400$ 个学生,求会使用汉字写自己的名字的学生人数。
高中数学计算题
高中数学计算题这里呈现一些高中数学计算题,包括常见的代数、几何、函数、三角函数和导数等方面,通过对这些题目的解答可以帮助学生提高数学能力和运算技能。
以下是一些代表性的问题:1. 已知 $\triangle ABC$ 的三边长分别为 $a=5$,$b=6$, $c=7$,其中 $a$ 和 $b$ 的夹角为 $60^\circ$,求$\angle C$ 的大小。
解:根据余弦定理,有 $c^2=a^2+b^2-2ab\cos C$,代入已知数值可得:$$7^2=5^2+6^2-2\times5\times6\cos C$$$$49=61-60\cos C$$$$\cos C=\frac{12}{60}=\frac15$$因此$\angleC=\arccos{\frac15}\approx78.463^\circ$。
2. 解方程 $2x+3=4x-1$。
解:将未知数移到一边可得:$$3+1=4x-2x$$$$x=\frac{4}{2}=2$$因此方程的解为 $x=2$。
3. 若 $x^2-4=(x+2)(x-3)$,求 $x$。
解:将括号用分配律展开可得:$$x^2-4=x^2-x-6$$$$0=-x-2$$$$x=-2$$因此解为 $x=-2$。
4. 求函数 $f(x)=4x^2-7x+2$ 的极值。
解:首先计算一阶导数:$$f'(x)=8x-7$$将一阶导数等于零的点代入原函数可得:$$f\left(\frac78\right)=\frac{1}{64}$$因此函数 $f(x)$ 在 $x=\frac78$ 处取得极小值$\frac{1}{64}$。
5. 已知正弦函数 $y=\sin{x}$ 的值域为 $\left[-\frac32,\frac32\right]$,求 $y=2\sin{x}$ 的值域。
解:对于正弦函数,其值域为 $[-1,1]$。
因此,当$y=\sin{x}$ 时,最小值为 $-\frac32$,最大值为$\frac32$。
高中数学题库
高中数学题库高中数学题库1. 求解方程:2x + 5 = 3x - 62. 求等差数列的和:已知首项为 a,公差为 d,项数为n,则等差数列的和 Sn = (n/2)(2a + (n-1)d)3. 已知等比数列的首项为 a,公比为 r,项数为 n,则等比数列的和 Sn = a(1 - r^n) / (1 - r)4. 设函数 f(x) = x^2 + 3x - 2,则求 f(2) 的值。
5. 已知函数 y = 3x^2 - 2x + 5,求其导函数。
6. 计算概率:从扑克牌中随机抽取一张牌,求抽到黑桃的概率。
7. 三角函数:已知sin(θ) = 4/5,求cos(θ) 的值。
8. 求三角形的面积:已知三角形的底边长为 a,高为 h,则三角形的面积S = (1/2) × a × h9. 分解因式:已知 a^2 - b^2 = (a - b)(a + b),将x^2 - 4 分解为两个因式。
10. 解方程组:已知 2x + y = 8,3x - y = 5,求解 x 和 y 的值。
11. 已知二次函数图像的顶点坐标为 (2, -3),求函数的解析式。
12. 求直线与曲线的交点:已知直线方程为 y = 2x - 1,曲线方程为 y = x^2 + 3x + 2,求交点的坐标。
13. 求函数的极限:已知函数 f(x) = (x^2 - 4x + 3) / (x - 1),求 x 趋近于 1 时的极限。
14. 计算三角形的周长:已知三角形的三边长分别为 a,b,c,则三角形的周长 P = a + b + c15. 解二次方程:已知方程 x^2 + 5x + 6 = 0,求解 x 的值。
以上为高中数学题库的部分题目,希望能对您的学习有所帮助。
高中数学题库
高中数学题库高中数学题库1. 求下列方程的根:a) x^2 - 5x + 6 = 0b) 2x^2 + 3x - 2 = 0c) 4x^2 + 9 = 13x2. 求下列不等式的解集:a) 3x - 5 ≤ 2x + 7b) 2(x - 3) > 3(2x + 1)c) 4x^2 - 16x > 93. 已知直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边的长度。
4. 某车从A地到B地共行驶300km,第一阶段行驶了x km,速度为v km/h;第二阶段行驶了(300 - x) km,速度为(v + 10) km/h。
已知总行驶时间为5小时,请计算x和v的值。
5. 设数列{an}为等差数列,已知a1 = 3,d = -2,求第n项。
6. 设正方形的一条边长为x cm,另一条边长比第一条边长多10cm,请计算该正方形的面积。
7. 某图形的周长为24cm,已知它的宽是长的一半,求该图形的长和宽。
8. 已知a,b,c为实数,且a ≠ 0。
解方程ax + b = cx - a。
9. 已知直角三角形的一条直角边长度为5cm,斜边长度为13cm,请计算另一条直角边的长度。
