高数第十一章习题
高等数学:第11章无穷级数自测题答案
《高等数学》单元自测题答案第十一章 无穷级数一.选择题:1.B ;2. D ;3.A ;4.B ;5.B ;6.B ;7. C ;8.C .二.填空题:1. ()∑∞=-021n n n x ,()1,1-∈x ;2. ()x +1ln ; 3. [)6,0; 4. 2k . 三.判断题:1. 解 因为02121lim ≠=+∞→n n n ,故级数发散. 2. 解 因为n n n n n n n 1)3(3)3(32=++>++,而∑∞=11n n发散,故原级数发散. 3. 解 设n n n n u )13(+=,因为13113lim lim <=+=∞→∞→n n u n n n n ,故级数收敛. 4. 解 因为()∑∞=-+1212n n n ∑∑∞=∞=--+=111)21()21(n n n n ,并且级数∑∑∞=∞=--111)21()21(n n n n 和均收敛,故级数()∑∞=-+1212n n n收敛. 四.判断题:1. 解()∑∑∞=-∞=--=-11111221n n n n n nn ,因为12121lim 221lim lim 11<=+=⋅+=∞→-∞→+∞→n n n n u u n n n n n n n 故∑∞=-112n n n 收敛,从而()∑∞=---11121n n n n 绝对收敛.2. 解 ∑∞=-+-=++-+++-1212221)1(14413312221n n n n , ∑∑∞=∞=-+=+-1212111)1(n n n n n n n ,因为11lim 11lim 222=+=+∞→∞→n n nn nn n ,而级数∑∞=11n n发散,故绝对值级数∑∞=-+-1211)1(n n n n 发散,因此所给级数不是绝对收敛的.由于所给级数是交错级数,且满足1)1(11,01lim222+++>+=+∞→n n n n n n n ,据莱布尼兹判别法知,所给级数收敛,且为条件收敛.五.求幂级数的收敛半径和收敛域1. 解 3313lim lim 11=⋅+=+∞→+∞→n n n nn n n n a a ,故收敛半径为31R =, 当31=x 时,幂级数化为∑∞=11n n ,该级数发散.当31-=x 时,幂级数化为∑∞=-11)1(n nn,其为交错级数,据莱布尼兹判别法知,该级数收敛.故所给幂级数的收敛域为⎪⎭⎫⎢⎣⎡-3131,. 2. 解 n n n n n n n n n n a a n n n n n n n n nn n nn n 1)1(lim 1)1(lim )1(lim 1)1(1lim lim 111111⋅+=⋅+=+=+=+∞→++∞→+∞→+∞→+∞→ 001lim )111(lim 11=⋅=⋅+-=-∞→+∞→e n n n n n , 故收敛半径为∞=R ,收敛域为()∞+∞-,. 3. 解 ∞=+=+=∞→∞→+∞→)1(lim !)!1(lim lim 1n n n a a n n nn n ,故收敛半径为0R =,收敛域为0=x . 六. 解:由于()x x f 2-=是奇函数,故0=n a , ,2,1,0=n ()⎰--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---==ππππππx n nx x n ntdt t b n sin 1cos 12sin 21 ()nn 41-= ∴()()nx nx f n n sin 141∑∞=-=。
高等数学第十一章习题
1. 填空题
∞
∑ (1)
lim
n→∞
un
= 0 是级数 un 收敛的
n=1
必要
条件,
而不是
充分
条件;
∞
∞
∞
(2) 若级数 ∑un 绝对收敛, 则级数 ∑un 必定 收敛 ; 若级数 ∑un 条件收敛,
n=1
n=1
n=1
∞
则级数 ∑ un 必定 发散 ; n=1
∞
∞
(3) 级数 ∑un 按某一方式经添加括号后所得的级数收敛是级数 ∑un 收敛的
.
n=1 (n − 1)! 3
n=1 (n − 1)!
n=1 (n − 1)!
93
所以
S ( x)
=
x2 (
+
x
x
+ 1)e3
,
x ∈ (−∞, +∞) .
93
∑ ∑ (4) 令 t = x + 1, 则 ∞ (x + 1)n = ∞ tn . n=0 (n + 2)! n=0 (n + 2)!
设 an
−1)
,
而 lim un+1 n→∞ un
=
lim
n→∞
2(n + 1) 2n+1
−1 2n x2 2n −1
=
x2 2
,
当
x=±
2
时级数
∞
∑
2n
−
1
发散,
所 以 级 数 的 收 敛 区 间 为 (−
2,
2) .
设
n=1 2
∑ S ( x)
=
∞ n=1
《高数》下册第十一章练习题
第十一章 曲线积分与曲面积分习题 11-11.设在xOy 面内有一分布着质量的曲线弧L ,在点(x,y )处它的线密度为μ(x,y )。
用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴,对y 轴的转动惯量x I ,y I(2)这曲线弧的质心坐标x ,y2.利用对弧长的曲线积分的定义证明性质33.计算下列对弧长的曲线积分: (1)22(x y )nLds +⎰,其中L 为圆周x cos t,y sin (0t 2)a a t π==≤≤(2)(x y)ds L+⎰,其中L 为连接(1,0)及(0,1)两点的直线段(3)x Lds ⎰,其中L 为由直线y=x 及抛物线2y x =所围成的区域的整个边界 (4)22x y Leds +⎰,其中L 为圆周222x y a +=,直线y=x 及x 轴在第一象限内所围成的扇形的整个边界(5)2221ds x y z Γ++⎰,其中Γ为曲线cos ,sin ,t t tx e t y e t z e ===上相应于t 从0变到2的这段弧 (6)2x yzds Γ⎰,其中Γ为折线ABCD ,这里A,B,C,D 依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2) (7)2Ly ds ⎰,,其中L 为摆线的一拱(t sin ),y (1cos )(0t 2)x a t a t π=-=-≤≤(8)22(x )ds Ly +⎰,其中L 为曲线(cos sin ),y (sin cos )(0t 2)x a t t t a t t t π=+=-≤≤4.求半径为a,中心角为2ϕ的均匀圆弧(线密度1μ=)的质心5.设螺旋形弹簧一圈的方程为cos ,sin ,x a t y a t z kt ===,其中02t π≤≤,它的线密度222(x,y,z)x y z ρ=++.求: (1)它关于z轴的转动惯量z I(2)它的质心。
习题 11-21.设L 为xOy 面内直线x a =上的一段,证明:(x,y)dx 0LP =⎰2.设L 为xOy 面内x 轴上从点(a,0)到点(b,0)的一段直线,证明:(x,y)dx (x,0)dxbLaP P =⎰⎰3.计算下列对坐标的积分: (1)22(xy )Ldx-⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧(2)Lxydx⎰,其中L 为圆周222(x )a a y a -+=(>0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行) (3)Lydx xdy+⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到2π的一段弧(4)22(x y)dx (x y)dy L x y +--+⎰,其中L 为圆周222+y x a =(按逆时针方向绕行) (5)2x dx zdy ydzΓ+-⎰,其中Γ为曲线cos ,sin x k y a z a θ,θθ===上对应θ从0到π的一段弧 (6)(x y 1)dz xdx ydy Γ+++-⎰,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线(7)+y dx dy dzΓ-⎰,其中Γ为有向闭折线ABCD ,这里的A,B,C 依次为点(1,0,0),(0,1,0),(0,0,1) (8)22(x2xy)dx (y 2xy)dyL-+-⎰,其中L 是抛物线2y x =上从点(-1,1)到点(1,1)的一段弧 4.计算(x y)dx (y x)dy L++-⎰,其中L 是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧(2)从点(1,1)到点(4,2)的直线段(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线(4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧 5.一力场由沿横轴正方向的恒力F 所构成,试求当一质量为m 的质点沿圆周222x y R +=按逆时针方向移过位于第一象限的那一段弧时场力所做的功6.设z 轴与动力的方向一致,求质量为m 的质点从位置(x,y,z )沿直线移到(x,y,z )时重力所做的功7.把对坐标的曲线积分(x,y)dx Q(x,y)dyLP +⎰化成对弧长的积分曲线,其中L 为:(1)在xOy 面内沿直线从点(0,0)到点(1,1)(2)沿抛物线2y x =从点(0,0)到点(1,1)(3)沿上半圆周222x y x +=从点(0,0)到点(1,1) 8.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧,把对坐标的曲线积分Pdx Qdy RdzΓ++⎰化成对弧长的曲线积分习题 11-31.计算下列曲线积分,并验证格林公式的正确性: (1)22(2xy x )dx (x y )dyL-++⎰,其中L 是由抛物线2y x =和2y x =所围成的区域的正向边界曲线 (2)222(x xy )dx (y 2xy)dyL-+-⎰,其中L 是四个顶点分别为(0,0),(2,0),(2,2),(0,2)的正方形区域的正想边界2.利用曲线积分,求下列曲线所围成的图形的面积 (1)星形线33cos ,sin x a t y a t ==(2)椭圆229+16y 144x = (3)圆222x y ax +=3.计算曲线积分22ydx 2(x y )L xdy -+⎰,其中L 为圆周22(x 1)2y -+=,L 的方向为逆时针方向4.证明下列曲线积分在整个xOy 面内与路径无关,并计算积分值(1)(2,3)(1,1)(x y)dx (x y)dy++-⎰(2)(3,4)2322(1,2)(6xy y )dx (63)dy x y xy -+-⎰(3)(2,1)423(1,0)(2xy y 3)dx (x 4xy )dy-++-⎰5.利用格林公式,计算下列曲线积分: (1)(2x y 4)dx (5y 3x 6)dyL-+++-⎰,其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)222(cos 2sin )(x sinx 2ye )dyx x Lx y x xy x y e dx +-+-⎰,其中L 为正向星形线222333(a 0)x y a +=>(3)3222(2xy y cosx)(12ysinx 3x y )dyLdx -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到(2π,1)的一段弧(4)22(xy)dx (x sin y)dyL--+⎰,其中L 是在圆周22y x x =-上由点(0,0)到点(1,1)的一段弧6.验证下列(x,y)dx (x,y)dy P Q +在整个xOy 平面内是某一函数u(x,y)的全微分,并求这样的一个u(x,y):(1)(2)(2)x y dx x y dy +++(2)22xydx x dy + (3)4sin sin3cos 3cos3cos 2x y xdx y xdy -(4)2232(38)(812)y x y xy dx x x y ye dy ++++ (5)22(2cos cos )(2sin sin )x y y x dx y x x y dy ++- 7.设有一变力在坐标轴上的投影为2,28X x y Y xy =+=-,这变力确定了一个力场。
高等数学测试及答案(第十一章)
高等数学测试(第十一章)一. 选择题(每题3分,共30分) 1.下列级数收敛的是( )A.135(21)25(31)n n n ∞=⋅⋅⋅+⋅⋅⋅-∑ B. 212n n n ∞=+∑ C. 1πsin n n ∞=∑D. n ∞= 2.下列级数条件收敛的是( )A.15(1)4nn n ∞=⎛⎫- ⎪⎝⎭∑B. 1(1)n n ∞=-∑C.13(1)5n n n ∞=-∑D. 1(1)n n ∞=-∑3.设a为常数,则级数21sin n a n ∞=⎛ ⎝∑( )A.绝对收敛 B.条件收敛 C.发散 D.收敛性与a 无关4.下列命题正确的是 ( ) A.lim 0n n u →∞=,则1nn u∞=∑必发散 B.lim 0n n u →∞≠,则1nn u∞=∑必发散 C.lim 0n n u →∞=,则1nn u∞=∑必收敛 D.lim 0n n u →∞≠,则1nn u∞=∑必收敛5.若级数1n n u ∞=∑收敛,则级数( )A. 1n n u ∞=∑收敛 B. 1(1)nn n u ∞=-∑收敛 C. 11n n n u u ∞+=∑收敛 D. 112n n n u u ∞+=+∑收敛 6.设0n u >,若1nn u∞=∑发散,1(1)nnn u∞=-∑收敛,则下列结论正确的是( )A. 211n n u∞-=∑收敛,21nn u∞=∑发散 B.211n n u∞-=∑发散,21nn u∞=∑收敛C.2121()n n n uu ∞-=+∑收敛 D. 2121()n n n u u ∞-=-∑收敛7.设10(1,2,)n u n n ≤≤=,则下列级数中一定收敛的是( )A. 1n n u ∞=∑ B. 1(1)n n n u ∞=-∑C.n ∞=D. 21(1)n n n u ∞=-∑8.若幂级数∑∞=-1)1(n n nx a在1-=x 处收敛,则该级数在点3=x 处 ( )A. 绝对收敛B. 条件收敛C. 一定发散D. 可能收敛也可能发散 9. 设幂级数∑∞=+0)1(n n nx a在2-=x 处条件收敛,则它在2=x 处( )A.发散B.条件收敛C.绝对收敛D.收敛性不确定 10. 级数13nn n a ∞=∑收敛,则级数1(1)2n nn n a ∞=-∑( ) A.发散 B.条件收敛 C.绝对收敛 D.收敛性不确定二. 填空题(每题4分,共20分)11.级数0(ln3)2n nn ∞=∑的和为___________. 12.若lim n n u →∞=∞,则1111n n n u u ∞=+⎛⎫-= ⎪⎝⎭∑ .13.幂级数1(1)nn n x∞=+∑的和函数为________________.14.函数112x +展开式为x 的幂级数为________________. 15.幂级数2024n nn x n ∞=+∑收敛区间为________.三.计算题(每题10分,共50分)16. 求幂级数()()n n x n n 202!!2∑∞=的收敛区间. 17. 求幂级数21(2)4nn n x n ∞=-∑的收敛域. (不考虑端点情况)18.求()x x f arctan =的麦克劳林展开式. 19.将函数1()(3)f x x x =+展开成2x -的幂级数,并写出收敛域.20.将()x x f 3=展开为2-x 的幂级数,并指出收敛区间.答案:一.选择题1—5 A B C B D 6—10 D D D A C二. 填空题11. 3ln 22-. 12. 11u . 13. ()2212x x x --. 14. ()∑∞=⎪⎭⎫ ⎝⎛<<--0212121n n n n x x . 15. 11,22⎛⎫- ⎪⎝⎭. 三.计算题16. 求幂级数()()n n x n n 202!!2∑∞=的收敛区间(不考虑端点情况). 【解析】因为()()()()()()()()22221221411n 22lim !!2!1!12lim lim x x n x n n x n n u u l n n n n nn n =++=++==∞→+∞→+∞→. 当142<=x l ,即21<x 时级数()()n n x n n 202!!2∑∞=绝对收敛; 当142>=x l ,即21>x 时级数()()n n x n n 202!!2∑∞=发散; 故级数()()n n x n n 202!!2∑∞=的收敛区间为2121<<-x .17. 求幂级数21(2)4nnn x n ∞=-∑的收敛域. 【解析】令2x t -=级数化为214n n n t n ∞=∑,这是缺项幂级数,讨论正项级数21||4nnn t n ∞=∑, 而222112||41lim lim (1)4||4n n n n n n n nu t n l t u n t +++→∞→∞==⨯=+,当211,4l t =<即||2t <时级数214nn n t n ∞=∑绝对收敛;当211,4l t =>即||2t >时级数214nn n t n ∞=∑发散;当211,4l t ==即2t =±时级数化为11n n∞=∑是发散的;故级数214n n n t n ∞=∑收敛域为(2,2)-,由2x t -=得级数21(2)4nnn x n ∞=-∑收敛域为(0,4). 18.求()x x f arctan =的麦克劳林展开式.【解析】()()()()()()∑∑∞=∞=<<--=-=+='='0202211,1111arctan n n nn nn x x x x x x f .则()()()()()1,121111200200020<+-=-=⎪⎭⎫ ⎝⎛-='=+∞=∞=∞=∑⎰∑⎰∑⎰x x n dt t dt t dt t f x f n n nx nn n xn n n x. 19.将函数1()(3)f x x x =+展开成2x -的幂级数,并写出收敛域.【解析】令2x t -=,则2x t =+,11111111()(2)(5)3256151125f x t tt t t t ⎛⎫==-=- ⎪++++⎝⎭++; 又因01()1nn x x ∞==-+∑,所以001()(1)(22)2212n n n n n n t t t ∞∞===-=--<<+∑∑; 001()(1)(55)5515n n n n n n t t t t ∞∞===-=--<<+∑∑; 故0011()(1)(1)62155n nn n n n n n t t f x ∞∞===---∑∑ 11011(1)(22)3235n n n n n t t ∞++=⎡⎤=---<<⎢⎥⋅⋅⎣⎦∑ 11011(1)(2)(04)3235n n n n n x x ∞++=⎡⎤=---<<⎢⎥⋅⋅⎣⎦∑. 20.将()x x f 3=展开为2-x 的幂级数,并指出收敛区间. 【解析】令t x =-2,则()3ln 29393t t t ex f ⋅=⋅==+.而()+∞∞-∈=∑∞=,,!0x n x e n nx.所以()()()()()()()()()+∞∞-∈-=-=+∞∞-∈===∑∑∑∑∞=∞=∞=∞=,,2!3ln 92!3ln 9,,!3ln 9!3ln 930x x n x n t t n n t x f n n n n n n n n n n nx.。
高等数学第十一章练习题
第十一章 无穷级数练习题比较判别法的应用:1、讨论p —级数)0(131211>+++++p n p p p 的收敛性。
2、证明级数∑∞=+1)1(1n n n 是发散的。
3、判别级数∑∞=+++122)2()1(12n n n n 的收敛性。
4、设n n n b c a ≤≤),,2,1( =n 且∑∞=1n n a 及∑∞=1n n b 均收敛, 证明级数∑∞=1n n c 收敛。
5、设⎰=40tan πxdx a n n ,证明级数∑∞=1n n na )0(>λ收敛。
6、判定下列级数的敛散性: (1) ;11ln 12∑∞=⎪⎭⎫ ⎝⎛+n n (2) .cos 111∑∞=⎪⎭⎫ ⎝⎛-+n n n π 比值判别法的应用: 7、判别级数∑∞=++1)(n a n nn a n 的敛散性。
8、判别级数∑∞=⎪⎭⎫ ⎝⎛-1sin n n n ππ的敛散性。
9、判别级数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n 的敛散性。
10、级数,11∑∞=n p n 当1>p 时收敛, 有人说, 因为,111>+n 故级数∑∞=+1111n n n 收敛。
你认为他的说法对吗?11、判别下列级数的收敛性: (1) ∑∞=1!1n n ; (2)∑∞=110!n n n 。
(3) ().21211∑∞=⋅-n n n 12、判别级数∑∞=⎪⎭⎫ ⎝⎛+1212n n n n 的散敛性。
13、判别级数)0(!1>∑∞=a n a n n n n的收敛性。
14、判别级数2111n n n ∑∞=⎪⎭⎫ ⎝⎛-的散敛性。
15、判别级数∑∞=---1)1(2n n n 的收敛性: 16、判别级数∑∞=-+12)1(2n n n的收敛性。
17、试确定级数∑∞=1ln n n n 的敛散性。
交错级数判别法的应用:1、判断级数∑∞=--11)1(n n n 的收敛性。
高等数学 课后习题答案第十一章
习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x ,y )在L 上连续. 证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d bLaP x y x P x,x=⎰⎰,其中P (x ,y )在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d bL a P x y x P x x=⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d L xy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧; (4)()()22d d Lx y x x y yx y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧; (6)()322d 3d ++-⎰x x zy x y z Γ,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d L x y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d L x xy x y xy y-+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩ L 2的方程为y =0(0≤x ≤2a )故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π.故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()032210314127334292d 87d 1874874t t t t t tt tt ⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()122421123541222d 224d 1415x x x x x x x xxx x x x--⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰4.计算()()d d Lx y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x =2t 2+t +1,y =t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2故()()()()()2121221d d 32332d 104d 5411L x y x y x y y y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且L 1:1x y y =⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰ 从而()()()()()12d d d d 1271422LL L x y x y x y x y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰ 5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅲ、Ⅳ封限;(2)()()()222222d d d Lyz x z x y x y z-+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2sin 22sin 2x t y t z t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π故:2π2π2202π202π0222d cos sin sin cos d 2222sin cos d 42sin 2d 1621cos 4d 1622π16xyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x t y t z =⎧⎪=⎨⎪=⎩ t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y zy z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x yx y x xy x y x x y ++--⎰,其中L 为正向星形线()2223330x y a a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰L x y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx yx y x y --+⎰,L 是圆周22y x x =-上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos xx Lx yy my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x ∂=∂,1P y ∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x ,则2cos 2sin 2e xPx x x x y y ∂=+-∂, 2cos 2sin 2e xQx x x x y x ∂=+-∂.从而P Q y x ∂∂=∂∂,由格林公式得. ()()222d d cos 2sin e sin 2e d d 0++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x x LD x yxy x xy x y x x y Q P x y x y(3)如图11-5所示,记OA ,AB ,BO 围成的区域为D .(其中BO =-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2 262cos Pxy y x y ∂=-∂,262cos Q xy y x x ∂=-∂ 由格林公式有:d d d d 0L OA AB D Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LOA AB OA ABP x Q y P x Q yP x Q y P x Q yO x yy y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO D Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂Py ,1∂=-∂Q x ,即,0∂∂-=∂∂Q P x y于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264L LBA OB P x Q y x y x y x y x y x y x y x y x y x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x Py m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m aP x Q y P x Q y m a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t ,y =a sin 3t ; (2)双纽线r 2=a 2cos2θ; (3)圆x 2+y 2=2ax . 解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y xa a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x yxy y x y xy +--⎰;(3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x ∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y ∂=-∂,2123Q xy yx ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x yxyy x y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q =P Q y x ∂∂=∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,8101,0801529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x ,y )d x +Q (x ,y )d y 在整个xOy 面内是某一函数u (x ,y )的全微分,并求这样的一个函数u (x ,y ):(1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y . 2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x yx y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x y x ∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,02022d d ,0d d x y xy u xy x x yx y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x ,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyy y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos Px y y x y ∂=-+∂,2cos 2sin Q y x x yx ∂=-∂, 有P Q y x ∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分, ()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y yx y ++在整个xOy 平面内除y 的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G因此22d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦ 知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3kF xi yj r =-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关. 证:场力沿路径L 所作的功为.33d d L k k W x x y y r r =--⎰ 其中3kx P r =-,3kyQ r =-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且 53(0)P kxy Q x y r x ∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x yx y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x yx y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分: (1)22d d x y z x y∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x ,y ,z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0,y =0,z =0,x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面22z x y =+与平面z =h (h >0)所围成的立体的整个边界曲面,取外侧为正向; (6)()()22d d d d d d +++-⎰⎰y y z x z x x yy xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:222z R x y =---,下侧,Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.()()()()()()()()()()22222222π42222002π222222222002π35422222222200354*******d d d d d cos sin d 1sin 2d d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yR x y r r rR r R r R R r r R R R r R R r R r R r R R R r R r ∑θθθθθθθ=----=---=-⋅-⎡⎤+--⎣⎦⎡⎤=----+---⎣⎦=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:21x y =-(y ,z )∈D yz,故23202d d 1d d d 1d 31d yzD x y z y y zz y yy y∑=-=-=-⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:21y x =-(x ,z )∈D xz, 故23202d d 1d d d 1d 31d xzD y z x x z xz x xx x∑=-=-=-⎰⎰⎰⎰⎰⎰⎰因此:120120d d d d d d 231d 61d π643π2z x y x y z y z xx x x x∑++⎡⎤=-⎢⎥⎣⎦=-=⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为1cos 3α=,1cos 3β-=,1cos 3γ=,图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1,故()()123441100d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()22200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yyxz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z xP Q x y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰(由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为球面x 2+y 2+z 2=a 2的外侧; (3)()()2232d d d d d d 2xz y z z x x yxy z xy y z ∑++-+⎰⎰,其中Σ为上半球体x 2+y 2≤a 2,0z ≤的表面外侧;(4)d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ是界于z =0和z =3之间的圆柱体x 2+y 2=9的整个表面的外侧;解:(1)由高斯公式()()22204d d d d d d d 2222d 6d 6d d d 3aaax y z y z x z x yvx y z vx y z x v x x y za ∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)由高斯公式:()3332222ππ405d d d d d d d 3d 3d d sin d 12π5ax y z y z x z x yP Q R v x y z v x y z r ra ∑ΩΩθϕϕ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得 ()()()2232222π2π222024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxz y z z x x yxy z xy y z P Q R v x y z v z x y r r rr ra ∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得: 2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分:(1)d d d y x z y x zΓ++⎰,其中Γ为圆周x 2+y 2+z 2=a 2,x +y +z =0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y zyz x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2=2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰y x x y z zΓ,其中Γ是圆周x 2+y 2+z 2=9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为(是一个边长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n .由斯托克斯公式()()()(((()222222d d d2222d22d3d23292x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=++===-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y=x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2=2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,故()()d d,,dLP x Q yx y x yP x Qs++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T ={1,2x }.其方向余弦为cos α=,cos β=故()()d d ,,d 2,,LP x Q yx y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰ 19.设Γ为曲线x =t ,y =t 2,z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d cos d d cos d d cos d x s y s z s αβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分 ()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,},即方向余弦为3cos 5α=,2cos5β=,cos γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R sP Q R ∑∑∑αβγ++=++⎛⎫=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=cos β=cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。
高数第十一章
习题 11.11. 求下列极限:(1) ))1.0(2(lim nn +∞→; (2) nn nn )1(lim -+∞→; (3) 344831lim n n n n +-∞→;(4) 253lim 2+-+∞→n n n n ; (5) 212lim 2++-∞→n n n n ; (6) 11)2(3)2(3lim ++∞→-+-+n n n n n ;(7) )4(lim n n n n -+∞→; (8) n n n ⎪⎭⎫ ⎝⎛++∞→111lim ; (9) nn n ⎪⎭⎫ ⎝⎛-∞→11lim ; (10) nnn n 4lim ∞→; (11) n n n 2sin lim 2∞→; (12) ⎪⎭⎫ ⎝⎛-∞→n n n 1cos 1lim .解 (1)))1.0(2(lim n n +∞→2)1.0(lim 2=+=∞→nn 。
(2) n n nn )1(lim -+∞→⎪⎪⎭⎫ ⎝⎛-+=∞→n n n )1(1lim 1=。
(3) 344831lim n n nn +-∞→38131lim 4-=+-=∞→nn n 。
(4) 253lim 2+-+∞→n n n n 025131lim 22=+-+=∞→nn n n n 。
(5) 因为122lim 2+-+∞→n n n n 012121lim 22=+-+=∞→nn n n n ,所以∞=++-∞→212lim2n n n n 。
(6) 11)2(3)2(3lim++∞→-+-+n n nn n 31)32(23)32(1lim =---+=∞→n nn 。
(7) )4(lim n n n n -+∞→nn n n n n n n ++++-+⋅=∞→4)4)(4(limn n nn ++=∞→44lim21414lim=++=∞→nn 。
(8) nn n ⎪⎭⎫ ⎝⎛++∞→111lim 11111lim -+∞→⎪⎭⎫ ⎝⎛++=n n n11111111lim -+∞→⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛++=n n n n e = (9) nn n ⎪⎭⎫⎝⎛-∞→11lim )1()()(11lim -⋅-∞→⎪⎪⎭⎫ ⎝⎛-+=n n n 1)()(11lim --∞→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=n n n e 1=。
高数答案第11章
第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,L ds y x f C 。
()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )A 。
24 D 。
223、有物质沿曲线L :()103,2,32≤≤===t t z t y t x 分布,其线密度为,2y =μ,则它的质量=m ( A )++1421dt t t t B 。
⎰++104221dt t t tC 。
⎰++1421dt t t D.⎰++1421dt t t t4.求,⎰Lxds 其中L 为由2,x y x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy 5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y x a y x解:原积分=()()222sin 4sin 442022'2441-==+=⎰⎰⎰a d ad r r r ds y L χππθθθθθ6.⎰+Lds y x ,22 其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222a z y x =++得2222a z x =+于是L 的参数方程:ta z t a y t a x sin ,sin 2,cos 2===,又adt ds =原积分=⎰=ππ203222cos 2a adt t a 8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 100==⎰∞-dt e t e Mx t t ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1。
《高数》第十一章-习题课:级数的收敛、求和与展开
概念:
为收敛级数
若
收敛 , 称
若
发散 , 称
绝对收敛 条件收敛
Leibniz判别法: 若
且
则交错级数
收敛 , 且余项
4
例1. 若级数
均收敛 , 且
证明级数
收敛 .
证: 0 c n a n bn a n (n 1 , 2 , ), 则由题收敛
(1)n
n0
x2n ,
x (1,1)
arctan
x
x
01
1 x2
d
x
(1)n x2n1, n02n 1
x [1,1]
于是
f (x) 1 (1)n x2n (1)n x2n2
n1 2n 1
n02n 1
25
f
a 1 时收敛 ; a 1 时发散.
s 1 时收敛;
a 1 时, 与 p 级数比较可知 s 1 时发散.
7
P257 题3. 设正项级数 和 都收敛, 证明级数
也收敛 .
提示:
因
lim
n
un
lim
n
vn
0
,存在
N
>
0, 当n
>N
时
又因
2( un2 vn2 )
思考: 如何利用本题结果求级数
提示: 根据付式级数收敛定理 , 当 x = 0 时, 有
