【中小学资料】2018版高考数学一轮复习 第十一章 统计与概率 第3讲 随机事件的概率 理

合集下载

课标通用2018年高考数学一轮复习第十一章计数原理概率随机变量及其分布11.4随机事件的概率学案理2017101425

课标通用2018年高考数学一轮复习第十一章计数原理概率随机变量及其分布11.4随机事件的概率学案理2017101425

§11.4随机事件的概率考纲展示►1.了解随机事件发生的不确定性和概率的稳定性,了解概率的意义以及频率与概率的区别.2.了解两个互斥事件的概率加法公式.考点1随机事件的关系1.事件的分类答案:一定会一定不会可能发生也可能不2.频率和概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出n A现的________n A为事件A出现的频数,称事件A出现的比例f n(A)=为事件A出现的频率.n(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的________稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.答案:(1)次数(2)频率f n(A)3.事件的关系与运算定义符号表示如果事件A发生,则事件B________,包含________关系这时称事件B包含事件A(或称事件A包含于事件B)(或A⊆B)相等若B⊇A且A⊇B,那么称事件A与事件BA=B 关系相等并事件若某事件发生当且仅当A∪B (和事件) __________________,称此事件为事件(或A+B)A与事件B的并事件(或和事件)若某事件发生当且仅当交事件______________________________,则称此事件(积事件) (或AB)为事件A与事件B的交事件(或积事件)续表定义符号表示互斥事件若A∩B为________事件,那么称事件A与事件B互斥A∩B=∅A∩B=∅对立若A∩B为________事件,A∪B为________事件,且A∪B 事件那么称事件A与事件B互为对立事件=U 答案:一定发生B⊇A事件A发生或事件B发生事件A发生且事件B发生A∩B 不可能不可能必然[教材习题改编]从6名男生、2名女生中任选3人,则下列事件:①3人都是男生;②至少有1名男生;③3人都是女生;④至少有1名女生.其中是必然事件的序号有__________.答案:②解析:因为只有2名女生,所以任选3人,至少有1人是男生.概率的基本概念:事件的概念;频率与概率的关系.(1)抛掷骰子一次,出现的点数可能是1,2,3,4,5,6,设事件A表示出现的点数是偶数或不小于5,则A=__________.答案:{2,4,5,6}解析:出现偶数有2,4,6,不小于5有5,6,所以事件A={2,4,5,6}.(2)某射手在同一条件下进行射击,结果如下:射击次数10 20 50 100 200 500击中靶心次数8 19 44 92 178 455 这个射手射击一次,击中靶心的概率约是__________.答案:0.90m 解析:击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89,0.91,易知击中靶心的频率n 在0.90附近摆动,故P(A)≈0.90.[典题1](1)[2017·湖北十市联考]从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“至少有一个红球”D.“恰有一个黑球”与“恰有两个黑球”[答案] D[解析]A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球、一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.(2)一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示“向上的一面出现奇数点”,事件B表示“向上的一面出现的点数不超过3”,事件C表示“向上的一面出现的点数不小于4”,则()A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件[答案] D[解析]根据互斥事件与对立事件的定义作答,A∩B={出现点数1或3},事件A,B不互斥更不对立;B∩C=∅,B∪C=Ω(Ω为必然事件),故事件B,C是对立事件.[点石成金]判别互斥事件与对立事件的两种方法(1)定义法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.(2)集合法①由各个事件所含的结果组成的集合,彼此的交集为空集,则事件互斥.②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.考点2随机事件的概率概率的几个基本性质(1)概率的取值范围:________.(2)必然事件的概率P(E)=________.(3)不可能事件的概率P(F)=________.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=________.若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=________,P(A)=________.答案:(1)[0,1](2)1(3)0(4)P(A)+P(B)11-P(B)(1)[2017·贵州贵阳一中适应性考试]某校新生分班,现有A,B,C三个不同的班,甲和乙同学将被分到这三个班,每个同学分到各班的可能性相同,则这两名同学被分到同一个班的概率为()1 1 5 3A. B. C. D.3 5 3 4答案:A解析:甲,乙两名同学分班有以下情况:(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9种,其中符合条件的有3种,所以这两名同学被分到3 1同一个班的概率为=,故选A.9 3(2)[教材习题改编]记一个两位数的个位数字与十位数字的和为A.若A是不超过5的奇数,从这些两位数中任取一个,其个位数为1的概率为________.2答案:9解析:根据题意,个位数字与十位数字之和为奇数且不超过5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率2为.9[典题2]某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品甲乙丙丁顾客人数100 √×√√217 ×√×√200 √√√×300 √×√×85 √×××98 ×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解](1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所200以顾客同时购买乙和丙的概率可以估计为=0.2.1 000(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200 位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+200=0.3.1 000200(3)与(1)同理可得,顾客同时购买甲和乙的概率可以估计为=0.2,1 000100+200+300顾客同时购买甲和丙的概率可以估计为=0.6,1 000100顾客同时购买甲和丁的概率可以估计为=0.1.1 000所以如果顾客购买了甲,则该顾客同时购买丙的可能性最大.[题点发散1]在本例条件下,估计顾客购买乙或丙的概率.217+98解:解法一:顾客购买乙而不购买丙的概率为=0.315,1 000100+300顾客购买丙而不购买乙的概率为=0.4,1 000200顾客既购买乙又购买丙的概率为=0.2.1 000故顾客购买乙或丙的概率为0.315+0.4+0.2=0.915.85解法二:顾客既不购买乙也不购买丙的概率为=0.085.1 000故顾客购买乙或丙的概率为1-0.085=0.915.[题点发散2]在本例条件下,估计顾客至少购买两件商品的概率是多少?85+98解:顾客只购买一件商品的概率为=0.183.1 000故顾客至少购买两件商品的概率是1-0.183=0.817.[点石成金] 1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期 1 2 3 4 5 6 7 8 9 10天气晴雨阴阴阴雨阴晴晴晴日期11 12 13 14 15 16 17 18 19 20天气阴晴晴晴晴晴阴雨阴阴日期21 22 23 24 25 26 27 28 29 30天气晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,26 13西安市不下雨的概率为=.30 15(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不7下雨的频率为.87以频率估计概率,运动会期间不下雨的概率为.8考点3互斥事件与对立事件的概率(1)[教材习题改编]若A,B为互斥事件,P(A)=0.4,P(A∪B)=0.7,则P(B)=__________.答案:0.3解析:∵A,B为互斥事件,∴P(A∪B)=P(A)+P(B)=0.4+P(B)=0.7,∴P(B)=0.7-0.4=0.3.(2)[教材习题改编]经统计,在夏日超市付款处排队等候付款的人数及其概率如下:排队人数0 1 2 3 4 5人及以上概率0.1 0.16 0.3 0.3 0.1 0.04则至少有2人排队的概率为__________.答案:0.74解析:依题意,“至少有2人排队”记为事件A,则其对立事件为至多有1人排队,所以P(A)=1-(0.1+0.16)=0.74.互斥事件:不同时发生;加法公式.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,设A={恰有1名男生},B={恰有2名男生},C={至少有1名男生},D={至少有1名女生},其中彼此互斥的事件是__________,互为对立事件的是__________.答案:A与B,B与D B与D解析:设I为从3名男生和2名女生中,任选2名同学去参加演讲比赛所发生的所有情况.因为A∩B=∅,B∩D=∅,所以A与B,B与D为互斥事件.因为B∩D=∅,B∪D=I,所以B与D互为对立事件.[典题3][2017·河南洛阳模拟]经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:排队人数0 1 2 3 4 5人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?[解]记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)解法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G) =0.44.[点石成金]求复杂互斥事件概率的两种方法(1)直接法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算.(2)间接法:先求此事件的对立事件,再用公式P(A)=1-P(A)求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就会较简便.[提醒]应用互斥事件概率的加法公式,一定要注意首先确定各个事件是否彼此互斥,然后求出各事件发生的概率,再求和(或差).某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.1 10 1 50 1解:(1)P(A)=,P(B)==,P(C)==.1 000 1 000 100 1 000 201 1 1故事件A,B,C的概率分别为,,.1 000 100 20(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵A,B,C两两互斥,1+10+50 61∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)==.故1张奖券的中奖概率为1 000 1 00061.1 000(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)1 1 989=1-( =.+100)1 000 1 000989故1张奖券不中特等奖且不中一等奖的概率为.1 000[方法技巧] 1.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.2.当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).真题演练集训1.[2014·新课标全国卷Ⅰ]4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()答案:D解析:4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,1+1 7∴所求概率为1-=.16 82.[2015·江苏卷]袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.5答案:6解析:由古典概型概率公式,得C24-C 52所求事件的概率为P==.C24 63.[2016·北京卷]A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):A班6 6.577.58B班67 8 9101112C班3 4.567.5910.51213.5(1)试估计C班的学生人数;(2)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)解:(1)由题意知,抽出的20名学生中,来自C班的学生有8名.根据分层抽样方法,C8班的学生人数估计为100×=40.20(2)设事件A i为“甲是现有样本中A班的第i个人”,i=1,2,…,5,事件C j为“乙是现有样本中C班的第j个人”,j=1,2, (8)1由题意可知,P(A i)=,i=1,2, (5)51P(C j)=,j=1,2, (8)81 1 1P(A i C j)=P(A i)P(C j)=×=,i=1,2,...,5,j=1,2, (8)5 8 40设事件E为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,∪A5C4.因此P(E)=P(A1C1)+P(A1C2)+P(A2C1)+P(A2C2)+P(A2C3)+P(A3C1)+P(A3C2)+P(A3C3)+P(A4C1)+P(A4C2)+P(A4C3)+P(A5C1)+P(A5C2)+P(A5C3)+P(A5C4)1 3=15×=.40 8(3)μ1<μ0.课外拓展阅读方程思想在概率问题中的运用探讨[典例]袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球1 5 5的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、黄3 12 12球、绿球的概率各是多少?[思路分析]本题可利用方程的思想及互斥事件、对立事件的概率公式求解,也可逐个求各色球的个数再求其概率.[解]解法一:从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A,B,C,D,1则有P(A)=,35P(B∪C)=P(B)+P(C)=,125P(C∪D)=P(C)+P(D)=,121 2P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-=,3 31 1 1联立解得P(B)=,P(C)=,P(D)=,4 6 41 1 1因此得到黑球、黄球、绿球的概率分别是,,.4 6 4n 1解法二:设红球有n个,则=,12 3所以n=4,即红球有4个.5又得到黑球或黄球的概率是,12所以黑球和黄球共5个.又总球数是12,所以绿球有12-4-5=3(个).5又得到黄球或绿球的概率也是,13- 11 -所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2 =3(个).3 1 2 1 3 1因此得到黑球、黄球、绿球的概率分别是=,=,=.12 4 12 6 12 4- 12 -。

2018届高考数学(理)大一轮复习教师用书第十一章第三节随机事件的概率Word版含解析

2018届高考数学(理)大一轮复习教师用书第十一章第三节随机事件的概率Word版含解析

第三节随机事件的概率突破点(一) 随机事件的频率与概率1.事件的分类2.频率和概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率.(2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.事件A A 多,它在A 的概率附近摆动幅度越来越小,即概率是频率的稳定值,因此在试验次数足够的情况下,给出不同事件发生的次数,可以利用频率来估计相应事件发生的概率.[典例](2017·湖北七市联考)某电子商务公司随机抽取 1 000名网络购物者进行调查.这1 000名购物者2015年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:本节主要包括2个知识点: 1.随机事件的频率与概率;互斥事件与对立事件.(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.[解](1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:这1 000名购物者获得优惠券金额的平均数为:50×400+100×300+150×280+200×201 000=96.(2)由获得优惠券金额y与购物金额x的对应关系,由(1)有P(y=150)=P(0.6≤x<0.8)=0.28,P(y=200)=P(0.8≤x≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.1.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.2.如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到火车站的人进行调查,调查结果如下:(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人), 用频率估计概率,可得所求概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得所求各频率为(3)记事件A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;记事件B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),故甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),故乙应选择L2.突破点(二)互斥事件与对立事件1.概率的基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率:P(A)=1.不可能事件的概率:P(A)=0.2.互斥事件和对立事件[例1](1)从1,2,3①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡[解析](1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.(2)若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1,充分性成立.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A,B不是对立事件,必要性不成立.故甲是乙的充分不必要条件.(3)“至多有一张移动卡”包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,其概率为1-310=710.[答案](1)C(2)A(3)A[方法技巧]事件间的关系的判断方法(1)判断事件间的关系时,可把所有的试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件间的关系.(2)对立事件一定是互斥事件,也就是说不互斥的两个事件一定不是对立事件,在确定了两个事件互斥的情况下,就要看这两个事件的和事件是不是必然事件,这是判断两个事件是否为对立事件的基本方法.判断互斥事件、对立事件时,注意事件的发生与否都是对于同一次试验而言的,不能在多次试验中判断.(3)从集合的角度上看:事件A,B对应的基本事件构成了集合A,B,则A,B互斥时,A ∩B =∅;A ,B 对立时,A ∩B =∅且A ∪B =Ω(Ω为全集).两事件互斥是两事件对立的必要不充分条件.互斥事件、对立事件的概率[例2] 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [解] (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .因为A ,B ,C 两两互斥,所以P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,所以P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.[方法技巧]求复杂互斥事件概率的两种方法(1)直接求解法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由P (A )=1-P (A )求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.能力练通 抓应用体验的“得”与“失”1.[考点一]把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥事件但不是对立事件D .以上答案都不对解析:选C 由互斥事件和对立事件的概念可判断,应选C.2.[考点一]抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( )A .至多有2件次品B .至多有1件次品C .至多有2件正品D .至少有2件正品解析:选B 因为“至少有n 个”的反面是“至多有n -1个”,又因为事件A 为“至少有2件次品”,所以事件A 的对立事件为“至多有1件次品”.3.[考点二]口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A .0.45B .0.67C .0.64D .0.32解析:选D 由题可知,摸出红球的概率为0.45,摸出白球的概率为0.23,故摸出黑球的概率P =1-0.45-0.23=0.32.4.[考点二]围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A.17B.1235C.1735D .1解析:选C 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.5.[考点二]某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.则P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)某险种的基本保费为a (单位:元),继续购买该保险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记A )的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a . 因此,续保人本年度平均保费的估计值为1.192 5a .2.(2015·新课标全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.B 地区用户满意度评分的频数分布表满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.解:(1)B地区用户满意度评分的频率分布直方图如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“都是红球”C .“至少有一个黑球”与“至少有一个红球”D .“恰有一个黑球”与“恰有两个黑球”解析:选D A 中的两个事件是包含关系,不是互斥事件;B 中的两个事件是对立事件;C 中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对立的关系.2.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A ∪B 与C 是互斥事件,也是对立事件 B .B ∪C 与D 是互斥事件,也是对立事件 C .A ∪C 与B ∪D 是互斥事件,但不是对立事件 D .A 与B ∪C ∪D 是互斥事件,也是对立事件解析:选D 由于A ,B ,C ,D 彼此互斥,且A ∪B ∪C ∪D 是一个必然事件,故其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.3.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是( )A .甲获胜的概率是16B .甲不输的概率是12C .乙输了的概率是23D .乙不输的概率是12解析:选A “甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P =1-12-13=16,故A 正确;“乙输了”等于“甲获胜”,其概率为16,故C 不正确;设事件A 为“甲不输”,则A 是“甲胜”、“和棋”这两个互斥事件的并事件,所以P (A )=16+12=23或设事件A 为“甲不输”,则A 是“乙获胜”的对立事件,所以P (A )=1-13=23,故B 不正确;同理,“乙不输”的概率为56,故D 不正确.4.某城市2016年的空气质量状况如下表所示:100<T ≤150时,空气质量为轻微污染,则该城市2016年空气质量达到良或优的概率为________.解析:由题意可知2016年空气质量达到良或优的概率为P =110+16+13=35.答案:355.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.解析:摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n 个,则0.4221=0.3n ,故n =15.答案:15[练常考题点——检验高考能力]一、选择题1.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08解析:选C 记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.2.容量为20的样本数据,分组后的频数如下表:A .0.35B .0.45C .0.55D .0.65解析:选B 数据落在[10,40)的概率为2+3+420=920=0.45,故选B.3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:选B 这批米内夹谷约为28254×1 534≈169石,故选B.4.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150, 151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5 cm ~170.5 cm 之间的概率约为( )A.25B.12C.23D.13解析:选A 从已知数据可以看出,在随机抽取的这20位学生中,身高在155.5 cm ~170.5 cm 之间的学生有8人,频率为25,故可估计在该校高二年级的所有学生中任抽一人,其身高在155.5 cm ~170.5 cm 之间的概率约为25.5.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是( )A.⎝⎛⎭⎫54,2B.⎝⎛⎭⎫54,32 C.⎣⎡⎦⎤54,32D.⎝⎛⎦⎤54,43解析:选D由题意可得⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1,解得54<a ≤43.6.做掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B -发生的概率为( )A.13B.12C.23D.56解析:选C 由于基本事件总数为6,故P (A )=26=13,P (B )=46=23,从而P (B -)=1-P (B )=1-23=13,又A 与B -互斥,故P (A +B -)=P (A )+P (B -)=13+13=23.故选C.二、填空题7.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________,________.解析:断头不超过两次的概率P 1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P 2=1-P 1=1-0.97=0.03.答案:0.97 0.038.2014年6月,一篇关于“键盘侠”的时评引发了大家对“键盘侠”的热议(“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象).某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有________人.解析:在随机抽取的50人中,持反对态度的频率为1-1450=1825,则可估计该地区对“键盘侠”持反对态度的有9 600×1825=6 912(人).答案:6 9129.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35. 答案:3510.若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y ,则x +y 的最小值为________.解析:由题意,x >0,y >0,4x +1y =1.则x +y =(x +y )·⎝⎛⎭⎫4x +1y =5+⎝⎛⎭⎫4y x +x y ≥9,当且仅当x =2y 时等号成立,故x +y 的最小值为9.答案:9 三、解答题11.某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表: 近20年六月份降雨量频率分布表(2)率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为(2)由已知可得Y =X2+425,故P (“发电量低于490万千瓦时或超过530万千瓦时”) =P (Y <490或Y >530)=P (X <130或X >210) =P (X =70)+P (X =110)+P (X =220) =120+320+220=310. 故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.12.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量 Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:1米.(1)完成下表,并求所种作物的平均年收获量;(2)的概率.解:(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:所种作物的平均年收获量为51×2+48×4+45×6+42×315=102+192+270+12615=69015=46.(2)由(1)知,P(Y=51)=215,P(Y=48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=215+415=25.。