10. 求函数f(x) = 3x^2 - 7x + 2在区间[-1, 2]上的最大值和最小值。
11. 若函数f(x) = ax^2 + bx + c的图像经过点(1, 4),(2, 6),(3, 10),求a、b、c的值。
12. 已知一边为a,另一边为b的矩形的面积为12,求a 和b的值。
13. 求证:任意三角形的三条角平分线相交于一点。
14. 若两个数的和为x,乘积为y,求这两个数。
15. 某数列的首项为a,公差为d,已知第n项为an = 2n - 1,求a和d的值。
16. 解方程组:a) 2x - 3y = 103x + 2y = 8b) x + 2y = 6x - y = 317. 若抛物线y = ax^2 + bx + c的图像经过点(1, 3),(2, 6),(3, 3),求a、b、c的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学计算题大全篇一:2014年高中数学计算题五2014年高中数学计算题五2014年高中数学计算题五一(解答题(共30小题)1((1)已知x+y=12,xy=9,且x,y,求的值( (2)2(计算下列各题:(1)(2)3(计算下列各题: (?)(?)4((1)化简:( ( ,lg25,2lg2; ; ( ,(a,0,b,0)((2)已知2lg(x,2y)=lgx+lgy,求5(解方程6(求下列各式的值:(1)lg,lg+lg 的值( (17(求值:2(1)(lg5)+lg2?lg50;(2)( (8(计算9(计算:(1)已知x,0,化简(2)10(计算:(1)(0.001)(2)lg25+lg2,lg11((1)求值:(2)解不等式:12(化简:( ( +27+(),(),1.5的值( ( ,log29?log32(13((?) 化简:;(?) 已知2lg(x,2y)=lgx+lgy,求14(计算:(1)(2的值( ),×e++10 lg2(2)lg5+lg2×lg500,lg 15(化简或求值:(1),log29×log32(16((1)计算:;2(2)已知2a=5b=100,求的值(17((1)计算(2)已知log189=a,18b=5,试用a,b表示log365( 18(计算:(1)(lg50)2+lg2×lg(50)2+lg22;(2)2(lg)2+lg?lg5+;(3)lg5(lg8+lg1000)+(lg2)2+lg+lg0.06(19(化简下列式子:(1);(2)(20(化简下列式子:(1);(2);(3)(21(化简求值:22(化简下列式子:(1);((3)(23(化简下列式子:(1);3(2);(3)24(化简下列式子: ((1);(2)(25(解方程:(1)3,5=3,5;22(2)logx(9x)?log3x=4(26(计算下列各式2(?)(lg2)+lg5?lg20,1 (?)27(计算:lg2+28(解关于x的不等式loga[4+(x,4)a],2loga(x,2),其中a?(0,1)(,?( ( xx,2x,4x,329(解不等式组:(30(当a,0且a?1时,解关于x的不等式:2loga,2?2loga(x,1)篇二:高一数学基础计算题初中计算题(一)班级________ 姓名__________一、填空题:1.若x?3?1, 则代数式x?3x?142的值等于. x?1x?4x?322.如果a,b是方程x?x?1?0的两个根,那么代数式a?b?ab的值是3(若1<x<4, 则化简(x?4)2?(x?1)2的结果是4. 5.3的算术平方根是, 2的平方根是.的值是,将分母有理化的值是.二、选择题:6(下列各组单项式中,是同类项的是( )22A(?0.3ab与?0.3ab; B.ab与2a3b2; C. ax2与bx2 ; D. 5m2n与?nm2 27(下列根式是最简二次根式的是()8(下列分式中,不论x取何值,都有意义的是( ) A(2xx?5 B. x?1C. x?1D.222x?13xx?1x?19(已知x?2,则代数式2?x的值为( )x?15A(,21B(2C(32 D(421?0210.将,??2?,??3?这三个数按从大到小的顺序排列,正确的结果是()61??1? (A)??2?,,??3? (B)??,??2?,??3?1202661? (D)??2?,??3?,?1? (C)??3?,??2?,?21021661-511.下列各式计算正确的是()6(A)a12?a6?a2(B)?x?y??x2?y2(C)2x?21(D)22?x4?x335三、计算题1 412x12(解分式方程:(2)3?? (1)??2 x?1x?113(解方程组:(1)??3x?4y?19x?y?414(解不等式组:(1)??3x?1,52x6,015( 1?1?x??x21x3x?16x?2(2)??2x?y?57x2y612(x3)3(2)3x?2x 16(32412232-5ab2a,b[,]?()a,ba(b,a)ab11tan45?230?117(18(高一计算题(一)一、选择题:x?y?2{1(方程组x?y?0的解构成的集合是()D({1}8A({(1,1)}B({1,1} C((1,1)2(设集合M?{m?Z|?3?m?2},N?{n?Z|?1?n?3},则MA(?01,?3(如果集合A={x|ax2,2x,1=0}中只有一个元素,则a的值是 A(0B(0 或1 C(1 N? ( )B(??101,,,,,2? ,,2? D(??101? C(?01()D(不能确定24(若f(x)?x?px?q满足f(1)?f(2)?0,则f(?1)的值是()A 5B ?5C 6D ?65(函数y ( ) A (?,)B [?,]C (??,]?[,??) D (?,0)?(0,??)6(已知f(x)??13241324123412(x?6)?x?5,则f(4)为 ( )f(x2)(x6)3A 2B 3C 4D 1 7.?(?2)?(?2)A 74911()3()3的值 ( )223B 8C ,24D ,8 42sin2?cos2?8(=?1?cos2?cos2?A(tan?B(tan2?C(1D(12( )3-554,cos,则sin?的值是 ( ) 135 ********A B CD65656565cosx?sinx10(函数f(x)?的最小正周期为 ()cosx?sinx109(?,?都是锐角,且sin??A(1 B.C. 2?D. ? 211(在?ABC中,b2,a2,c2,c,则?B等于( )A.60?B.45?C.120?D.150?二、填空题:12( 若函数f(x)?(k?2)x2?(k?1)x?3是偶函数,则f(x)的递减区间是_____________. 13(若loga2?m,loga3?n,a2m?n?14(函数y?cos2xxcosx的最大值是三、计算题15(求下列函数的定义域: (1)y,x,1 1(2)y,,x ,x,4 x,2x,317 已知tanx?2,求cosx?sinxcosx?sinx18(对于二次函数y??4x?8x?3,(1)指出图像的开口方向、对称轴方程、顶点坐标; (2)求函数的最大值或最小值; (3)分析函数的单调性。
4-511219(已知函数y?sin11x?cosx,求: 22(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间5-5篇三:高中数学公式大全(完美版)高中数学公式大全(完美版)1.,.2..4.集合的子集个数共有个.个;真子集有个;非空子集有个;非空的真子集有5.二次函数的解析式的三种形式 (1)一般式;(2)顶点式式 (3)零点式时,设为此式12;当已知抛物线的顶点坐标时,设为此;当已知抛物线与轴的交点坐标为4切线式:切且切点的横坐标为时,设为此式。
当已知抛物线与直线相6.解连不等式常有以下转化形式.7.方程在内有且只有一个实根,等价于8.闭区间上的二次函数的最值。
二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a0时,若,则;,,.(2)当a<0时,若,则,若,则,.9.一元二次方程,0的实根分布1方程在区间内有根的充要条件为或;132方程在区间内有根的充要条件为或或;3方程在区间内有根的充要条件为或 .10.定区间上含参数的不等式恒成立(或有解)的条件依据(1)在给定区间不等式的子区间形如,不同上含参数的。
(为参数)恒成立的充要条件是(2)在给定区间的充要条件是的子区间上含参数的不等式。
(为参数)恒成立(3) 在给定区间解充要条件是的子区间上含参数的不等式。
(为参数)的有(4) 在给定区间的充要条件是的子区间上含参数的不等式。
(为参数)有解14对于参数及函数恒成立,则;若;若.若有解,则恒成立,则;若.若函数;若有解,则无最有解,则大值或最小值的情况,可以仿此推出相应结论 11.真值表12.常见结论的否定形式 13.四种命题的相互关系(右图): 14.充要条件记表示条件,表示结论1充分条件:若,则是充分条件.2必要条件:若,则是必要条件.3充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.15.函数的单调性的等价关系 (1)设那么上是增函数;上是减函数.15(2)设函数,则在某个区间内可导,如果为减函数.,则为增函数;如果16.如果函数和都是减函数,则在公共定义域内,和函数和都是增函数,则在公共定义域内,和函数和也是减函数; 如果函数也是增函数; 如果函数减函数,则复合函数在其对应的定义域上都是和在其对是增函数; 如果函数应的定义域上都是增函数,则复合函数和是增函数;如果函数在其对应的定义域上一个是减函数而另一个是增函数, 则复合函数是减函数.17(奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;16反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数( 18.常见函数的图像:17。