常微分方程测试题A
《常微分方程》考试参考答案(A卷)
《常微分方程》考试参考答案(A卷)《常微分方程》考试参考答案(A 卷)一、填空题(每空2分,共30分)1、()dy y g dx x = ln y x c x=+ 2、()()dy f x y dx= 2x y e = 3、2222M N y x= 4、1212(,)(,)f x y f x y L y y -≤-5、存在不全为0的常数12,k c c c ,使得恒等式11()()0k k c x tc x t +=对于所有[,]t a b ∈ 都成立()0w t ≡6、412341011i i λλλλλ-===-==- 1234cos sin t t x c e c e c tc t -=+++7、322x xy y c -+=二、判断题(每题2分,共10分)1、√2、×3、×4、√5、√三、计算题(每题15分,共60分)1、解:231()dy y dx x x y +=+ 变量分离231y dx dy y x x =++ 两边积分2221(1)1211y x dx dx y x xλ+=-++ 2211ln 1ln ln 122y x x +=-+ 22ln(1)(1)2ln ||y x x ++=从而解得通解为:222(1)(1)x y cx ++=2、解:先求30dx x dt+=的通解:33dt t x ce ce --?== 利用常数变易法,令原方程解为3()t x c t e -= 解得:3223551()5dt t t t t t c t e e dt c e e dt c e dt c e c --?=+=+=+=+ ∴原方程的通解为:533211()55t t t t x e c e ce e --=+=+3、解:先求对应齐线性方程:(4)20x x x ''-+=的通解特征函数42()210F λλλ=-+= 123411λλ==-从而通解为:1234()()t t x c c t e c c t e -=+++ 现求原方程一个特解,这里:2()30f t t λ=-= 0λ=不是特征根,即原方程有形如:2x At Bt c =++的特解把它代入原方程有:2243A At Bt C t -+++=- 解得101A B C ===21x t =+ ∴原方程通解为:21234()()1t t x e c c t e c c t t -=+++++4、解:令cos sin y p t x t '==?=2cos dy pdx tdt == 原方程的通解为:11sin 242y t t c =++ 5、解:由111x y +≤≤得112011a b x y ==-≤≤-≤≤ 从而()(,)4222x y Rf M max f x y y y L y -∈?===-=≤=?∴11min(,)min(1,)44b h a M === 从而解存在区间为114x +≤ 231123221327()011()3311()[()]3311111139186342o o x x x y x x dx x x x x dx x x x x --====+=-+=---+?? 2(21)1(21)!24o ML y y h +-≤=+。
常微分方程试题库
常微分方程试题库二、计算题(每题6分)1. 解方程:0cot tan =-xdy ydx ;2. 解方程:x y xye 2d d =+; 3. 解方程:;4. 解方程:t e x dtdx23=+; 5. 解方程:0)2(=+---dy xe y dx e y y ;6. 解方程:0)ln (3=++dy x y dx xy;7. 解方程:0)2()32(3222=+++dy y x x dx y x xy ;8. 解方程:0485=-'+''-'''x x x x ; 9. 解方程:02)3()5()7(=+-x x x ; 10. 解方程:02=-''+'''x x x ; 11. 解方程:1,0='-'='+'y x y x ;12. 解方程:y y dx dyln =; 13. 解方程:y x e dxdy-=;14. 解方程:02)1(22=+'-xy y x ;15. 解方程:x y dxdycos 2=;16. 解方程:dy yx x dx xy y )()(2222+=+;17. 解方程:x xy dx dy42=+;18. 解方程:23=+ρθρd d ;19. 解方程:22x y xe dxdy+=;20. 解方程:422x y y x =-';选题说明:每份试卷选2道题为宜。
二、计算题参考答案与评分标准:(每题6分) 1. 解方程:0cot tan =-xdy ydx解: ,2,1,0,2,±±=+==k k x k y πππ是原方程的常数解, (2分)当2,πππ+≠≠k x k y 时,原方程可化为:0cos sin sin cos =-dx xxdy y y ,(2分) 积分得原方程的通解为:C x y =cos sin . (2分)2. 解方程:x y xye 2d d =+ 解:由一阶线性方程的通解公式⎰⎰+⎰=-),)(()()(dx e x f C e y dxx p dxx p (2分)x xx xdxx dx e Cedx e C edx e e C e 31)()(23222+=+=⎰+⎰=---⎰⎰分)(分)(223. 解方程:解:由一阶线性方程的通解公式⎰⎰+⎰=-))(()()(dx e x f C e y dxx p dx x p (2分)=⎰⎰+⎰-)sec (tan tan dx xe C e xdxxdx(2分)⎰+=)sec (cos 2xdx C xx x C sin cos +=. (2分)4. 解方程:t e x dtdx23=+ 解:由一阶线性方程的通解公式⎰⎰+⎰=-))(()()(dt e t f C e x dtt p dt t p (2分)=⎰⎰+⎰-)(323dt e e C e dtt dt (2分)⎰+=-)(53dt e C e t t t t e Ce 2351+=-. (2分) 5. 