中考数学一轮总复习 第33课时 锐角三角函数(无答案) 苏科版

合集下载

苏教版九年级下册数学[锐角三角函数—知识点整理及重点题型梳理]

苏教版九年级下册数学[锐角三角函数—知识点整理及重点题型梳理]

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的Ca b记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.要点二、特殊角的三角函数值(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是()A.2 B.C.D.【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:【课程名称:锐角三角函数395948:例1(1)-(2)】【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c=,sinA=,cosA=,sinB=,cosB=.a【答案】c = 5 ,sinA = 35 , cosA =45,sinB =45, cosB =35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan 230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟) sin60°﹣4cos 230°+sin45°•tan60°;(3)(2015•宝山区一模) +tan60°﹣.【答案与解析】 解:(1)原式==12(2) 原式=×﹣4×()2+×=﹣3+3;(3) 原式=+﹣=2+﹣=3﹣2+2【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【课程名称: 锐角三角函数 395948 :例1(3)-(4)】 【变式】在Rt ΔABC 中,∠C =90°,若∠A=45°,则∠B = ,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=,cosA=,sinB=cosB=.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC,∵ AB是⊙O的直径,∴∠ACP=90°,又∵∠B=∠D,∠PAB=∠PCD,∴△PCD∽△PAB,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a ,∴ 4AC a ==,∴ CD =5a-4a =a ,BD ==,∴ sadA BD AD == 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.。

苏教版中考复习:《锐角三角函数复习》课件

苏教版中考复习:《锐角三角函数复习》课件
2 0 0 0
B A
则a= ,∠B= ,∠A= .
C
4.如图,在Rt△ABC中,∠C=90,b= 2 3 ,c=4.
5.如果
1 cos A 3 tan B 3 0 2
那么△ABC是( D )
A.直角三角形 C.钝角三角形 B.锐角三角形 D.等边三角形
例5.海中有一个小岛P,它的周围18海里内有暗礁,渔船 跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60° 方向上,航行12海里到达B点,这时测得小岛P在北偏东 45°方向上.如果渔船不改变航线继续向东航行,有没 有触礁危险?请说明理由.
锐角三角函数复习
B
斜边c
对边aC一.锐角三 Nhomakorabea函数的概念
c
A
邻边b
正弦:把锐角A的对边与斜边的比叫做∠A a 的正弦,记作 sin A 余弦:把锐角A的邻边与斜边的比叫做∠A的 b cos A 余弦,记作 c
正切:把锐角A的对边与邻边的比叫做∠A的 a 正切,记作 tan A
b
锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
D
例6.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块 平地,如图所示.BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为 防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行 改造.经地质人员勘测,当坡角不超过45°时,可确保山体不 滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至 少是多少米(结果保留根号)?
A C
12 (2)若sinC= ,BC=12,求AD的长. 13
D
1.若
2 sin 2 0 ,则锐角α= .
.
2.若 tan( 20) 3 0 ,则锐角α=

中考数学(第33讲)《锐角三角函数和解直角三角形》集训

中考数学(第33讲)《锐角三角函数和解直角三角形》集训

锐角三角函数和解直角三角形一、选择题1.(2014·天津)cos 60°的值等于( A ) A.12 B.22 C.32 D.332.(2013·宿迁)如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( B ) A.23 B.32 C.21313 D.31313,第2题图) ,第3题图)3.(2014·德州)如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1∶2,则斜坡AB 的长为( B )A .43米B .65米C .125米D .24米4.(2013·鄂州)如图,Rt △ABC 中,∠A =90°,AD ⊥BC 于点D ,若BD∶CD=3∶2,则tan B =( D )A.32B.23C.62D.63,第4题图) ,第5题图)5.(2014·苏州)如图,港口A 在观测站O 的正东方向,OA =4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( C )A .4 kmB .2 3 kmC .2 2 kmD .(3+1) km6.(2014·孝感)如图,在▱ABCD 中,对角线AC ,BD 相交成的锐角为α,若AC =a ,BD =b ,则▱ABCD 的面积是( A )A.12ab sin α B .ab sin α C .ab cos α D.12ab cos α,第6题图),第8题图)二、填空题7.(2013·德州)2cos 30°的值是__62__. 8.(2014·怀化)如图,小明爬一土坡,他从A 处爬到B 处所走的直线距离AB =4米,此时,他离地面高度为h =2米,则这个土坡的坡角∠A=__30__°.9.(2013·鞍山)△ABC 中,∠C =90°,AB =8,cos A =34,则BC 的长为__27__.10.(2014·株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为__182__米.(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈)11.(2014·龙东)△ABC 中,AB =4,BC =3,∠BAC =30°,则△ABC 的面积为__23+5或23-5__.12.(2014·宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出__17__个这样的停车位.(2≈1.4)三、解答题13.计算:|-2|+2sin 30°-(-3)2+(tan 45°)-1.原式=2+2×12-3+1-1=114.(2014·南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB 位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1 m (即BD =1 m )到达CD 位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin 51°18′≈0.780,cos 51°18′≈0.625,tan 51°18′≈)设梯子的长为x m .在Rt △ABO 中,cos ∠ABO =OBAB,∴OB =AB·cos ∠ABO =x·cos60°=12x.在Rt △CDO 中,cos ∠CDO =ODCD ,∴OD =CD ·cos ∠CDO =x ·cos51°18′≈0.625x.∵BD =OD -OB ,∴-12x =1,解得x =8,故梯子的长是8米15.(2014·钦州)如图,在电线杆CD 上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留小数点后一位,参考数据:2,3≈1.73)过点A 作AH⊥CD ,垂足为H ,由题意可知四边形ABDH 为矩形,∠CAH =30°,∴AB =DH =,BD =AH =6,在Rt △ACH 中,tan ∠CAH =CH AH ,∴CH =AH·tan ∠CAH =6tan30°=6×33=23,∵DH =,∴CD =23+,在Rt △CDE 中,∵∠CED =60°,sin ∠CED =CD CE ,∴CE =CDsin60°=4+3≈,则拉线CE 的长约为米16.(2014·株洲)如图,在Rt △ABC 中,∠C =90°,∠A 的平分线交BC 于点E ,EF ⊥AB 于点F ,点F 恰好是AB 的一个三等分点(AF >BF).(1)求证:△ACE≌△AFE; (2)求tan ∠CAE 的值.(1)∵AE 是∠BAC 的平分线,EC ⊥AC ,EF ⊥AF ,∴CE =EF ,在Rt △ACE 与Rt △AFE 中,⎩⎪⎨⎪⎧CE =FE ,AE =AE ,∴Rt △ACE ≌Rt △AFE (HL ) (2)由(1)可知△ACE≌△AFE ,∴AC =AF ,CE =EF ,设BF =m ,则AC =AF =2m ,AB =3m ,∴BC =AB 2-AC 2=9m 2-4m 2=5m ,∴在Rt △ABC 中,tanB =AC BC =2m 5m =25,在Rt △EFB 中,EF =BF·tanB =2m 5,在Rt △ACE 中,tan ∠CAE =CE AC =2m 52m =55。

(苏科版)九年级数学一轮复习教学案:锐角三角函数

(苏科版)九年级数学一轮复习教学案:锐角三角函数

教学目标1.知道三个三角函数的定义,了解三角函数的值随锐角度数的变化规律;明白三角函数的值与角的大小有关,而与位置及边长无关. 2.会计算含特殊角的三角函数式子的值,会根据已知三角函数值求相应的锐角;能解直角三角形.3.在解题过程中,学会划归、数形结合等数学思想. 教学设计 一、知识回顾 1.知识点填(1)定义:如图, ∠C=90°,sinA = ,cosA = , =ab .(2)特殊角的三角函数值.(3)若∠A 是锐角,则 <sinA < , <cosA < ;正弦、正切值是随着角度的增大而 ,余弦是随着角度的增大而 .2.判断(1)在Rt △ABC 中, ∠C=90°,若两条直角边的长都扩大为3倍,则tan A 也扩大为3倍. ( ) (2) sin60°=2 sin30°. ( ) (3)在Rt △ABC 中, ∠C=90°,则sinA=cosB . ( ) 3.选择(1)已知cos α<0.5,那么锐角α的取值范围 ( )A 、60°<α<90°B 、 0°< α <60°C 、30°<α<90°D 、 0°< α <30°(2)如果√cosA – + | 3tanB –3|=0那么△ABC 是( )A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、等边三角形(3)某市在“旧城改造”中,计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境.已知这种草皮每平方米售价30元,则购买这种草皮至少需要 ( • )12A .13500元B .6750元C .4500元D .9000元4.填空(1)在Rt △ABC 中,∠C=90°, AB=5,AC=3,则sinB=_____. (2)在△ABC 中,若BC= 2,AB= 3, AC=5,则cosA=________. (3)在△ABC 中,AB=2, ∠B=30°, AC=2,则∠BAC 的度数是______. (4)一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为________ .(5)若∠A 为锐角,且cos(A+15°则∠A=_____. 二、典型例题例1.计算:例2.如图,在Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线,∠CAB=60°,•CD= , BD= , 求AC ,AB 的长.例3.某片绿地的形状如图所示,其中∠A=60°,AB⊥BC,CD⊥AD ,•AB=•200m ,CD=100m ,求AD 、BC 的长(结果保留根号)33222sin30cos60tan 60tan30cos 45+-⋅+︒例4.如图,在△ ABC 中,AD 是BC 边上的高,若tanB=cos ∠DAC ,(1) AC 与BD 相等吗?说明理由; (2) 若sinC=12\13,BC=12,求AD 的长.三.课后练习(选择4′×2,填空每空4′)1.Rt △ABC 中,∠C =90°,∠A =30°,∠A 、∠B 、∠C 所对的边为a 、b 、c ,则a :b :c =( )A1:2: 3 B .1: 2: 3 C .1: 3:2 D .1:2: 3 2.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得 60BCD ∠=° , 又测得50AC =米,则小岛B 到公路l 的距离为 ( ) A .25 米 B .米C 米D .(25+ 3.已知a 为锐角,若cosa =12 ,则sina = ,tan(90°-a)=4.Rt △ABC 中,∠C =90°,3a = 3 b ,则∠A = ,sinA = 5.已知sina=1213, a 为锐角,则cosa = ,tana =6.等腰三角形的腰长为2cm ,面积为1 cm 2,则顶角的度数为BCADD A B C7.已知正三角形ABC ,一边上的中线长为32,则此三角形的边长为 8.计算:(6′×2)(1)2sin30°-2cos60°+tan45°(2)000245tan 45cos 230cos 60tan 45sin +⋅+9. (8′)已知α为锐角,当αtan 12-无意义时,求tan(α+15°)-tan(α-15°)的值.10. (10′)如图,在ABC 中,AD 是边BC 上的高,E 为边AC 的中点,BC =14,AD=12,SinB=4/5.求:(1)线段DC 的长;(2)tan ∠EDC 的值.11.(10′)如图,AC ⊥BC ,cos ∠ADC =45,∠B =30°AD =10,求 BD 的长.E DC BA12. (10′)已知∠MON=60°,P是∠MON内一点,它到角的两边的距离分别为2和11,求OP的长.﹡13. (10′)如图,某军港有一雷达站P,军舰M停泊在雷达站P的南偏东60°方向36海里处,另一艘军舰N位于军舰M的正西方向,与雷达站P相距(2)两军舰M N、的距离.(结果保留根号)。

2023年中考数学一轮专题练习 ——锐角三角函数(含解析)

2023年中考数学一轮专题练习 ——锐角三角函数(含解析)

2023年中考数学一轮专题练习 ——锐角三角函数一、单选题(本大题共10小题)1. (天津市2022年)tan 45︒的值等于( )A .2B .1C D 2. (陕西省2022年(A 卷))如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A .B .C .D .3. (吉林省长春市2022年)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A .sin ABBCα=B .sin BCABα=C .sin ABACα=D .sin ACABα=4. (湖北省荆州市2022年)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B .C .13D .35. (四川省广元市2022年)如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos ∠APC 的值为( )A B .C .25D 6. (湖北省江汉油田、潜江、天门、仙桃2022年)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =( )A .13B .12C D 7. (贵州省黔东南州2022年)如图,PA 、PB 分别与O 相切于点A 、B ,连接PO 并延长与O 交于点C 、D ,若12CD =,8PA =,则sin ADB ∠的值为( )A .45 B .35C .34D .438. (云南省2022年)如图,已知AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .13129. (湖南省湘潭市2022年)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 10. (黑龙江省省龙东地区2022年)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( )A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤二、填空题(本大题共12小题) 11. (广东省2022年)sin30°的值为 .12. (山东省滨州市2022年)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则sin A = . 13. (江苏省扬州市2022年)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为 .14. (湖南省益阳市2022年)如图,在Rt △ABC 中,∠C =90°,若sin A =45,则cos B =_____.15. (江苏省常州市2022年)如图,在四边形ABCD 中,90A ABC ∠=∠=︒,DB 平分ADC ∠.若1AD =,3CD =,则sin ABD ∠= .16. (四川省凉山州2022年)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ⊥CD 于点C ,BD ⊥CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为 .17. (黑龙江省绥化市2022年)定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=,则sin15︒的值为 . 18. (江苏省连云港市2022年)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A = .19. (山东省泰安市肥城市汶阳镇初级中学2021-2022学年)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AG EG AE ,将ABG 和ECG 分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠= .20. (广西河池市2022年)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN = .21. (四川省凉山州2022年)如图,在边长为1的正方形网格中,⊙O 是△ABC 的外接圆,点A ,B ,O 在格点上,则cos ∠ACB 的值是 .22. (湖南省湘西州2022年中考数学试卷)阅读材料:余弦定理是描述三角形中三边长度与一个角余弦值关系的数学定理,运用它可以解决一类已知三角形两边及夹角求第三边或者已知三边求角的问题.余弦定理是这样描述的:在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则三角形中任意一边的平方等于另外两边的平方和减去这两边及这两边的夹角的余弦值的乘积的2倍. 用公式可描述为:a 2=b 2+c 2﹣2bc cos A b 2=a 2+c 2﹣2ac cos B c 2=a 2+b 2﹣2ab cos C现已知在△ABC 中,AB =3,AC =4,∠A =60°,则BC =_____. 三、解答题(本大题共9小题)23. (湖南省湘西州20222tan45°+|﹣3|+(π﹣2022)0.24. (2022年西藏中考数学真题试卷)计算:01|()tan 452+︒.25. (湖南省岳阳市2022年)计算:2022032tan 45(1))π--︒+--.26. (湖南省株洲市2022年)计算:()202212sin 30-︒.27. (2022年四川省乐山市中考数学真题)1sin 302-︒28. (湖南省常德市2022年中考数学试题)计算:213sin 30452-︒︒⎛⎫- ⎪⎝⎭29. (浙江省湖州市2022年)如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.30. (黑龙江省哈尔滨市2022年)先化简,再求代数式21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭的值,其中2cos451x =︒+.31. (黑龙江省哈尔滨市2021年)先化简,再求代数式2323111a a a a a +⎛⎫-÷⎪---⎝⎭的值,其中2sin 451a =︒-.参考答案1. 【答案】B 【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∴∠B =90°-45°=45°,∴△ABC 是等腰三角形,AC =BC , ∴根据正切定义,tan 1BCA AC∠==, ∵∠A =45°, ∴tan 451︒=, 故选 B . 2. 【答案】D 【分析】先解直角ABC 求出AD ,再在直角ABD △中应用勾股定理即可求出AB . 【详解】解:∵26BD CD ==, ∴3CD =,∵直角ADC 中,tan 2C ∠=, ∴tan 326AD CD C =⋅∠=⨯=,∴直角ABD △中,由勾股定理可得,AB === 故选D . 3. 【答案】D 【分析】根据正弦三角函数的定义判断即可. 【详解】∵BC ⊥AC ,∴△ABC 是直角三角形, ∵∠ABC =α, ∴sin ACABα=, 故选:D . 4. 【答案】C 【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解. 【详解】∵P 点坐标为(1,1),则OP 与x 轴正方向的夹角为45°, 又∵OP AB ∥,则∠BAO =45°,OAB 为等腰直角形, ∴OA =OB ,设OC =x ,则OB =2OC =2x , 则OB =OA =3x , ∴tan 133OC x OAP OA x ∠===. 5. 【答案】B 【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∥AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos ∠APC =cos ∠EDC 即可得答案. 【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∥AB , ∴∠APC =∠EDC .在△DCE 中,有EC DC 5DE ==, ∴22252025EC DC DE +=+==, ∴DCE ∆是直角三角形,且90DCE ∠=︒,∴cos ∠APC =cos ∠EDC=DC DE =故选:B . 6. 【答案】C 【分析】证明四边形ADBC 为菱形,求得∠ABC =30°,利用特殊角的三角函数值即可求解. 【详解】解:连接AD ,如图:∵网格是有一个角60°为菱形,∴△AOD 、△BCE 、△BCD 、△ACD 都是等边三角形, ∴AD = BD = BC = AC ,∴四边形ADBC 为菱形,且∠DBC =60°, ∴∠ABD =∠ABC =30°, ∴tan ∠ABC = tan30°= 故选:C . 7. 【答案】A 【分析】连结OA ,根据切线长的性质得出PA =PB ,OP 平分∠APB ,OP ⊥AP ,再证△APD ≌△BPD (SAS ),然后证明∠AOP =∠ADP +∠OAD =∠ADP +∠BDP =∠ADB , 利用勾股定理求出OP=10=,最后利用三角函数定义计算即可. 【详解】 解:连结OA∵PA 、PB 分别与O 相切于点A 、B , ∴PA =PB ,OP 平分∠APB ,OP ⊥AP , ∴∠APD =∠BPD , 在△APD 和△BPD 中, AP BPAPD BPD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△APD≌△BPD(SAS)∴∠ADP=∠BDP,∵OA=OD=6,∴∠OAD=∠ADP=∠BDP,∴∠AOP=∠ADP+∠OAD=∠ADP+∠BDP=∠ADB,在Rt△AOP中,OP10=,∴sin∠ADB=84105 APOP==.故选A.8. 【答案】B 【分析】先根据垂径定理求出12CE CD=,再根据余弦的定义进行解答即可.【详解】解:∵AB是⊙O的直径,AB⟂CD.∴112,902CE CD OEC==∠=︒,OC=12AB=13,∴12 cos13CEOCEOC∠==.故选:B.9. 【答案】A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a,则较长的直角边为a+1,再接着利用勾股定理得到关于a的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tanα的值即可.【详解】∵小正方形与每个直角三角形面积均为1,∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a,则较长的直角边为a+1,其中a>0,∴a2+(a+1)2=5,其中a>0,解得:a1=1,a2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .10. 【答案】B【分析】分别对每个选项进行证明后进行判断:①通过证明()DOF COE ASA ≌得到EC =FD ,再证明()EAC FBD SAS ≌得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即AE BF ⊥;②通过等弦对等角可证明45OPA OBA ∠=∠=︒;③通过正切定义得tan BE BP BAE AB AP ∠==,利用合比性质变形得到CE BP AP BP BE ⋅-=,再通过证明AOP AEC ∽得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌,可证明S 四边形OECF =S △COE +S △COF = S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF ⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中ODF OCE OC ODDOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确; ③∵tan BE BP BAE AB AP ∠== ∴AB AP BE BP = ∴AB BE AP BP BE BP --= ∴AP BP CE BP BE-= ∴CE BP AP BP BE ⋅-=∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒∴AOP AEC ∽ ∴OP AO CE AE= ∴OP AE CE AO⋅= ∴OP AE BP AP BP AO BE⋅⋅-=⋅ ∵1122ABE AE BP AB BE S⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO⋅⋅-==⋅ 所以③正确;④作EG ⊥AC 于点G ,则EG ∥BO , ∴EG CE CG OB BC OC==设正方形边长为5a ,则BC =5a ,OB =OC , 若:2:3BE CE =,则23BE CE =, ∴233BE CE CE ++= ∴35CE BC =∴35CE EG OB BC =⋅== ∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3tan 7EG EG CAE AG AC CG ∠===- 所以④错误;⑤∵()DOF COE ASA ≌,S 四边形OECF =S △COE +S △COF∴S 四边形OECF = S △DOF +S △COF = S △COD∵S △COD =14ABCD S 正方形∴S 四边形OECF =14ABCD S 正方形所以⑤正确;综上,①②③⑤正确,④错误,故选 B11. 【答案】12【详解】根据特殊角的三角函数值计算即可:sin30°=12. 故答案为:1212. 【答案】1213 【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∵∠C =90°,AC =5,BC =12,∴AB=13,∴sin A =1213BC AB =.故答案为:1213.13. 【详解】 解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c⎛⎫+= ⎪⎝⎭,求出a c =或a c =∴在Rt ABC 中:in s a c A ==,故答案为: 14. 【答案】45 【分析】根据三角函数的定义即可得到cos B =sin A =45. 【详解】解:在Rt △ABC 中,∠C =90°,∵sin A =BC AB =45, ∴cos B =BC AB =45. 故答案为:45. 【点睛】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若∠A +∠B =90°,则sin A =cos B ,cos A =sin B .熟知相关定义是解题关键.15. 【分析】 过点D 作BC 的垂线交于E ,证明出四边形ABED 为矩形,BCD △为等腰三角形,由勾股定理算出DE BD =【详解】解:过点D 作BC 的垂线交于E ,90DEB ∴∠=︒90A ABC ∠=∠=︒,∴四边形ABED 为矩形,//,1DE AB AD BE ∴==,ABD BDE ∴∠=∠, BD 平分ADC ∠,ADB CDB ∴∠=∠,//AD BE ,ADB CBD ∴∠=∠,∴∠CDB =∠CBD3CD CB ∴==,1AD BE ==,2CE =∴,DE ∴BD ∴sinBE BDE BD ∴∠==,sin ABD ∴∠=故答案为:16. 【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.17. 【分析】根据sin()sin cos cos sin αβαβαβ-=-代入进行计算即可.【详解】解:sin15sin(4530)︒=︒-︒=sin 45cos30cos45sin30︒︒︒︒-=12==故答案为: 18. 【答案】45 【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC =, ∴4sin =5CE A AC =, 故答案为:45.19. 【答案】725【分析】根据折叠的性质结合勾股定理求得GE 5=,BC=AD=8,证得Rt △EGF ~Rt △EAG ,求得253EA =,再利用勾股定理得到DE 的长,即可求解. 【详解】矩形ABCD 中,GC=4,CE =3,∠C=90︒,∴5==,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90︒,∴BG=GF=GC=4,∴BC=AD=8,∵∠AGB+∠AGF+∠EGC+∠EGF=180︒,∴∠AGE=90︒,∴Rt△EGF~Rt△EAG,∴EG EFEA EG=,即535EA=,∴253 EA=,∴73 =,∴773sin DAE25253DEAE∠===,故答案为:725.20. 【答案】58##0.625【分析】先判断出四边形ABEF是正方形,进而判断出△ABG≌△BEH,得出∠BAG=∠EBH,进而求出∠AOB=90°,再判断出△AOB~△ABG,求出OA OB=△OBM~△OAN,求出BM=1,即可求出答案.【详解】解:∵点E,F分别是BC,AD的中点,∴11,22AF AD BE BC==,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,AD=BC,∴12AF BE AD==,∴四边形ABEF是矩形,由题意知,AD=2AB,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG ≌△BEH (SAS ),∴∠BAG =∠EBH ,∴∠BAG +∠ABO =∠EBH +∠ABO =∠ABG =90°, ∴∠AOB =90°,∵BG =EH =25BE =2, ∴BE =5,∴AF =5,∴AG =∵∠OAB =∠BAG ,∠AOB =∠ABG , ∴△AOB ∽△ABG , ∴OA OB AB AB BG AG ==,即52OA OB ==∴OA OB ==, ∵OM ⊥ON ,∴∠MON =90°=∠AOB ,∴∠BOM =∠AON ,∵∠BAG +∠FAG =90°,∠ABO +∠EBH =90°,∠BAG =∠EBH , ∴∠OBM =∠OAN ,∴△OBM ~△OAN , ