高三理科数学基础练习(2)
2013届高三理科数学训练题(2)
2013届启恩中学高三理科数学考练试题(时间:60分钟;满分:84分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-2x +3,则f (-2)等于( ) A .3 B .-3 C .6 D .-62.若0<a <b ,且a +b =1,则在下列四个选项中,较大的是( ) A.12B .a 2+b 2C .2abD .b 3.设函数f (x ) (x ∈R )是以3为周期的奇函数,且f (1)>1,f (2)=a ,则( ) A .a >2 B .a <-2 C .a >1 D .a <-1 4.函数f (x )=x +3+log 2(6-x )的定义域是( ) A .{x |x >6} B .{x |-3<x <6} C .{x |x >-3} D .{x |-3≤x <6} 5.已知关于x 的方程x 2+(m -3)x +m =0的两根均为正数,则实数m 的取值范围是( ) A .0<m ≤3 B .m ≥9 C .m ≥9或m ≤1 D .0<m ≤1 6.已知函数f (x )=(m -2)x 2+(m 2-4)x +m 是偶函数,函数g (x )=-x 3+2x 2+mx +5 在(-∞,+∞)内单调递减,则实数m 等于( )A .2B .-2C .±2D .07.设f (x )的定义域为R ,且f (-x )=-f (x ),f (x +d )<f (x )(d >0),当不等式f (a )+f (a 2)<0成立时,a 的取值范围是( )A .(-∞,-1)∪(0,+∞)B .(-1,0)C .(-∞,0)∪(1,+∞)D .(-∞,1)∪(1,+∞)8.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x 1,x 2(x 1≠x 2 ),| f (x 2)- |f (x 1)<||x 2-x 1恒成立”的只有( )A .f (x )=1x B .f (x )=||x C .f (x )=2x D .f (x )=x 2班级姓名座号总分二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上) 9.已知集合A ={x |x 2-4<0},B ={x |x =2n +1,n ∈Z },则集合A ∩B =________.10.若命题p 是“所有负数的平方都是正数”,则命题“非p ”是________.11. 如果点P 在平面区域22021020x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么|PQ |的最小值为_________________;12.已知命题p :不等式|x |+|x -1|>m 的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是____________.13.若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2),且在[x 2,+∞)上单调递增,则b 的取值范围是________.14.为了稳定市场,确保农民增收,某农产品的市场收购价格x 与其前三个月的市场收购价格有关,且使x 与其前三个月的市场收购价格之差的平方和最小.若下表列出的是该产品前6则7月份该产品的市场收购价格应为________元.三、解答题(本大题满分14分,解答应写出文字说明、证明过程或演算步骤)15.设函数f (x )=x 2+b ln(x +1),其中b ≠0. (1)若b =-12,求f (x )在[1,3]的最小值;(2)如果f (x )在定义域内既有极大值又有极小值,求实数b 的取值范围;(3)是否存在最小的正整数N ,使得当n ≥N 时,不等式ln n +1n >n -1n3恒成立.2013届启恩中学高三理科数学考练试题参考答案1.B 2. D 3. D 4.D 5.D 6.B 7. A 8.A9.{-1,1}10.有的负数的平方不是正数11.1 12.1≤m <2 13. (-∞,0) 14. 7115.解析:(1)由题意知,f (x )的定义域为(-1,+∞),b =-12时,由f ′(x )=2x -12x +1=2x 2+2x -12x +1=0,得x =2(x =-3舍去),当x ∈[1,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以当x ∈[1,2)时,f (x )单调递减;当x ∈(2,3]时,f (x )单调递增, 所以f (x )min =f (2)=4-12ln 3.(2)由题意f ′(x )=2x +bx +1=2x 2+2x +b x +1=0在(-1,+∞)有两个不等实根,即2x 2+2x +b =0在(-1,+∞)有两个不等实根,设g (x )=2x 2+2x +b ,则⎩⎨⎧Δ=4-8b >0g (-1)>0,解之得0<b <12;(3)当b =-1时,函数f ()x =x 2-ln(x +1), 令函数h ()x =x 3-f (x )=x 3-x 2+ln(x +1)则h ′()x =3x 2-2x +1x +1=3x 3+(x -1)2x +1,∴当x ∈[0,+∞)时,h ′()x >0.所以函数h ()x 在[0,+∞)上单调递增,又h (0)=0, ∴x ∈(0,+∞)时,恒有h ()x >h (0)=0,即x 2<x 3+ln(x +1)恒成立.取x =1n ∈(0,+∞),则有ln ⎝ ⎛⎭⎪⎫1n +1>1n 2-1n 3恒成立.显然,存在最小的正整数N =1,使得当n ≥N 时,不等式ln ⎝ ⎛⎭⎪⎫1n +1>1n 2-1n 3恒成立.。
高三年级数学(理科)试卷2
高三年级数学(理科)试卷2第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}{}====Q P ,Q P ,b a Q a og P 则若0,,1,32A. {}0,3B. {}103,,C. {}203,,D. {}2103,,,2. 如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为 A.13 B.12 C.16 D.13.“=2πθ”是“曲线()sin y x θ=+关于y 轴对称”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.在等差数列{}()()135792354n a a a a a a ++++=中,,则此数列前10项的和10S =A.45B.60C.75D.905. 设向量()()cos ,1,2,sin a b αα=-= ,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于 A.13- B.13 C.3- D.36. 直线022=+-y x 经过椭圆)0(12222>>=+b a by a x 的一个焦点和一个顶点,则椭圆的离心率为 A. 55 B. 21 C. 552 D. 32 7.若实数11.e a dx x =⎰则函数()sin cos f x a x x =+的图象的一条对称轴方程为A.0x =B.34x π=-C.4π-D.54x π=- 8. 函数sin x y x =,(,0)(0,)x ππ∈- 的图象可能是下列图象中的9. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,则11++=x y s 的取值范围是A. ⎥⎦⎤⎢⎣⎡23,1B. ⎥⎦⎤⎢⎣⎡1,21C. []2,1D. ⎥⎦⎤⎢⎣⎡2,21 10. 已知函数()cos()f x A x ωϕ=+(0,0,0)A ωϕπ>><<为奇函数,该函数的部分图象如图所示,EFG ∆是边长为2的等边三角形,则(1)f 的值为A .3-B .6-C .3D .3-第II 卷(共90分)二、填空题:(本大题共4小题,每小题4分,共16分.把正确答案填写在答题纸给定的横线上.)11. 已知点),(n m A 在直线022=-+y x 上,则nm 42+的最小值为 .12.已知F 是抛物线2y x =的焦点,M 、N 是该抛物线上的两点,3MF NF +=,则线段MN 的中点到x 轴的距离为__________.13. 圆C :022222=--++y x y x 的圆心到直线01443=++y x 的距离是_______________.14. 已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示,给出关于()f x 的下列命题:①函数()2y f x x ==在时,取极小值 ②函数()[]0,1f x 在是减函数,在[]1,2是增函数,③当12a <<时,函数()y f x a =-有4个零点 ④如果当[]1,x t ∈-时,()f x 的最大值是2,那么的最小值为0,其中所有正确命题序号为_________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.15.(本小题满分12分)已知数列{}n a 是递增数列,且满足1016·6253=+=a ,a a a 。
四川省绵阳南山2024届高三下学期高考仿真考试(二)理科数学试题含答案
秘密★启用前【考试时间:2024年5月30日15:00-17:00】绵阳南山2024年高三仿真考试(二)理科数学(答案在最后)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}*2N |2nA n n =∈≥,则集合A 的元素个数为()A.1B.2C.3D.无穷多个【答案】C 【解析】【分析】利用指数与幂的运算性质可求解.【详解】由2*2(N )n n n ≥∈,可得1,2,4n =,所以集合A 的元素个数为3个.故选:C2.虚数1i(R)z b b =+∈满足()i 1z z z z -=-⋅,则b =()A.0B.1C.2D.0或2【答案】C 【解析】【分析】求出z ,代入()i 1z z z z -=-⋅计算即可.【详解】由已知1i(R)z b b =-∈,0b ≠,所以()i 2z z b -=-,()22111z z b b-⋅=-+=-,所以22b b -=-,解得2b =.故选:C.3.已知双曲线C 的顶点为1A ,2A ,虚轴的一个端点为B ,且12BA A △是一个直角三角形,则双曲线C 的渐近线为()A.2y x =±B.y x=± C.22y x =±D.y =【答案】B【解析】【分析】根据双曲线的对称性可得1212,BA BA BA BA ⊥=,求出ba即可得解.【详解】设双曲线的实轴长为2a ,虚轴长为2b ,由双曲线的对称性可得12BA A △是一个等腰直角三角形,且1212,BA BA BA BA ⊥=,则12OA OA OB ==,即a b =,所以双曲线C 的渐近线为y x =±.故选:B.4.近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某新能源汽车厂根据2021年新能源汽车销售额(单位:万元)和每月销售额占全年销售额的百分比绘制了如图所示双层饼图.根据双层饼图,下列说法错误的是()A.2021年第四季度销售额最低B.2月销售额占全年销售额的8%.C.2021年全年销售总额约为1079万元D.7月的销售额约为46万元【答案】D 【解析】【分析】根据双层饼图,依次判断选项即可.【详解】解:由图知,第四季度销售额占全年销售额的百分比18%,第三季度为33%,第二季度为29%,第一季度为20%,故第四季度最低,A 正确;2月销售额占全年销售额的占比为20%5%7%8%--=,B 正确;全年销售总额为()31310%9%10%1079÷++≈(万元),C 正确;7月的销售额为107913%140⨯≈(万元),D 错误.故选:D.5.在平面直角坐标系xOy 中,角,αβ的始边均为Ox ,终边相互垂直,若35=cos α,则cos2β=()A.925B.925-C.725D.725-【答案】C 【解析】【分析】根据给定条件,利用诱导公式、二倍角的余弦公式计算即得.【详解】依题意,π2π,Z 2k k βα=++∈,则3sin cos 5βα==,或π2π,Z 2k k βα=-+∈,则3sin cos 5βα=-=-,所以27cos212sin 25ββ=-=.故选:C6.已知点()00,P x y 为可行域*640,N x y x y x y +<⎧⎪->⎨⎪∈⎩内任意一点,则000x y ->的概率为()A.25B.49C.13D.310【答案】B 【解析】【分析】作出可行域,求得可行域内的整点个数,进而求得满足000x y ->的点个数,由古典概型概率公式求解即可.【详解】可行域*640,N x y x y x y +<⎧⎪->⎨⎪∈⎩内的点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)共9个,其中满足000x y ->的有(2,1),(3,1),(3,2),(4,1)共4个,所以所求的概率49P =.故选:B.7.已知Q 为直线:210l x y ++=上的动点,点P 满足()1,3QP =-,记P 的轨迹为E ,则()A.EB.E 是一条与l 相交的直线C.E 上的点到lD.E 是两条平行直线【答案】C 【解析】【分析】设(),P x y ,由()1,3QP =-可得Q 点坐标,由Q 在直线上,故可将点代入坐标,即可得P 轨迹E ,结合选项即可得出正确答案.【详解】设(),P x y ,由()1,3QP =-,则()1,3Q x y -+,由Q 在直线:210l x y ++=上,故()12310x y -+++=,化简得260x y ++=,即P 的轨迹为E 为直线且与直线l 平行,E 上的点到l的距离d ==A 、B 、D 错误,C 正确.故选:C .8.已知函数()()2sin 2f x x ϕ=+,2πϕ<,那么“6πϕ=”是“()f x 在,66ππ⎡⎤-⎢⎥⎣⎦上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求得当,4242k x k k Z πϕπϕππ--+≤≤-+∈时,()f x 是增函数,进而判断6πϕ=时,函数的单调性,即可得出结果.【详解】当22222k x k πππϕπ-+≤+≤+,Z k ∈,()f x 单调递增.则当,4242k x k k Z πϕπϕππ--+≤≤-+∈时,()f x 是增函数,当6πϕ=时,()f x 在,36k x k k Z ππππ-+≤≤+∈单调递增,可得()f x 在,66ππ⎡⎤-⎢⎥⎣⎦上是增函数;当6πϕ=-时,()f x 在,63k x k k Z ππππ-+≤≤+∈单调递增,可得()f x 在,66ππ⎡⎤-⎢⎥⎣⎦上是增函数;反之,当()f x 在,66ππ⎡⎤-⎢⎥⎣⎦上是增函数时,由,,6644ππππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,可知,此时0,0k ϕ==,即6πϕ=不成立.所以“6πϕ=”是“()f x 在,66ππ⎡⎤-⎢⎥⎣⎦上是增函数”的充分而不必要条件.故选:A.9.已知函数()f x 满足()()311f x f x +=--,且函数()1f x +为偶函数,若()11f =,则()()()()1232024f f f f +++⋯+=()A.0B.1012C.2024D.3036【答案】B 【解析】【分析】由题意得()()11f x f x +=-+,()f x 的图象关于直线1x =对称,函数的周期为4,进一步()()()()12342f f f f +++=,由此即可得解.【详解】由题意函数()1f x +为偶函数,所以()()11f x f x +=-+,()f x 的图象关于直线1x =对称,所以()()()()()()3111111331f x f x f x f x f x f x +=--=-+=---=-=-⎡⎤⎣⎦,所以函数()f x 的周期为4,在()()311f x f x +=--中,分别令0x =和1,得()()131f f +=,()()041f f +=,即()()241f f +=,所以()()()()12342f f f f +++=,所以()()()12202450621012f f f +++=⨯=L .故选:B.10.六氟化硫,化学式为6SF ,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫结构为正八面体结构,如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点,若相邻两个氟原子之间的距离为m ,则下列错误的是()A.该正八面体结构的外接球表面积为22πm B.该正八面体结构的内切球表面积为22π3mC.该正八面体结构的表面积为2D.3【答案】D 【解析】【分析】分析正八面体结构特征,计算其表面积,体积,外接球半径,内切球半径,验证各选项.【详解】对A :底面中心S 到各顶点的距离相等,故S 为外接球球心,外接球半径22R PS m ==,故该正八面体结构的外接球表面积22π)2πS m '=⨯=,故A 正确;对D :连接AS ,PS ,则22AS PS m ==,PS ⊥底面ABCD ,故该正八面体结构的体积231222323V m m =⨯⨯⨯=,故D 错误;对C :由题知,各侧面均为边长为m 的正三角形,故该正八面体结构的表面积2284S m =⨯⨯=,故C 正确;对B :底面中心S 到各面顶点的距离相等,故S 为内切球球心,设该正八面体结构的内切球半径r,则13V Sr =,所以33VrS==故内切球的表面积222π4π3mS⎛⎫''=⨯=,故B正确.故选:D.11.若函数()21ln22f x a x x x=+-有两个不同的极值点12,x x,且()()1221t f x x f x x-+<-恒成立,则实数t的取值范围为()A.(),5-∞- B.(],5-∞- C.(),22ln2-∞- D.(],22ln2-∞-【答案】B【解析】【分析】首先对()f x求导,得()()22x x af x xx'-+=>,根据题意得到方程220x x a-+=有两个不相等的正实数根,结合根与系数的关系求得a的取值范围,然后将不等式进行转化,结合根与系数的关系得到()()1212f x f x x x+--关于参数a的表达式,从而构造函数,利用导数知识进行求解.【详解】依题意得()()2220a x x af x x xx x-+=+-=>',若函数()f x有两个不同的极值点12,x x,则方程220x x a-+=有两个不相等的正实数根12,x x,可得1212Δ44020ax xx x a=->⎧⎪+=>⎨⎪=>⎩,解得01a<<,因为()()1221t f x x f x x-+<-,可得()()2212121112221211ln 2ln 222t f x f x x x a x x x a x x x x x <+--=+-++---()()()()()()2221212121212121211ln 3ln 322a x x x x x x a x x x x x x x x =++-+=++--+21ln 232ln 42a a a a a a =+⨯--⨯=--.设()()ln 401h a a a a a =--<<,则()ln 0h a a ='<,则()h a 单调递减,()()15h a h >=-,可知5t ≤-.所以实数t 的取值范围是(],5-∞-.故选:B .【点睛】关键点睛:1.利用导数与极值点之间的关系及一元二次方程有两个不相等的正实数根,求得a 的取值范围是解决问题的前提;2.利用韦达定理二元换一元,通过构造函数解决问题.12.记椭圆1C :22221(0)x ya b a b+=>>与圆2C :222x y a +=的公共点为M ,N ,其中M 在N 的左侧,A 是圆2C 上异于M ,N 的点,连接AM 交1C 于B ,若2tan 5tan ANM BNM ∠=∠,则1C 的离心率为()A.35B.45C.5D.5【答案】D 【解析】【分析】根据题意可知(),0M a -,(),0N a ,结合图象和椭圆方程可知22tan tan b BMN BNM a ∠⋅∠=,由AMN 为直角三角形,可求得πtan tan 2tan tan BMN ANM BNM BNM⎛⎫-∠ ⎪∠⎝⎭=∠∠,可得2225b a =,即可求得离心率.【详解】由题意可知点M ,N 分别为椭圆的左右顶点,所以(),0M a -,(),0N a ,设点A 在第一象限,设点(),B x y ,所以22222222221tan tan x b a y y y b BMN BNM a x a x a x a x a⎛⎫- ⎪⎝⎭∠⋅∠=⋅===+---,πtan tan 152tan tan tan tan 2BMN ANM BNM BNM BNM BMN ⎛⎫-∠ ⎪∠⎝⎭===∠∠∠⋅∠,所以2225b a =,5c e a ===.故选:D .二、填空题:本题共4小题,每小题5分,共20分.13.平面向量a 与b相互垂直,已知(6,8)a =- ,||5b = ,且b 与向量(1,0)的夹角是钝角,则b = ______.【答案】(4,3)--【解析】【分析】设(,)b x y = ,根据向量垂直和向量模的坐标表示得到方程组,再结合b与向量(1,0)的夹角为钝角得到0x <,最后解出方程组即可.【详解】设(,),b x y a b =⊥ ,0a b ∴⋅= ,680x y ∴-=,①,||5b == ,②,因为b与向量(1,0)夹角为钝角,∴0x <,③,由①②③解得43x y =-⎧⎨=-⎩,(4,3)b ∴=-- .故答案为:(4,3)--.14.已知函数()π2cos 3f x x ω⎛⎫=-⎪⎝⎭,其中ω为常数,且()0,6ω∈,将函数()f x 的图象向左平移π6个单位所得的图象对应的函数()g x 在0x =取得极大值,则ω的值为_____________________.【答案】2【解析】【分析】先根据图象平移得到()g x 的解析式,然后根据()0g 为最大值得到关于ω的方程,结合ω的范围可知结果.【详解】由题意可知()ππππ2cos 2cos 6363g x x x ωωω⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,因为()g x 在0x =取得极大值,所以()g x 在0x =取得最大值,所以ππ2π63k ω-=,Z k ∈,即212k ω=+,又因为()0,6ω∈,所以,当且仅当0k =时,2ω=满足条件,所以2ω=,故答案为:2.15.若随机变量X 服从二项分布115,4B ⎛⎫⎪⎝⎭,则使()P X k =取得最大值时,k =______.【答案】3或4【解析】【分析】先求得()P X k =的表达式,利用列不等式组的方法来求得使()P X k =取得最大值时k 的值.【详解】依题意015,N k k ≤≤∈,依题意()1515151515151********C 1C C 344444kkk k k kk k k P X k ----⎛⎫⎛⎫==⋅⋅-=⋅⋅=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,()()15150151141515151513130C 3,1C 354444P X P X ⎛⎫⎛⎫==⋅⋅===⋅⋅=⨯ ⎪ ⎪⎝⎭⎝⎭,()151154P X ⎛⎫== ⎪⎝⎭,()()()1501P X P X P X =<=<=,所以()0P X =、()15P X =不是()P X k =的最大项,当114k ≤≤时,由1511615151515151141515151511C 3C 34411C 3C 344k k k kk k k k ----+-⎧⋅⋅≥⋅⋅⎪⎪⎨⎪⋅⋅≥⋅⋅⎪⎩,整理得1151511515C 3C 3C C k k k k -+⎧≥⎨≥⎩,即()()()()()()15!15!3!15!1!16!15!15!3!15!1!14!k k k k k k k k ⎧≥⨯⎪⨯--⨯-⎪⎨⎪⨯≥⎪⨯-+⨯-⎩,整理得131631151k kk k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,163343315k k k k k -≥⎧⇒≤≤⎨+≥-⎩,所以当k 为3或4时,()P X k =取得最大值.故答案为:3或416.在钝角ABC 中,a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是______.【答案】,13⎛⎫⎪ ⎪⎝⎭【解析】【分析】延长CG 交AB 于D ,由G 为ABC 的重心,可得3322CD AB c ==,根据πBDC ADC ∠+∠=,利用余弦定理可得222222525233c a c b c c--=-,进而可得C 为锐角,设A 为钝角,则222b c a +<,222a c b +>,a b >,进而计算可得03b a <<,利用余弦定理可得cos C 的取值范围.【详解】延长CG 交AB 于D,如下图所示:G 为ABC 的重心,∴D 为AB 中点且3CD DG =,AG BG ⊥ ,12DG AB ∴=,3322CD AB c ∴==;在ADC △中,2222222225522cos 3232c bAD CD AC c b ADC AD CD c c -+--∠===⋅;在BDC 中,2222222225522cos 3232c a BD CD BC c a BDC BD CD c c -+--∠===⋅; πBDC ADC ∠+∠=,cos cos BDC ADC ∴∠=-∠,即222222525233c a c b c c--=-,整理可得:22225a b c c +=>,∴C 为锐角;设A 为钝角,则222b c a +<,222a c b +>,a b >,2222222255a b a b a b b a ⎧+>+⎪⎪∴⎨+⎪<+⎪⎩,22221115511155b b a a b b a a ⎧⎛⎫⎛⎫++<⎪ ⎪ ⎪⎪⎝⎭⎝⎭∴⎨⎛⎫⎛⎫⎪<++ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得:223b a ⎛⎫< ⎪⎝⎭,0a b >>,03b a ∴<<,22222222cos 255533a b c a b a b C ab ab b a ⎛⎫+-+⎛⎫==⋅=+>⨯+= ⎪ ⎝⎭⎝,又C 为锐角,∴cos 13C <<,即cos C的取值范围为,13⎛⎫ ⎪ ⎪⎝⎭.【点睛】本题考查余弦定理的综合应用,利用已知求得603b a <<是关键,考查运算求解能力,难度较大.三、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{}n a 满足31720,56a a a =+=.(1)求数列{}n a 的通项公式;(2)记()41nn S b n =+,其中n S 为数列{}n a 的前n 项和.设[]x 表示不超过x 的最大正整数,求使[][][][]1232023n b b b b ++++< 的最大正整数n 的值.【答案】(1)84n a n =-(2)64【解析】【分析】(1)根据题意列式求解1,a d ,进而可得结果;(2)由(1)可得,n n S b ,根据题意可得[]1n b n =-,根据等差数列的求和公式分析运算即可.【小问1详解】设等差数列{}n a 的公差为d ,由题意可得311712202656a a d a a a d =+=⎧⎨+=+=⎩,解得148a d =⎧⎨=⎩,所以数列{}n a 的通项公式()48184n a n n =+-=-.【小问2详解】由(1)可得84n a n =-,则()248442n n n n S +-==,所以()()2114111n n S n b n n n n ===-++++,因为*n ∈N ,则()1110,1,n n -∈∈+N ,所以[]1n b n =-,则[][]()111n n b b n n +-=--=,即数列[]{}n b 是以首项为0,公差为1的等差数列,则[][][][]()()123011202322n n n n n b b b b +--++++==<L ,即24046n n -<,又因为()2f n n n =-在[)1,+∞上单调递增,且()()6440324046,6541604046f f =<=>,所以使[][][][]1232023n b b b b ++++< 的最大正整数n 的值为64.18.为了解某一地区新能源电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电动汽车销量y (单位:万台)关于x (年份)的线性回归方程 4.79459.2y x =-,且销量y 的方差为22545y s =,年份x 的方差为22x s =.(1)求y 与x 的相关系数r ,并据此判断电动汽车销量y 与年份x 的线性相关性的强弱.(2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:性别购买非电动汽车购买电动汽车总计男性39645女性301545总计692190依据小概率值0.05α=的独立性检验,能否认为购买电动汽车与车主性别有关?25=≈.②参考公式:线性回归方程为ˆˆy bx a =+,其中()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆa y bx=-;相关系数()()niix x y y r --=∑||0.9r >,则可判断y 与x 线性相关较强;22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:()20P K k ≥0.100.050.0100.0010k 2.7063.8416.63510.828【答案】(1)0.93,电动汽车销量y 与年份x 的线性相关性的较强(2)有关【解析】【分析】(1)根据给定条件,利用线性回归方程,结合相关系数公式计算作答;(2)根据22⨯列联表,计算2K 的值,并与对应的小概率值比较即得.【小问1详解】由22xs =,得()2212ni x i x x ns n =-==∑,由22545ys =,得()2212545ni y i n y y ns =-==∑,因为线性回归方程 4.79459.2y x =-,则()()()1214.7ˆniii ni i x x y y bx x ==--==-∑∑,即()()()2114.7 4.729.4n ni i i i i x x y y x x n r ==--=-=⨯=∑∑,因此相关系数()() 4.7 4.7250.930.9127127n iix x y y r --⨯===≈≈>∑,所以电动汽车销量y 与年份x 的线性相关性的较强.【小问2详解】零假设0H :购买电动汽车与车主性别无关,由表中数据得:2290(3915306) 5.031 3.84145456921K ⨯-⨯=≈>⨯⨯⨯,依据小概率值0.05α=的独立性检验,推断0H 不成立,即认为购买电动汽车与车主性别有关,此推断犯错误的概率不大于0.05.19.如图,在三棱柱111ABC A B C -中,1AA 与1BB ,12AB AC A B ===,1AC BC ==.(1)证明:平面11A ABB ⊥平面ABC ;(2)若点N 在棱11A C 上,求直线AN 与平面11A B C 所成角的正弦值的最大值.【答案】(1)证明见解析(2)7【解析】【分析】(1)利用等腰三角形的性质作线线垂直,结合线段长度及勾股定理判定线线垂直,根据线面垂直的判定与性质证明即可;(2)建立合适的空间直角坐标系,利用空间向量计算线面角结合基本不等式求最值即可.【小问1详解】取棱1A A 中点D ,连接BD ,因为1AB A B =,所以1BD AA ⊥因为三棱柱111ABC A B C -,所以11//AA BB ,所以1BD BB ⊥,所以BD =因为2AB =,所以1AD =,12AA =;因为2AC =,1A C =,所以22211AC AA AC +=,所以1AC AA ⊥,同理AC AB ⊥,因为1AA AB A = ,且1AA ,AB ⊂平面11A ABB ,所以AC ⊥平面11A ABB ,因为AC ⊂平面ABC ,所以平面11A ABB ⊥平面ABC ;【小问2详解】取AB 中点O ,连接1AO ,取BC 中点P ,连接OP ,则//OP AC ,由(1)知AC ⊥平面11A ABB ,所以OP ⊥平面11A ABB 因为1AO 平面11A ABB ,AB ⊂平面11A ABB ,所以1OP A O ⊥,OP AB ⊥,因为11AB A A A B ==,则1A O AB⊥以O 为坐标原点,OP ,OB ,1OA 所在的直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系O xyz -,则(0,1,0)A -,1A,1(0,B ,(2,1,0)C -,可设点(N a =,()02a ≤≤,()110,2,0A B =,(12,1,A C =-,(AN a =,设面11A B C 的法向量为(,,)n x y z =,得1110202n A B yn A C x y ⎧⋅==⎪⎨⋅==--⎪⎩ ,取x =,则0y =,2z =,所以n =设直线AN 与平面11A B C 所成角为θ,则sin cos ,n AN n AN n AN θ⋅=<>==⋅=若0a =,则sin 7θ=,若0a ≠,则sin 7θ=≤,当且仅当4a a=,即2a =时,等号成立,所以直线AN 与平面11A B C所成角的正弦值的最大值7.20.已知抛物线E :24y x =,过点(1,1)P 作斜率互为相反数的直线,m n ,分别交抛物线E 于,A B 及,C D 两点.(1)若3PA BP =,求直线AB 的方程;(2)求证:CAP BDP ∠=∠.【答案】(1)y x =(2)证明见解析【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,由3PA BP = ,得12124343x x y y =-⎧⎨=-⎩,又2114y x =,2224y x =,解得,A B两点的坐标,进而可得答案.(2)设直线AB :(1)1y k x =-+,则直线CD :(1)1y k x =--+,设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,联立直线AB 与抛物线的方程,结合韦达定理由弦长公式计算AP BP ⋅,同理可得CP DP ⋅,进而可得APC BPD ∽△△,即可得出答案.【小问1详解】设11(,)A x y ,22(,)B x y ,∵(1,1)P ,∴22(1,1)BP x y =-- ,11(1,1)PA x y =--,∵3PA BP =,∴21213(1)13(1)1x x y y -=-⎧⎨-=-⎩,12124343x x y y =-⎧⎨=-⎩.又∵2114y x =,∴222(43)4(43)y x -=-,即2222384y y x -=-,又∵2224y x =,∴222480y y -=,20y =或22y =,当20y =时,20x =,∴14x =,14y =;当22y =时,21x =,∴11x =,12y =-,此时直线AB 的斜率不存在,舍去,∴(4,4)A ,(0,0)B ,∴直线AB 的方程为:y x =.【小问2详解】设直线AB :(1)1y k x =-+,则直线CD :(1)1y k x =--+,设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y,由2(1)14y k x y x =-+⎧⎨=⎩,即21(1)14x y ky x ⎧=-+⎪⎨⎪=⎩,则24440y y k k -+-=,所以124y y k +=,1244y y k =-,又∵1||1|AP y =-,2||1|BP y =-,∴12121222211144||||1(1)(1)1()1141AP BP y y y y y y k k k kk ⎛⎫⎛⎫⎛⎫⋅=+--=+-++=+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2131k ⎛⎫=+ ⎪⎝⎭,同理可证:2211||||3131()CP DP k k ⎡⎤⎛⎫⋅=+=+ ⎪⎢⎥-⎝⎭⎣⎦,∴||||||||AP BP CP DP ⋅=⋅,∴||||||||AP CP DP BP =,又∵CPA BPD ∠=∠,∴APC BPD ∽△△,∴CAP BDP ∠=∠.【点睛】方法点睛:解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.已知0a >,函数()()1ln 1f x a x x x =+-+.(1)若()f x 是增函数,求a 的取值范围;(2)证明:当102a <<,且1e a ≠时,存在三条直线123,,l l l 是曲线ln y x =的切线,也是曲线1y a x x ⎛⎫=- ⎪⎝⎭的切线.【答案】(1)1,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析【解析】【分析】(1)先利用导数判断导函数的单调性,再结合函数的单调性,即可求解;(2)首先求曲线ln y x =的切线方程,再与曲线1y a x x ⎛⎫=-⎪⎝⎭的方程联立,再根据判别式构造函数,()21(ln 1)4g t t a a t ⎛⎫=--- ⎪⎝⎭,利用导数判断函数的单调性,并结合零点存在性定理判断函数有3个零点.【小问1详解】()f x 的定义域为()()10,,ln 1,x f x a x x ∞+⎛⎫+=- ⎪⎝⎭'+令()()()221111ln 1,a x x F x a x F x a x x x x -+⎛⎫⎛⎫'=+-=-= ⎪ ⎪⎝⎭⎝⎭,令()0F x '<,得01x <<;令()0F x '>,得1x >,故()f x '在()0,1上单调递减,在()1,+∞上单调递增,从而()min 1()1210,2f x f a a ==-≥≥'',故a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.【小问2详解】设曲线ln y x =的切点为()1,ln ,(ln )t t x x'=,则曲线ln y x =在点(),ln t t 处的切线方程为()1ln y t x t t-=-.联立()1ln 1y t x t t y a x x ⎧-=-⎪⎪⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,得()21ln 10a x t x a t ⎛⎫-+-+= ⎪⎝⎭,必有()2101Δln 140a t t a a t ⎧-≠⎪⎪⎨⎛⎫⎪=---= ⎪⎪⎝⎭⎩,记函数()21(ln 1)4g t t a a t ⎛⎫=--- ⎪⎝⎭,由题2111,ln 10e a g a a ⎛⎫⎛⎫≠∴=-≠ ⎪ ⎪⎝⎭⎝⎭,故当()0g t =时,11,0t a a t≠-≠.()()()222ln 12ln 144t t t a a g t tt t --+=+='记()()()()2ln 14,2ln 122ln h t t t a h t t t '=-+=-+=,令()0h t '<,得01t <<;令()0h t '>,得1t >,故()h t 在()0,1上单调递减,在()1,+∞上单调递增.当102a <<,且1ea ≠时,(1)420,(e)40h a h a =-<=>,当0t →时,()4h t a →,故存在1201e t t <<<<,使得()()120h t h t ==,当10t t <<,或2t t >时,()()0,0h t g t >>';当12t t t <<时,()()0,0h t g t <<',故()g t 在()()120,,,t t +∞上单调递增,在()12,t t 上单调递减.由()10h t =,得()111ln 2t t a -=,代入()()21111ln 14g t t a a t ⎛⎫=--- ⎪⎝⎭并整理得:()()()222111111ln 11ln 12g t t t t t ⎡⎤=-+-+⎢⎥⎣⎦同理()()()222222221ln 11ln 12g t t t t t ⎡⎤=-+-+⎢⎥⎣⎦,记()()11ln 12x x x x ϕ=+-+,由(1)知()x ϕ为增函数,1201e t t <<<< ,()()2212(1)0,(1)0,t t ϕϕϕϕ∴<=>=,()()()()()()22111222ln 10,ln 10g t t t g t t t ϕϕ∴=->=-<又()2222142e 14110e e e a g a a ⎛⎫=-->->-> ⎪⎝⎭ ,当0t →时,()g t →-∞,()g t ∴有三个零点,∴存在三条直线123,,l l l 是曲线ln y x =的切线,也是曲线1y a x x ⎛⎫=- ⎪⎝⎭的切线.【点睛】关键点睛:本题考查根据函数的导数判断函数的单调性,以及切线,零点,函数性质的综合应用问题,推理难度较大,第二问的关键是根据判别式来设函数()21(ln 1)4g t t a a t ⎛⎫=--- ⎪⎝⎭,转化为函数有3个零点问题.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4]坐标系与参数方程22.在直角坐标系xOy 中,直线l的参数方程为44x y ⎧=⎪⎨=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为8sin ρθ=,A 为曲线C 上一点.(1)求A 到直线l 距离的最大值;(2)若B 为直线l 与曲线C 第一象限的交点,且7π12AOB ∠=,求AOB 的面积.【答案】(1)4+(2)4+【解析】【分析】(1)由条件得出直线的普通方程和圆的参数方程,设(4cos ,44sin )A θθ+,利用点到直线的距离公式得到π)14d θ=+-,从而求出结果;(2)由条件求出点B 的坐标,设出,A B 的极坐标方程,再利用面积公式即可求出结果.【小问1详解】由44x y ⎧=⎪⎨=+⎪⎩,消t 得到80x y +-=,所以直线l 的普通方程为80x y +-=,因为曲线C 的极坐标方程为8sin ρθ=,所以28sin ρρθ=,又cos ,sin x y ρθθ==,所以曲线C 的普通方程为228x y y +=,即()22416x y +-=,所以曲线C 的参数方程为4cos 44sin x y θθ=⎧⎨=+⎩(θ为参数),因为A 在圆C 上,设(4cos ,44sin )A θθ+,则A 到l 距离为πsin 1)14d θθ==+-=+-,所以当πsin(14θ+=-时,A 到l 距离最大,为4+.【小问2详解】由22808x y x y y+-=⎧⎨+=⎩,消y 得到240x x -=,解得0x =或4x =,又因为B 在第一象限,所以()4,4B ,点A ,B 在曲线C 上,由题可设17,412A ππρ⎛⎫+ ⎪⎝⎭,2,4B πρ⎛⎫ ⎪⎝⎭,代入曲线C 的极坐标方程得17π5π8sin 8sin 44126OA πρ⎛⎫==+== ⎪⎝⎭,2π8sin 4OB ρ===,又因为7πππππππsin sin sin sin cos cos sin 124343434AOB ⎛⎫∠==+=+= ⎪⎝⎭,故AOB 的面积为14424S =⨯⨯=+.[选修4-5]不等式选讲23.已知a ,b 均不为零,且满足221a b +=.证明:(1)a b +≤(2)331a b b a+≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据完全平方式有222||||(||||)2||||1a b a b a b +=+-⋅=,再利用基本不等式即可证明;(2)根据条件将原式化简为332||a b a b ab b a b a+=+-,再利用基本不等式即可证明.【小问1详解】221a b +=,22||||1a b ∴+=,222||||(||||)2||||1a b a b a b ∴+=+-⋅=.根据基本不等式得22(||||)(||||)12||||2a b a b a b ++-=⋅≤,当且仅当||||2a b ==时,等号成立.整理得2(||||)2a b +≤,a b ∴+≤【小问2详解】()()33222211a b a b a b a b b a b a b a b a +=⋅+⋅=⋅-+⋅-||||2||a b a b ab ab ab b a b a=-+-=+-,由基本不等式和不等式的性质,得2a b b a +≥=,222||1ab a b ≤+=,故2||211a b ab b a+-≥-=,当且仅当||||2a b ==时,等号成立,331.a b b a∴+≥。
2020届高三理科数学跟踪训练2(集合命题与条件)附解析
1.已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m的取值范围是( )A.[3,6) B.[1,2) C.[2,4) D.(2,4]2.已知集合M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则实数a的取值范围是____.3.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4 C.3 D.24.已知集合A={x|y=-x2+x+6,x∈Z},B={y|y=5sin(x+φ)},则A∩B中元素的个数为( )A.3 B.4 C.5 D.65.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为( ) A.1 B.2 C.3 D.46.下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题 B.命题“若x2≤1,则x≤1”的否命题C.命题“若x=1,则x2-x=0”的否命题 D.命题“若a>b,则1a<1b”的逆否命题7.“1x>1”是“ex-1<1”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件8.若不等式13<x<12的必要不充分条件是|x-m|<1,则实数m的取值范围是( )A.[-43,12] B.[-12,43] C.(-∞,12) D.(43,+∞)9.设命题p:2x-1x-1<0,命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要条件,则实数a的取值范围是________.10.已知命题p:∀x1,x2∈R,[f(x1)-f(x2)](x1-x2)≥0,则非p 是( )A.∃x1,x2∉R,[f(x1)-f(x2)](x1-x2)<0 B.∃x1,x2∈R,[f(x1)-f(x2)](x1-x2)<0 C.∀x1,x2∉R,[f(x1)-f(x2)](x1-x2)<0 D.∀x1,x2∈R,[f(x1)-f(x2)](x1-x2)<0 11.命题“所有能被2整除的整数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数 B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数 D.存在一个能被2整除的整数不是偶数12.命题“∀x>0,xx-1>0”的否定是( )A.∃x0<0,x0x0-1≤0 B.∃x0>0,0≤x0≤1 C.∀x>0,xx-1≤0 D.∀x<0,0≤x≤113.命题“任意x∈R,存在m∈Z,m2-m<x2+x+1”是________命题.(填“真”或“假”).14.已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式ax2-ax+1>0对∀x∈R恒成立.若p且q为假,p或q为真,求实数a的取值范围.15.已知命题p:“∀x∈[1,2],x2-a≥0”命题q:“∃x0∈R,x02+2ax0+2-a=0”,若命题“p∧q”是真命题,求实数a的取值范围.16.已知命题:“∃x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命题.(1)求实数m的取值集合M;(2)设不等式(x-a)(x+a-2)<0的解集为N,若x∈N是x∈M的必要条件,求实数a的取值范围.1.已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m的取值范围是( )A.[3,6) B.[1,2) C.[2,4) D.(2,4]答案C∵A={x∈Z|-1<x<5}={0,1,2,3,4},B={x|x>m2},A∩B有三个元素,∴1≤m2<2,即2≤m<4.2.已知集合M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则实数a的取值范围是____.答案 a≤0 因为y=2x>0,所以要使直线y=a与函数y=2x的图像无交点,则有a≤0.3.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4 C.3 D.2答案 D由已知得A={2,5,8,11,14,17,…},又B={6,8,10,12,14},所以A∩B={8,14}.故选D.4.已知集合A={x|y=-x2+x+6,x∈Z},B={y|y=5sin(x+φ)},则A∩B中元素的个数为( )A.3 B.4 C.5 D.6答案C 集合A满足-x2+x+6≥0,(x-3)(x+2)≤0,-2≤x≤3,∴A={-2,-1,0,1,2,3},B=[-5,5],所以A∩B={-2,-1,0,1,2},可知A∩B中元素个数为5.5.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为( ) A.1 B.2 C.3 D.4答案 B 原命题为真命题,从而其逆否命题也为真命题;逆命题“若a>-6,则a>-3”为假命题,故否命题也为假命题,故选B.6.下列命题中为真命题的是( )A .命题“若x>y ,则x>|y|”的逆命题B .命题“若x 2≤1,则x ≤1”的否命题C .命题“若x =1,则x 2-x =0”的否命题D .命题“若a>b ,则1a <1b ”的逆否命题答案 A7. “1x >1”是“e x -1<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A ∵1x >1,∴x ∈(0,1).∵e x -1<1,∴x<1.∴“1x >1”是“e x -1<1”的充分不必要条件.8.若不等式13<x<12的必要不充分条件是|x -m|<1,则实数m 的取值范围是( )A .[-43,12]B .[-12,43]C .(-∞,12)D .(43,+∞) 答案 B 由|x -m|<1,解得m -1<x<m +1.因为不等式13<x<12的必要不充分条件是|x -m|<1,所以⎩⎨⎧m -1≤13,12≤m +1,且等号不能同时取得,解得-12≤m ≤43,故选B. 9.设命题p :2x -1x -1<0,命题q :x 2-(2a +1)x +a(a +1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.答案 [0,12] 2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x<1,x 2-(2a +1)x +a(a +1)≤0⇒a ≤x ≤a +1, 由题意得(12,1)[a ,a +1],故⎨⎪⎧a ≤12,解得0≤a ≤12.10.已知命题p :∀x 1,x 2∈R ,[f(x 1)-f(x 2)](x 1-x 2)≥0,则綈p 是( )A .∃x 1,x 2∉R ,[f(x 1)-f(x 2)](x 1-x 2)<0B .∃x 1,x 2∈R ,[f(x 1)-f(x 2)](x 1-x 2)<0C .∀x 1,x 2∉R ,[f(x 1)-f(x 2)](x 1-x 2)<0D .∀x 1,x 2∈R ,[f(x 1)-f(x 2)](x 1-x 2)<0答案 B 根据全称命题否定的规则“改量词,否结论”,可知选B.11.命题“所有能被2整除的整数都是偶数”的否定是( )A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数答案 D 否定原命题结论的同时要把量词做相应改变,故选D.12.命题“∀x>0,x x -1>0”的否定是( ) A .∃x 0<0,x 0x 0-1≤0 B .∃x 0>0,0≤x 0≤1 C .∀x>0,x x -1≤0 D .∀x<0,0≤x ≤1 答案 B 命题“∀x>0,x x -1>0”的否定为“∃x 0>0,x 0x 0-1≤0或x 0=1”,即“∃x 0>0,0≤x 0≤1”,故选B.13.命题“任意x ∈R ,存在m ∈Z ,m 2-m<x 2+x +1”是________命题.(填“真”或“假”).答案 真 由于任意x ∈R ,x 2+x +1=(x +12)2+34≥34,因此只需m 2-m<34,即-12<m<32,所以当m =0或m =1时,任意x ∈R ,存在m ∈Z ,m 2-m<x 2+x +1成立,因此该命题是真命题.14.已知a>0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若p 且q 为假,p 或q 为真,求实数a 的取值范围.解析 ∵y =a x 在R 上单调递增,∴p :a>1.22而命题p 且q 为假,p 或q 为真,那么p ,q 中有且只有一个为真,一个为假.(1)若p 真,q 假,则a ≥4;(2)若p 假,q 真,则0<a ≤1.所以a 的取值范围为(0,1]∪[4,+∞).15.已知命题p :“∀x ∈[1,2],x 2-a ≥0”命题q :“∃x 0∈R ,x 02+2ax 0+2-a =0”,若命题“p ∧q ”是真命题,求实数a 的取值范围.解析 由“p ∧q ”是真命题,则p 为真命题,q 也为真命题,若p 为真命题,a ≤x 2恒成立,∵x ∈[1,2],∴x 2∈[1,4],∴a ≤1.若q 为真命题,即x 2+2ax +2-a =0有实根,Δ=4a 2-4(2-a)≥0,即a ≥1或a ≤-2,综上所求实数a 的取值范围为a ≤-2或a =1.16.已知命题:“∃x ∈{x|-1<x<1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a)(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围. 解析 (1)由题意知,方程x 2-x -m =0在(-1,1)上有解,即m 的取值范围就为函数y =x 2-x 在(-1,1)上的值域,易知M ={m|-14≤m<2}. (2)因为x ∈N 是x ∈M 的必要条件,所以M ⊆N.当a =1时,解集N 为空集,不满足题意;当a>1时,a>2-a ,此时集合N ={x|2-a<x<a},则⎩⎪⎨⎪⎧2-a<-14,a ≥2,解得a>94; 当a<1时,a<2-a ,此时集合N ={x|a<x<2-a},则⎩⎪⎨⎪⎧a<-14,2-a ≥2,解得a<-14.。