解方程:0)2(=+---dy xe y dx e y y解:原方程可化为:02=+---y y xde ydy dx e , (2分) 即 0)(2=--y xe d y , (2分) 原方程的通解为:C y xe y =--2. (2分)6. 解方程:0)ln (3=++dy x y dx xy解:原方程可化为:0ln )(ln 3=++xdy dy y x yd , (2分) 即 0)41ln (4=+y x y d , (2分) 原方程的通解为:C y x y =+441ln . (2分)7. 解方程:0)2()32(3222=+++dy y x x dx y x xy解:因为xNx x y M ∂∂=+=∂∂62,所以原方程为全微分方程, (2分) 由 02323222=+++ydy x dy x dx y x xydx , (1分) 得: 0)()(232=+y x d y x d , (2分) 故原方程的通解为:C y x y x =+232. (1分)8. 解方程:0485=-'+''-'''x x x x 解:其特征方程为:0)2)(1(485223=--=-+-λλλλλ, (1分) 特征根为2=λ为2重根,1=λ. (2分) 所以其基本解组为: t t t e te e ,,22, (2分) 原方程的通解为: t t t e C te C e C x 32221++=. (1分)9. 解方程:02)3()5()7(=+-x x x 解:其特征方程为:0)1()1(2223357=+-=+-λλλλλλ, (1分) 特征根为:0=λ为3重根,1=λ,为2重根,1-=λ为2重根.(2分) 所以其基本解组为: 2,1t t ,t t t t te e te e --,,,, (2分) 原方程的通解为:t t t t te C e C te C e C t C t C C x --++++++=76542321. (1分)10. 解方程:02=-''+'''x x x 解:其特征方程为:0)22)(1(2223=++-=-+λλλλλ, (1分) 特征根为:i ±-==11321,,λλ. (2分) 所以其实基本解组为: t e t e e t t t s i n ,c o s ,--,(2分) 原方程的通解为: t e C t e C e C y t t t sin cos 321--++=. (1分)11. 解方程:1,0='-'='+'y x y x ; 解:原方程可化为:21,21-='='y x , (2分)积分得通解为:212,2c t y c t x +-=+=. (4分)12. 解方程:y y dxdyln = 解:原方程可化为:0ln 1=-dx dy yy , (3分)积分得原方程的通解为:C y x =ln ln . (3分)13. 解方程:y x e dxdy-= 解:原方程可化为: dx e dy e x y =, (3分) 积分得原方程的通解为:c x y +=. (3分)14. 解方程:02)1(22=+'-xy y x解:0=y 是原方程的常数解, (1分) 当0≠y 时,原方程可化为:012122=-+dx x xdy y , (2分)积分得原方程的通解为:c x y +-=-1ln 21. (3分) 15. 解方程:x y dxdycos 2= 解:0=y 是原方程的常数解, (1分) 当0≠y 时,原方程可化为:xdx dy ycos 12=, (2分) 积分得原方程的通解为:x c y sin 1-=-. (3分)16. 解方程:dy yx x dx xy y )()(2222+=+解:0=y ,0=x 是原方程的常数解, (1分) 当,0≠x 0≠y 时,原方程可化为:dx xx dy y y )11()11(22+=+,(2分) 积分得原方程的通解为:c x x y y +-=---11ln ln . (3分)17. 解方程:x xy dxdy42=+ 解:分析可知2=y 是其特解. (2分)对应齐方程的02=+xy dxdy通解为:2x ce y -=, (2分) 故原方程的通解为:22+=-x ce y . (2分)18. 解方程:23=+ρθρd d 解:分析可知32=ρ是其特解. (2分)对应齐方程03=+ρθρd d 的通解为:θρ3-=ce , (2分)故原方程的通解为:323+=-θρce . (2分)19. 解方程:22x y xe dxdy+= 解:原方程可化为: dx xe dy e x y 22=-, (3分) 积分得原方程的通解为:c e e x y =+-22. (3分)20. 解方程:422x y y x =-' 解:分析可知4x y =是其特解. (2分) 又对应齐方程02=-'y y x 的通解为:2cx y =, (2分) 故原方程的通解为:42x cx y +=. (2分)。
常微分方程试题A、B卷
课程名称 常微分方程(A 卷) 课程代码 课程班号 共_2_页----------------------------------------------------------------------------------------------------------------------- 一、填空题(每空3分)1、方程086=+'+''y y y 满足初始条件1)0(,2)0(='=y y 的特解为_____________.2、()023='+''-y xe y x 是 阶微分方程。
3、微分方程()02=+-axydy dx y x 是恰当微分方程,则=a 。
4、微分方程()01=++dx ye dy e x x 的通解为 。
5、一阶方程yxe xyy x y 322-=' 作变换_______________________可化为变量可分离方程。
6、(,)(,)y f x y f x y 连续及连续是保证方程),(y x f dxdy=的初值解存在且唯一的_____________条件. 7、对于n 阶齐线性方程()(1)1()()0n n n x a t x a t x -+++= 存在且至多存在_____________个线性无关的解. 二、选择题(每小题3分)8、对于非齐次微分方程''3'4()x x x f t +-=,设22()(1)t f t t t e =+-,其中0,......,n a a 为常数,那么方程有形如( )的特解。
A .()22012t a t a t a e ++ B. ()22012t t a t a t a e ++ C. ()201ta t a e + D. ()2012t a t a t a e ++9、矩阵2912⎛⎫⎪⎝⎭的特征值有( )。
A .5,-1 B. -5,1 C. -5,-1 D. 5,1 10、( )是一阶线性微分方程。
《常微分方程》试题-5页精选文档
常微分方程试卷1一、填空题(每题3分,共15分)1.一阶微分方程的通解的图像是 维空间上的一族曲线.2.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是3.方程02=+'-''y y y 的基本解组是 .4.一个不可延展解的存在在区间一定是 区间. 5.方程21d d y xy-=的常数解是 . 二、单项选择题(每题3分,共15分)6.方程y x xy+=-31d d 满足初值问题解存在且唯一定理条件的区域是( ).(A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 7. 方程1d d +=y xy ( )奇解.(A )有一个 (B )有两个 (C )无 (D )有无数个8.)(y f 连续可微是保证方程)(d d y f xy=解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分9.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间 (B )构成一个3维线性空间 (C )不能构成一个线性空间 (D )构成一个无限维线性空间10.方程323d d y xy=过点(0, 0)有( ).(A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、计算题(每题6分,共30分) 求下列方程的通解或通积分:11.y y x yln d d = 12. x yx y x y +-=2)(1d d13. 5d d xy y xy+=14.0)d (d 222=-+y y x x xy 15.32y y x y '+'=四、计算题(每题10分,共20分) 16.求方程255x y y -='-''的通解. 17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=x ty ty t x d d sin 1d d五、证明题(每题10分,共20分)18.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程)(d d x f y xy=+ 的一切解)(x y ,均有0)(lim =+∞→x y x .19.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.常微分方程试卷1答案及评分标准一、填空题(每题3分,共15分) 1.22.线性无关(或:它们的朗斯基行列式不等于零)3.x x x e ,e 4.开5.1±=y二、单项选择题(每题3分,共15分) 6.D 7.C 8.B 9.C 10.A 三、计算题(每题6分,共30分)11.解 当0≠y ,1≠y 时,分离变量取不定积分,得 C x y y y+=⎰⎰d ln d (3分)通积分为x C y e ln = (6分)12.解 令xu y =,则xu x u x y d d d d +=,代入原方程,得 21d d u xux-= (3分)分离变量,取不定积分,得 C xxu u ln d 1d 2+=-⎰⎰(0≠C )通积分为: Cx xyln arcsin= (6分)13.解 方程两端同乘以5-y ,得x y xyy +=--45d d 令 z y =-4,则xzx y y d d d d 45=--,代入上式,得 x z xz=--d d 41(3分) 通解为41e 4+-=-x C z x 原方程通解为41e 44+-=--x C y x (6分)14.解 因为xNx y M ∂∂==∂∂2,所以原方程是全微分方程. (2分)取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx=-⎰⎰020d d 2(4分)即C y y x =-3231 (6分)15.解 原方程是克莱洛方程,通解为32C Cx y += (6分)四、计算题(每题10分,共20分)16.解 对应齐次方程的特征方程为052=-λλ,特征根为01=λ,52=λ,齐次方程的通解为x C C y 521e += (4分)因为0=α是特征根。
广州大学2017-2018常微分方程试卷A答案
广州大学2017-2018学年第一学期考试卷参考答案及评分标准课程 常微分方程 考试形式(闭卷,考试)学院 系 专业 班级 学号 姓名_特别提醒:2017年11月1日起,凡考试作弊而被给予记过(含记过)以上处分的,一律不授予学士学位。
一、 填空(5*3分=15分)1. 方程(,)(,)0M x y dx N x y dy +=为恰当微分方程的充要条件是x Ny M ∂∂=∂∂. 2. 若()(1,2,,)i x t i n =为n 阶齐次线性方程1111()()()0n n n n n n d x d xdxa t a t a t x dt dtdt---++++=的基本解组,则该齐次线性方程的所有解可表为112212()()()(),,,,n n n x t c x t c x t c x t c c c =+++为任意常数。
3. 设n 阶常系数齐次线性方程11110n n n n n n d x d xdxa a a x dt dtdt---++++=的特征方程有一对k 重共轭复根i λαβ=±,则它们对应的方程的实值解是11cos ,cos ,,cos ,sin ,sin ,,sin t t k t t t k t e t te t t e t e t te t t e t ααααααββββββ--。
4. 常系数方程组()x Ax f t '=+的通解为0()()(),t tA t s A t x t e c e f s ds -=+⎰ 其中c 为任意常数列向量。
5. 定义微分算子dD dt=。
设()P D 是关于D 的一个n 次多项式,它的逆算子记为1()P D 。
则1()()t e v t P D λ= 1()()t e v t P D λλ+ 。
二、解下列方程(3*10分=30分) 1.1dy dx x y=+ 解:令x y u +=,则原方程化为 1du udx u+=分离变量,得(1)1udu dx u u=≠-+ 积分,得ln |1|u u x c -+=+ … … … (6分) 变量还原,得原方程的通解ln |1|y x y c =+++,c 为任意常数。
《常微分方程》试题A
) )) )) ))上)) 值分别为n λλλ,,,21 ,那么矩阵R t v e v e v e t n t t t n ∈=Φ],,,,[)(2121λλλ 是常系数线性微分方程组Ax x ='的一个基解矩阵. ( )二.填空题(每小题2分,共10分)1.如果方程),(y x f dxdy=右端的函数),(y x f 在有界区域中连续,且在G 内关于y 满足局部李普希兹条件,那么方程),(y x f dxdy=通过G 内任何一点),(00y x 的解)(x y ϕ=可以延拓,直到点))(,(x x ϕ任意接近区域G 的 .2.微分方程0),(),(=+dy y x N dx y x M 是恰当微分方程的充要条件是 (用(,),(,)M x y N x y 的偏导数形式表示).3.(,),(,)M x y N x y 为,x y 的连续函数且有连续的一阶偏导数.方程(,)(,)0M x y dx N x y dy +=有只与x 有关的积分因子的充要条件是________________仅为x 的函数.4.若向量函数)(,),(),(21t x t x t x n 在区间b t a ≤≤上线性相关,则在b t a ≤≤上它们的朗斯基行列式)(t W 0. 5. 与初值问题00)(),,(y x y y x f dxdy==等价的积分方程为 . 三.选择题(每小题3分,共15分)1.方程xy dx2=满足初始条件:1,000==y x 的特解是( ). (A) 3x e y = (B) xe y = (C) 2x e y = (D) 221x ey =2. 微分方程0)2()2(=-+-dy x y dx y x 的通解为( ). (A)c y x =+22 (B)c y x =-22c y xy x =+-22 ).0=+'y (C) 1=-'y y x (D)12='y x ( ).0)=dy y (B)0)4()3(2=---dy x y dx x y 0)4632=+dy y y x (D)0)(=+-xdy dx xy y 22cos xy x +=的阶数是( ). 2 (C )3 (D ) 4 (每小题6分,共30分).03.解方程432dy x y dx xy +=.4.解方程2223.t d x dxx e dt dt---=5.解方程2()(2)0x y dx x y dy ++-=.五.综合题(共25分)1101⎡⎤⎢⎥⎣⎦,()0t e f t -⎡⎤=⎢⎥⎣⎦ ,()0t t t e te t e ⎡⎤Φ=⎢⎥⎣⎦是Ax x ='的基)(t 满足1(0)1ϕ-⎡⎤=⎢⎥⎣⎦的解()t ϕ.⎥⎦⎤⎢⎣⎡-4112 ,微分方程组.Ax x ='(1) 求Ax x ='满足η=的解);(t ϕ(2) 求基解矩阵.exp At3、(10分)设(),()A t f t 分别为在区间a t b ≤≤上连续的n n ⨯矩阵和n 维列向量.证明:非齐次线性微分方程组()()x A t x f t '=+,()a t b ≤≤存在且最多存在1n +个线性无关解.。
常微分方程习题及答案
第十二章常微分方程(A)一、就是非题1.任意微分方程都有通解。
()2.微分方程的通解中包含了它所有的解。
()3.函数y=3sin x-4cos x就是微分方程y''+y=0的解。
()4.函数y=x2⋅e x就是微分方程y''-2y'+y=0的解。
()5.微分方程xy'-ln x=0的通解就是y=12(ln x)2+C(C为任意常数)。
(6.y'=sin y就是一阶线性微分方程。
()7.y'=x3y3+xy不就是一阶线性微分方程。
()8.y''-2y'+5y=0的特征方程为r2-2r+5=0。
()9.dydx=1+x+y2+xy2就是可分离变量的微分方程。
()二、填空题1.在横线上填上方程的名称①(y-3)⋅ln xdx-xdy=0就是。
②(xy2+x)dx+(y-x2y)dy=0就是。
③x dydx=y⋅lnyx就是。
④xy'=y+x2sin x就是。
⑤y''+y'-2y=0就是。
2.y'''+sin xy'-x=cos x的通解中应含个独立常数。
3.y''=e-2x的通解就是。
4.y''=sin2x-cos x的通解就是。
5.xy'''+2x2y'2+x3y=x4+1就是阶微分方程。
6.微分方程y⋅y''-(y')6=0就是阶微分方程。
7.y=1x所满足的微分方程就是。
)8.y '=9.2y的通解为。
x dx dy +=0的通解为。
y x5dy 2y 10.-=(x +1)2,其对应的齐次方程的通解为。
dx x +111.方程xy '-(1+x 2)y =0的通解为。
12.3阶微分方程y '''=x 3的通解为。
三、选择题1.微分方程xyy ''+x (y ')-y 4y '=0的阶数就是( )。
第七章常微分方程练习题(含答案)
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
(完整版)常微分方程练习试卷及答案
常微分方程练习试卷一、填空题。
1.方程 x 3 d2x 10 是阶(线性、非线性)微分方程 .dt 22. 方程 x dyf (xy ) 经变换 _______ ,能够化为变量分别方程.y dx3.微分方程 d 3 y y 2x 0 知足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设 常 系 数 方程 yy*2 xxx,则此方程的系数ye x 的 一个 特解 y ( x) eexe,, .5. 朗斯基队列式 W (t )0是函数组 x 1(t), x 2 (t),L , x n (t ) 在 a x b 上线性有关的条件 .6. 方程 xydx (2 x 2 3y 2 20) dy 0 的只与 y 有关的积分因子为.7. 已知 X A(t) X 的基解矩阵为 (t ) 的,则 A(t ).8. 方程组 x '2 0.0 x 的基解矩阵为59. 可用变换 将伯努利方程化为线性方程 .10 . 是知足方程 y2 y 5y y 1 和初始条件的独一解 .11. 方程的待定特解可取的形式 :12. 三阶常系数齐线性方程 y 2 y y 0 的特点根是二、计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线互相垂直 .dy x y 1 2.求解方程.dxx y 3d 2 x dx 2。
3. 求解方程 x2( )dt dt4.用比较系数法解方程 . .5.求方程y y sin x 的通解.6.考证微分方程(cos x sin x xy 2 )dx y(1 x2 )dy0 是适合方程,并求出它的通解.311A X 的一个基解基解矩阵(t) ,求dXA X7.设 A,,试求方程组dX241dt dt 知足初始条件x(0)的解 .8.求方程dy2x13y2经过点 (1,0)的第二次近似解 . dx9.求dy)34xy dy8y20 的通解(dxdx10. 若A 21试求方程组 x Ax 的解(t ),(0)141,并求expAt2三、证明题1.若(t), (t ) 是 X A(t) X 的基解矩阵,求证:存在一个非奇怪的常数矩阵 C ,使得(t)(t )C .2.设 ( x) (x0 , x) 是积分方程y(x)y0x2 y( )]d ,x0 , x [ , ] [x0的皮卡逐渐迫近函数序列 {n (x)} 在 [,] 上一致收敛所得的解,而(x) 是这积分方程在 [ ,] 上的连续解,试用逐渐迫近法证明:在[,] 上( x)( x) .3. 设都是区间上的连续函数 ,且是二阶线性方程的一个基本解组 . 试证明 :(i)和都只好有简单零点(即函数值与导函数值不可以在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:假如(t ) 是dXAX 知足初始条件(t0 )的解,那么(t) exp A(t t 0 ) dt.答案一 . 填空题。
常微分方程期末考试试题与答案
(2)首先,用分离变量法求得dx/dt=ax有通解x(t)=c exp(at)。
设方程有形如x(t)=c(t) exp(at)的解。代入方程得dc/dt= exp(-as) f(s),
从而得到特解x(t)= exp(at)exp(-as) f(s)ds和通解
(a)f连续,(b) f连续且对x有界,
(c) f连续且对x可微,(d) f连续且对x连续可微。
(5)在(4)中考虑的初值问题解对初值连续依赖的条件是__c___。
(a)f连续,(b) f连续且对x有界,
(c)连续且对x是Lipschitz的,(d) f连续且对x可微。
(6)设系统dx/dt=f(x)的初值问题具有存在唯一性且满足f(0)=0。系统关于初值x(0)=x0的解记为x(t,x0)。系统零解的渐近稳定性是指其零解稳定并且__d__。
[解](1)特征方程为2+1=0,=i, -i。通解为x(t)=C1exp(it)+C2exp(-it).
实通解为x(t)=C1cos(t)+C2sin(t).[5分]
(2)考虑算子形式的复系统(D2+1)z=exp(it).从而
z(t)= exp(it){1/( (D+i)2+ 1)}1= exp(it)(1/( (D2+2iD))1
=(x/y) d(xy3)+ 4x2d(xy)
=(x/y) {d(xy3)+ 4xy d(xy) }
=(x/y) d{xy3+ 2(xy)2},[4分]
从而得到xy3+ 2(xy)2=C。[1分]
常微分方程(A)答案
《 常微分方程 》(A)答案:(省去了作题的详细步骤)一. 填空题(每小题3分, 共15分)1. );())()(()(121x y x y x y c x y +-=;2. 1||,<∈y R x ;3. tttee22,--; 4. n ; 5. ⎪⎪⎭⎫ ⎝⎛t t te te e 0.二.单项选择题(每小题3分, 共15分)1. A2.B3. C 4 . D 5. A 三. 求下列微分方程的解 ( 共36分) 1. 分离变量:2211xdx ydy -=- (3分)积分,得通解 ,arcsin arcsin c x y += (6分) 特解: 1±=y (7分)2. 令 ,1-=y z 则 (2分),2x z xdx dz --= (3分) ,422x x c z -= (5分) 得通解:4244x c x y -=.(6分)有特解: .0=y (7分) 3.令 ,2,2x y x N y x M -=+= (1分),2x N x Ny M -=∂∂-∂∂ 积分因子 .1)(2xx u = (4分) 通解: ,||ln 2c xyy x =-+ (7分) 4.02'3''=++x x x 的特征根:,2,121-=-=λλ 通解:.221t te c e c x --+=(3分)原方程特解设为:t C t B Atex tcos sin 1++=-, (5分)代入原方程,可得: .103,101,1-===C B A 即.cos 103sin 1011t t tex t-+=- (7分) 所求通解为:.cos 103sin 101221t t te e c e c y tt t -+++=--- (8分)5.令 ,'2yt y =- 代入原方程,可得: (2分).1'12t y t ty -=⇒+= (3分).11'2c t x dt ty dy dx +=⇒-==(5分) 故通解为:⎪⎩⎪⎨⎧+=+=t t y c t x 11 消去 ,t 得 .1c x c x y -+-= (6分)2±=y 为特解. (7分)四. 特征根:.2,121=-=λλ (2分)11-=λ 对应特征向量:⎪⎪⎭⎫ ⎝⎛-11;22=λ 对应特征向量:⎪⎪⎭⎫⎝⎛21;(4分) 基解矩阵: ⎪⎪⎭⎫ ⎝⎛-=Φ--t tt te e e e t 222)(, ⎪⎪⎭⎫⎝⎛-=Φ---t t t t e ee e s 221231)(, (6分) ⎪⎪⎪⎪⎭⎫⎝⎛--+-+--=ΦΦ=ΦΦ+ΦΦ=-----⎰⎰t t t t tt e e t t e e t t dss f s t dss f s t t t 22101013435cos 3sin 3235cos sin 2)()()()()()()0()0()()(ϕϕ (10分)五.,222)24(24242by by ax xy b a ax dtdV----+-= (2分) 取 ,2,1==b a 则 222),(y x y x V += 定正. (4分)42424422y y x x dtdV----= 定负, (6分) 故零解渐近稳定. (8分)六.),)(exp()'( ))(exp()''''()(0222⎰⎰-=++='xx xx dt t p qy y dt t p p yy yy y x f (4分)由于)(x y y =为非0解, 可得y 与'y 在区间],[b a 上任何点处不同时为0 (否则与解的唯一性矛盾), 又 ,0<q 故 )(0)('],,[x f x f b a x ⇒>∈∀在],[b a 上严格单增.(8分)七.作逐步逼近序列: ),()(0x f x =ϕ0,1,2,n ,)(),()()(01 =+=⎰+xx n n d x K x f x ξξϕξλϕ(2分)记 ⎰===≤≤≤≤baba b x a dx x f M x f x K M ,|)(| ),(|),(|max2,1ξξ由 ,|||)(),(||||)()(|21001M M d x K x x b aλξξϕξλϕϕ≤=-⎰以及数学归纳法可得)(|||)()(|1211-+-≤-n nn n n a b M M x x λϕϕ. (4分)取 ,)(1||1a b M -<λ则∑∞=--1121)(||n n nn a b M M λ收敛,故 )(x n ϕ在],[b a 上一致收敛. 设 ],,[),()(b a x x x n ∈→ϕϕ 则 )(x ϕ为连续解. (5分) 设 )(x ψ为另一连续解, )()(x x ϕψ≠. 记 ,0||max ],[>-=∈ψϕb a x Q 由,1)(||)(|| )(||||||||1111≥-⇒-≤⇒-≤-≤-⎰a b M a b Q M Q a b Q M dx M baλλλψϕλψϕ矛盾. 故 ),()(x x ϕψ= 即解唯一. (8分)。
(完整版)数学系常微分方程期末试卷A及答案
(A)试卷说明:1、该门考试课程的考试方式:闭卷;2、 考试所用时间:120分钟。
3、 考试班级:数计学院数 11级一、填空题(每小题3分,本题共15分)1.方程x (y 2 1)dx y (x 2 1)dy 0所有常数解是2.方程y 4y 0的基本解组是3 .方程dy x 2 siny 满足解的存在唯一性定理条件的区域是 ___________________________ . 4•线性齐次微分方程组的解组 Y,X ),Y 2(X ), ,Y n (x )为基本解组的 ________________ 条件 是它们的朗斯基行列式 W (x ) 0 .5 .一个不可延展解的存在在区间一定是区间.、单项选择题(每小题3分,本题共15分)6 .方程—x 3 y 满足初值问题解存在且唯一定理条件的区域是( ).(A )上半平面 (B ) xoy 平面(C )下半平面(D )除y 轴外的全平面7. 方程dy y 1()奇解.dx(A )有一个 (B )有两个 (C )无 (D )有无数个8. n 阶线性齐次微分方程基本解组中解的个数恰好是()个. (A ) n(B ) n -1( C ) n +1(D ) n +2系院学计数考试本科考试科目常微分方程人题审师教课任号学一一名姓 班试卷份数年月 日9、微分方程xlnx y y 的通解 ()B 、y c 1x l n x 1 D 、y GX In x 1c 2).(B )构成一个n 1维线性空间 (D )不能构成一个线性空间三、简答题(每小题6分,本题共30分) “解方程dy e x y12•解方程(x 2y )dx xdy 0A 、y c 1xln x c 2 C 、y xlnx10. n 阶线性非齐次微分方程的所有解((A )构成一个线性空间 C )构成一个n 1维线性空间年月日dy y13.解方程1dx x14•解方程e y dx (xe y 2y)dy 0d x dx15•试求 3 2x 0的奇点类型及稳定性dt2dt四、计算题(每小题10分,本题共20分)1 X16.求方程y y _e的通解217.求下列方程组的通解dxdt dy dt2x y五、综合能力与创新能力测试题(每小题10分,本题共20分)18.在方程y p(x)y q(x)y 0中,p(x), q(x)在(,)上连续,求证:若p(x)恒不为零,则该方程的任一基本解组的朗斯基行列式W(x)是(,)上的严格单调函数.19 .在方程y p(x)y q(x)y 0中,已知p(x),q(x)在(,)上连续.求证:该方程的任一非零解在xoy平面上不能与x轴相切.12-13-2学期期末考试《常微分方程》A 参考答案及评分标准(数学与计算机科学学院)制卷____ 审核 _____________、填空题(每小题3分,本题共15分)1. y 1, x 12. sin 2x, cos2x3. xoy 平面 4 .充分必要5 .开、单项选择题(每小题3分,本题共15分)6. D7. C8. A 9. D 10. D三、简答题(每小题6分,本题共30分)11•解分离变量得e y dy e x dx等式两端积分得通积分e y e x C12.解方程化为业1 2》 dx x令y xu ,贝U u x-du ,代入上式,得dx dxdu x 1 u dx分量变量,积分,通解为u Cx 1原方程通解为y Cx 2 x13.解 对应齐次方程 d ' 的通解为dx xy Cx(2 分)令非齐次方程的特解为y C (x )x(3 分)(3分)(6分)(2分)(4分)(5分)代入原方程,确定出// \ 1 c (X )-X再求初等积分得C (x ) ln x C因此原方程的通解为y Cx + xl nx14 •解: 由于卫 e y —,所以原方程是全微分方程.y x取(X 0, y 。
数学系常微分方程期末试卷A及答案
(A)试卷说明:1、该门考试课程的考试方式:闭卷;2、 考试所用时间:120分钟。
3、 考试班级:数计学院数 11级一、填空题(每小题3分,本题共15分)1.方程x (y 2 1)dx y (x 2 1)dy 0所有常数解是2.方程y 4y 0的基本解组是3 .方程dy x 2 siny 满足解的存在唯一性定理条件的区域是 ___________________________ . 4•线性齐次微分方程组的解组 Y,X ),Y 2(X ), ,Y n (x )为基本解组的 _______________ 条件 是它们的朗斯基行列式 W (x ) 0 .5 .一个不可延展解的存在在区间一定是区间.、单项选择题(每小题3分,本题共15分)6 .方程—x 3 y 满足初值问题解存在且唯一定理条件的区域是( ).(A )上半平面 (B ) xoy 平面(C )下半平面(D )除y 轴外的全平面7. 方程dy y 1()奇解.dx(A )有一个(B )有两个(C )无(D )有无数个8. n 阶线性齐次微分方程基本解组中解的个数恰好是( )个. (A ) n(B ) n -1( C ) n +1(D ) n +2系院学计数考试本科考试科目常微分方程人题审师教课任号学一一名姓班试卷份数年月 日9、微分方程xlnx y y 的通解 ()B 、y c 1x l n x 1 D 、y GX In x 1c 2).(B )构成一个n 1维线性空间 (D )不能构成一个线性空间三、简答题(每小题6分,本题共30分) “解方程dy e x y12•解方程(x 2y )dx xdy 0A 、y c 1xln x c 2 C 、y xlnx10. n 阶线性非齐次微分方程的所有解((A )构成一个线性空间 C )构成一个n 1维线性空间dy y13.解方程1dx x14•解方程e y dx (xe y 2y)dy 0d x dx15•试求 3 2x 0的奇点类型及稳定性dt2dt四、计算题(每小题10分,本题共20分)1 X16.求方程y y _e的通解217.求下列方程组的通解dxdt dy dt2x y五、综合能力与创新能力测试题(每小题10分,本题共20分)18.在方程y p(x)y q(x)y 0中,p(x), q(x)在(,)上连续,求证:若p(x)恒不为零,则该方程的任一基本解组的朗斯基行列式W(x)是(,)上的严格单调函数.19 .在方程y p(x)y q(x)y 0中,已知p(x),q(x)在(,)上连续.求证:该方程的任一非零解在xoy平面上不能与x轴相切.12-13-2学期期末考试《常微分方程》A 参考答案及评分标准(数学与计算机科学学院)制卷____ 审核 _____________、填空题(每小题3分,本题共15分)1. y 1, x 12. sin 2x, cos2x3. xoy 平面 4 .充分必要5 .开、单项选择题(每小题3分,本题共15分)6. D7. C8. A 9. D 10. D三、简答题(每小题6分,本题共30分)11•解分离变量得e y dy e xdx等式两端积分得通积分e y e x C12.解方程化为业1 2》 dx x令y xu ,贝Uu x-du ,代入上式,得 dx dxdu x 1 u dx 分量变量,积分,通解为u Cx 1原方程通解为y Cx 2 x13.解 对应齐次方程 d ' 的通解为dx xy Cx(2 分)令非齐次方程的特解为y C (x )x(3 分)(3分)(6分)(2分)(4分)(5分)代入原方程,确定出// \ 1 c (X )-X再求初等积分得C (x ) ln x C因此原方程的通解为y Cx + xl nx14 •解: 由于卫 e y —,所以原方程是全微分方程.y x取(X 0, y 。
常微分方程A卷及答案
安 庆 师 范 学 院《常微分方程》A 卷 一、判断题(8分,每题2分)1、阶常微分方程的通解包含了它的所有解。
( )2、函数221c x e c y +=是微分方程02=-'-''y y y 的通解。
( )3、阶线性齐次微分方程的个解12(),(),,()n x t x t x t 在],[b a 上线性无关的充要条件是()0,[,]W t t a b ≠∈。
( )4、设)(t Φ为X t A X )(='的基解矩阵,则)(t ψ为其基解矩阵存在阶常数矩阵,使C t t )()(Φ=ψ。
( )二、选择题(10分,每题2分)1、 微分方程24()cos y y y y ''''''+-=是( )。
A 三阶非线性方程 B 三阶线性方程C 四阶非线性方程D 四阶线性方程2、 下列方程中为齐次方程的是 ( )。
A ()y xy y ϕ''=+B tany xy y x x '=+C ()y xy f y '''=+D cos cos ydx xdy = 3、阶齐次线性微分方程的所有解构成一个( )维线性空间。
AB 1n +C 1n -D 2n +4、Lipschitz 条件是一阶微分方程初值问题存在唯一解的( )条件。
A 充分条件B 必要条件C 充分必要条件D 既不是充分也不是必要条件 5. 方程dx y dt dy x dt⎧=-⎪⎪⎨⎪=⎪⎩的奇点(0,0)的类型是 ( )。
A 结点 B 焦点 C 中心 D 鞍点三、填空题(12分,每空2分)1、向量函数12(),(),,()n X t X t X t 是线性方程组()X A t X '=的基本解组的充要条件是:(1);(2)。
2、方程(,)(,)0M x y dx N x y dy+=存在只与有关而与无关的积 分因子的充分必要条件是。
《常微分方程》期末考试试题库
《常微分方程》期末考试试题目录《常微分方程》期末考试题(一) (1)《常微分方程》期末考试题(二) (6)《常微分方程》期末考试题(三) (13)《常微分方程》期末考试题(四) (18)《常微分方程》期末考试题(五) (24)《常微分方程》期末考试题(六) (31)《常微分方程》期末考试题库 (36)《常微分方程》期末考试题(一)一、填空题(每空2 分,共16分)。
1、方程22d d y x x y+=满足解的存在唯一性定理条件的区域是 xoy 平面 . 2. 方程组n x x xR Y R Y F Y∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线.3.),(y x f y '连续是保证方程),(d d y x f xy=初值唯一的 充分 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x ty y txd d d d 的奇点)0,0(的类型是 中心5.方程2)(21y y x y '+'=的通解是221C Cx y +=6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是()()x P y N 17.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是 线性无关8.方程440y y y '''++=的基本解组是x x x 22e ,e -- 二、选择题(每小题 3 分,共 15分)。
9.一阶线性微分方程d ()()d yp x y q x x+=的积分因子是( A ). (A )⎰=xx p d )(e μ (B )⎰=xx q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-xx q d )(e μ10.微分方程0d )ln (d ln =-+y y x x y y 是( B )(A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A) 1±=x (B)1±=y (C)1±=y , 1±=x (D)1=y , 1=x12.n 阶线性非齐次微分方程的所有解( D ).(A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D )无三、计算题(每小题8分,共48分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华中师范大学2005——2006学年第二学期
期(末)考试试卷(A 卷)
课程名称 常微分方程 课程编号 83410011 任课教师 严国政 张正杰 郑高峰
一、填空题:(共5题,每题5分,共25分)
1)n 阶常微分方程具有的一般形式为
(2)齐次方程
x
y x y dx
dy tan
= 作变换 可以化
为分离变量方程。
(3)曲线族2
x cx y += 所满足的微分方程是
(4)若方程0'
''=++qy py y (p ,q 为常数)的特征根为复数
形式,即βαλi ±=2,1,其通解形式为
(5)方程x
xe y y y =+-23'
'
' 的一个特解形式(不必求出) 是
院系 专业 年级 学号 姓名
二、 计算题:(共5题,每题10分,共50分)
求下列微分方程的通解或特解: (1)x xe y xy =+',满足条件1)1(=y
(2)1
4212-+++=
y x y x dx
dy
(3)0)1(2223=-+dy y x dx xy
(4)x e y y y 2'''56=++
(5)用参数法或其它方法求解方程1))(1(2
'2
=+y y
三、计算题:(共1题,共15分)
求方程组
⎪
⎩
⎪
⎨
⎧
+
=
+
=
y
x
dt
dy
y
x
dt
dx
4
3
2
的通解。
四、证明题(共1题,共5分)
在条形区域:b
x
a≤
≤,+∞
<|
|y内,对任意的
]
,
[
b
a
x∈,R
y∈
,假设方程)
,
(
'y
x
f
y=满足
初始条件
)
(y
x
y=的解存在且唯一,若对其中任意的两个解),
(
1
x
y)
(
2
x
y,有)
(
)
(
2
1
x
y
x
y<,则必有)
(
)
(
2
1
x
y
x
y<。
(其中x在)
(
1
x
y和)
(
2
x
y共同的存在区间内)
五、 计算讨论题:(共1题,共5分) 考虑如下系统
⎪⎩⎪⎨⎧-=+-=x dt
dy y
x dt dx
34
1)。
求该系统的奇点及其类型;
2)。
求出平面轨线族,并作出相图的草图。