e 1 1
2 n1
f (0 ) f (0 ) 1
2
2
28
作业
P257 6 (2); 7 (3); 9(1) ; 10 (1) ;
高数期末复习题 第十一章 曲线积分与曲面积分
第十一章 曲线积分与曲面积分试题一.填空题(规范分值3分)11.1.1.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧对x 轴的转动惯量I x =。
ds y x y L),(2μ⎰11.1.2.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧的质心坐标x =;y =。
x =⎰⎰LLds y x ds y x x ),(),(μμ;y =⎰⎰LLdsy x ds y x y ),(),(μμ 11.1.3.1在力),,(z y x F F =的作用下,物体沿曲线L 运动。
用曲线积分表示力对物体所做的功=W 。
d z y x L⋅⎰),,(11.1.4.2 有向曲线L 的方程为⎩⎨⎧≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上一阶导数连续,且[][]0)()(22≠'+'t y t x ,又),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL⎰⎰+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。
αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平面内直线a x =上的一段,则曲线积分⎰Ldx y x P ),(=。
011.1.6.2 设L 为xoy 平面内,从点(c,a )到点(c,b )的一线段,则曲线积分⎰+Ldy y x Q dx y x P ),(),(可以化简成定积分:。
dy y Q ba),0(⎰11.1.7.2 第一类曲线积分ds y x L⎰+)(22的积分值为。
高数下册第11章复习题与答案
第十一章-无穷级数练习题(一). 基本概念1.设∑∞=1n n U 为正项级数,下列四个命题(1)若,0lim =∞→n n U 则∑∞=1n n U 收敛;(2)若∑∞=1n n U 收敛,则∑∞=+1100n n U 收敛;(3)若,1lim 1>+∞→nn n U U 则∑∞=1n n U 发散; (4)若∑∞=1n n U 收敛,则1lim 1<+∞→nn n U U .中, 正确的是( ) A .(1)与(2); B .(2)与(3);C .(3)与(4);D .(4)与(1).2.下列级数中,收敛的是( ). A .∑∞=11n n ; B .∑∞=+112n n n ; C . +++3001.0001.0001.0; D . +⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+43243434343. 3.在下列级数中,发散的是( ). A .∑∞=-11)1(n n n ;B .∑∞=+11n n n; C .∑∞=131n nn;D . +-+-44332243434343.4.条件( )满足时,任意项级数1nn u∞=∑一定收敛.A. 级数1||n n u ∞=∑收敛;B. 极限lim 0n n u →∞=;C . 极限1lim1n n nu r u +→∞=<;D. 部分和数列1n n k k S u ==∑有界.5.下列级数中条件收敛的是( ).A . ∑∞=11cos n n ; B. ∑∞=11n n ;C. ∑∞=-11)1(n n n ; D. ∑∞=-11)1(n n n n .6.下列级数中绝对收敛的是( ).A . ∑∞=-11)1(n n n ; B. ∑∞=-121)1(n n n ; C. ∑∞=+-11)1(n n n n ; D. ∑∞=11sin n n . (二). 求等比级数的和或和函数。
提示:注意首项 7.幂级数 1021+∞=∑n n n x 在)2,2(-上的和函数=)(x s . 8.幂级数 ∑∞=-04)1(n n nnx 在)4,4(-上的和函数=)(x s .9.无穷级数125()3n n ∞=∑的和S = .(三). 判定正项级数的敛散性。
高数各章综合测试题与答案
第十一章 无穷级数测试题一、单项选择题1、若幂级数1(1)nnn a x ∞=+∑在1x =处收敛,则该幂级数在52x =-处必然( ) (A) 绝对收敛; (B ) 条件收敛; (C) 发散; (D ) 收敛性不定。
2、下列级数条件收敛的是( ).(A ) 1(1);210n n nn ∞=-+∑(B) 11n n -∞= (C )111(1)();2nn n ∞-=-∑ (D) 11(1)n n ∞-=-∑ 3、若数项级数1nn a∞=∑收敛于S ,则级数()121nn n n aa a ∞++=++=∑( )(A) 1;S a + (B) 2;S a + (C) 12;S a a +- (D) 21.S a a +- 4、设a为正常数,则级数21sin n na n ∞=⎡⎢⎣∑( ).(A ) 绝对收敛; (B) 条件收敛; (C ) 发散; (D ) 收敛性与a 有关. 5、设2(),01f x x x =<≤,而1()sin π,nn S x bn x x ∞==-∞<<+∞∑,其中102()sin π,(1,2,)n b f x n x n ==⎰,则1()2S -等于( ) (A) 1;2- (B ) 1;4- (C) 1;4 (D) 12。
二、填空题1、 设14n n u ∞==∑,则111()22n nn u ∞=-=∑( ) 2、 设()111n n n a x ∞+=-∑的收敛域为[)2,4-,则级数()11nnn na x ∞=+∑的收敛区间为( )3、 设32,10(),01x f x x x -<⎧=⎨<⎩≤≤,则以2为周期的傅里叶级数在1x =处收敛于( ) 4、 设2()π,ππf x x x x =+-<<的傅里叶级数为()01cos sin ,2n n n a a nx b nx ∞=++∑ 则3b =( )5、级数()1(1)221!n n nn ∞=-+∑的和为( )三、计算与应用题 1、求级数()113;3nnn x n ∞=-⋅∑的收敛域 2、求()21112nn n ∞=-⋅∑的和 3、将函数()2()ln 12f x x x =--展开为x 的幂级数,并求()(1)0n f+4、求2012!nnn n x n ∞=+∑的和函数 5、 已知()n f x 满足1()()e n xn n f x f x x -'=+,n 为正整数,且e(1)n f n=,求函数项级数()1n n f x ∞=∑的和函数.6、 设有方程10n x nx +-=,其n 中为正整数,证明此方程存在唯一正根0x ,并证明当1α>时,级数1n n x α∞=∑收敛.四、证明题设π40tan d n n a x x =⎰(1) 求()211n n n a a n∞+=+∑ (2) 试证:对任意常数0λ>,级数1nn a n λ∞=∑收敛 提示:()()2111n n a a n n n ++=+,()2111n n n a a n∞+=+=∑。
华理高数答案第11章
所以除点 ( m, n) (其中 m, n Z )以外处处连续.
第 11 章(之 2) (总第 60 次)
教材内容:§11.2 偏导数 [§11.2.1]
Provided by 理学院学代会学习部
**1.解下列各题: (1)函数 f ( x, y )
x 2 y 在 (0,0) 点处
3ห้องสมุดไป่ตู้
即
s x y 解:令 , y t x
∴ f s , t
s 2 s 2t 2 s 2 1 t , 1 t 1 t 2
lim 1 xy 1 x2 y2
xy
.
f x, y
x 2 1 y . 1 y
***4. 求极限:
zy
1,1
x 2 y 1,1 1 ,
4
.[也可求出切向量为 0,1,1]
0,1,10,1,0 arccos
12 12 12
2 . 2 4
***6. 设函数 ( x , y ) 在点 (0,0) 连续,已知函数 f ( x , y ) x y ( x , y ) 在点 (0,0) 偏导数
x , y 0, 0
解: 0
1 xy 1 x2 y 2
1 xy 1
x2 y2
1 2 x y2 2 1 xy 1 x 2 y 2
x2 y2 0 2 1 xy 1
( x, y 0,0 )
y 0
y (0, y ) f (0, y ) f (0,0) 0 ,即 f y (0,0) 0 . lim x 0 y y
高数第十一章复习题
高数第十一章复习题一、选择题1. 函数 \( f(x) = \sin x + \cos x \) 在区间 \( [0, 2\pi] \) 上的最大值是:A. 1B. \( \sqrt{2} \)C. \( \sqrt{3} \)D. 22. 若 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin 2x}{2x} \) 等于:A. \( \frac{1}{2} \)B. 1C. \( \frac{2}{2} \)D. \( \frac{2}{1} \)3. 函数 \( g(x) = x^3 - 3x^2 + 2 \) 在 \( x = 2 \) 处的切线斜率是:A. 0B. 1C. -1D. 2二、填空题4. 若 \( \lim_{x \to \infty} f(x) = 0 \),则 \( \lim_{x \to \infty} \frac{1}{f(x)} \) 等于______。
5. 函数 \( h(x) = x^2 + 4x + 3 \) 的最小值为______。
6. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x^3 dx \) 等于______。
三、简答题7. 利用洛必达法则求 \( \lim_{x \to 0} \frac{\sin x}{x} \)。
8. 解释什么是泰勒级数,并给出 \( e^x \) 的泰勒级数展开式。
9. 证明 \( \int_{0}^{\infty} e^{-x^2} dx =\frac{\sqrt{\pi}}{2} \)。
四、计算题10. 计算定积分 \( \int_{1}^{e} \frac{1}{x} dx \)。
11. 求函数 \( f(x) = \ln(x) \) 在区间 \( [1, e] \) 上的原函数。
高数第十一章习题
第十一章第一节曲线积分习题 一、填空题:1、已知曲线形构件L的线密度为),(y x ρ,则L的质量M=_______________;2、⎰Lds =_______________;3、对________的曲线积分与曲线的方向无关;4、⎰Lds y x f ),(=⎰'+'βαφϕφϕdt t t t t f )()()](),([22中要求α________β。
5、计算下列求弧长的曲线积分:1、⎰+L y x ds e 22,其中L为圆周222a y x =+,直线y=x及x轴在第一象限内所围成的扇形的整个边界;2、⎰Γyzds x2,其中L为折线ABCD,这里A,B,C,D依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2);3、⎰+L ds y x )(22,其中L为曲线⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x π20≤≤t ;4、计算⎰Lds y ,其中L为双纽线 )0()()(222222>-=+a y x a y x 。
三、设螺旋形弹簧一圈的方程为t a x cos =,t a y sin =,kt z =,其中π20≤≤t ,它的线密度222),,(z y x z y x ++=ρ,求:1、它关于Z 轴的转动惯量Z I ;2、它的重心 。
答案一、1、⎰Lds y x ),(ρ; 2、L 的弧长; 3、弧长; 4、〈. 二、1、2)42(-+a eaπ;2、9;3、)21(2232ππ+a ; 4、)22(22-a .三、)43(32222222k a k a a I z ππ++=;2222436k a ak x π+=; 2222436k a ak y ππ+-=; 22222243)2(3k a k a k z πππ++=。
第二节对坐标的曲线积分习题一、填空题:1、 对______________的曲线积分与曲线的方向有关;2、设0),(),(≠+⎰dy y x Q dx y x P L,则 =++⎰⎰-LL dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(____________; 3、在公式=+⎰dy y x Q dx y x P L),(),(⎰'+'βαφφϕϕφϕdt t t t Q t t t P )}()](),([)()](),([{中,下限a 对应于L 的____点,上限β对应于L 的____点;4、两类曲线积分的联系是______________________________________________________。
高等数学第11章试题
高等数学院系_______学号_______班级_______姓名_________得分_______题 号 选择题 填空题 计算题 证明题 其它题型总 分题 分 30 30 10 10 10 核分人 得 分 复查人一、选择题(共 30 小题,30 分)1、 设级数∑∞=⎪⎪⎭⎫ ⎝⎛-11sin 213n n e n (1)与级数∑∞=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+1212111n n (2) 其敛散情况是(A )(1)收敛(2)发散; (B )(1)发散(2)收敛;(C )(1)发散(2)发散; (D )(1)收敛(2)收敛。
2、设级数1011n n n !()=∞∑与级数321n nn n n!()=∞∑,其敛散性的判定结果是(A )(1)(2)都收敛 (B )(1)发散,(2)收敛 (C )(1)(2)都发散 (D )(1)收敛,(2)发散 答:( ) 3、1<q 是级数∑∞=1n n nq 绝对收敛的(A )充分必要条件; (B )充分但非必要条件; (C )必要但非充分条件; (D )既非充分又非必要条件答( ) 4、 级数()∑∞=⎪⎭⎫ ⎝⎛--1c o s 11n n n α (0>α)(A )发散; (B )条件收敛;(C )绝对收敛; (D )敛散性与 α有关。
答( ) 5、 设级数∑∞=11sin n nn (1) 与 级数∑∞=⎪⎭⎫ ⎝⎛-121cos 1n n n (2) 其敛散情况是(A ) (1)(2)都收敛; (B ) (1)收敛,(2)发散; (C ) (1)发散,(2)收敛; (D ) (1)(2)都发散。
答( )6、 在指定区间内不一致收敛的函数项级数是 (A )()∑∞=+-121n nxn , +∞<<∞-x ; (B )()∑∞=+1221n nx x , +∞<<∞-x ;(C )∑∞=122n nnx, 210<<x ; (D )()()∑∞=13arcsin n nnx , 11<<-x ; 答( )7、下列级数中,绝对收敛的是(A )()--=∞∑1311nn n n (B )()-+-=∞∑11111n n n ln()(C )()-+-=∞∑11121n n n n (D )()--=∞∑11121n n n答:( )8、若幂级数∑∞=0n n nx a的收敛半径为R,那么(A)R a a n n n =+∞→1lim, (B) R a an n n =+∞→1lim ,(C)R a n n =∞→lim , (D)nn n a a 1lim+∞→不一定存在 .答( )9、 设级数 ∑∞=1!2n n n n n (1) 与级数∑∞=1!3n n n nn (2)则(A )级数(1)(2)都收敛; (B )级数(1)(2)都发散;(C )级数(1)收敛,级数(2)发散; (D )级数(1)发散,级数(2)收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章第一节曲线积分习题 一、填空题:1、已知曲线形构件L的线密度为),(y x ρ,则L的质量M=_______________;2、⎰Lds =_______________;3、对________的曲线积分与曲线的方向无关;4、⎰Lds y x f ),(=⎰'+'βαφϕφϕdt t t t t f )()()](),([22中要求α________β.5、计算下列求弧长的曲线积分:1、⎰+Ly x ds e 22,其中L为圆周222a y x =+,直线y=x及x轴在第一象限内所围成的扇形的整个边界;2、⎰Γyzds x2,其中L为折线ABCD,这里A,B,C,D依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2);3、⎰+L ds y x )(22,其中L为曲线⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x π20≤≤t ;4、计算⎰Lds y ,其中L为双纽线 )0()()(222222>-=+a y x a y x .三、设螺旋形弹簧一圈的方程为t a x cos =,t a y sin =,kt z =,其中π20≤≤t ,它的线密度222),,(z y x z y x ++=ρ,求:1、它关于Z 轴的转动惯量Z I ;2、它的重心 . 答案一、1、⎰Lds y x ),(ρ; 2、L 的弧长; 3、弧长; 4、<.二、1、2)42(-+a eaπ;2、9;3、)21(2232ππ+a ; 4、)22(22-a .三、)43(32222222k a k a a I z ππ++=;2222436k a ak x π+=; 2222436k a ak y ππ+-=; 22222243)2(3k a k a k z πππ++=.第二节对坐标的曲线积分习题一、填空题:1、 对______________的曲线积分与曲线的方向有关;2、设0),(),(≠+⎰dy y x Q dx y x P L,则 =++⎰⎰-LL dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(____________; 3、在公式=+⎰dy y x Q dx y x P L),(),(⎰'+'βαφφϕϕφϕdt t t t Q t t t P )}()](),([)()](),([{中,下限a 对应于L 的____点,上限β对应于L 的____点;4、两类曲线积分的联系是______________________________________________________. 二、计算下列对坐标的曲线积分: 1、⎰Lxydx ,其中L 为圆周)0()(222>=+-a a y a x 及X 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);2、⎰+--+Lyx dy y x dx y x 22)()(,其中L 为圆周222a y x =+(按逆时针方向饶行); 3、⎰Γ+-ydz dy dx ,其中为有向闭折线ABCD ,这里的C B A ,,依次为点(1,0,0),(0,1,0),(0,0,1);4、⎰++ABCDAy x dy dx ,其中ABCDA 是以)0,1(A ,)1,0(B ,)0,1(-C ,)1,0(-D 为顶点的正方形正向边界线 .三、设z 轴与重力的方向一致,求质量为m 的质点从位置),,(111z y x 沿直线移到),,(222z y x 时重力所作的功. 四、把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的积分, 其中L 为:1、在xoy 面内沿直线从点(0,0)到点(1,1);2、沿抛物线2xy =从点(0,0)到点(1,1);3、沿上半圆周x y x222=+从点(0,0)到点(1,1).答案一、1、坐标; 2、-1; 3、起,点; 4、 dz R Qdy Pdx ⎰Γ++ds R Q P )cos cos cos (γβα⎰Γ++=.二、1、;23a π-2、π2-;3、21; 4、0.三、{})(,,0,012z z mg W mg F -==.四、1、⎰+Ldy y x Q dx y x P ),(),(⎰+=L ds y x Q y x P 2),(),(; 2、⎰+L dy y x Q dx y x P ),(),(⎰++=L ds xy x xQ y x P 241),(2),(;3、⎰+Ldy y x Q dx y x P ),(),(⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.第三节格林公式习题一、填空题:1、设闭区域D由分段光滑的曲线L围成,函数),(),,(y x Q y x P 及在D上具有一阶连续偏导数,则有⎰⎰∂∂-∂∂Ddxdy yPx Q )(________________; 2、设D为平面上的一个单连通域,函数),(),,(y x Q y x P 在D内有一阶连续偏导数,则⎰+LQdy Pdx 在D内与路径无关的充要条件是_______________在D内处处成立;3、设D为由分段光滑的曲线L所围成的闭区域,其面积为5,又),(y x P 及),(y x Q 在D上有一阶连续偏导数,且1=∂∂xQ,1-=∂∂y P ,则=+⎰LQdy Pdx ___.4、 计算⎰++-Ldy yx dx x xy )()2(22其中L是由抛物线2x y =和x y =2所围成的区域的正向边界曲线,并验证格林公式的正确性 . 5、曲线积分,求星形线t a y t a x33sin ,cos ==所围成的图形的面积 .四、证明曲线积分⎰-+-)4,3()2,1(2232)36()6(dy xy y x dx y xy 在整个xoy 面内与路径无关,并计算积分值 .五、利用格林公式,计算下列曲线积分: 1、⎰+--Ldy y x dx y x )sin ()(22其中L是在圆周22x x y -=上由点(0,0)到点(1,1)的一段弧;2、求曲线积分⎰--+=AMBdyy x dx y x I 221)()(和⎰--+=ANBdyy x dx y x I 222)()(的差.其中AMB 是过原点和)1,1(A ,)6,2(B 且其对称轴垂直于x轴的抛物线上的弧段, AMB是连接A,B的线段 .六、计算⎰+-L y x ydxxdy 22,其中L为不经过原点的光滑闭曲线 .(取逆时针方向)七、验证y x x dx xy y x 23228()83(+++dy ye y)12+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样一个),(y x u . 八、试确定λ,使得dy r yx dx r y x λλ22-是某个函数),(y x u 的全微分,其中22y x r +=,并求),(y x u .九、设在半平面x>0内有力)(3j y i x rk F +-=构成力场,其中k为常数, 22y x r +=.证明在此力场中场力所作的功与所取的路径无关 . 答案一、1、⎰+LdyQ Pdx ; 2、x Q y p ∂∂=∂∂;3、10.三、301.四、283a π.五、236.六、1、2sin 4167+-; 2、-2.七、1、当L所包围的区域D不包含原点时,0;2、当L所包围的区域D包含原点, 且L仅绕原点一圈时,π2;3、当L所包围的区域D包含原点, 且L绕原点n圈时,πn 2.)(124),(223y y e ye y x y x y x u -++=.八、yry x u =-=),(,1λ.第四节对面积的曲面积分习题 一、填空题:1、已知曲面∑的面积为a, 则⎰⎰∑ds 10_______;2、⎰⎰∑ds z y x f ),,(=⎰⎰yzD z y z y x f ),),,((________dydz ;3、设∑为球面2222a z y x=++在xoy 平面的上方部分,则=++⎰⎰∑ds z y x )(222____________;4、=⎰⎰∑zds 3_____,其中∑为抛物面)(222y xz +-=在xoy 面上方的部分;5、=+⎰⎰∑ds y x)(22______,其中∑为锥面22y x z +=及平面z=1所围成的区域的整个边界曲面.二、计算下列对面积的曲面积分: 1、⎰⎰∑+--ds z x x xy )22(2,其中∑为平面622=++z y x 在第一卦限中的部分; 2、⎰⎰∑++ds zx yz xy )(,其中∑为锥面22y x z +=被柱面ax y x222=+所截得的有限部分 .三、求抛物面壳)10)((2122≤≤+=z y x z的质量,此壳的面密度的大小为z =ρ. 四、求抛物面壳)10()(2122≤≤+=z y x z 的质量,此壳的面密度的大小为.z =ρ答案一、1、a 10; 2、22)()(1zx y x ∂∂+∂∂+; 3、42a π; 4、π10111; 5、π221+.二、1、427-; 2、421564a .三、6π.四、)136(152+π. 第五节对坐标的曲面积分 一、填空题: 1、⎰⎰⎰⎰+-∑∑+dzdx z y x Q dzdx z y x Q ),,(),,(=_______________________.2、第二类曲面积分dxdy R Qdzdx Pdydz ⎰⎰∑++化成第一类曲面积分是__________,其中γβα,,为有向曲面∑上点),,(z y x 处的___________的方向角 .二、计算下列对坐标的曲面积分: 1、⎰⎰∑++ydzdx xdydz zdxdy ,其中∑是柱面122=+y x 被平面z=0及z=3所截得的在第一卦限内的部分的前侧; 2、⎰⎰∑++yzdzdx xydydz xzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧;3、dxdy yx e z ⎰⎰∑+22,其中∑为锥面22y x z +=和z=1,z=2所围立体整个表面的外侧 .三、把对坐标的曲面积分⎰⎰∑+dzdx z y x Q dydz z y x P ),,(),,(dxdy z y x R ),,(+化成对面积的曲面积分,其中∑是平面63223=++z y x 在第一卦限的部分的上侧 .答案 一、1、0;2、⎰⎰∑++dS R Q P )cos cos cos (γβα,法向量. 二、1、π23; 2、81;3、22e π. 三、dS R Q P )5325253(⎰⎰++. 第六节高斯公式习题一、利用高斯公式计算曲面积分: 1、dxdy z dzdx y dydz x 333++⎰⎰∑,其中∑为球面2222a z y x =++外侧; 2、⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是界于z=0和z=3之间的圆柱体922≤+y x的整个表面的外侧;3、⎰⎰∑xzdydz ,∑是上半球面222y x R z --=的上侧 .二、证明:由封闭曲面所包围的体积为⎰⎰∑++=ds z y x V )cos cos cos (31γβα,式中γβαcos ,cos ,cos 是曲面的外法线的方向余弦 .三、求向量k xz j y x i z x A 22)2(-+-=,穿过曲面∑:为立方体a y a x ≤≤≤≤0,0,a z ≤≤0的全表面,流向外侧的通量 .四、求向量场k xz j xy e A xy )cos()cos(2++=的散度 .五、设),,(,),,(z y x v z y x u 是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,nvn u ∂∂∂∂,依次表示),,(,),,(z y x v z y x u 沿∑的外法线方向的方向导数。