2018版高考数学(浙江文理通用)大一轮复习讲义课件第十一章概率11.3

2018版高考数学(浙江文理通用)大一轮复习讲义课件第十一章概率11.3
解析
则此射手“射击一次命中环数大于7”的概率为
答案
A.0.28
B.0.88
C.0.79 √
D.0.51
根据X的分布列知,所求概率为0.28+0.29+0.22=0.79.
1
2
3
4
5
6
7
8
9
10 11 12 13
2.(2016· 岳阳模拟)设X是一个离散型随机变量,其分布列为
X
P
-1 1 2
0
1-2q
答案 解析
1 4 C3 C C 13 4 3 4 P(ξ≤6)=P(取到 3 只红球 1 只黑球)+P(取到 4 只红球)= C4 +C4=35. 7 7
题型三 离散型随机变量的均值与方差 例3 (2016· 浙江六校联考改编)在2016年全国高校自主招生考试中,某 高校设计了一个面试考查方案:考生从 6道备选题中一次性随机抽取 3 题,按照题目要求独立回答全部问题 .规定:至少正确回答其中 2 题的 便可通过 .已知 6 道备选题中考生甲有 4 题能正确回答, 2 题不能回答; 且每题正确回答与否互不影响 .写出甲考生正确回答题数的分布列,并 计算其均值和方差.
(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各
随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.
i 跟踪训练1 (2016· 郑州模拟)已知随机变量X的分布列为P(X=i)= 2a (i=1,2,3,4),则P(2<X≤4)等于 答案 解析
9 A.10 7 B.10 3 C.5 1 D.2
击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.
错解展示 现场纠错 纠错心得
(1) 随机变量的分布列,要弄清变量的取值,还要清楚变量的每个取值 对应的事件及其概率. (2)验证随机变量的概率和是否为1.

【K12教育学习资料】课标通用2018年高考数学一轮复习第十一章计数原理概率随机变量及其分布11.9

【K12教育学习资料】课标通用2018年高考数学一轮复习第十一章计数原理概率随机变量及其分布11.9

§11.9 离散型随机变量的均值与方差、正态分布考纲展示►1.理解取有限个值的离散型随机变量的均值、方差的概念.2.能计算简单的离散型随机变量的均值、方差,并能解决一些实际问题. 3.利用实际问题的直方图,了解正态密度曲线的特点及曲线所表示的意义.考点1 离散型随机变量的均值与方差若离散型随机变量X 的分布列为(1)均值:称E (X )它反映了离散型随机变量取值的________.(2)D (X )=∑i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均________程度,其算术平方根D X 为随机变量X 的标准差.答案:(1)x 1p 1+x 2p 2+…+x i p i +…+x n p n 平均水平 (2)偏离(1)[教材习题改编]设X ~B (n ,p ),若D (X )=4,E (X )=12,则n 的值为________. 答案:18解析:∵X ~B (n ,p ),∴⎩⎪⎨⎪⎧np =12,np 1-p =4,解得p =23,n =18.(2)[教材习题改编]一台机器在一天内发生故障的概率为0.1.这台机器一周五个工作日不发生故障,可获利5万元;发生一次故障仍可获利2.5万元;发生两次故障的利润为0万元;发生三次或者三次以上的故障要亏损1万元.则这台机器一周内可能获利的均值是________万元.答案:3.764 015解析:设这台机器一周内可能获利X 万元,则P (X =5)=(1-0.1)5=0.590 49,P (X =2.5)=C 15×0.1×(1-0.1)4=0.328 05,P (X =0)=C 25×0.12×(1-0.1)3=0.072 9,P (X =-1)=1-P (X =5)-P (X =2.5)-P (X =0)=0.008 56,所以X 的分布列为9+(-1)×0.008 56=3.764 015(万元).(3)[教材习题改编]随机变量ξ的分布列为其中a ,b ,c 成等差数列,若E (ξ)=3,则D (ξ)=________.答案:59解析:由题意有a +b +c =1,2b =a +c ,-a +c =13,得a =16,b =13,c =12,所以D (ξ)=16×⎝⎛⎭⎪⎫-1-132+13×⎝ ⎛⎭⎪⎫0-132+12×⎝ ⎛⎭⎪⎫1-132=59.离散型随机变量的均值与方差:随机变量的取值;对应取值的概率计算.签盒中有编号为1,2,3,4,5,6的6支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的数学期望为________.答案:5.25解析:由题意可知,X 可以取3,4,5,6,P (X =3)=1C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12,所以由数学期望的定义可求得E (X )=5.25.[考情聚焦] 离散型随机变量的均值与方差是高中数学的重要内容,也是高考命题的热点,常与排列组合、概率等知识综合考查.主要有以下几个命题角度:角度一与超几何分布(或古典概型)有关的均值与方差[典题1] [2017·江西吉安高三期中]近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院的50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为患心肺疾病与性别有关,说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列,数学期望以及方差.下面的临界值表供参考:参考公式K 2=a +bc +d a +cb +d,其中n =a +b +c +d[解] (1)列联表补充如下.(2)因为K 2=a +bc +d a +cb +d,所以K 2≈8.333.又P (K 2≥7.879)=0.005=0.5%.那么,我们有99.5%的把握认为是否患心肺疾病是与性别有关系的.(3)ξ的所有可能取值:0,1,2,3,ξ服从超几何分布,其中N =10,M =3,n =3. 则P (ξ=k )=C k 3C 3-k7C 310(k =0,1,2,3).所以P (ξ=0)=C 37C 310=35120=724;P (ξ=1)=C 13·C 27C 310=63120=2140;P (ξ=2)=C 23·C 17C 310=740;P (ξ=3)=C 33C 310=1120.则ξ的分布列为则E (ξ)=0×724+1×40+2×40+3×120=10,D (ξ)=⎝⎛⎭⎪⎫0-9102×724+⎝⎛⎭⎪⎫1-9102×2140+⎝⎛⎭⎪⎫2-9102×740+⎝⎛⎭⎪⎫3-9102×1120=49100. ξ的数学期望及方差分别为E (ξ)=910,D (ξ)=49100.角度二与事件的相互独立性有关的均值与方差[典题2] 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. [解] (1)设“当天小王的该银行卡被锁定”为事件A ,则P (A )=56×45×34=12.(2)依题意,得X 所有可能的取值是1,2,3.P (X =1)=16, P (X =2)=56×15=16, P (X =3)=56×45×1=23.则X 的分布列为所以E (X )=1×16+2×16+3×3=2.角度三二项分布的均值与方差[典题3] 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.[解] (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2) =25×12=15, P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2) =P (A 1)P (A 2)+P (A 1)P (A 2) =P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12. 故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验, 由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125,P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125, P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×5=5.[点石成金] 求随机变量X 的均值与方差时,可首先分析X 是否服从二项分布,如果X ~B (n ,p ),则用公式E (X )=np ,D (X )=np (1-p )求解,可大大减少计算量.考点2 均值与方差的性质及其在决策中的应用1.均值与方差的性质 (1)E (aX +b )=________.(2)D (aX +b )=________(a ,b 为常数). 答案:(1)aE (X )+b (2)a 2D (X ) 2.两点分布与二项分布的均值、方差答案:p (p[典题4] [2017·山东德州模拟]十八届三中全会提出以管资本为主加强国有资产监管,改革国有资本授权经营体制.2015年1月20日,中国恒天集团有限公司新能源汽车总部项目签约仪式在天津举行,说明国有企业的市场化改革已经踏上新的破冰之旅.恒天集团和绿地集团利用现有闲置资金可选择投资新能源汽车和投资文化地产,以推进混合所有制改革,使国有资源效益最大化.①投资新能源汽车:(1)当p =24时,求q 的值;(2)若恒天集团选择投资新能源汽车,绿地集团选择投资文化地产,如果一年后两集团中至少有一个集团盈利的概率大于34,求p 的取值范围;(3)恒天集团利用10亿元现有闲置资金进行投资,决定在投资新能源汽车和投资文化地产这两种方案中选择一种,已知q =38,那么恒天集团选择哪种投资方案,才能使得一年后盈利金额的均值较大?给出结果并说明理由.[解] (1)因为投资文化地产后,投资结果只有“盈利50%”“不赔不赚”“亏损35%”三种,且三种投资结果相互独立,所以p +18+q =1.又p =1124,所以q =512.(2)记事件A 为“恒天集团选择投资新能源汽车且盈利”,事件B 为“绿地集团选择投资文化地产且盈利”,事件C 为“一年后两集团中至少有一个集团盈利”,则C =A B ∪A B ∪AB ,且A ,B 相互独立.由图表可知,P (A )=12,P (B )=p ,所以P (C )=P (A B )+P (A B )+P (AB ) =12×(1-p )+⎝ ⎛⎭⎪⎫1-12×p +12×p =12+12p . 因为P (C )=12+12p >34,所以p >12.又p +18+q =1,q ≥0,所以p ≤78.所以12<p ≤78.故p 的取值范围为⎝ ⎛⎦⎥⎤12,78.(3)假设恒天集团选择投资新能源汽车,且记X 为恒天集团投资新能源汽车的盈利金额(单位:亿元),则X 的所有可能取值为4,0,-2,所以随机变量X 的分布列为E (X )=4×12+0×16+(-2)×3=3.假设恒天集团选择投资文化地产,且记Y 为恒天集团投资文化地产的盈利金额(单位:亿元),则Y 的所有可能取值为5,0,-3.5,所以随机变量Y 的分布列为E (Y )=5×12+0×18+(-3.5)×8=16.因为43>1916,所以E (X )>E (Y ).故恒天集团选择投资新能源汽车,才能使得一年后盈利金额的均值较大.[点石成金] 随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.为回馈顾客,某商场拟通过摸球兑奖的方式对 1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及均值;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解:(1)设顾客所获的奖励额为X . ①依题意,得P (X =60)=C 11C 13C 24=12.即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,故X 的分布列为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元. 所以,先寻找均值为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以均值不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以均值也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的均值为E (X 1)=20×16+60×3+100×6=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003. 对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的均值为E (X 2)=40×16+60×3+80×6=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003. 由于两种方案的奖励额的均值都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.考点3 正态分布问题1.正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x ,则称随机变量X 服从正态分布,记作________.答案:X ~N (μ,σ2) 2.正态分布的三个常用数据(1)P (μ-________<X ≤μ+________)=________;(2)P (μ-________<X ≤μ+________)=________; (3)P (μ-________<X ≤μ+________)=________. 