精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)
故答案为:
【点睛】本题考查简单的线性规划问题;考查运算求解能力和数形结合思想;根据图形,向下平移直线 找到使目标函数取得最大值的点是求解本题的关键;属于中档题、常考题型.
15.已知函数 ,点 和 是函数 图象上相邻的两个对称中心,则 _________.
【答案】
【解析】
【分析】
1.若集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】
求解分式不等式解得集合 ,再由集合并运算,即可求得结果.
【详解】因为 ,所以 .
故选:D.
【点睛】本题考查集合的并运算,涉及分式不等式的求解,属综合基础题.
2. 是虚数单位, ,则 ()
A. 3B. 4C. 5D. 6
【答案】C
方差 43.2,
所以选项C的说法是错误的.
故选:C.
【点睛】本题考查由茎叶图求中位数、平均数、方差以及众数,属综合基础题.
4.若双曲线 的左、右焦点分别为 ,离心率为 ,点 ,则 ( )
A. 6B. 8C. 9D. 10
【答案】C
【解析】
【分析】
根据题意写出 与 坐标,表示出 ,结合离心率公式计算即可.
【分析】
根据题意,利用函数奇偶性的定义判断函数 的奇偶性排除选项 ;利用 排除选项A即可.
【详解】由题意知,函数 的定义域为 ,其定义域关于原点对称,
因为
又因为 ,
所以 ,即函数 为偶函数,故排除 ;
又因为 ,故排除A.
故选:B
【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.
2014届高三理科数学综合测试题(2)
图1高三理科数学综合训练题(2014.2)一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合{2,0,1,4}A =,{04,R}=<≤∈B x x x ,C A B = .则集合C 可表示为A .{2,0,1,4}B . {1,2,3,4}C .{1,2,4}D . {04,R}x x x <≤∈2.复数z 满足(1i)1z -=(其中i 为虚数单位),则z =A .11i 22- B .11i 22+ C .11i 22-+ D .11i 22--3.下列函数中,为奇函数的是A .122x x y =+B .{},0,1y x x =∈C .sin y x x =⋅D .1,00,01,0x y x x <⎧⎪==⎨⎪->⎩4.“1ω=”是“ 函数()cos f x x ω=在区间[]0,π上单调递减”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.执行如图1所示的程序框图,则输出的a 的值为 (注:“2a =”,即为“2a ←”或为“:2a =”.) A .2 B .13C .12- D .3-6.412x x -(的展开式中常数项为A .12B .12-C .32D .32-7.如图2,在矩形OABC 内:记抛物线21y x =+与直线1y x =+ 围成的区域为M (图中阴影部分).随机往矩形OABC 内投一点P ,则点P 落在区域M 内的概率是 A .118 B .112C .16 D .1311+8.在平面直角坐标系中,定义两点11(,)P x y 与22(,)Q x y 之间的“直角距离”为1212(,)d P Q x x y y =-+-.给出下列命题:(1)若(1,2)P ,(sin ,2cos )()Q R ααα∈,则(,)d P Q的最大值为3 (2)若,P Q 是圆221x y +=上的任意两点,则(,)d P Q的最大值为 (3) 若(1,3)P ,点Q 为直线2y x =上的动点,则(,)d P Q 的最小值为12. 其中为真命题的是 A .(1)(2)(3) B .(1)(2) C .(1)(3) D . (2)(3)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.函数f x ()的定义域为 .10.某几何体的三视图如图3所示,其正视图是边长为2的正方形,侧视图和俯视图都是等腰直角三角形,则此几何体的体积是 .11.已知双曲线2222:1x y C a b -=与椭圆22194x y +=有相同的焦点,且双曲线C 的渐近线方程为2y x =±,则双曲线C 的方程为 .12. 设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .13.在数列{}n a 中,已知24a =, 315a =,且数列{}n a n +是等比数列,则n a = . (二)选做题:第14、15题为选做题,只能选做一题,两题全答的,只计算前一题的得分. 14.(坐标系与参数方程选做题)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若曲线1C 的参数方程为,x t y =⎧⎪⎨=⎪⎩(t 为参数),曲线2C 的极坐标方程为sin cos 1ρθρθ-=-.则曲线1C 与曲线2C 的交点个数为________个.图415.(几何证明选讲选做题)如图4,已知AB 是⊙O 的直径,TA是⊙O 的切线,过A 作弦//AC BT ,若4AC =,AT =,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像经过点π(,1)12. (1)求ϕ的值;(2)在ABC ∆中,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,若222a b c ab +-=,且π()2122A f +=.求sin B . 17.(本小题满分12分)某网络营销部门为了统计某市网友2013年11月11日在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图5(1)):若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定 义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.(1)试确定x ,y ,p ,q 的值,并补全频率分布直方图(如图5(2)).(2)该营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购 达人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.设ξ为选取的3人中“网购达人”的人数,求ξ的分布列和数学期望.图5(1) (2)18.(本小题满分14分)如图6所示,平面ABCD ⊥平面BCEF ,且四边形ABCD 为矩形,四边形BCEF 为直角梯形,//BF CE , BC CE ⊥,4DC CE ==,2BC BF ==.(1)求证://AF 平面CDE ; (2)求平面ADE 与平面BCEF 所成锐二面角的余弦值; (3)求直线EF 与平面ADE 所成角的余弦值.19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且满足24(1)(1)(2)(N )n n n S n a n *++=+∈. (1)求1a ,2a 的值; (2)求n a ; (3)设1n nn b a +=,数列{}n b 的前n 项和为n T ,求证:34n T <.AD BC FE图620.(本小题满分14分)如图7,直线:(0)l y x b b =+>,抛物线2:2(0)C y px p =>,已知点(2,2)P 在抛物线C 上,且抛物线C 上的点到直线l 的距离的最小(1)求直线l 及抛物线C 的方程;(2)过点(2,1)Q 的任一直线(不经过点P )与抛物线C 交于A 、B 两点,直线AB 与直线l 相交于点M ,记直线PA ,PB ,PM 的斜率分别为1k ,2k , 3k .问:是否存在实数λ,使得123k k k λ+=?若存在,试求出λ的值;若不存在,请说明理由.21.(本小题满分14分)已知函数2901xf x a ax =>+()() .(1)求f x ()在122[,]上的最大值;(2)若直线2y x a =-+为曲线y f x =()的切线,求实数a 的值;(3)当2a =时,设1214122x x x ,⎡⎤∈⎢⎥⎣⎦…,,, ,且121414x x x =…+++ ,若不等式1214f x f x +f x λ≤…()+()+()恒成立,求实数λ的最小值.图7yM PBQxAOl参考答案一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案CBDADCBA二、填空题:本大题共6小题,每小题5分,共30分.9.{2}x x ≥;10.83;11.2214y x -=;12.6;13.123n n -⋅-;14.1;15..三、解答题:本大题共6小题,共80分.16.(本小题满分12分) (1)由题意可得π()112f =,即πsin()16ϕ+=.……………………………2分 0πϕ<< ,ππ7π666ϕ∴<+<, ππ62ϕ∴+=, π3ϕ∴=.……………5分 (2)222a b c ab +-= , 2221cos 22a b c C ab +-∴==,………………………7分sin C ∴==.………………………………8分 由(1)知π()sin(2)3f x x =+,π(+)sin()cos 2122A f A A π∴=+==()0,A π∈ ,sin 2A ∴==,……………………10分 又sin sin(π())sin()B A C A C =-+=+ ,1sin sin cos cos sin 22224B AC A C ∴=+=+=.…………12分 17.(本小题满分12分)(1)根据题意,有39151860,182.39153x y y x +++++=⎧⎪⎨=⎪+++⎩+解得9,6.x y =⎧⎨=⎩………………2分0.15p ∴=,0.10q =.补全频率分布直方图如图所示.………………4分(2)用分层抽样的方法,从中选取10人,则其中“网购达人”有210=45⨯人,“非网购达人”有310=65⨯人.……………6分 故ξ的可能取值为0,1,2,3;03463101(0)6C C P C ξ=== , 12463101(1)2C C P C ξ===,21463103(2)10C C P C ξ===,30463101(3)30C C P C ξ===.……………10分所以ξ的分布列为:01236210305E ξ∴=⨯+⨯+⨯+⨯=.……………………………12分18.(本小题满分14分)(解法一)(1)取CE 中点为G ,连接DG 、FG , //BF CG 且BF CG =,∴四边形BFGC 为平行四边形,则//BC FG 且BC FG =. ……………2分 四边形ABCD 为矩形, //BC AD ∴且BC AD =,//FG AD ∴且FG AD =,∴四边形AFGD 为平行四边形,则//AF DG .DG ⊂ 平面CDE ,AF ⊄平面CDE , //AF ∴平面CDE .…………………………4分(2)过点E 作CB 的平行线交BF 的延长线于P ,连接FP ,EP ,AP ,////EP BC AD , ∴A ,P ,E ,D 四点共面.四边形BCEF 为直角梯形,四边形ABCD 为矩形,∴EP CD ⊥,EP CE ⊥,又 CD CE C = ,EP ∴⊥平面CDE ,∴EP DE ⊥, 又 平面ADE 平面BCEF EP =,∴DEC ∠为平面ADE 与平面BCEF 所成锐二面角的平面角.……………7分4DC CE ==,∴cos CE DEC DE ∠==.即平面ADE 与平面BCEF 9分 (3)过点F 作FH AP ⊥于H ,连接EH ,根据(2)知A ,P ,E ,D 四点共面,////EP BC AD ,∴BC BF ⊥,BC AB ⊥, 又 AB BF B = , BC ∴⊥平面ABP ,∴BC FH ⊥,则FH EP ⊥. 又 FH AP ⊥, FH ∴⊥平面ADE .∴直线EF 与平面ADE 所成角为HEF ∠.……11分4DC CE ==,2BC BF ==,∴0sin 45FH FP ==EF =HE ,∴cos HE HEF EF ∠===.即直线EF 与平面ADE 14分 (解法二)(1) 四边形BCEF 为直角梯形,四边形ABCD 为矩形,∴BC CE ⊥,BC CD ⊥,又 平面ABCD ⊥平面BCEF ,且平面ABCD 平面BCEF BC =,DC ∴⊥平面BCEF .以C 为原点,CB 所在直线为x 轴,CE 所在直线为y 轴,CD 所在直线为z 轴建立坐标系.根据题意我们可得以下点的坐标:(2,0,4)A ,(2,0,0)B ,(0,0,0)C ,(0,0,4)D ,(0,4,0)E ,(2,2,0)F , 则(0,2,4)AF =- ,(2,0,0)CB =.………………………2分BC CD ⊥ ,BC CE ⊥, CB ∴为平面CDE 的一个法向量.又0220(4)00AF CB ⋅=⨯+⨯+-⨯=,//AF ∴平面CDE . ……………4分(2)设平面ADE 的一个法向量为1111(,,)n x y z = ,则110,0.AD n DE n ⎧⋅=⎪⎨⋅=⎪⎩(2,0,0)AD =- ,(0,4,4)DE =- ,∴11120440x y z -=⎧⎨-=⎩,取11z =,得1(0,1,1)n =. ……6分DC ⊥ 平面BCEF ,∴平面BCEF 一个法向量为(0,0,4)CD =,设平面ADE 与平面BCEF 所成锐二面角的大小为α,则11cos CD n CD n α⋅===⋅ . 因此,平面ADE 与平面BCEF……………9分 (3)根据(2)知平面ADE 一个法向量为1(0,1,1)n =,(2,2,0)EF =-,1111cos ,2EF n EF n EF n ⋅∴<>===-⋅, ……………………12分 设直线EF 与平面ADE 所成角为θ,则1cos sin ,EF n θ=<>=因此,直线EF 与平面ADE. ……………14分 19.(本小题满分14分)(1)当=1n 时,有2114(11)(+1=1+2a a ⨯+)(),解得1=8a .当=2n 时,有21224(21)(1)(22)a a a ⨯+++=+,解得2=27a .………………2分(2)(法一)当2n ≥时,有2(2)4(1)1nn n a S n ++=+, ……………①211(1)4(1)n n n a S n--++=. …………………② ①—②得:221(2)(1)41n n n n a n a a n n -++=-+,即:331(1)=n n a n a n-+.……………5分 ∴1223333===1(1)(1)3n n n a a a a n n n --==+-….∴ 3=(1)n a n +(2)n ≥. ……………8分 另解:33333121333121(1)42(1)(1)3n n n n n a a a n n a a n a a a n n ---+=⋅⋅⋅⋅=⋅⋅⋅⋅=+- . 又 当=1n 时,有1=8a , ∴3=(1)n a n +.………………………8分(法二)根据1=8a ,2=27a ,猜想:3=(1)n a n +. ……………………………3分用数学归纳法证明如下:(Ⅰ)当1n =时,有318(11)a ==+,猜想成立. (Ⅱ)假设当n k =时,猜想也成立,即:3=(1)k a k +.那么当1n k =+时,有2114(11)(1)(12)k k k S k a +++++=++,即:211(12)4(1)11k k k a S k +++++=++,………………………①又 2(2)4(1)1kk k a S k ++=+, …………………………②①-②得:22223111(3)(2)(3)(2)(1)4=2121k k k k k a k a k a k k a k k k k ++++++++=--++++,解得33+1(2)(11)k a k k =+=++.∴当1n k =+时,猜想也成立.因此,由数学归纳法证得3=(1)n a n +成立.………………………………8分 (3) 211111=(1(11n n n b a n n n n n +=<=-+++)), …………………………10分 ∴1231=n n n T b b b b b -+++++…2222211111=234(1)n n ++++++…211111<22323(1)(1)n n n n +++++⨯⨯-+ (11111)1111=()()()()4233411n n n n +-+-++-+--+ (1113)=4214n +-<+.…………14分 20.(本小题满分14分)(1)(法一) 点(2,2)P 在抛物线C 上, 1p ∴=. …………………2分设与直线l 平行且与抛物线C 相切的直线l '方程为y x m =+,由2,2,y x m y x =+⎧⎨=⎩ 得22(22)0x m x m +-+=, 22(22)448m m m ∆=--=- , ∴由0∆=,得12m =,则直线l '方程为12y x =+.两直线l 、l '间的距离即为抛物线C 上的点到直线l 的最短距离,∴4=,解得2b =或1b =-(舍去).∴直线l 的方程为2y x =+,抛物线C 的方程为22y x =. ………………6分(法二) 点(2,2)P 在抛物线C 上, 1p ∴=,抛物线C 的方程为22y x =.…2分设2(,))2t M t t R ∈(为抛物线C 上的任意一点,点M 到直线l 的距离为d =根据图象,有202t t b -+>,21)21]d t b ∴=-+-,t R ∈ ,d ∴4=,解得2b =. 因此,直线l 的方程为2y x =+,抛物线C 的方程为22y x =.……………6分 (2) 直线AB 的斜率存在,∴设直线AB 的方程为1(2)y k x -=-,即21y kx k =-+,由221,2,y kx k y x =-+⎧⎨=⎩ 得22420ky y k --+=, 设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122y y k +=,1224k y y k-=, 11121112222222y y k y x y --===-+- ,2222k y =+, ……………………9分 121212121222+82()82242242222()4324y y k k k k k y y y y y y k k⋅+++∴+=+===-++++++⋅+.……10分 由21,2,y kx k y x =-+⎧⎨=+⎩ 得211M k x k +=-,411M k y k -=-,∴341221121321k k k k k k --+-==+--, ………13分 1232k k k ∴+=.因此,存在实数λ,使得123k k k λ+=成立,且2λ=.……14分21.(本小题满分14分)(1)2222229[1(1)2]9(1)()(1)(1)ax x ax ax f x ax ax ⋅+-⋅-'==++,………………………………2分 令()0f x '=,解得x =(负值舍去),由122<<,解得144a <<.(ⅰ)当104a <≤时,由1[,2]2x ∈,得()0f x '≥,∴()f x 在1[,2]2上的最大值为18(2)41f a =+.………………………3分(ⅱ)当4a ≥时,由1[,2]2x ∈,得()0f x '≤,∴()f x 在1[,2]2上的最大值为118()24f a =+.…………………4分(ⅲ)当144a <<时, 在12x a <<时,()0f x '>,在2x a<<时,()0f x '<,∴()f x 在1[,2]2上的最大值为=2f a a()5分 (2)设切点为(,())t f t ,则()1,()2.f t f t t a '=-⎧⎨=-+⎩…………………………………6分由()1f t '=-,有2229[1]1(1)at at -=-+,化简得2427100a t at -+=, 即22at =或25at =, ……………………………① 由()2f t t a =-+,有2921ta t at=-+,……………②由①、②解得2a =或4a =. ………………………9分(3)当2a =时,29()12xf x x =+,由(2)的结论直线4y x =-为曲线()y f x =的切线,(2)2f = ,∴点(2,(2))f 在直线4y x =-上,根据图像分析,曲线()y f x =在直线4y x =-下方. ……………10分 下面给出证明:当1[,2]2x ∈时,()4f x x ≤-.3222928104()(4)41212x x x x f x x x x x -+---=-+=++ 2221(2)12x x x --=+(),∴当1[,2]2x ∈时,()(4)0f x x --≤,即()4f x x ≤-.………………12分∴12141214()()()414()f x f x f x x x x +++≤⨯-+++ ,121414x x x +++= , 1214()()()561442f x f x f x ∴+++≤-= .∴要使不等式1214()()()f x f x f x λ+++≤ 恒成立,必须42λ≥.…………13分又 当12141x x x ==== 时,满足条件121414x x x +++= ,且1214()()()42f x f x f x +++= ,因此,λ的最小值为42.………………14分。
2020高考数学(理科)二轮专题复习 跟踪检测: 专题2 三角函数、解三角形与平面向量 第1部分 专题2 第3讲
O→A O→B
O→ C
| |=| |=1,| |=
2,tan∠AOB=-43,∠BOC=45°,O→C=mO→A+nO→B,则mn =( )
5 A.7
7 B.5
3 C. 7
7 D.3
A 解析 以 OA 所在的直线为 x 轴,过 O 作与 OA 垂直的直线为 y 轴,建立平面直角坐
标系如图所示.
O→A O→B 因为| |=| |=1,且
A.9 C. 109
B.3 D.3 10
D 解析 向量 a=(2,-4),b=(-3,x),c=(1,-1),所以 2a+b=(1,x-8),由
(2a+b)⊥c,可得 1+8-x=0,解得 x=9,则|b|= -32+92=3 10.故选 D 项. 6.(2019·广东东莞统考)如图所示,△ABC 中,B→D=2D→C,点 E 是线段 AD 的中点,则
C→A C→B +y ,且
x+y=1,所以
O
在边
AB
上,所以当
CO⊥AB
时,|C→O|最小,|C→O|min=12.
1
答案 2
12.(2019·江西上饶模拟)平行四边形 ABCD 中,AB=4,AD=2,A→B·A→D=4,点 P 在
边 CD 上,则P→A·P→C的取值范围是________.
解析
( ) 设|P→D|=x,x∈[0,4],则P→A·P→C=(P→D+D→A)·P→C=
(2)设 c=(0,1),若 a+b=c,求 α,β 的值.
解析 (1)a-b=(cos α-cos β,sin α-sin β),则|a-b|= 2-2cosα-β= 2,所以 π
cos(α-β)=0,而 0<β<α<π,所以 0<α-β<π,所以 α-β=2.所以向量 a 在 b 上的投影 a·b
高中数学练习题 2023年贵州省贵阳市高考数学适应性试卷(理科)(二)
2023年贵州省贵阳市高考数学适应性试卷(理科)(二)一、选择题(共16小题)A .−52B .0C .53D .521.若变量x ,y 满足约束条件V Y YW Y Y X y ≤2x x +y ≤1y ≥−1,则x +2y 的最大值是( )A .48B .30C .24D .162.若变量x ,y 满足约束条件V Y Y Y Y W Y Y Y Y X x +y ≤82y −x ≤4x ≥0y ≥0且z =5y -x 的最大值为a ,最小值为b ,则a -b 的值是( )A .2B .1C .−13D .−123.在平面直角坐标系xOy 中,M 为不等式组V Y YW Y Y X 2x −y −2≥0x +2y −1≥03x +y −8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .-7B .-6C .-5D .-34.设x 、y 满足约束条件V Y YW Y Y X x −y +1≥0x +y −1≥0x ≤3,则z =2x -3y 的最小值是( )A .4B .3C .2D .15.若变量x ,y 满足约束条件V Y YW Y Y X y ≤1x +y ≥0x −y −2≤0,则z =x -2y 的最大值为( )A .-7B .-4C .1D .26.设变量x ,y 满足约束条件V Y YW Y Y X 3x +y −6≥0x −y −2≤0y −3≤0,则目标函数z =y -2x 的最小值为( )A .-6B .-2C .0D .27.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .4和3B .4和2C .3和2D .2和08.若变量x ,y 满足约束条件V Y YW Y Y X x +y ≤2x ≥1y ≥0,则z =2x +y 的最大值和最小值分别为( )A .12万元B .16万元C .17万元D .18万元9.某企业生产甲、乙两种产品均需用A 、B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲乙原料限额A (吨)3212B (吨)128A .2B .1C .12D .1410.已知a >0,实数x ,y 满足:V Y YW Y Y X x ≥1x +y ≤3y ≥a (x −3),若z =2x +y 的最小值为1,则a =( )A .49B .37C .29D .511.已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω=V Y Y W Y Y X x +y −7≤0x −y +3≥0y ≥0,若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .31200元B .36000元C .36800元D .38400元12.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .(−∞ , 43)B .(−∞ , 13)C .(−∞ , −23)D .(−∞ , −53)13.设关于x ,y 的不等式组V Y YW Y Y X 2x −y +1>0 ,x +m <0 , y −m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )14.设x ,y 满足约束条件V W X x +y ≥ax −y ≤−1且z =x +ay 的最小值为7,则a =( )二、填空题(共12小题)A .-5B .3C .-5或3D .5或-3A .[15,20]B .[12,25]C .[10,30]D .[20,30]15.在如图所示的锐角三角形空地中,欲建一个面积不小于300m 2的内接矩形花园(阴影部分),则其边长x (单位m )的取值范围是( )A .12B .14C .32D .7416.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )√√17.设x ,y 满足约束条件V W X 1≤x ≤3−1≤x −y ≤0,则z =2x -y 的最大值为.18.若x ,y 满足约束条件V Y YW Y Y X x −y +1≥0x +y −3≤0x +3y −3≥0,则z =3x -y 的最小值为.19.设D 为不等式组V Y YW Y Y X x ≥02x −y ≤0x +y −3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为.20.设z =kx +y ,其中实数x 、y 满足V Y YW Y Y X x ≥2x −2y +4≥02x −y −4≤0若z 的最大值为12,则实数k =.21.抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是.22.若变量x ,y 满足约束条件V Y YW Y Y X x +2y ≤80≤x ≤40≤y ≤3,则x +y 的最大值为.23.在平面直角坐标系xOy 中,M 为不等式组V Y YW Y Y X 2x +3y −6≤0x +y −2≥0y ≥0所表示的区域上一动点,则线段|OM |的最小值为.三、解答题(共2小题)24.若非负数变量x 、y 满足约束条件V W X x −y ≥−1x +2y ≤4,则x +y 的最大值为.25.设z =kx +y ,其中实数x ,y 满足V Y YW Y Y X x +y −2≥0x −2y +4≥02x −y −4≤0,若z 的最大值为12,则实数k =.26.若点(x ,y )位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为 .27.若x ,y 满足V Y YW Y Y X y ≤1x −y −1≤0x +y −1≥0,则z =3x +y 的最小值为.√28.已知变量x ,y 满足约束条件V Y YW Y Y X x −y +3≥0−1≤x ≤1y ≥1,则z =x +y 的最大值是.29.假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p 0. (Ⅰ)求p 0的值;(参考数据:若X ~N (μ,σ2),有P (μ-σ<X ≤μ+σ)=0.6826,P (μ-2σ<X ≤μ+2σ)=0.9544,P (μ-3σ<X ≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A ,B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A ,B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于p 0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?30.某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为 W 121518P0.30.50.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量. (1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.。
2高三数学质检二答案(理科)
2011-2012年度高三复习质量检测二数学(理科答案)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 BDCCA 6-10 CDBBC 11-12 BA二、填空题:本大题共4小题,每小题5分,共20分.13. ()0,1 14. 7 15. 1 16. 2224x y x y ==或三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)设数列{}n a 的公差为d, 数列{}n b 的公比为q, 由题意得:23121a a a =, ……………2分2(12)1(120)d d ∴+=⨯+,24160d d -=,0d ≠ ,4,d ∴=所以43n a n =-.………………4分于是{}1351,9,81,n b b b b ===的各项均为正数, ,所以q=3,13n n b -∴=.……………………6分(Ⅱ)1(43)3n n n a b n -=-,122135393(47)3(43)3n n n S n n --∴=+⨯+⨯++-⨯+-⨯ .1231335393(47)3(43)3n nn S n n -=+⨯+⨯++-⨯+-⨯ .……………8分 两式两边分别相减得:2312143434343(43)3n nn S n --=+⨯+⨯+⨯++⨯--⨯ ……………10分231114(3333)(43)343(13)1(43)313(54)35n nn nnn n n --=+++++--⨯⨯⨯-=+--⨯-=-⨯-(45)352nn n S -+∴=.………………12分18. (本小题满分12分)解:(Ⅰ)取AB 的中点M ,连结GM,MC ,G 为BF 的中点,所以GM //FA,又EC ⊥面ABCD, FA ⊥面ABCD, ∵CE//AF, ∴CE//GM,………………2分 ∵面CEGM ⋂面ABCD=CM, EG// 面ABCD,∴EG//CM,………………4分∵在正三角形ABC 中,CM ⊥AB,又AF ⊥CM ∴EG ⊥AB, EG ⊥AF,∴EG ⊥面ABF.…………………6分(Ⅱ)建立如图所示的坐标系,设AB=2, 则B (0,0,3)E(0,1,1) F (0,-1,2) EF=(0,-2,1) , EB =(3,-1,-1),DE =(3,1, 1),………………8分设平面BEF 的法向量1n =(z y x ,,)则⎩⎨⎧=--=+-0302z y x z y 令1=y ,则3,2==x z ,∴1n =(2,1,3)…………………10分同理,可求平面DEF 的法向量 2n =(-2,1,3) 设所求二面角的平面角为θ,则θcos =41-.…………………12分19.(本小题满分12分) 解:(Ⅰ) 茎叶图……………………2分或………………2分从统计图中可以看出,乙的成绩较为集中,差异程度较小,应选派乙同学代表班级参加比赛更好;………………4分(Ⅱ)设事件A 为:甲的成绩低于12.8,事件B 为:乙的成绩低于12.8, 则甲、乙两人成绩至少有一个低于12.8秒的概率为:(此处更正)6610.641010-⨯=;……………8分(此部分,可根据解法给步骤分:2分)(Ⅲ)设甲同学的成绩为x ,乙同学的成绩为y , 则0.8x y -<,……………10分 得0.80.8x y x -+<<+,如图阴影部分面积即为33 2.2 2.2 4.16⨯-⨯=,则4.16104(0.8)(0.80.8)33225P x y P x y x -<=-+<<+==⨯.…………12分20.(本小题满分12分)解:(Ⅰ)设()00,P x y ,(),M x y ,由0012x x y y =⎧⎪⎨=⎪⎩,得002x x y y =⎧⎨=⎩,…………2分 代入222x y a +=,得222214x y aa+=.……………4分(Ⅱ)①当l 斜率不存在时,设x t =,由已知得a t a -<<,由2224x y a x t⎧+=⎨=⎩,得2224a t y -=所以2122224O AB aS y x t ∆=⨯⨯=⋅=≤,当且仅当222t a t =-,即2t a =时,等号成立.此时OAB S ∆最大值为24a.……………………5分②当l 斜率存在时,设其方程为y kx m =+,由2224x y a y kx m ⎧+=⎨=+⎩,消去y 整理得()222241840k x kmx m a +++-=, ()()()222222284414444km k m aka m ⎡⎤∆=-+-=+-⎣⎦由0∆>,得2222440k a a m +-> ① 设()()1122,,,A x y B x y ,则 2212122284,km m a x xx x --+==②………7分2241A B k ===+ ③ 原点到直线l 距离为d =, ④…………………9分由面积公式及③④得2222222112224144()111414,2224O AB S AB d k mma a k k∆=⨯=⋅⋅++-++=⋅≤⋅=………………11分综合①②,OAB S ∆的最大值为24a,由已知得214a=,所以 2a =.…………………12分21. (本小题满分12分)解:(Ⅰ))(x f 的定义域为),,0(+∞x ax x f -=1)(',若,0≤a 则'()0,f x >)(x f ∴在),0(+∞上单调递增,……………2分若0,a >则由0)('=x f 得ax 1=,当)1,0(ax ∈时,,0)('>x f 当),1(+∞∈ax 时,0)('<x f ,)(x f ∴在)1,0(a上单调递增,在),1(+∞a单调递减.所以当0a ≤时,()f x 在),0(+∞上单调递增,当0a >时, ()f x 在)1,0(a上单调递增,在),1(+∞a单调递减.……………4分(Ⅱ)1)1(ln 1ln )(2+--=+-x x a x x x x x f ,令)1)(1(ln )(2≥--=x x a x x x g ,ax x x g 21ln )(-+=',令()()ln 12F x g x x ax '==+-, 12()axF x x-'=,………………6分(1)a 0,≤若()0F x '>,[)g (x)1,g (x)g (1)1-2a 0'''+∞≥=>在递增, [)0)1()(,,1)(=≥+∞∴g x g x g 递增在,不符合题意从而,01x lnx-f(x)≥+.……………8分(2)1110a ,),()0,(()(1,,)2122x F x g x a a''<<>∴∈若当在递增,g (x)g (1)1-2a,''>=从而以下论证(1)同一样,所以不符合题意.……………10分 [)1(3),()01,2a F x '≥≤+∞若在恒成立,[)02a -1(1)g (x)g 1,(x)g ≤='≤'+∞'∴递减,在,[)01ln )(,0)1()(,,1g(x)≤+-=≤∴+∞x x x f g x g 递减在从而,综上所述,a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21………………12分22. (本小题满分10分) 证明:(Ⅰ)依题意, 090AEB ACP ∠=∠=,所以在 R t A C P ∆中,90;P PAB ∠=-∠ ……………2分 在 R t A B E ∆中,90;ABE PAB ∠=-∠ …………4分 所以.P ABE ∠=∠……………5分(Ⅱ)在ADB Rt ∆中,2CD AC CB =⋅,…………6分 由①得BCF ∆∽P C A ∆, ∴B C C F P CA C=,……………8分∴2CD BC AC CF CP=⋅=⋅,所以2CD CF CP = .……………10分 23. (本小题满分10分)解:(Ⅰ)21:(0),C y x x =≠2:10C x y +-=,则2C的参数方程为:1,2(2.2x t t y t ⎧=--⎪⎪⎨⎪=+⎪⎩为参数),…………2分 代入1C 得0222=-+t t ,……………4分104)(2122121=-+=-=∴t t t t t t AB .……………6分(Ⅱ)221==⋅t t MB MA .…………10分 24. (本小题满分10分)解:(I )原不等式等价于313222(21)(23)6(21)(23)6x x x x x x ⎧⎧>-≤≤⎪⎪⎨⎨⎪⎪++-≤+--≤⎩⎩或 或12(21)(23)6x x x ⎧<-⎪⎨⎪-+--≤⎩ ………………3分 解,得3131212222x x x <≤-≤≤-≤<-或或.即不等式的解集为}21|{≤≤-x x ……………… 6分(II )4|)32()12(||32||12|=--+≥-++x x x x . ………………8分4<∴a . ……………… 10分。
2019高考理科数学模拟试题(二)
2019高考理科数学模拟试题(二)考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.已知集合A={x|x2﹣4x+3≤0 },B=(1,3],则A∩B=()A.[1,3]B.(1,3]C.[1,3) D.(1,3)2.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为()A.﹣5 B.5 C.﹣3 D.3,1],ax−1≤0,则p是3.已知p:函数f(x)=(a−1)x为增函数,q:∀x∈[12¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.2017年高考考前第二次适应性训练考试结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机柚取的4名高三同学中,恰有2名同学的英语成绩超过95分的概率是()A.B.C.D.5.设函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,若函数g(x)=3sin(ωx+φ)﹣2,则的值是()A.1 B.﹣5或3 C.﹣2 D.6.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.487.已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为()A.8πB.16πC.32πD.64π8.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣1,0]上单调递减,设a=f(﹣2.8),b=f(﹣1.6),c=f(0.5),则a,b,c大小关系是()A.a>b>c B.c>a>b C.b>c>a D.a>c>b9.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则=()A.e2﹣e+3 B.e2+4 C.e+1 D.e+210.过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,则当α最小时cosα的值为()A.B.C.D.11.双曲线(a≥1,b≥1)的离心率为2,则的最小值为()A.B.C.2 D.12.定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)−3m,则=(x﹣1)2,且当x≤1时,恒有f'(x)+2<x.若f(m)−f(1−m)≥32实数m的取值范围是()A.(﹣∞,1]B.C.[1,+∞)D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.花园小区内有一块三边长分别是5m,5m,6m的三角形绿化地,有一只小狗在其内部玩耍,若不考虑小狗的大小,则在任意指定的某时刻,小狗与三角形三个顶点的距离均超过2m的概率是.14.已知O为原点,点P为直线2x+y﹣2=0上的任意一点.非零向量=(m,n).若•恒为定值,则=.15.对于数列{a n},定义H n=为{a n}的“优值”,现在已知某数列{a n}的“优值”H n=2n+1,记数列{a n﹣kn}的前n项和为S n,若S n≤S6对任意的n 恒成立,则实数k的取值范围是.16.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),当x=﹣时函数f(x)能取得最小值,当x=时函数y=f(x)能取得最大值,且f(x)在区间(,)上单调.则当ω取最大值时φ的值为.三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)设等差数列{a n}的前n项和为S n,a5+a6=24,S11=143,数列{b n}的前n项和为T n,满足.(Ⅰ)求数列{a n}的通项公式及数列的前n项和;(Ⅱ)判断数列{b n}是否为等比数列?并说明理由.18.(12分)某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元.(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望Eξ.(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.(1)求证:EF∥平面PAD;(2)求EF与平面PDB所成角的正弦值.20.(12分)如图,已知椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF1D的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.21.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.23.(10分)设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.2018高考理科数学模拟试题(二)参考答案与试题解析一.选择题(共12小题)1.已知集合A={x|x2﹣4x+3≤0 },B=(1,3],则A∩B=()A.[1,3]B.(1,3]C.[1,3) D.(1,3)【分析】先分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|x2﹣4x+3≤0 }={x|1≤x≤3},B=(1,3],∴A∩B=(1,3].故选:B.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为()A.﹣5 B.5 C.﹣3 D.3【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数的关系求解.【解答】解:∵2﹣i是关于x的实系数方程x2+px+q=0的一个根,∴2+i是关于x的实系数方程x2+px+q=0的另一个根,则q=(2﹣i)(2+i)=|2﹣i|2=5.故选:B.【点评】本题考查实系数一元二次方程的虚根成对原理,考查复数模的求法,是基础题.,1],ax−1≤0,则p是3.已知p:函数f(x)=(a−1)x为增函数,q:∀x∈[12¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】p:函数f(x)=(a﹣1)x为增函数,则a﹣1>1,解得a范围.,1],ax−1≤0,a.即可判断出关系.q:∀x∈[12【解答】解:p:函数f(x)=(a﹣1)x为增函数,则a﹣1>1,解得a>2.,1],ax−1≤0,a=1.¬q:a>1.q:∀x∈[12则p是¬q的充分不必要条件.故选:A.【点评】本题考查了函数的单调性、不等式的性质与解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.2017年高考考前第二次适应性训练考试结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机柚取的4名高三同学中,恰有2名同学的英语成绩超过95分的概率是()A.B.C.D.【分析】由题意,英语成绩超过95分的概率是,利用相互独立事件的概率公式,即可得出结论.【解答】解:由题意,英语成绩超过95分的概率是,∴在全市随机柚取的4名高三同学中,恰有2名冋学的英语成绩超过95分的概率是=,故选:D.【点评】本题考查正态分布,考查相互独立事件的概率公式,比较基础.5.设函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,若函数g(x)=3sin(ωx+φ)﹣2,则的值是()A.1 B.﹣5或3 C.﹣2 D.【分析】根据f(+x)=f(﹣x)确定x=是函数f(x)的对称轴,再由正余弦函数在其对称轴上取最值,求得g()的值.【解答】解:函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,∴函数f(x)的一条对称轴方程为x=,且x=时函数f(x)过最高点或最低点;∴cos(ω+φ)=±1,解得ω+φ=kπ,k∈Z;∴g()=3sin(ω+φ)﹣2=3sinkπ﹣2=﹣2.故选:C.【点评】本题主要考查了三角函数的图象与性质的应用问题,注意正余弦函数在其对称轴上取最值.6.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.48【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:C.【点评】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.7.已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为()A.8πB.16πC.32πD.64π【分析】由三视图判断出几何体是直三棱锥,且底面是等腰直角三角形,求出对应的高和底面的边长,根据它的外接球是对应直三棱锥的外接球,由外接球的结构特征,求出它的半径,代入表面积公式进行求解.【解答】解:由三视图知该几何体是直三棱锥,且底面是等腰直角三角形,直三棱锥的高是2,底面的直角边长为,斜边为2,则直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,因底面是等腰直角三角形,则底面外接圆的半径为1,∴R2=1+1=2,故外接球的表面积是4πR2=8π,故选A.【点评】本题考查球的表面积的求法,几何体的三视图与直观图的应用,考查空间想象能力,计算能力.8.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣1,0]上单调递减,设a=f(﹣2.8),b=f(﹣1.6),c=f(0.5),则a,b,c大小关系是()A.a>b>c B.c>a>b C.b>c>a D.a>c>b【分析】由条件可得函数的周期为2,再根据a=f(﹣2.8)=f(﹣0.8),b=f(﹣1.6)=f(0.4)=f(﹣0.4),c=f(0.5)=f(﹣0.5),﹣0.8<﹣0.5<﹣0.4,且函数f(x)在[﹣1,0]上单调递减,可得a,b,c大小关系【解答】解:∵偶函数f(x)满足f(x+2)=f(x),∴函数的周期为2.由于a=f(﹣2.8)=f(﹣0.8),b=f(﹣1.6)=f(0.4)=f(﹣0.4),c=f(0.5)=f(﹣0.5),﹣0.8<﹣0.5<﹣0.4,且函数f(x)在[﹣1,0]上单调递减,∴a>c>b,故选:D【点评】本题主要考查函数的单调性、奇偶性、周期性的应用,体现了转化的数学思想,属于中档题.9.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则=()A.e2﹣e+3 B.e2+4 C.e+1 D.e+2【分析】二项式(2x+a)5的展开式中,含x2项,利用通项公式求出含有x2的项,可得系数,从而求出a,利用定积分公式求解即可.【解答】解:二项式(2x+a)5的展开式中,含x2项,由通项公式,∵含x2项,∴r=3.∴含有x2的项的系数为=320,可得:a=2.则==e2﹣e+22﹣1=e2﹣e+3.故选:A.【点评】本题主要考查二项式定理的通项公式的应用,以及定积分公式的计算.属于基础题10.过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,则当α最小时cosα的值为()A.B.C.D.【解答】解:作出不等式组对应的平面区域如图,要使α最小,则P到圆心的距离最大即可,由图象可知当P位于点D时,∠APB=α最小,由,解得,即D(﹣4,﹣2),此时|OD|=,|OA|=1,则,即sin=,此时cosα=1﹣2sin2=1﹣2()2=1﹣=,故选:C11.双曲线(a≥1,b≥1)的离心率为2,则的最小值为()A.B.C.2 D.【分析】根据双曲线(a≥1,b≥1)的离心率为2,可得a,b的关系,代入化简,利用单调性,即可求得的最小值.【解答】解:∵双曲线(a≥1,b≥1)的离心率为2,∴∴∴b2=3a2∴==∵a≥1∴在[1,+∞)上单调增∴≥故选A.【点评】本题考查双曲线的几何性质,考查函数的单调性,正确运用双曲线的几何性质是关键.12.定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)−3m,则=(x﹣1)2,且当x≤1时,恒有f'(x)+2<x.若f(m)−f(1−m)≥32实数m的取值范围是()A.(﹣∞,1]B.C.[1,+∞)D.【分析】令g(x)=f(x)+2x﹣,求得g(x)+g(2﹣x)=3,则g(x)关于(1,3)中心对称,则g(x)在R上为减函数,再由导数可知g(x)在R上为−3m为g(m)≥g(1﹣m),利用单调性求解.减函数,化f(m)−f(1−m)≥32【解答】解:令g(x)=f(x)+2x﹣,g′(x)=f′(x)+2﹣x,当x≤1时,恒有f'(x)+2<x.∴当x≤1时,g(x)为减函数,而g(2﹣x)=f(2﹣x)+2(2﹣x)﹣,∴f(x)+f(2﹣x)=g(x)﹣2x++g(2﹣x)﹣2(2﹣x)+=g(x)+g(2﹣x)+x2﹣2x﹣2=x2﹣2x+1.∴g(x)+g(2﹣x)=3.则g(x)关于(1,)中心对称,则g(x)在R上为减函数,−3m,得f(m)+2m≥f(1﹣m)+2(1﹣m)﹣,由f(m)−f(1−m)≥32即g(m)≥g(1﹣m),∴m≤1﹣m,即m.∴实数m的取值范围是(﹣∞,].故选:D.【点评】本题考查利用导数研究函数的单调性,构造函数是解答该题的关键,是压轴题.二.填空题(共4小题)13.花园小区内有一块三边长分别是5m,5m,6m的三角形绿化地,有一只小狗在其内部玩耍,若不考虑小狗的大小,则在任意指定的某时刻,小狗与三角形三个顶点的距离均超过2m的概率是1﹣.【分析】根据题意,记“小狗距三角形三个顶点的距离均超过2”为事件A,则其对立事件为“小狗与三角形的三个顶点的距离不超过2”,先求得边长为4的等边三角形的面积,再计算事件构成的区域面积,由几何概型可得P(),进而由对立事件的概率性质,可得答案【解答】解:记“小狗距三角形三个顶点的距离均超过2”为事件A,则其对立事件为“小狗与三角形的三个顶点的距离不超过2”,三边长分别为5m、5m、6m的三角形的面积为S=×6×4=12,则事件构成的区域可组合成一个半圆,其面积为S()=π×22=2π,由几何概型的概率公式得P()=;P(A)=1﹣P()=1﹣;故答案为:1﹣【点评】本题考查几何概型,涉及对立事件的概率性质;解题时关键是求出小狗与三角形三个顶点的距离均不超过2m区域面积.14.已知O为原点,点P为直线2x+y﹣2=0上的任意一点.非零向量=(m,n).若•恒为定值,则=2.【分析】设点P(x,y),由P为直线2x+y﹣2=0上的任意一点,用x表示,写出•的解析式;根据•恒为定值,x的系数为0,求出m、n的关系,可得的值.【解答】解:设点P(x,y),∵点P为直线2x+y﹣2=0上的任意一点,∴y=2﹣2x,∴=(x,2﹣2x);又非零向量=(m,n),∴•=mx+n(2﹣2x)=(m﹣2n)x+2n恒为定值,∴m﹣2n=0,∴=2.故答案为:2.【点评】本题考查了平面向量数量积的定义与应用问题,是基础题.15.对于数列{a n},定义H n=为{a n}的“优值”,现在已知某数列{a n}的“优值”H n=2n+1,记数列{a n﹣kn}的前n项和为S n,若S n≤S6对任意的n 恒成立,则实数k的取值范围是.【分析】由题意,H n==2n+1,则a1+2a2+…+2n﹣1a n=n•2n+1,n≥2时,a1+2a2+…+2n﹣2a n﹣1=(n﹣1)2n,相减可得a n=2(n+1),对a1也成立,可得a n﹣kn=(2﹣k)n+2.由于数列{a n﹣kn}为等差数列,S n≤S6对任意的n(n ∈N*)恒成立可化为a6﹣6k≥0,a7﹣7k≤0,即可得出.【解答】解:由题意,H n==2n+1,则a1+2a2+…+2n﹣1a n=n•2n+1,n≥2时,a1+2a2+…+2n﹣2a n﹣1=(n﹣1)2n,则2n﹣1a n=n2n+1﹣(n﹣1)2n=(n+1)2n,则a n=2(n+1),对a1也成立,故a n=2(n+1),则a n﹣kn=(2﹣k)n+2,则数列{a n﹣kn}为等差数列,故S n≤S6对任意的n(n∈N*)恒成立可化为a6﹣6k≥0,a7﹣7k≤0;即解得,,故答案为:.【点评】本题考查了新定义、等差数列的通项公式与单调性、数列递推关系,考查了推理能力与计算能力,属于中档题.16.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),当x=﹣时函数f(x)能取得最小值,当x=时函数y=f(x)能取得最大值,且f(x)在区间(,)上单调.则当ω取最大值时φ的值为﹣.【分析】根据x=﹣时f(x)取得最小值,x=时f(x)取得最大值,得出(n+)•T=,求出T以及ω的值;再由f(x)在(,)上单调,得出T以及ω的取值;讨论ω的取值,求出满足条件的ω的最大值以及对应φ的值.【解答】解:当x=﹣时f(x)能取得最小值,x=时f(x)能取得最大值,∴(n+)•T=﹣(﹣),即T=,(n∈N)解得ω=4n+2,(n∈N)即ω为正偶数;∵f(x)在(,)上单调,∴﹣=≤,即T=≥,解得ω≤12;当ω=12时,f(x)=cos(12x+φ),且x=﹣,12×(﹣)+φ=﹣π+2kπ,k∈Z,由|φ|≤,得φ=0,此时f(x)=cos12x在(,)不单调,不满足题意;当ω=10时,f(x)=cos(10x+φ),且x=﹣,10×(﹣)+φ=﹣π+2kπ,k∈Z,由|φ|≤,得φ=﹣,此时f(x)=cos(10x﹣)在(,)单调,满足题意;故ω的最大值为10,此时φ的值为﹣.故答案为:﹣.【点评】本题考查了余弦型函数的图象和性质的应用问题,也考查了转化思想与分类讨论思想的应用问题,难度较大.三.解答题(共7小题,满分70分)17.(12分)设等差数列{a n}的前n项和为S n,a5+a6=24,S11=143,数列{b n}的前n项和为T n,满足.(Ⅰ)求数列{a n}的通项公式及数列的前n项和;(Ⅱ)判断数列{b n}是否为等比数列?并说明理由.【分析】(Ⅰ)由S11=11a6=143,得a6=13,由a5+a6=24,得a5=11,从而d=2,进崦{a n}的通项公式是a n=2n+1(n∈N*),再由,能求出前n项的和.(Ⅱ)由a1=3,,,得b1=7;当n≥2时,,从而b n=4b n(n≥2.若{b n}是等比数列,则+1有b2=4b1,与b2=4b1矛盾,从而得到数列{b n}不是等比数列.【解答】(本小题满分12分)解:(Ⅰ)设数列{a n}的公差为d,由S11=11a6=143,∴a6=13.又a5+a6=24,解得a5=11,d=2,因此{a n}的通项公式是a n=2n+1(n∈N*),所以,从而前n项的和为:===.…(6分)(Ⅱ)因为a1=3,,.当n=1时,b1=7;当n≥2时,;=4b n(n≥2.若{b n}是等比数列,则有b2=4b1,所以b n+1而b1=7,b2=12,所以与b2=4b1矛盾,故数列{b n}不是等比数列.…(12分)【点评】本题考查数列的通项公式、前n项和的求法,考查数列是否是等比数列的判断与求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.18.(12分)某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元.(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望Eξ.(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.【解答】解:(1)随机变量ξ的可能取值为0.6y,0,﹣0.3y,随机变量ξ的分布列为,ξ0.6y0﹣0.3yP0.60.20.2∴Eξ=0.36y﹣0.06y=0.3y;(2)根据题意得,x,y满足的条件为①,由频率分布直方图得本地养鱼场的年平均利润率为:﹣0.3×0.2×0.5+(﹣0.1)×0.2×0.5+0.1×0.2×1.0+0.3×0.2×2.0+0.5×0.2×1.0=0.20,∴本地养鱼场的年利润为0.20x千万元,∴明年连个个项目的利润之和为z=0.2x+0.3y,作出不等式组①所表示的平面区域若下图所示,即可行域.当直线z=0.2x+0.3y经过可行域上的点M时,截距最大,即z最大.解方程组,得∴z的最大值为:0.20×2+0.30×4=1.6千万元.即公司投资本地养鱼场和远洋捕捞队的资金应分别为2千万元、4千万元时,明年两个项目的利润之和的最大值为1.6千万元.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.(1)求证:EF∥平面PAD;(2)求EF与平面PDB所成角的正弦值.【分析】取CB的中点G,连结DG,建立空间直角坐标系:(1)=(12,0,0)为平面PAD的一个法向量,根据,进而可证EF ∥面PAD(2)平面PAD的法向量=(5,﹣12,0),代和线面夹角公式,可得答案.【解答】证明:取CB的中点G,连结DG,因为AD∥BG且AD=BD,所以四边形ABGD为平行四边形,所以DG=AB=12,又因为AB⊥AD,所以DG⊥AD,又PD⊥平面ABCD,故以点D原点建立如图所示的空间直角坐标系.…(2分)因为BC=10,AD=5,PD=8,所以有D(0,0,0),P(0,0,8),B(12,5,0),C(12,﹣5,0),因为E,F分别是PB,DC的中点,所以E(6,﹣2.5,0),F(6,2.5,4),(1)因为PD⊥平面ABCD,DG⊂平面ABCD,所以PD⊥DG,又因为DG⊥AD,AD∩PD=D,AD,PD⊂平面PAD,所以DG⊥平面PAD,所以=(12,0,0)为平面PAD的一个法向量,…(4分)又=(0,5,4),=0,所以,又EF⊄平面PAD,所以EF∥平面PAD;…(6分)(2)设平面PAD的法向量为=(x,y,z),所以,即,即,令x=5,则=(5,﹣12,0)…(9分)所以EF与平面PDB所成角θ满足:sinθ===,…(11分)所以EF与平面PDB所成角的正弦值为…(12分)【点评】本题考查的知识点是直线与平面平行的证明,直线与平面的夹角,难度中档.20.(12分)如图,已知椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF1D的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.【分析】(1)依题意,|AF1|、|F1F2|、|AF2|构成等差数列,求出a,再利用c=1,求出b,即可求椭圆C的方程;(2)假设存在直线AB,使得S1=S2,确定G,D的坐标,利用△GFD∽△OED,即可得到结论.【解答】解:(1)因为|AF1|、|F1F2|、|AF2|构成等差数列,所以2a=|AF1|+|AF2|=2|F1F2|=4,所以a=2.…(2分)又因为c=1,所以b2=3,…(3分)所以椭圆C的方程为.…(4分)(2)假设存在直线AB,使得S1=S2,显然直线AB不能与x,y轴垂直.设AB方程为y=k(x+1)将其代入,整理得(4k2+3)x2+8k2x+4k2﹣12=0…(5分)设A(x1,y1),B(x2,y2),所以.故点G的横坐标为.所以G(,).…(6分)因为DG⊥AB,所以×k=﹣1,解得x D=,即D(,0)…(8分)∵Rt△GDF1和∵Rt△ODE相似,∴若S1=S2,则|GD|=|OD|所以,…(10分)整理得8k2+9=0.因为此方程无解,所以不存在直线AB,使得S1=S2.…(12分)【点评】本题考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.21.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(2)得到e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;【解答】解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1f(x)的最小值为1.(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0(*)令g(x)=e x+ax+ln(x+1)﹣1,则①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于ϕ(0)=2+a<0,.故∃x0∈(0,﹣a),使得ϕ(x0)=0,则当0<x<x0时,ϕ(x)<ϕ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想、转化思想,是一道综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.【分析】(1)直接把曲线的参数方程转化为直角坐标方程,进一步把极坐标方程转化为直角坐标方程,在求出直线的倾斜角.(2)利用定点把直线的直角坐标式转化为参数式,进一步建立一元二次方程根与系数的关系,最后求出结果.【解答】解:(1)由消去参数α,得即C的普通方程为由,得ρsinθ﹣ρcosθ①将代入①得y=x+2所以直线l的斜率角为.(2)由(1)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数)即(t为参数),代入并化简得设A,B两点对应的参数分别为t1,t2.则,所以t1<0,t2<0所以.【点评】本题考查的知识要点:直角坐标方程与参数方程的互化,直线和曲线的位置关系的应用,一元二次方程根与系数的关系的应用.23.(10分)设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.【分析】(1)问题转化为解不等式组问题,解出取并集即可;(2)先求出g(x)的分段函数,求出g(x)的最小值,从而求出a的范围.【解答】解:(1)由f(x)≤x得|2x﹣7|+1≤x,∴,∴不等式f(x)≤x的解集为;(2)令g(x)=f(x)﹣2|x﹣1|=|2x﹣7|﹣2|x﹣1|+1,则,∴g(x)min=﹣4,∵存在x使不等式f(x)﹣2|x﹣1|≤a成立,∴g(x)min≤a,∴a≥﹣4.【点评】本题考查了绝对值不等式的解法,考查函数的最值问题,是一道基础题.。
高三理科数学最值微专题(2)三角函数篇
高三理科数学二轮复习最值专题(2)三角函数篇类型一:形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值)。
例1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0 D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 例2.已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4+1, 所以函数f (x )的最小正周期T =2π2=π. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π4∈⎣⎡⎦⎤π4,5π4,由正弦函数y =sin x 在⎣⎡⎦⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎡⎦⎤0,π2上的最大值为2+1,最小值为0.类型二:形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值)。
例3、求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. [思路点拨] 利用换元法求解,令t =sin x .转化为二次函数最值问题.[解]:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54,∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 类型三:形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).例4、求函数y =sin x +cos x +3cos x sin x 的最值.[解] 令t =sin x +cos x ,∴t ∈[-2, 2 ].又(sin x +cos x )2-2sin x cos x =1,∴sin x cos x =t 2-12, ∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53,y 大=f (2)=32+ 2. 类型四:“逆向题”,即已知函数的最值去求某参数的值。
寒假高三理科数学每日一练(2)
寒假高三理科数学每日一练(2)一、选择题(本大题共5小题,每小题5分,满分25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合{}24x x A =<,{}1x x B =>,则()R A B =ð( )A .{}21x x -<<B .{}21x x -<≤C .{}12x x <<D .{}12x x ≤< 2、已知()3log f x x =,则f =⎝⎭( )A .13B .13-C .12D .12- 3、一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积是( )A .12πB .15πC .21πD .24π4、函数()23x f x e x =+-的零点所在的一个区间是( )A .1,02⎛⎫- ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .31,2⎛⎫ ⎪⎝⎭5、若过点()2,0的直线与曲线3y x =和274y ax x =+-都相切,则a 的值是( )A .2或4916-B .3或516C .2D .516二、填空题(本大题共4小题,每小题5分,满分20分.) 6、若复数z 满足2i z i ⋅=+,则复数z 的实部是 .7、执行如图所示的程序框图,则输出的S 的值是 .8、在区间[]0,2上随机取一个数a ,在区间[]0,4上随机取一个数b ,则关于x 的方程220x ax b ++=有实根的概率是 .9、(坐标系与参数方程选做题)已知曲线C 的参数方程是12x y αα⎧=+⎪⎨=⎪⎩(α为参数),以直角坐标系的原点O 为极点, x 轴的正半轴为极轴,并取相同的长度单位建立极坐标系,则曲线C 的极坐标方程是_________.三、解答题(本大题共2小题,共28分.解答应写出文字说明、证明过程或演算步骤.)10、(本小题满分14分)如图,在三棱柱111C C AB -A B 中,11C C AA 是边长为4的正方形,平面C AB ⊥平面11C C AA ,3AB =,C 5B =.()1求证:1AA ⊥平面C AB ;()2求二面角111C A -B -B 的余弦值.11、(本小题满分14分)已知数列{}n a 的前n 项和为n S ,22n n S a =-. ()1求数列{}n a 的通项公式;()2设21log n n n b a a +=⋅,求数列{}n b 的前n 项和为n T .寒假高三理科数学每日一练(2)参考答案1、B2、D3、D4、C5、A6、17、3008、139、2cos 4sin ρθθ=+ 10、()1证明:∵AA 1C 1C 是正方形∴AA 1⊥AC又∵平面ABC ⊥平面AA 1C 1C ,平面ABC∩平面AA 1C 1C=AC ∴AA 1⊥平面ABC ……………………5分()2解:由AC=4,BC=5,AB=3∴AC 2+AB 2=BC 2∴AB ⊥AC取A 为坐标原点,分别以AC →,AB →,AA 1→为x,y,z 轴方向,建立空间直角坐标系,则A 1(0,0,4),B (0,3,0),B 1(0,3,4),C 1(4,0,4) ∴,,设平面A 1BC 1的法向量为,平面B 1BC 1的法向量为=(x 2,y 2,z 2) 则令y 1=4,解得x 1=0,z 1=3,令x 2=3,解得y 2=4,z 2=0,∴=== ∴二面角A 1﹣BC 1﹣B 1的余弦值为……………………14分11、解:()1当1=n 时,21=a , ………………………………1分 当2≥n 时,)22(2211---=-=--n n n n n a a S S a ………………………………3分 即21=-n n a a ∴数列{}n a 为以2为公比的等比数列 ………………………………5分 n n a 2=∴ ………………………………7分 ()2n n n n n b 2)1(2log 212⋅+=⋅=+ ………………………………9分⎪⎩⎪⎨⎧⋅++⋅++⨯+⨯=⋅++⋅++⨯+⨯=+-132122)1(2232222)1(22322n n n n n n n n T n n T ………………………………11分两式相减,得 113222)1(2224++⋅-=+-++++=-n n n n n n T ………………………………13分12+⋅=∴n n n T ………………………………14分。
2022年全国卷Ⅰ高考数学理科模拟试题卷含答案(2)
2022年全国卷Ⅰ高考数学理科模拟试题卷班级:_________________ 姓名:_________________ 座号:________________评卷人得分一、选择题(共12题,每题5分,共60分)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.2.已知复数z=(a-3i)(3+2i)(a∈R)的实部与虚部的和为7,则a的值为A.1B.0C.2D.-23.函数y=log0.4(–x2+3x+4)的值域是A.(0,–2]B.[–2,+∞)C.(–∞,–2]D.[2,+∞)4.以AB为直径的半圆如图所示,其中||=8,O为其所在圆的圆心,OB的垂直平分线与圆弧交于点P,与AB交于点D,Q为PD上一点,若=0,则·=A.9B.15C.-9D.-155.已知lg a+lg b=0,函数f(x)=a x与函数g(x)=-log b x的图像可能是A BC D6.袋子中有四个小球,分别写有“和”“平”“世”“界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到才算完成.用随机模拟的方法估计恰好取三次便完成的概率.利用电脑随机产生0到3之间取整数值的随机数,0,1,2,3代表的字分别为“和”“平”“世”“界”,以每三个随机数为一组,表示取球三次的结果,随机模拟产生了以下24组随机数组:由此可以估计,恰好取三次便完成的概率为A. B. C. D.7.在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE 与平面BB1C1C所成的角为A.30°B.45°C.60°D.90°8.执行如图所示的程序框图,若输入的k=,则输出的S=A. B. C. D.9.已知等差数列的前项和分别为,若,则的值是A. B. C. D.10.若x1,x2∈R,则的最小值是A.1B.2C.3D.411.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为A.4x-3y-3=0B.3x-4y-3=0C.3x-4y-4=0D.4x-3y-4=012.若a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是A.若a⊥b,b⊥α,α⊥β,则a⊥βB.若α⊥β,a⊥α,b∥β,则a⊥bC.若a∥α,a∥β,α∩β=b,则a∥bD.若a∥b,a⊥α,b∥β,则α∥β第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(共4题,每题5分,共20分)13.曲线y=在点(-1,-3)处的切线方程为.14.已知{a n}是递增的等差数列,其前n项和为S n,且S2=S7,写出一个满足条件的数列{a n}的通项公式a n= .15.已知数列{a n}的前n项和为S n,a n+2S n=3n,数列{b n}满足(3a n+2-a n+1)(n∈N*),则数列{b n}的前10项和为.16.已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线上.若△PF1F2为直角三角形,且tan∠PF1F2=,则双曲线的离心率为.评卷人得分三、解答题(共7题,共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且sin(+C)=.(1)求角A;(2)若a=4,△ABC的周长为9,求△ABC的面积.18.如图,已知四棱柱ABCD-A1B1C1D1的底面是菱形,BB1⊥底面ABCD,E是棱CC1的中点.(1)求证:AC∥平面B1DE;(2)求证:平面BDD1B1⊥平面B1D E.19.2020年12月10日,首届全国职业技能大赛在广州广交会展馆拉开帷幕,活动为期4天,2 557名参赛选手围绕86个比赛项目展开激烈角逐.大赛组委会秘书长、人社部职业能力建设司司长张立新表示,这次大赛是新中国成立以来规格最高、项目最多、规模最大、水平最高的综合性国家职业技能赛事.为了准备下一届比赛,甲、乙两支代表队各自安排了10名选手参与选拔活动,他们在活动中取得的成绩(单位:分,满分100分)如下:甲代表队:95 95 79 93 86 94 97 88 81 89乙代表队:88 83 95 84 86 97 81 82 85 99(1)分别求甲、乙两支代表队成绩的平均值,并据此判断哪支代表队的成绩更好;(2)甲、乙两支代表队的总负责人计划从这两支队伍得分超过90分的选手中随机选择4名参加强化训练,记参加强化训练的选手来自甲代表队的人数为X,求X的分布列和数学期望.20.已知椭圆的右焦点为,过且与轴垂直的弦长为3.(1)求椭圆的标准方程;(2)过作直线与椭圆交于两点,问在轴上是否存在点,使为定值,若存在,请求出点坐标,若不存在,请说明理由.21.已知函数f(x)=(x-2)e x-x2+ax,a∈R.(1)讨论函数f(x)的单调性;(2)若不等式f(x)+(x+1)e x+x2-2ax+a>0恒成立,求a的取值范围.请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。
东城区普通高中示范校高三数学练习理科(二)及答案
东城区普通高中示范校高三数学综合练习理科(二)2012.3命题学校:北京市第十一中学学校_____________班级_______________姓名______________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.设全集2,{|30},{|1}U A x x x B x x ==-->=<-R ,则图中阴影部分表示的集合为 ( )A.}0|{>x xB.}13|{-<<-x xC.}03|{<<-x xD.}1|{-<x x2.已知直线l 过定点(-1,1),则“直线l 的斜率为0”是“直线l 与圆122=+y x 相切”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 已知直线m ,n 与平面α,β,下列命题正确的是 ( ) A .βα//,//n m 且βα//,则n m // B .βα//,n m ⊥且β⊥α,则n m ⊥ C .,βm n m =⊥ α且βα⊥,则α⊥n D .βα⊥⊥n m ,且βα⊥,则n m ⊥4.甲从正四面体的四个顶点中任意选择两个顶点连成直线,乙从该正四面体四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 ( ) A.61 B. 92 C. 185 D. 315. 执行如图所示的程序框图,若输出的结果是8,则判断框内m 的取值范围是 ( ) A.(30,42]B.(42,56]C.(56,72]D.(30,72)6.一个几何体的三视图如图所示,则此几何体的体积是 ( ) A .112 B.80 C.72 D.64mOPQM N(第5题图)(第6题图)7. 已知约束条件340,210,380,x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩若目标函数)0(>+=a ay x z 恰好在点(2,2)处取得最大值,则a 的取值范围为 ( ) A. 310<<aB.31≥a C . 31>a D . 210<<a 8.如图,半径为2的⊙O 与直线MN 相切于点P ,射线PK 从PN 出发绕点P 逆 时针方向旋转到PM ,旋转过程中,PK 交⊙O 于点Q ,设POQ ∠为x ,弓 形PmQ 的面积为()S f x =,那么()f x 的图象大致是( )A B C D第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
理科数学-新高三开学摸底考试卷(考试版)
2024届新高三开学摸底考试卷(全国通用)理科数学本试卷共22题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目 1.已知全集{}{}1,2,3,4,5,6,1,4,5,6U A ==,{}1,2,3,5B =,则5∉( ) A .()U A BB .()U B A C .A B D .A B2.复数2i1ia z -+=+在复平面上对应的点位于虚轴上,则实数a 的值为( ) A .1B .2C .1-D .2-3.已知2022年第1季度农村居民人均消费支出为4391元,为本季度农村居民人均可支配收入的76%,本季度农村居民人均可支配收入的来源及其占比的统计数据的饼状图如图所示,根据饼状图,则下列结论正确的是( )A .财产净收入占农村居民人均可支配收入的4%B .工资性收入占农村居民人均可支配收入的40%C .经营净收入比转移净收入大约多659元D .财产净收入约为173元4.已知a b ,是平面内两个非零向量,那么“a b ∥”是“存在0λ≠,使得||||||a b a b λλ+=+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件5.已知3sin 375︒≈,)A .34B .43C.4D.36.某个函数的大致图象如图所示,则该函数可能是( )A .21cos 41x xy x =+B .22sin 1xy x =+ C .22(e e )1x x y x -+=+ D .32sin 1x xy x -+=+ 7.在2023年3月12日马来西亚吉隆坡举行的Yong Jun KL Speedcubing 比赛半决赛中,来自中国的9岁魔方天才王艺衡以4.69秒的成绩打破了“解三阶魔方平均用时最短”吉尼斯世界纪录称号.如图,一个三阶魔方由27个单位正方体组成,把魔方的中间一层转动了45︒之后,表面积增加了( )A .54 B.54-C.108-D.81-8.设M 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,P 是C 上的一个动点.当P 运动到下顶点时,||PM 取得最大值,则C 的离心率的取值范围是( ) A.⎫⎪⎪⎣⎭B.⎛ ⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦9.瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作ABC ,4AB AC ==,点(1,3)B -,点(4,2)C -,且其“欧拉线”与圆222:()(3)M x a y a r -+-+=相切.则圆M 上的点到直线30x y -+=的距离的最小值为( ) A.B.C.D .610.已知直四棱柱1111ABCD A B C D -的底面为正方形,12,1AA AB ==,P 为1CC 的中点,过,,A B P 三点作平面α,则该四棱柱的外接球被平面α截得的截面圆的周长为( )ABC .2πD 11.若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e12.已知函数()f x 与()g x 的定义域均为R ,(1)f x +为偶函数,且1(3)()f x g x -+=,1()(1)f x g x --=,则下面判断错误的是( )A .()f x 的图象关于点(2,1)中心对称B .()f x 与()g x 均为周期为4的周期函数C .20221()2022i f i ==∑D .2023()0i g i ==∑二、填空题:本题共4小题,每小题5分,共20分.13.53x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数是__________.14.某高校鼓励学生深入当地农村拍摄宣传片,带动当地旅游业的发展,帮助当地居民提升经济收入.若统计发现在某一时段内,200部宣传片的浏览量X (万次)服从正态分布()1.5,0.09N ,则该时段内这200部宣传片中浏览量在(]0.9,1.8万次的个数约为______.(参考数据:()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈) 15.如图,四边形ABCD 中,AC 与BD 相交于点O ,AC 平分DAB ∠,π3ABC ∠=,33AB BC ==,则sin DAB ∠的值_______.16.已知抛物线24y x =的焦点为F ,点,P Q 在抛物线上,且满足π3PFQ ∠=,设弦PQ 的中点M 到y 轴的距离为d ,则1PQd +的最小值为__________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分).如图,四棱锥-P ABCD 中,底面ABCD 为等腰梯形,AB CD ∥,12AD DC AB ==,且平面PAD ⊥平面ABCD ,PD AD ⊥.(1)求证:BD PA ⊥;(2)PB 与平面ABCD 所成的角为30,求二面角--A PB C 的正弦值.18.(12分)设正项数列{}n a 的前n 项和为n S ,且1n a + (1)求数列{}n a 的通项公式;(2)能否从{}n a 中选出以1a 为首项,以原次序组成的等比数列()121,,,,1m k k k a a a k =.若能,请找出公比最小的一组,写出此等比数列的通项公式,并求出数列{}n k 的前n 项和n T ;若不能,请说明理由.19.(12分)人工智能(AI )是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某公司成立了,A B 两个研究性小组,分别设计和开发不同的AI 软件用于识别音乐的类别.记两个研究性小组的AI 软件每次能正确识别音乐类别的概率分别为12,P P .为测试AI 软件的识别能力,计划采取两种测试方案.方案一:将100首音乐随机分配给,A B 两个小组识别,每首音乐只被一个AI 软件识别一次,并记录结果; 方案二:对同一首歌,,A B 两组分别识别两次,如果识别的正确次数之和不少于三次,则称该次测试通过.(1)若方案一的测试结果如下:正确识别的音乐数之和占总数的35;在正确识别的音乐数中,A 组占23;在错误识别的音乐数中,B 组占12.(i )请根据以上数据填写下面的22⨯列联表,并通过独立性检验分析,是否有95%的把握认为识别音乐是否正确与两种软件类型有关?(ii )利用(i )中的数据,视频率为概率,求方案二在一次测试中获得通过的概率; (2)研究性小组为了验证AI 软件的有效性,需多次执行方案二,假设1243P P +=,问该测试至少要进行多少次,才能使通过次数的期望值为16?并求此时12,P P 的值.附:()()()()22()n ad bc a b c d a c b d K -=++++,其中n a b c d =+++.20.(12分)已知双曲线:C ()22210y x b b-=>的左、右焦点分别为1F ,2F ,A 是C 的左顶点,C 的离心率为2.设过2F 的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线12x =于M 、N 两点,证明:22MF NF ⋅为定值; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值;否则,说明理由. 21.(12分)已知函数()()2111ln 22f x x a x b x x x ⎛⎫=----+ ⎪⎝⎭,其中,R a b ∈. (1)讨论函数()f x 的单调性;(2)若函数()f x 存在三个零点123,,x x x (其中123x x x <<). (i )若1a >,函数()1ln 2g x x x =+,证明:()102b g a a a<-<-;(ii )若01a <<,证明:()221313111121138112381a a x x x x a a a a ⎛⎫⎛⎫++++--<⎪⎪++⎝⎭⎝⎭. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2240x y x +-=.曲线2C 的参数方程为cos 1sin x y ββ=⎧⎨=+⎩(β为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线1C 和曲线2C 的极坐标方程; (2)若射线θα=(0ρ≥,π02α<<)交曲线1C 于点P ,直线()π2θαρ=+∈R 与曲线1C 和曲线2C 分别交于点M 、N ,且点P 、M 、N 均异于点O ,求MPN △面积的最大值. 23.[选修4—5:不等式选讲](10分)已知函数()1g x x =-的最小值为m ,()()f x g x x =+的最小值为n .实数a ,b ,c 满足a b c m ++=,abc n =,ab ,0c >.(1)求m 和n ; (2)证明:a b +<。
高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)
第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。
高三数学专项训练:函数与导数,解析几何解答题(二)(理科)
(2)过右焦点 的直线与椭圆交于不同的两点 、 ,则 内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
35.某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中 、 是过抛物线 焦点 的两条弦,且其焦点 , ,点 为 轴上一点,记 ,其中 为锐角.
(3)求证: .
4.已知函数 .
(Ⅰ)若函数 的值域为 ,若关于 的不等式 的解集为 ,求 的值;
(Ⅱ)当 时, 为常数,且 , ,求 的取值范围.
5.已知函数 ,函数 .
(I)试求f(x)的单调区间。
(II)若f(x)在区间 上是单调递增函数,试求实数a的取值范围:
(III)设数列 是公差为1.首项为l的等差数列,数列 的前n项和为 ,求证:当 时, .
41.(13分) 已知椭圆C的中心在原点,离心率等于 ,它的一个短轴端点点恰好是抛物线 的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足 = ,试问直线AB的斜率是否为定值,请说明理由。
(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为 ,点P的坐标是(0,-1), 与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.
27.已知两点 及 ,点 在以 、 为焦点的椭圆 上,且 、 、 构成等差数列.
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 与椭圆 有且仅有一个公共点,点 是直线 上的两点,且 ,
. 求四边形 面积 的最大值.
高考理科数学刷题练习解答题(二)
解答题(二)17.(2019·广东肇庆第三次统一检测)在△ABC中,D是BC上的点,AD平分∠BAC,sin C=2sin B.(1)求BD CD;(2)若AD=AC=1,求BC的长.解(1)由正弦定理可得在△ABD中,ADsin B=BDsin∠BAD,在△ACD中,ADsin C=CDsin∠CAD,又因为∠BAD=∠CAD,所以BDCD=sin Csin B=2.(2)sin C=2sin B,由正弦定理得AB=2AC=2,设DC=x,则BD=2x,则cos∠BAD=AB2+AD2-BD22AB·AD=5-4x24,cos∠CAD=AC2+AD2-CD22AC·AD=2-x22,因为∠BAD=∠CAD,所以5-4x24=2-x22,解得x=22,即BC=3x=322.18. (2019·湖北4月调研)已知四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=3,BC=4,AC=5.(1)当AP变化时,点C到平面P AB的距离是否为定值?若是,请求出该定值;若不是,请说明理由;(2)当直线PB与平面ABCD所成的角为45°时,求二面角A-PD-C的余弦值.解 (1)由AB =3,BC =4,AC =5知AB 2+BC 2=AC 2,则AB ⊥BC , 由P A ⊥平面ABCD ,BC ⊂平面ABCD ,得P A ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,则BC ⊥平面P AB ,则点C 到平面P AB 的距离为定值BC =4.(2)由P A ⊥平面ABCD ,则∠PBA 为直线PB 与平面ABCD 所成的角,即∠PBA =45°,所以P A =AB =3.由AD ∥BC ,AB ⊥BC 得AB ⊥AD ,故直线AB ,AD ,AP 两两垂直,因此,以点A 为坐标原点,以AB ,AD ,AP 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,易得P (0,0,3),D (0,3,0),C (3,4,0),于是DP→=(0,-3,3),DC →=(3,1,0),设平面PDC 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·DP →=0,n 1·DC →=0,即⎩⎨⎧-3y +3z =0,3x +y =0,取x =1,则y =-3,z =-3,即n 1=(1,-3,-3),显然n 2=(1,0,0)为平面P AD 的一个法向量,于是,cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=112+(-3)2+(-3)2=1919.又二面角A -PD -C 为钝角,所以二面角A -PD -C 的余弦值为-1919.19.(2019·黑龙江哈尔滨六中第二次模拟)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者去年的消费金额在(3200,4000]范围内的概率;(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:预计去年消费金额在金额在(1600,3200]内的消费者都将会申请办理银卡会员,消费金额在(3200,4800]内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:方案一:按分层抽样从普通会员、银卡会员、金卡会员中总共抽取25位“幸运之星”给予奖励:普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.解 (1)去年的消费金额超过3200元的消费者有12人,随机抽取2人,设消费金额在(3200,4000]范围内的人数为X ,X 的可能取值为1,2,P (X ≥1)=1-P (X =0)=1-C 24C 212=1011,即所求概率为1011.(2)方案一:按分层抽样从普通会员、银卡会员、金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为28100×25=7,60100×25=15,12100×25=3,按照方案一奖励的总金额为ξ1=7×500+15×600+3×800=14900(元).方案二:设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300,由摸到红球的概率为P =C 12C 15=25,∴P (η=0)=C 03×⎝⎛⎭⎪⎫250×⎝ ⎛⎭⎪⎫353+C 13×25×⎝ ⎛⎭⎪⎫352=81125, P (η=200)=C 23×⎝ ⎛⎭⎪⎫252×35=36125, P (η=300)=C 33×⎝ ⎛⎭⎪⎫253=8125, η的分布列为:数学期望为E (η)=0×81125+200×36125+300×8125=76.8(元),按照方案二奖励的总金额为ξ2=(28+2×60+3×12)×76.8=14131.2(元), 由ξ1>ξ2知,方案二投资较少.20.(2019·安徽江淮十校最后一卷)已知P 是圆F 1:(x +1)2+y 2=16上任意一点,F 2(1,0),线段PF 2的垂直平分线与半径PF 1交于点Q ,当点P 在圆F 1上运动时,记点Q 的轨迹为曲线C .(1)求曲线C的方程;(2)记曲线C与x轴交于A,B两点,M是直线x=1上任意一点,直线MA,MB与曲线C的另一个交点分别为D,E,求证:直线DE过定点H(4,0).解(1)由线段PF2的垂直平分线与半径PF1交于点Q,得|QF1|+|QF2|=|QF1|+|QP|=|PF1|=4>|F1F2|=2,所以点Q的轨迹为以F1,F2为焦点,长轴长为4的椭圆,故2a=4,a=2,2c=2,c=1,b2=a2-c2=3,曲线C的方程为x24+y23=1.(2)证明:由(1)得A(-2,0),B(2,0),设点M的坐标为(1,m),直线MA的方程为y=m3(x+2),将y=m3(x+2)与x24+y23=1联立整理得(4m2+27)x2+16m2x+16m2-108=0,设点D的坐标为(x D,y D),则-2x D=16m2-108 4m2+27,故x D=54-8m24m2+27,则y D=m3(x D+2)=36m4m2+27,直线MB的方程为y=-m(x-2),将y=-m(x-2)与x24+y23=1联立整理得(4m2+3)x2-16m2x+16m2-12=0,设点E的坐标为(x E,y E),则2x E=16m2-12 4m2+3,故x E=8m2-64m2+3,则y E=-m(x E-2)=12m4m2+3,HD的斜率为k1=y Dx D-4=36m54-8m2-4(4m2+27)=-6m4m2+9,HE的斜率为k2=y Ex E-4=12m8m2-6-4(4m2+3)=-6m4m2+9,因为k1=k2,所以直线DE经过定点H.21.(2019·河北中原名校联盟联考)已知函数f(x)=e x,g(x)=a ln x(a>0).(1)当x >0时,g (x )≤x ,求实数a 的取值范围;(2)当a =1时,曲线y =f (x )和曲线y =g (x )是否存在公共切线?并说明理由. 解 (1)令m (x )=g (x )-x =a ln x -x ,则m ′(x )=ax -1=a -x x . 若0<x <a ,则m ′(x )>0,若x >a ,则m ′(x )<0.所以m (x )在(0,a )上是增函数,在(a ,+∞)上是减函数.所以x =a 是m (x )的极大值点,也是m (x )的最大值点,即m (x )max =a ln a -a . 若g (x )≤x 恒成立,则只需m (x )max =a ln a -a ≤0,解得0<a ≤e. 所以实数a 的取值范围是(0,e ].(2)假设存在这样的直线l 且与曲线y =f (x )和曲线y =g (x )分别相切于点A (x 1,ex 1),B (x 2,ln x 2).由f (x )=e x ,得f ′(x )=e x .曲线y =f (x )在点A 处的切线方程为y -e x 1 =e x 1 (x -x 1),即y =e x 1 x +(1-x 1)e x 1 .同理可得,曲线y =g (x )在点B 处的切线方程为 y -ln x 2=1x 2(x -x 2),即y =1x 2x +ln x 2-1.所以⎩⎨⎧e x 1=1x 2,(1-x 1)e x 1=ln x 2-1,则(1-x 1)e x 1 =ln e -x 1 -1, 即(1-x 1)e x 1 +x 1+1=0.构造函数h (x )=(1-x )e x +x +1,存在直线l 与曲线y =f (x )和曲线y =g (x )相切等价于函数h (x )=(1-x )·e x +x +1在R 上有零点,又h ′(x )=1-x e x ,当x ≤0时,h ′(x )>0,h (x )在(-∞,0)上单调递增; 当x >0时,因为h ″(x )=-(x +1)e x <0,所以h ′(x )在(0,+∞)上是减函数. 又h ′(0)=1>0,h ′(1)=1-e<0,所以存在x 0∈(0,1),使得h ′(x 0)=1-x 0e x 0 =0,即e x 0 =1x 0.且当x 0∈(0,x 0)时,h ′(x )>0,当x 0∈(x 0,+∞)时,h ′(x )<0. 综上,h (x )在(0,x 0)上是增函数,在(x 0,+∞)上是减函数.所以h (x 0)是h (x )的极大值,也是最大值,且h (x )max =h (x 0)=(1-x 0)e x 0 +x 0+1=(1-x 0)·1x 0+x 0+1=1x 0+x 0>0,又h (-2)=3e -2-1<0,h (2)=-e 2+3<0,所以h (x )在(-2,x 0)内和(x 0,2)内各有一个零点.故假设成立,即曲线y =f (x )和曲线y =g (x )存在公共切线. 22.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).直线l 与x 轴交于点A .以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,射线l ′:θ=π6(ρ≥0),直线l 与射线l ′交于点B .(1)求B 点的极坐标;(2)若点P 是椭圆C :x 2+y 23=1上的一个动点,求△P AB 面积的最大值及面积最大时点P 的直角坐标.解 (1)l :y =3(x -3)=3x -3, 则l 的极坐标方程为ρsin θ=3ρcos θ-3. 令θ=π6得ρ=3,∴B 点的极坐标为⎝ ⎛⎭⎪⎫3,π6. (2)∵|AB |=|OA |=3,∴S =32d .设P 点坐标为(cos α,3sin α),l :3x -y -3=0. ∴d =|3cos α-3sin α-3|2=32|(cos α-sin α)-3|=32⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π4-3. 当α+π4=π+2k π(k ∈Z )时,d max =3+62, ∴S max =33+324. 此时cos α=cos 3π4=-22,sin α=sin 3π4=22,∴P 点坐标为⎝ ⎛⎭⎪⎫-22,62.23.设函数f (x )=|2x -4|+|x +1|, (1)求函数f (x )的最小值;(2)若直线y =a 与曲线y =f (x )围成的封闭区域的面积为9,求a 的值. 解 (1)①当x ≥2时,f (x )=3x -3≥3; ②当-1<x <2时,f (x )=5-x ∈(3,6); ③当x ≤-1时,f (x )=3-3x ≥6, ∴f (x )min =3.(2)f (x )=⎩⎨⎧3x -3,x ≥2,5-x ,-1<x <2,3-3x ,x ≤-1,f (x )的图象如图所示:y =6与y =f (x )围成的三角形面积为S =12×[3-(-1)](6-3)=6<9,∴a >6. 故y =f (x ),y =6,y =a 围成的梯形面积为3. 令f (x )=3x -3=a ⇒x 1=a +33; 令f (x )=3-3x =a ⇒x 2=3-a3,故梯形面积为12×⎣⎢⎡⎦⎥⎤4+⎝ ⎛⎭⎪⎫a +33-3-a 3(a -6)=3,∴a =3 5.。
2020高考江苏数学(理)大一轮复习(理科提高版)复习练习题:练习册 第二章函数与基本初等函数
第二章 函数与基本初等函数Ⅰ第4课 函数的概念及其表示法A. 课时精练一、 填空题1. 已知函数y =f(x),以下说法中正确的有________个.①y 是x 的函数;②对于不同的x ,对应的y 的值也不同;③f(a)表示当x =a 时,函数f(x)的值,是一个常量;④f(x)一定可以用一个具体的式子表示出来.2. 若函数f(x)=⎩⎪⎨⎪⎧1x ,x>1,-x -2,x ≤1,则f(f(2))=________.3. 已知函数f(x)=x 3+3x 2+1,若a ≠0,且f(x)-f(a)=(x -b)(x -a)2,x ∈R ,则a =________,b =________.4. 已知函数f(x)=⎩⎪⎨⎪⎧3x +2,x<1,x 2+ax ,x ≥1,若f(f(0))=4a ,则实数a =________.5. 下列各组函数中,表示同一个函数的是________.(填序号)①y =x -1,y =x 2-1x +1; ②y =x 0,y =1;③f(x)=x 2,g(x)=(x +1)2;④f(x)=(x )2x ,g(x)=x (x )2.6. 若某等腰三角形的周长为20,底边长y 是腰长x 的函数,则y 关于x 的函数解析式为____________.7. 已知实数m ≠0,函数f(x)=⎩⎪⎨⎪⎧3x -m ,x ≤2,-x -2m ,x>2,若f(2-m)=f(2+m),则m 的值为________. 8. 已知f(x)=2x +a ,g(x)=14(x 2+3),若g(f(x))=x 2+x +1,则实数a = ________.二、 解答题9. 已知函数f(x)=x +2x -6. (1) 点(3,14)在函数f(x)的图象上吗?(2) 当x =4时,求函数f(x)的值;(3) 当f(x)=2时,求x 的值.10. 已知函数f(x)=x 2-1,g(x)=⎩⎪⎨⎪⎧x -1,x>0,2-x ,x<0. (1) 求f(g(2))和g(f(2))的值;(2) 求函数f(g(x))和g(f(x))的表达式.11. 已知f(x)是定义在[-6,6]上的奇函数,它在[0,3]上是一次函数,在[3,6]上是二次函数,且当x ∈[3,6]时,f(x)≤f(5)=3,f(6)=2,求函数f(x)的解析式.B. 滚动小练1. 已知集合A ={x|log 2x ≤2},B =(-∞,a),若A ⊆B ,则实数a 的取值范围是________.2. 已知p :-1<m <5,q :方程x 2-2mx +m 2-1=0的两个根均大于-2且小于 4,那么p 是q 的________________条件.3. 已知命题p :方程x 2+mx +1=0有两个不相等的实负根,命题q :方程4x 2+4(m -2)x +1=0无实数根.若“p 或q ”为真命题,“p 且q ”为假命题,求实数m 的取值范围.第5课 函数的定义域与值域A. 课时精练一、 填空题1. 函数f(x)=x +1+(1-x )02-x的定义域为________.2. (2018·苏北四市期末)函数y =log 12x 的定义域为________.3. 若定义域为R 的函数y =f (x )的值域为[a ,b ],则函数y =f (x +a )的值域为________.4. (2017·常州期末)函数y =1-x +lg (x +2)的定义域为________.5. 函数y =1x 2-4x +3(x ≠1且x ≠3)的值域为________.6. 已知函数f(x)的定义域为⎣⎡⎦⎤-12,12,那么函数f ⎝⎛⎭⎫x 2-x -12的定义域为________.7. 若函数f(x)=2x 2+2ax -a +1的定义域为R ,则a 的取值范围为________.8. 若函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是 ________.二、 解答题9. 求下列函数的定义域.(1) y =4-x 2x -1+(x +2)0; (2) y =1x +3+-x +x +4.10. 求下列函数的值域.(1) f(x)=⎩⎪⎨⎪⎧x 2-x +1,x<1,1x ,x>1; (2) y =x -x.11. 已知函数f(x)=x 2-4ax +2a +6(a ∈R ).(1) 若函数f (x )的值域为[0,+∞),求a 的值;(2) 若函数f (x )的值均为非负数,求函数g (a )=2-a |a +3|的值域.B. 滚动小练1. 命题“∀x ∈R ,x 2-x +3>0”的否定是______________________.2. “a =1”是“直线x +y =0和直线x -ay =0互相垂直”的________条件.3. 已知p :方程a 2x 2+ax -2=0在[-1,1]上有解;q :只有一个实数x 满足不等式x 2+2ax +2a ≤0.若“p 或q ”是假命题,求实数a 的取值范围.第6课 函数的单调性A. 课时精练一、 填空题1. 若函数f(x)=(2k -1)x +1在R 上单调递减,则实数k 的取值范围是________________.2. 函数y =1-x 1+x 的单调减区间是________.3. 若函数f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=x 2f(x -1),则函数g(x)的单调减区间是________.4. 已知函数f(x)为R 上的单调减函数,那么满足f (|x |)<f (1)的实数x 的取值范围是________.5. (2018·太原期末)已知函数f(x)=x +1x -1,x ∈[2,5],那么f(x)的最大值为________.6. 给出下列函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数是________.(填序号)7. 若函数y =x x +a在(-2,+∞)上为增函数,则a 的取值范围是________.8. 若函数f(x)=x 2+a|x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________.二、 解答题9. 已知函数f(x)=ax +1x +2(a 为常数). (1) 若a =0,试判断f(x)的单调性;(2) 若f(x)在[0,+∞)上单调递增,求实数a 的取值范围.10. 已知函数f(x)=ax +1x 2(x ≠0,a ∈R ). (1) 讨论函数f (x )的奇偶性,并说明理由;(2) 若函数f (x )在x ∈[3,+∞)上为增函数,求a 的取值范围.11. 已知函数f(x)是定义在(0,+∞)上的单调减函数,且满足f(xy)=f(x)+f(y),f ⎝⎛⎭⎫13=1.(1) 求f(1)的值;(2) 若存在实数m ,使得f(m)=2,求实数m 的值;(3) 若f(x)+f(2-x)<2,求x 的取值范围.B. 滚动小练1. 已知函数f(x)=⎩⎪⎨⎪⎧2x +1,x<1,x 2+ax ,x ≥1,若f(f(0))=4a ,则实数a =________.2. 已知函数f(x)=2|x -1|-x +1,那么函数f(x)的单调增区间是________.3. 已知函数g(x)=ax +1,f(x)=⎩⎪⎨⎪⎧x 2-1,0≤x ≤2,-x 2,-2≤x<0.若对任意的x 1∈[-2,2],存在x 2∈ [-2,2],使得g(x 1)=f(x 2)成立,则a 的取值范围是________.第7课函数的奇偶性A. 课时精练一、填空题1. 若函数f(x)=k-2x1+k·2x在定义域上为奇函数,则实数k=________.2. 已知函数f(x)为偶函数,且当x<0时,f(x)=x2-1x,那么f(1)=________.3. 已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x-7x+2b(b为常数),那么f(-2)=________.4. 已知定义域为[a-4,2a-2]的奇函数f(x)=2 016x3-sin x+b+2,那么f(a)+f(b)=________.5. 已知函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f (x-2)≤1的x的取值范围是________.6. (2018·唐山期末)已知偶函数f(x)在[0,+∞)上单调递减,若f(-2)=0,则满足xf(x-1)>0的x的取值范围是________.7. (2018·石家庄一模)已知f(x)是定义在[-2b,1+b]上的偶函数,且在[-2b,0]上为增函数,那么f(x-1)≤f(2x)的解集为________.8. (2018·南师附中)已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sin x.若不等式f(-4t)>f(2mt2+m)对任意的实数t恒成立,则实数m的取值范围是________.二、 解答题9. 已知函数f(x)=1+x 21-x 2. (1) 求函数f(x)的定义域;(2) 判断函数f(x)的奇偶性;(3) 求证:f ⎝⎛⎭⎫1x +f(x)=0.10. 已知函数f(x)=ax 2+1bx +c(其中a ,b ,c ∈Z )是奇函数且f (1)=2,f (2)<3,求实数a ,b ,c 的值和函数f (x )的解析式.11. (2017·金陵中学)已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a ,b ∈[-1,1],且a +b ≠0时,有f (a )+f (b )a +b>0恒成立. (1) 试用定义证明函数f(x)在[-1,1]上是单调增函数;(2) 解不等式:f ⎝⎛⎭⎫x +12<f(1-x).B. 滚动小练1. 已知函数f(x)=x x -a(x ≠a),若a =-2,求证:f(x)在(-∞,-2)上单调递增.2. 已知函数f(x)是定义在R 上的单调函数,满足f (-3)=2,且对任意的a ∈R ,有f (-a )+f (a )=0恒成立.(1) 试判断f (x )在R 上的单调性,并说明理由;(2) 解关于x 的不等式f ⎝⎛⎭⎫2-3x x <2.第8课函数的图象和周期性A. 课时精练一、填空题1. 已知函数f(x)=ax3-2x的图象过点(-1,4),那么实数a的值为________.2. (2018·泉州模拟)已知函数f(x)是偶函数,且f(x)=f(x+4),f(1)=1,那么f(-9)=________.3.若f(x)是偶函数,且在(0,+∞)上单调递增,又f(-3)=0,则x·f(x)<0的解集是________.4.使log2(-x)<x+1成立的x的取值范围为________.5. 已知函数f(x)的图象关于原点对称,且周期为4,当x∈(0,2)时,f(x)=(x-8)2-4,则f(210)=________.(注:210∈(6,6.5))6. (2017·南师附中)已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,f ⎝⎛⎭⎫x+12=f ⎝⎛⎭⎫x-12.则f(2 017)=________.7. (2018·全国卷Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,且满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=________.8. 已知函数f(x)是定义在R上的偶函数,且f (x)=f (12-x),当x∈[0,6]时,f (x)=log6(x+1),若f(a)=1(a∈[0,2 020]),则a的最大值是________.二、 解答题9. 已知f(x)是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x .(1) 当x <0时,求函数f (x )的解析式;(2) 作出函数f (x )的图象,并指出其单调区间.10. 已知函数f(x)=1+|x|-x 2(-2<x ≤2). (1) 用分段函数的形式表示该函数解析式;(2) 画出该函数的图象;(3) 写出该函数的值域.11. 已知函数f(x)=⎩⎪⎨⎪⎧ax +b ,x<0,2x ,x ≥0,且f(-2)=3,f(-1)=f(1). (1) 求函数f(x)的解析式,并求f(f(-2))的值;(2) 请利用“描点法”画出函数f(x)的大致图象.B. 滚动小练1. 若函数f(x)=⎩⎪⎨⎪⎧2co sπx ,-1<x<0,e 2x -1,x ≥0满足f ⎝⎛⎭⎫12+f(a)=2,则a 的所有可能取值为________.2. (2018·蚌埠一检)已知函数f(x)=e |x|·lg (1+4x 2+ax)的图象关于原点对称,那么实数a 的值为________.3. 已知二次函数f(x)=ax 2+(a -1)x +a.(1) 函数f(x)在(-∞,-1)上单调递增,求实数a 的取值范围;(2) 若关于x 的不等式f (x )x≥2在x ∈[1,2]上恒成立,求实数a 的取值范围.第9课 二次函数A. 课时精练一、 填空题1. 若二次函数f(x)=-x 2+2ax +4a +1有一个零点小于-1,一个零点大于3,则实数a 的取值范围是________.2. 函数f(x)=⎩⎪⎨⎪⎧x 2+2x -3,-2≤x<0,x 2-2x -3,0≤x ≤3的值域是________.3. 若函数f(x)=x 2+2(a -1)x +2在区间(-∞,4]上是单调减函数,则实数a 的取值范围是________.4. 若二次函数f(x)=(m -1)x 2+(m 2-1)x +1是偶函数,则f(x)的单调增区间是________.5. 若f(x)=x 2-ax +1有负值,则实数a 的取值范围是________.6. 已知函数f(x)=-x 2+4x +a(x ∈[0,1]),若函数f(x)有最小值-2,则函数f(x)的最大值为________.7. 已知二次函数f(x)同时满足条件:①图象的对称轴是x =1;②f(x)的最大值为15;③f(x)的两个根的立方和等于17.那么f(x)的解析式是________________.8. (2018·天津卷)已知a ∈R ,函数f (x )=⎩⎪⎨⎪⎧x 2+2x +a -2,x ≤0,-x 2+2x -2a ,x >0.若对任意的x ∈[-3,+∞),f (x )≤|x |恒成立,则a 的取值范围是________.二、 解答题9. 已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).(1) 求f(x)的解析式;(2) 对于任意的x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.10. 已知函数f(x)=ax2-|x|+2a-1,其中a≥0,a∈R.(1) 若a=1,作出函数f(x)的图象;(2) 若f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式.11. (1) 已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,求实数k的取值范围.(2) 若关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实数根,且一个大于4,另一个小于4,求m的取值范围.B. 滚动小练1.若函数f(x)=2x-(k2-3)·2-x,则“k=2”是“函数f(x)为奇函数”的________________条件.2. 若函数f(x)是偶函数,且当x≥0时,f(x)=lg(x+1),则满足f(2x+1)<1的实数x的取值范围是________.3.已知函数f(x)=ax2+1x,其中a为实数.(1) 根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2) 若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.第10课 指数与指数函数A. 课时精练一、 填空题1. 计算:⎝⎛⎭⎫9412-(-9.6)0-⎝⎛⎭⎫278-23+⎝⎛⎭⎫32-2=________.2. 若函数f(x)=a x -1+3(a>0且a ≠1)的图象必过定点P ,则P 点的坐标为________.3. 函数y =4-2x 的定义域为________.4. 已知a =20.2,b =0.40.2,c =0.40.6,那么a ,b ,c 的大小关系为________.5. 若f(x)=⎩⎪⎨⎪⎧ax 2,x>1,⎝⎛⎭⎫4-a 2x +2,x ≤1是R 上的单调增函数,则实数a 的取值范围为________.6. 已知函数y =f(x)是R 上的奇函数,满足f (3+x )=f (3-x ),当x ∈(0,3)时,f (x )=2x ,则当x ∈(-6,-3)时,f (x )=________.7. 已知函数221(2),1,()2,1,x f x x f x x -->⎧⎪=⎨≤⎪⎩则f(3)=________;当x<0时,不等式f(x)<2的解 集为________.8. (2018·石家庄二模)若函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,且满足f (x )+2g (x )=e x ,则g (-1),f (-2),f (-3)的大小关系为____________.二、 解答题9. 已知函数f(x)=3x +λ·3-x (λ∈R ).(1) 当λ=1时,试判断函数f (x )=3x +λ·3-x 的奇偶性,并证明你的结论;(2) 若不等式f (x )≤6在x ∈[0,2]上恒成立,求实数λ的取值范围.10. 已知函数f(x)=-3x +a 3x +1+b. (1) 当a =b =1时,求满足f(x)=3x 的x 的值;(2) 若函数f(x)是定义在R 上的奇函数,存在t ∈R ,不等式f (t 2-2t )<f (2t 2-k )有解,求k 的取值范围.11. 已知函数f(x)=2x -12|x|. (1) 若f(x)=2,求x 的值;(2) 若2t f(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.B. 滚动小练1. 已知函数f(x)=⎩⎪⎨⎪⎧e x -1,x ≤1,x ,x>1,那么f(2)=________.2. 已知定义在R 上的函数f (x )满足f (x +2)=f (x ),在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧4x +a ,-1≤x ≤0,x 2-log 2x ,0<x <1.若f ⎝⎛⎭⎫-52-f ⎝⎛⎭⎫92=0,则f (4a )=________.3. 已知f(x)为定义在R 上的奇函数,当x >0时,f (x )为二次函数,且满足f (2)=1,f (x )在(0,+∞)上的两个零点为1和3.(1) 求函数f (x )的解析式;(2) 作出函数f (x )的图象,并根据它的图象讨论关于x 的方程f (x )-c =0(c ∈R )的根的个数.(第3题)第11课 对数的运算A. 课时精练一、 填空题1. 计算:lg 2+lg 5+2log 510-log 520=________.2. 已知lg 3=a ,lg 5=b ,那么log 515=________.3. 计算:2log 32-log 3329+log 38-5log 53=________.4. 计算:(log 29+log 227)(log 32+log 34)=________.5. 已知函数f(x)=a log 3x +b log 4x +1,若f(2 015)=3,则f ⎝⎛⎭⎫12 015=________.6. 已知x>0,y>0,若2x ·8y =16,则2-1+log 2x +log 927y =________.7. 若[x]表示不超过x 的最大整数,如[π]=3,[-3.2]=-4,则[lg 1]+[lg 2]+[lg 3]+…+[lg 100]=________.8. (2018·江苏考前热身B 卷)已知函数f(x)=log a x ,若对任意的x 1,x 2∈(0,+∞),f(x 21)-f(x 22)=1,则f(x 2 0181)-f(x 2 0182)的值为________.二、 解答题9. 求下列各式的值.(1) log 48+lg 50+lg 2+5log 53+(-9.8)0;(2) log 327-log 33+lg 25+lg 4+ln (e 2).10. 已知2lgx -y 2=lg x +lg y ,求 x y的值.11. 已知2x =3y =5z ,且x ,y ,z 都是正数,比较2x ,3y ,5z 的大小.B. 滚动小练1. 已知函数f(x)是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=________.2. 若函数f(x)=kx 2+(k -1)x +2是偶函数,则f(x)的单调减区间是________.3. 已知二次函数f(x)=ax 2+bx +c 满足:①对于任意的实数x ,都有f(x)≥x ,且当x ∈(1,3)时,f(x)≤18(x +2)2恒成立;②f(-2)=0. (1) 求证:f(2)=2;(2) 求f(x)的解析式.第12课对数函数A. 课时精练一、填空题1. (2018·南京、盐城、连云港二模)函数f(x)=lg(2-x)的定义域为________.2. (2018·全国卷Ⅰ)已知函数f(x)=log2(x2+a),若f(3)=1,则a=________.3. 已知函数y=log a(x+b)的图象如图所示,那么a=________,b=________.(第3题)4. (2017·全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调增区间是________.5.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-log2x,则不等式f(x)<0的解集是________.6. (2018·天津卷)已知a=log372,b=⎝⎛⎭⎫1413,c=log1315,那么a,b,c的大小关系为________.7. 已知函数f(x)=1-x+log21-x1+x,那么f⎝⎛⎭⎫12+f⎝⎛⎭⎫-12的值为________.8. (2018·全国卷Ⅲ)已知函数f(x)=ln(1+x2-x)+1,f(a)=4,那么f(-a)=________.二、 解答题9. 已知函数f(x)=log a (x 2-x +1)(a>0且a ≠1).(1) 当a 变化时,函数f(x)的图象恒过定点,试求该定点的坐标;(2) 若f(2)=12,求实数a 的值; (3) 若函数f(x)在区间[0,2]上的最大值为2,求实数a 的值.10. 已知函数f(x)=log 2g(x)+(k -1)x.(1) 若g(log 2x)=x +1,且f(x)为偶函数,求实数k 的值;(2) 当k =1,g(x)=ax 2+(a +1)x +a 时,若函数f(x)的值域为R ,求实数a 的取值范围.11. 已知a ∈R ,函数f (x )=log 2⎝⎛⎭⎫1x +a .(1) 当a =1时,解不等式f (x )>1;(2) 若关于x 的方程f (x )+log 2x 2=0的解集中恰有一个元素,求a 的值;(3) 设a >0,若对任意的t ∈⎣⎡⎦⎤12,1,函数f (x )在区间[t ,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.B. 滚动小练1. 已知函数y =1+x 1-x+lg (3-4x +x 2)的定义域为M. (1) 求M ;(2) 当x ∈M 时,求f(x)=a·2x +2+3·4x (a>-3)的最小值.2. 已知函数f(x)=22x -7-a 4x -1(a>0且a ≠1).(1) 当a =22时,求不等式f(x)<0的解集;(2) 当x∈[0,1]时,f(x)<0恒成立,求实数a的取值范围.第13课 幂函数、函数与方程A. 课时精练一、 填空题1. 如图所示是幂函数y =x m 与y =x n 在第一象限内的图象,则m ,n 的取值范围分别是________和________.(第1题)2. 方程log 12x =-x +1的根的个数是________.3. 若幂函数的图象经过点⎝⎛⎭⎫2,14,则它的单调增区间是________.4. 函数f(x)=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x>0的零点个数为________.5. 已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,2x ,x ≤0,且关于x 的方程f(x)+x -a =0有且只有一个实数根,那么实数a 的取值范围是________.6. 已知函数g(x)=log a (x -3)+2(a>0,a ≠1)的图象经过定点M ,若幂函数f(x)=x a 的图象经过点M ,则a 的值为________.7. (2018·全国卷Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x>0,g(x)=f(x)+x +a.若g(x)存在2个零点,则a 的取值范围是________.8. (2018·海安、南外、金陵中学三校联考)已知关于x 的方程x 2-6x +(a -2)|x -3|-2a +9=0有两个不同的实数根,那么实数a 的取值范围是________.二、 解答题9. 已知f(x)是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1) 写出函数f (x )的解析式;(2) 若方程f (x )=a 恰有3个不同的解,求实数a 的取值范围.10. 若函数f(x)=4x +a·2x +a +1在(-∞,+∞)上存在零点,求实数a 的取值范围.11. 已知函数f(x)=3ax 2-2(a +c)x +c(a>0,a ,c ∈R ).(1) 设a >c >0,若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围; (2) 试问:函数f (x )在区间(0,1)内是否有零点,有几个零点?并说明理由.B. 滚动小练1. 由命题“存在x ∈R ,使得e |x -1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是________.2. 已知f(x)为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=________.3. 已知函数f(x)的定义域是(0,+∞),对于任意的正实数m ,n 恒有f(mn)=f(m)+f(n),且当x>1时,f(x)>0,f(2)=1.(1) 求f ⎝⎛⎭⎫12的值;(2) 求证:f(x)在(0,+∞)上是单调增函数.第14课 函数模型及其应用A. 课时精练一、 填空题1. 将进货价格为8元/个的商品按10元/个销售,每天可卖出100个.若每个商品涨价1元,则日销售量减少10个.为了获得最大利润,此商品当日销售价格应定为每个________元.2. 根据统计,一名工人组装第x 件某产品所用的时间(单位:min )为f(x)=⎩⎨⎧cx,x<a ,ca ,x ≥a(a ,c为常数).已知该名工人组装第4件产品用时30 min ,组装第a 件产品用时15 min ,那么c 和a 的值分别是________和________.3. 为了促进资源节约型和环境友好型社会建设,引导居民合理用电、节约用电,北京居民生活用电试行阶梯电价.其电价标准如下表:用户 类别 分档电量 (kW ·h /户·月)电价标准 (元/kW ·h )试行阶梯电 价的用户 一档 1~240(含) 0.488 3 二档 241~400(含) 0.538 3 三档400以上0.788 3若北京市某户居民2019年1月的平均电费为0.498 3元/kW ·h ,则该用户1月份的用电量为________.4. 已知有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),那么围成场地的最大面积为________.(围墙厚度不计)(第4题)5. 某工厂生产的A 种产品进入商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对A 种产品征收销售额的x%的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70·x%1-x%元,预计年销售量减少x 万件,要使商场第二年在A 种产品经营中收取的管理费不少于14万元, 则x 的最大值是________.6. 某食品的保鲜时间y(单位:h )与储藏温度x(单位:℃)满足函数关系y =e kx +b (k ,b 为常数).若该食品在0℃的保鲜时间是192h,在22℃的保鲜时间是48h,则该食品在33℃的保鲜时间是________h.7. 某高校为了提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是________年.(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)8.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆该种品牌车,则能获得的最大利润为________.二、解答题9. 食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P(单位:万元)、种黄瓜的年收入Q(单位:万元)与投入a(单位:万元)满足P=80+42a,Q=14a+120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1) 求f(50)的值;(2) 试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?10. (2018·南通、扬州、淮安、宿迁、泰州、徐州六市二调)将一铁块高温熔化后制成一张厚度忽略不计、面积为100 dm2的矩形薄铁皮,如图所示,并沿虚线l1,l2裁剪成A,B,C三个矩形(B,C全等),用来制成一个柱体.现有以下两种方案:方案①:以l1为母线,将A作为圆柱的侧面展开图,并从B,C中各裁剪出一个圆形作为圆柱的两个底面;方案②:以l1为侧棱,将A作为正四棱柱的侧面展开图,并从B,C中各裁剪出一个正方形(各边分别与l1或l2垂直)作为正四棱柱的两个底面.(1) 设B,C都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面的半径;(2) 设l1的长为x dm,则当x为多少时,能使按方案②制成的正四棱柱的体积最大?(第10题)11. (2018·姜堰、溧阳、前黄中学4月联考)经科学研究证实,二氧化碳等温空气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响,环境部门对A市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A市2017年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m万吨(m>0).(1) 求A市2019年的碳排放总量(用含m的式子表示);(2) 若A市永远不需要采取紧急限排措施,求m的取值范围.。
高三数学一轮复习 最基础系列 2 根据集合间的关系求参数试题
专题2 根据集合间的关系求参数根据参数的取值讨论集合间的包含关系★★★○○○○表示关系文字语言记法集合间的基本关系子集集合A中任意一个元素都是集合B中的元素A⊆B或B⊇A真子集集合A是集合B的子集,并且B中至少有一个元素不属于AA B或B A相等集合A的每一个元素都是集合B的元素,集合B的每一个元素也都是集合A的元素A⊆B且B⊆A⇔A=B空集空集是任何集合的子集∅⊆A空集是任何非空集合的真子集∅B且B≠∅集合间的常见包含关系为子集、真子集和相等.在集合中含有参数时要讨论参数的取值来确定集合间的关系.(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性"而导致解题错误。
(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.若集合A ={x |2a +1≤x ≤3a −5 },B ={x |3≤x ≤22 },则能使A ⊆B 成立的所有a 的集合是( ) A. {a |1≤a ≤9 } B. {a |6≤a ≤9 } C. {a |a ≤9 } D 。
ϕ 【答案】C1.【广西省钦州市钦州港经济技术开发区中学2018届高三理科数学开学考试试卷】设集合A={x |1<x <2},B={x|x <a},若A ∩B=A ,则a 的取值范围是( )A 。
{a |a≤2}B 。
{a|a≤1} C. {a|a≥1} D 。
{a |a≥2} 【答案】D【解析】∵设A ={x |1<x <2},B ={x |x 〈a },A∩B=A 得A ⊆B ,∴结合数轴,可得2⩽a ,即a ⩾2 故选:D2.【河北省衡水中学2018届高三上学期一轮复习周测数学(文)试题】若集合{}{}2|60,|10P x x x T x mx =+-==+=,且T P ⊆,则实数m 的可能值组成的集合是__________.【答案】11,,023⎧⎫-⎨⎬⎩⎭ 【解析】由题意得: {}2,3P =-,由T P ⊆易知,当T =∅时, 0m =;当{}2T =-时, 12m =-;当{}3T =时, 13m =,则实数m 的可能值组成的集合是11,,023⎧⎫-⎨⎬⎩⎭,故答案为11,,023⎧⎫-⎨⎬⎩⎭. 3.【浙江省诸暨市牌头中学高中数学人教A 版必修1巩固练习:1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.若{Z |2216},{3,4,5}x A x B =∈≤≤=,则A B = .
3.已知(sin cos )sin2f ααα+=,则1()5f 的值为 .
4.现有在外观上没有区别的5件产品,其中3件合格,2件不合格,从中任意抽检2件,则一件合格,
另一件不合格的概率为 .
5.已知向量(31,4)=- a x 与()1,2b = 共线,则实数x 的值为 .
6.右图是一个算法的伪代码,则输出的i 的值为 .
7.函数⎪⎭
⎫ ⎝⎛-
=4sin 2)(πx x f ,[]0,π-∈x 的单调递增区间为 .
8.设函数113,1(),1
x e x f x x x -⎧<⎪=⎨⎪≥⎩,则使得2)(≤x f 成立的x 的取值范围是 .
9.函数()f x 是定义在R 上的奇函数,且当0x >时,()13x
f x ⎛⎫= ⎪⎝⎭
,则()32log 5f -+= .
10.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则=n .
11.设函数()122log ,0()log ,0
x x f x x x >⎧⎪=⎨⎪-<⎩,若()()f m f m <-,则实数m 的取值范围是____________.
12.各项均为正数的等比数列{}n a 中,211a a -=.当3a 取最小值时,
数列{}n a 的通项公式a n = .
二、解答题:解答应写出必要的文字步骤.
13.(本小题满分14分)
已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,)22a R ππθ∈∈-
(1)
当4a π
θ==时,求()f x 在区间[0,]π上的最大值与最小值;
(2)若()0,()12
f f π
π==,求,a θ的值.。