答案:(1)σ σ 0.682 6 (2)2σ 2σ 0.954 4 (3)3σ 3σ 0.997 4[典题5] (1)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t ) [答案] D[解析] 由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12,P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错;因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错; 对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选D.(2)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )A .4.56%B .13.59%C .27.18%D .31.74% [答案] B[解析] 由正态分布的概率公式知,P (-3<ξ<3)=0.682 6,P (-6<ξ<6)=0.954 4,故P (3<ξ<6)=P -6<ξ-P -3<ξ2=0.954 4-0.682 62=0.135 9=13.59%,故选B.[点石成金] 解决正态分布问题有三个关键点:(1)对称轴x =μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ和分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.1.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )A .2 386B .2 718C .3 413D .4 772 答案:C解析:由P (-1<X ≤1)=0.682 6,得P (0<X ≤1)=0.341 3,则阴影部分的面积为0.341 3,故估计落入阴影部分的点的个数为10 000×0.341 31×1=3413.2.某校在一次月考中约有600人参加考试,数学考试的成绩ξ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.答案:120解析:∵ξ~N (90,a 2),∴其正态分布曲线关于直线x =90对称,又成绩在70分到110分之间的人数约为总人数的35,由对称性知成绩在110分以上的人数约为总人数的12×⎝ ⎛⎭⎪⎫1-35=15,∴此次数学考试成绩不低于110分的学生约有15×600=120(人).[方法技巧] 1.求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解; (2)已知随机变量ξ的均值、方差,求ξ的线性函数η=a ξ+b 的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.2.若X 服从正态分布,即X ~N (μ,σ2),要充分利用正态曲线的对称性和曲线与x 轴之间的面积为1的性质.[易错防范] 1.在没有准确判断分布列模型之前不能乱套公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.真题演练集训1.[2016·四川卷]同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.答案:32解析:由题意知,试验成功的概率p =34,故X ~B ⎝ ⎛⎭⎪⎫2,34,所以E (X )=2×34=32. 2.[2014·新课标全国卷Ⅰ]从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.3.[2016·新课标全国卷Ⅱ]某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.20+0.20+0.10 +0.05=0.55.(2)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.10 +0.05=0.15.又P (AB ) =P (B ), 故P (B |A )=P AB P A =P B P A =0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为E (X )=2a ×0.05=1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.课外拓展阅读 离散型随机变量的期望问题离散型随机变量的期望常与茎叶图、频率分布直方图、分层抽样、函数、不等式等知识相结合,这就为设计新颖、内在联系密切、思维方法灵活的考题开辟了广阔的空间.近年高考中有关离散型随机变量的期望的题目多以解答题形式呈现,一题多问,这样既降低了起点,又分散了难点,能较全面地考查必然与或然思想、处理交汇性问题的能力和运算求解能力,难度多为中等,分值在12分左右.现一起走进离散型随机变量的期望,欣赏其常见的交汇方式与解题方法.一、离散型随机变量的期望与茎叶图的交汇问题[典例1] 为备战2017年青年跳水世锦赛,我国跳水健儿积极训练,在最近举行的一次选拔赛中,甲、乙两名运动员为争夺一个参赛名额进行了七轮激烈的比赛,甲、乙两名选手七轮比赛的得分如图所示,已知甲的平均得分比乙的平均得分少1.(1)求甲得分的众数与乙得分的极差;(2)若从甲、乙两名运动员不低于80且不高于90的得分中各任选1个,记甲、乙两名运动员得分之差的绝对值为ξ,求ξ的分布列及其期望.[思路分析] (1)观察茎叶图中甲的数据,判断出现次数最多的数据,即众数;观察茎叶图中乙的数据,找出最高分与最低分,相减可得乙得分的极差;(2)先求ξ的所有可能取值,然后利用古典概型的概率计算公式,求出ξ取各个值时的概率,列出其分布列,最后利用期望的定义求出期望值.[解] (1)由茎叶图可知,甲、乙两名运动员七轮比赛的得分情况如下: 甲:78,80+m,84,85,84,85,91; 乙:79,84,84,86,87,84,91.则乙的平均得分为x 乙=17×(79+84+84+86+87+84+91)=85,所以甲的平均得分为x 甲=85-1=84,即17×[78+(80+m )+84+85+84+85+91]=84,解得m =1. 所以甲得分的众数为84,85,乙得分的极差为91-79=12. (2)设甲、乙两名运动员的得分分别为x ,y , 则ξ=|x -y |.由茎叶图可知,ξ的所有可能取值为0,1,2,3,5,6. 当ξ=0时,x =y =84, 故P (ξ=0)=C 12C 13C 15C 15=625;当ξ=1时,x =85,y =84或86, 故P (ξ=1)=C 12C 14C 15C 15=825;当ξ=2时,x =84,y =86或x =85,y =87, 故P (ξ=2)=C 12C 11C 15C 15+C 12C 11C 15C 15=425;当ξ=3时,x =81,y =84或x =84,y =87,C 5C 5C 5C 55当ξ=5时,x =81,y =86, 故P (ξ=5)=C 11C 11C 15C 15=125;当ξ=6时,x =81,y =87, 故P (ξ=6)=C 11C 11C 15C 15=125.所以ξ的分布列为ξ的期望为E (ξ)=0×25+1×25+2×25+3×5+5×25+6×25=25.突破攻略本题以实际生活为背景,并融入排列、组合、古典概型的概率、随机变量的分布列与期望等知识进行探求,有很强的现实意义与时代气息.破解离散型随机变量的期望与茎叶图的交汇题的关键:一是看图说话,即看懂茎叶图,并能适时提取相关的数据;二是会求概率,即利用排列、组合知识,以及古典概型的概率公式求随机变量的概率;三是活用定义,利用随机变量的数学期望的定义进行计算.二、离散型随机变量的期望与函数的交汇问题[典例2] 某次假期即将到来,喜爱旅游的小陈准备去厦门游玩,初步打算去鼓浪屿、南普陀寺、白城浴场三个景点,每个景点有可能去的概率都是13,且是否游览某个景点互不影响,设ξ表示小陈离开厦门时游览的景点数.(1)求ξ的分布列、期望及其方差;(2)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率.[思路分析] (1)依题设条件可判断ξ服从二项分布,利用二项分布公式即可求出其分布列、期望及方差;(2)先求出二次函数f (x )的图象的对称轴方程,利用f (x )单调性,可求出ξ的取值范围,即可求出事件A 的概率.[解] (1)依题意,得ξ的所有可能取值分别为0,1,2,3.因为ξ~B ⎝ ⎛⎭⎪⎫3,13,⎝⎭327P (ξ=1)=C 13×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫232=49, P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫231=29,P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫133=127. 所以ξ的分布列为所以ξ的期望为E (ξ)=3×3=1,ξ的方差为D (ξ)=3×13×⎝ ⎛⎭⎪⎫1-13=23.(2)因为f (x )=⎝ ⎛⎭⎪⎫x -32ξ2+1-94ξ2的图象的对称轴方程为x =32ξ,又函数f (x )=x 2-3ξx +1在[2,+∞)上单调递增, 所以32ξ≤2,即ξ≤43.所以事件A 的概率P (A )=P ⎝ ⎛⎭⎪⎫ξ≤43=P (ξ=0)+P (ξ=1) =827+49=2027. 突破攻略本题以旅游为背景,考查了二项分布的分布列及其期望的探求,将二次函数知识融入其中是本题的“闪光”之处,又以函数的单调性“一剑封喉”,使呆板、平淡的数学题充满活力和无穷魅力!求解离散型随机变量的期望与函数交汇题的“两步曲”:一是活用公式,如果能够断定随机变量X 服从二项分布B (n ,p ),则其期望与方差可直接利用公式E (X )=np ,D (X )=np (1-p )求得;二是分拆事件,会对随机事件进行分拆,即把事件分拆成若干个互斥事件的和,这样就能正确进行概率计算.三、离散型随机变量的期望与频率分布直方图的交汇问题[典例3] 某学院为了调查本校学生“阅读相伴”(“阅读相伴”是指课外阅读超过1个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内“阅读相伴”的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求这40名学生中“阅 读相伴”天数超过20的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中“阅读相伴”天数超过20的人数,求Y 的分布列及数学期望E (Y ).[思路分析] (1)观察频率分布直方图,求出“阅读相伴”天数超过20的频率,即可求出其频数;(2)依题设条件可判断Y 服从超几何分布,因此可利用超几何分布的概率公式求出Y 取各个值时的概率,列出分布列,最后求出E (Y )的值.[解] (1)由题图可知,“阅读相伴”天数未超过20的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以“阅读相伴”天数超过20的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0,1,2. 所以P (Y =0)=C 230C 240=2952,P (Y =1)=C 110C 130C 240=513,P (Y =2)=C 210C 240=352.所以Y 的分布列为所以Y 的数学期望E (Y )=0×52+1×13+2×52=2.突破攻略本题将传统的频率分布直方图背景赋予新生的数学期望,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,对于这些实际问题中的随机变量X ,如果能够断定它服从超几何分布H (N ,M ,n ),则随机变量X 的概率可利用概率公式P (X =m )=C m M C n -mN -M C n N (m =0,1,…,n ,)求得,期望可直接利用公式E (X )=MnN求得.。

2018版高考数学文人教大一轮复习讲义 教师版文档第十

2018版高考数学文人教大一轮复习讲义 教师版文档第十

1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型中,事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).3.几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=MN作为所求概率的近似值.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( ×)1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D .1 答案 B解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东)在区间[0,2]上随机地取一个数x ,则事件“-1≤121log ()2x +≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤121log ()2x +≤1,得12≤x +12≤2,∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34.3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.(2017·济南月考)一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是( ) A.π180 B.π150 C.π120 D.π90 答案 C解析 屋子的体积为5×4×3=60(立方米),捕蝇器能捕捉到的空间体积为18×43π×13×3=π2(立方米).故苍蝇被捕捉的概率是π260=π120.5.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________. 答案 π4解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.题型一 与长度、角度有关的几何概型例1 (1)(2016·全国甲卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38 D.310(2)(2017·太原调研)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. 答案 (1)B (2)13解析 (1)至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3, P (BM <1)=11+3=3-12.思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)(2016·全国乙卷)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)B (2)16解析 (1)如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.(2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题例2 (2016·全国甲卷)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n 答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn ,∴π=4mn,故选C.命题点2 与线性规划知识交汇命题的问题例3 (2016·武汉模拟)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACDS △OAB=2-142=78.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)(2016·昌平模拟)设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x ≤4,y ≥-2表示的平面区域为D .在区域D内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( ) A.413 B.513 C.825 D.925(2)(2015·福建)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于()A.16B.14C.38D.12 答案 (1)D (2)B解析 (1)作出平面区域D ,可知平面区域D 是以A (4,3),B (4,-2),C (-6,-2)为顶点的三角形区域.当点在△AEF 区域内时,点到直线y +2=0的距离大于2. ∴P =S △AEF S △ABC =12×6×312×10×5=925.(2)由图形知C (1,2),D (-2,2),∵S 四边形ABCD =6,S 阴=12×3×1=32,∴P =326=14.题型三 与体积有关的几何概型例4 (1)(2016·贵州黔东南州凯里一中期末)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,则称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A.18 B.16 C.127 D.38(2)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率是( ) A.78 B.34 C.12 D.14 答案 (1)C (2)A解析 (1)由题意知小蜜蜂的安全飞行范围为以这个正方体的中心为中心,且棱长为1的小正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为P =127.(2)当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件去求.(2016·哈尔滨模拟)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.答案 23解析 如图,三棱锥S -ABC 与三棱锥S -APC 的高相同,要使三棱锥S -APC 的体积大于V3,只需△APC 的面积大于△ABC 的面积的13.假设点P ′是线段AB 靠近点A 的三等分点,记事件M 为“三棱锥S -APC 的体积大于V3”,则事件M 发生的区域是线段P ′B . 从而P (M )=P ′B AB =23.12.几何概型中的“测度”典例 (1)在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34D.78 错解展示解析 (1)∵∠C =90°,∠CAM =30°,∴所求概率为3090=13.(2)两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.答案 (1)13 (2)B现场纠错解析 (1)因为点M 在直角边BC 上是等可能出现的,所以“测度”是长度.设直角边长为a ,则所求概率为33a a =33.(2)设任取两点所表示的数分别为x ,y , 则0≤x ≤1,且0≤y ≤1.由题意知|x -y |<12,所以所求概率为P =1-2×12×12×121=34.答案 (1)33(2)C 纠错心得 (1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.(2016·佛山模拟)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,以此实验数据为依据可以估计出椭圆的面积约为( )A .16.32B .15.32C .8.68D .7.68 答案 A解析 设椭圆的面积为S ,则S4×6=300-96300,故S =16.32.2.(2016·南平模拟)设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( )A.15B.25C.35D.45 答案 C解析 方程有实数根,则Δ=p 2-4≥0,解得p ≥2或p ≤-2(舍去), 故所求概率为P =5-25-0=35,故选C.3.(2016·四川宜宾筠连中学第三次月考)如图所示,在边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.13 答案 B解析 正方形中随机撒一粒豆子,它落在阴影区域内的概率P =S 阴影S 正方形.又∵S 正方形=4,∴S 阴影=83,故选B.4.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A.1-2πB.12-1πC.2πD.1π 答案 A解析 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC . 不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整体图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.5.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形,所以△ABD 为钝角三角形的概率为1+26=12.6.欧阳修的《卖油翁》中写到:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是________.答案49π解析 依题意,所求概率为P =12π·(32)2=49π.7.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.8.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______.答案 12+1π解析 半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.10.(2016·湖南衡阳八中月考)随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________. 答案 1-π24解析 由题意作图,如图,则点P 应落在深色阴影部分,S △=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=1-π24.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个,故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}, 满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解 ∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba≤1,即2b ≤a .依条件可知事件的全部结果所构成的区域为 ⎩⎨⎧⎭⎬⎫(a ,b )⎪⎪⎪⎩⎪⎨⎪⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 所求概率区间应满足2b ≤a .由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83),故所求事件的概率为P =12×8×8312×8×8=13.*13.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.。

18版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.5古典概型课件理新人教A版

18版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.5古典概型课件理新人教A版

(2)设“a⊥b”为事件 B,则 y=3x. 事件 B 包含的基本事件有(1,3),(3,9),共 2 个. 2 故 a⊥b 的概率为 P(B)= . 9
角度二 古典概型与直线、圆相结合 [ 典题 4] [2017· 河南洛阳统考] 将一颗骰子先后抛掷两
次分别得到点数 a,b,则直线 ax+by=0 与圆(x-2)2+y2=2 7 12 有公共点的概率为________ .
内的随机点,求函数 y
=f(x)在区间[1,+∞)上是增函数的概率.
[解]
2b (1)∵函数 f(x)=ax -4bx+1 的图象的对称轴为 x= a ,
2
要使 f(x)=ax2-4bx+1 在区间[1,+∞)上为增函数, 2b 当且仅当 a>0 且 a ≤1,即 2b≤a. 若 a=1,则 b=-1; 若 a=2,则 b=-1,1; 若 a=3,则 b=-1,1. ∴事件包含基本事件的个数是 1+2+2=5, 5 1 ∴所求事件的概率为15=3.
为振兴旅游业,四川省面向国内发行总量为 2 000 万张 的熊猫优惠卡,向省外人士发行的是熊猫金卡 (简称金卡), 向省内人士发行的是熊猫银卡 (简称银卡 ).某旅游公司组织 3 了一个有 36 名游客的旅游团到四川名胜景区旅游,其中 4 1 是省外游客,其余是省内游客.在省外游客中有 持金卡, 3 2 在省内游客中有 持银卡. 3
2 2 1 C3 C3 3 C3 C 1 3 3 则 P(B)= = ,P(C)= = . C4 5 C4 5 6 6
由互斥事件的概率加法,得 3 1 4 P(A)=P(B)+P(C)= + = , 5 5 5 4 故所求事件的概率为5.
[点石成金]
1.求较复杂事件的概率问题,解题关键是理解

2018年高考数学课标通用(理科)一轮复习配套课件:第十一章 计数原理、概率、随机变量11-3

2018年高考数学课标通用(理科)一轮复习配套课件:第十一章 计数原理、概率、随机变量11-3

5-2r 3 ,由 2 =2,解得 r=1.
由 C1 5(-a)=30,得 a=-6.故选 D.
1 x- 8 3 (4) 4 的展开式中的有理项共有________项. 2 x
[ 解析 ]
1 x- 8 r 8- 的展开式的通项为 T = C · ( x ) + r 1 8 4 2 x (r=0,1,2,„,8),为使 Tr+1 为有理项,
1 1r r r r- 4 =-2 C8x 2 x
r 必须是 4 的倍数,所以 r=0,4,8,故共有 3 个有理项.
1 n 3 (5)二项式x +x2
的展开式中含有非零常数项,则正整数 n
的最小值为________ . 5
[解析]
5r
3n 二项展开式的的通项是 Tr+1=Cr nx
必考部分
第十一章 分布
计数原理、概率、随机变量及其
§11.3 二项式定理
考纲展示► 1.能利用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题.
考点 1
二项展开式中特定项或 系数问题
二项式定理 二项式 定理
n 1 n-1 k n-k k C0 a + C a b +„+ C b +„ n n na n n * n + C b ( n ∈ N ) n (a+b) =_______________________________
1)(-1)9=-2,故选 A.
[点石成金]
1.赋值法研究二项式的系数和问题
“赋值法”普遍适用于恒等式,是一种重要的方法,对 形如(ax+b)n,(ax2+bx+c)m(a,b∈R)的式子求其展开式的 各项系数之和,常用赋值法,只需令 x=1 即可;对形如(ax +by)n(a,b∈R)的式子求其展开式各项系数之和,只需令 x =y=1 即可.

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 11.2 排列与组合真题演练集训 理

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 11.2 排列与组合真题演练集训 理

11.2 排列与组合真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.2 排列与组合真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.2 排列与组合真题演练集训理新人教A版的全部内容。

11.2 排列与组合真题演练集训理新人教A版1.[2016·江苏卷](1)求7C3,6-4C错误!的值;(2)设m,n∈N*,n≥m,求证:(m+1)C错误!+(m+2)C错误!+(m+3)C错误!+…+n C错误!+(n+1)C m,n=(m+1)C错误!。

(1)解:7C错误!-4C错误!=7×错误!-4×错误!=0.(2)证明:当n=m时,结论显然成立.当n〉m时,(k+1)C错误!=错误!=(m+1)·错误!=(m+1)C错误!,k=m+1,m+2,…,n.又C错误!+C错误!=C错误!,所以(k+1)C m k=(m+1)(C m+2k+2-C m+2,k+1),k=m+1,m+2,…,n。

因此,(m+1)C m m+(m+2)C错误!+(m+3)C错误!+…+(n+1)C错误!=(m+1)C错误!+[(m+2)C m,m+1+(m+3)C错误!+…+(n+1)C错误!]=(m+1)C错误!+(m+1)[(C错误!-C错误!)+(C错误!-C错误!)+…+(C错误!-C错误!)]=(m+1)C错误!。

2.[2015·重庆卷]端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.(1)令A表示事件“三种粽子各取到1个",则由古典概型的概率计算公式有P(A)=错误!解:=错误!.(2)X的所有可能值为0,1,2,且P(X=0)=错误!=错误!,P(X=1)=错误!=错误!,P(X=2)=错误!=错误!.综上知,X的分布列为P错误!715错误!故E(X)=0×错误!+1×错误!错误!错误!课外拓展阅读特殊元素(位置)优先安排法解排列组合问题[典例] 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为()A.360 B.288 C.216 D.96[审题视角] 分两步计算:第一步,计算满足3位女生中有且只有两位相邻的排法,将3位女生分成两组,插空到排好的3位男生中;第二步,在第一步的结果中排除甲站两端的排法.[解析]3位男生排成一排有A3,3种排法,3名女生分成两组.其中2名排好看成一个整体有C错误!A错误!种排法,这两组女生插空到3名男生中有A错误!种插法,于是6位同学排成一排且3位女生中有且只有两位女生相邻的排法有C错误!A错误!A错误!A错误!=432(种).其中男生甲在排头或排尾时,其余两男生的排法有A错误!种,两组女生插到2名男生中有A2,3种插法.于是男生甲在排头或排尾,3位女生中有且只有两位女生相邻的排法有2A错误!A 错误!C错误!A错误!=144(种).所以满足条件的排法共有432-144=288(种).故选B。

2018版高考数学大一轮复习第十一章概率11.1随机事件的概率教师用书文北师大版.

2018版高考数学大一轮复习第十一章概率11.1随机事件的概率教师用书文北师大版.
30+ 30 于 1 且小于 4 的频率为 200 = 0.3 ,故 P( B) 的估计值为 0.3. (3) 由所给数据得
保费 0.85 a
a
1.25 a 1.5 a 1.75 a 2a
频率
0.30
0.25 0.15 0.15
0.10 0.05
调查的 200 名续保人的平均保费为 0.85 a×0.30 + a×0.25 + 1.25 a×0.15 + 1.5 a×0.15 +
1.从 {1,2,3,4,5} 中随机选取一个数 a,从 {1,2,3} 中随机选取一个数 b,则 b>a 的概率是 ( ) 4321
A. 5 B. 5 C. 5 D. 5
答案 D 31
解析 基本事件的个数为 5×3= 15,其中满足 b>a 的有 3 种,所以 b>a 的概率为 15= 5. 2. ( 教材改编 ) 将一枚硬币向上抛掷 10 次,其中“正面向上恰有 5 次”是 ( )
P( A) 的估计值;
(2) 记 B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的
160%”,求 P( B)
的估计值;
(3) 求续保人本年度的平均保费的估计值.
解 (1) 事件 A 发生当且仅当一年内出险次数小于 2. 由所给数据知,一年内出险次数小于 2 60+ 50
的频率为 200 = 0.55 ,故 P( A) 的估计值为 0.55. (2) 事件 B 发生当且仅当一年内出险次数大于 1 且小于 4. 由所给数据知,一年内出险次数大
(2015 ·北京 ) 某超市随机选取 1 000 位顾客,记录了他们购买甲、乙、丙、丁
四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买

2018版高考数学人教A版理科一轮复习课件:第十一章 计数原理、概率、随机变量及其分布 11-9 精品

2018版高考数学人教A版理科一轮复习课件:第十一章 计数原理、概率、随机变量及其分布 11-9 精品
3-k Ck C 3 7 则 P(ξ=k)= C3 (k=0,1,2,3). 10
C3 35 7 7 所以 P(ξ=0)= 3 = = ; C10 120 24
2 C1 · C 63 21 3 7 P(ξ=1)= C3 =120=40; 10
C2 C1 7 3· 7 P(ξ=2)= C3 =40; 10 C3 1 3 P(ξ=3)=C3 =120. 10 则 ξ 的分布列为 ξ P 0 1 2 3 1 120
解析:设这台机器一周内可能获利 X 万元,则 P(X=5)=(1 -0.1)5=0.590 49,
1 P(X=2.5)=C5 ×0.1×(1-0.1)4
=0.328 05,
2 P(X=0)=C5 ×0.12×(1-0.1)3=0.072 9,
P(X=-1)=1-P(X=5)-P(X=2.5)-P(X=0)=0.008 56, 所以 X 的分布列为 X P 5 2.5 0 -1 0.008 56
0.590 0.328 0.072 49 05 9
所以,这台机器一周内可能获利的均值为 5×0.590 49 + 2.5×0.328 05+0×0.072 9+(-1)×0.008 56=3.764 015(万元).
(3)[教材习题改编]随机变量 ξ 的分布列为 ξ P -1 0 1 a b c
5 1 9 其中 a,b,c 成等差数列,若 E(ξ)=3,则 D(ξ)=________.
考点 1 离散型随机变量 的均值与方差
若离散型随机变量 X 的分布列为 X P x1 p1 x2 p2 … … xi pi … … xn pn
1p1+x2p2+…+xipi+…+xnpn 为随机变 (1)均值:称 E(X)=x ___________________________

2018届高考数学一轮复习第十一章概率11.1随机事件的概率课件文北师大版

2018届高考数学一轮复习第十一章概率11.1随机事件的概率课件文北师大版
不互斥更不对立;B∩C=⌀,B∪C=Ω(Ω为必然事件),故事件B,C是对立事件.
(2)由互斥与对立的关系及定义知,①不互斥,②对立,③不互斥,④互斥不对
立.
关闭
(1)D (2)④
解析 答案
解题心得判断随机事件之间的关系有两种方法:(1)紧扣事件的分 类,结合互斥事件、对立事件的定义进行分析判断;(2)类比集合进 行判断,把所有试验结果写出来,看所求事件包含哪些试验结果,从 而断定所给事件的关系.若两个事件所含的结果组成的集合的交集 为空集,则这两事件互斥;事件A的对立事件 ������ 所含的结果组成的集 合,是全集中由事件A所含的结果组成的集合的补集.
1.下列结论正确的画“√”,错误的画“×”. (1)事件发生的频率与概率是相同的.( ) (2)随机事件和随机试验是一回事.( ) (3)在大量重复试验中,概率是频率的稳定值.( ) (4)两个事件的和事件是指两个事件至少有一个发生.( (5)若A,B为互斥事件,则P(A)+P(B)=1.( )
)
2.频率与概率 (1)频率:在n次重复次试验中,某一事件A出现的次数与n的比值称 为这n次试验中事件A的频率. (2)概率:在相同的条件下,大量重复进行同一试验时,随机事件A 发生的频率会在某个常数 附近摆动,即随机事件A发生的频率具 有稳定性 .这时我们把这个常数叫随机事件A的概率,记作P(A).概 率的取值范围:0≤P(A)≤1 . (3)频率与概率的关系:频率反映了一个随机事件出现的频繁程度, 频率是随机的,但当试验次数比较大时,频率会在某个常数附近摆 动,这个常数就是概率,所以概率是一个确定的值 .人们用概率 来反映随机事件发生的可能性的大小.
3.互斥事件与对立事件 (1)互斥事件:在一个随机试验中,把一次试验下不能同时 发生 的两个事件A与B称作互斥事件. (2)和事件:给定事件A,B,我们规定A+B为一个事件,事件A+B发生 是指事件A和事件B至少有一个发生 . (3)和事件的概率:在一个随机试验中,如果随机事件A和事件B是 互斥事件,那么有P(A+B)=P(A)+P(B) ;如果随机事件A1,A2,…,An 中任意两个是互斥事件,那么有 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An). (4)对立事件:在每一次试验中,相互对立的事件A和事件 ������ 不会 同时发生,并且一定有一个发生 .所以有P( ������ )=1-P(A) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 随机事件的概率一、选择题1.把12人平均分成两组,再从每组里任意指定正、副组长各一人,其中甲被指定为正组长的概率是( )A.112B.16C.14D.13 解析 甲所在的小组有6人,则甲被指定正组长的概率为16.答案 B2.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为( ) A.368 B.369 C. 370 D.170解析 加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得 加工出来的零件的次品率6968673170696870p =-⨯⨯=. 答案 C3.盒中装有10个乒乓球,其中6个新球,4个旧球.不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为( ).A.35B.110 C.59D.25解析 第一次结果一定,盒中仅有9个乒乓球,5个新球4个旧球,所以第二次也取到新球的概率为59.答案 C4.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ).A.12B.14 C.16D.18解析 法一 P (B |A )=P ABP A =1412=12.法二 A 包括的基本事件为{正,正},{正,反},AB 包括的基本事件为{正,正},因此P (B |A )=12.答案 A5.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是( ).A.16B.13C.19D.12解析 采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为13.答案 B6.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ).A.110 B.310 C.35D.910解析 从装有3个红球、2个白球的袋中任取3个球通过列举知共有10个基本事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本事件,所以所取的3个球中至少有1个白球的概率是1-110=910.答案 D 二、填空题7.对飞机连续射击两次,每次发射一枚炮弹.设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一次击中飞机},D ={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.解析 设I 为对飞机连续射击两次所发生的所有情况,因为A ∩B =∅,A ∩C =∅,B ∩C =∅,B ∩D =∅.故A 与B ,A 与C ,B 与C ,B 与D 为彼此互斥事件,而B ∩D =∅,B ∪D =I ,故B 与D 互为对立事件.答案 A 与B 、A 与C 、B 与C 、B 与D B 与D8.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a 、b ,则满足条件的三角形有两个解的概率是_______. 解析 要使△ABC有两个解,需满足的条件是⎩⎪⎨⎪⎧a >b sin A ,b >a 因为A =30°,所以⎩⎪⎨⎪⎧b <2a ,b >a 满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b =5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的 三角形有两个解的概率是636=16.答案 169.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.解析 由对立事件的性质知在同一时刻至少有一颗卫星预报准确的概率为1-(1-0.8)(1-0.75)=0.95. 答案 0.9510.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________. 解析 设A ={第一次取到不合格品},B ={第二次取到不合格品},则P (AB )=C 25C 2100,所以P (B |A )=P ABP A =5×4100×995100=499答案499三、解答题11.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率; (2)求甲获得这次比赛胜利的概率.解 记A i 表示事件:第i 局甲获胜,i =3,4,5,B j 表示事件:第j 局乙获胜,j =3,4. (1)记A 表示事件:再赛2局结束比赛.A =A 3A 4+B 3B 4.由于各局比赛结果相互独立,故P (A )=P (A 3A 4+B 3B 4)=P (A 3A 4)+P (B 3B 4)=P (A 3)P (A 4)+P (B 3)P (B 4)=0.6×0.6+0.4×0.4=0.52.(2)记B 表示事件:甲获得这次比赛的胜利.因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3A4+B3A4A5+A3B4A5,由于各局比赛结果相互独立,故P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.12.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4,且只乘一种交通工具去开会.(1)求他乘火车或乘飞机去开会的概率;(2)求他不乘轮船去开会的概率;(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去开会的?解(1)记“他乘火车去开会”为事件A1,“他乘轮船去开会”为事件A2,“他乘汽车去开会”为事件A3,“他乘飞机去开会”为事件A4,这四个事件不可能同时发生,故它们是彼此互斥的.故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7.(2)设他不乘轮船去开会的概率为P,则P=1-P(A2)=1-0.2=0.8.(3)由于0.3+0.2=0.5,0.1+0.4=0.5,1-(0.3+0.2)=0.5,1-(0.1+0.4)=0.5,故他有可能乘火车或轮船去开会,也有可能乘汽车或飞机去开会.13.黄种人群中各种血型的人所占的比如下表所示:AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是彼此互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′+D′.根据互斥事件的概率加法公式,有P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)法一由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.法二因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P(B′+D′])=1-P(B′+D′)=1-0.64=0.36.即:任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36. 14.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:30~4040~5050~60(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望.解(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B i表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2.用频率估计相应的概率可得P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2),∴甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙应选择L2.(2)A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立,∴P(X=0)=P(AB)=P(A)P(B)=0.4×0.1=0.04,P(X=1)=P(A B+A B)=P(A)P(B)+P(A)P(B)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54.∴X的分布列为∴E(X)=0×0.04+1×。

相关文档
最新文档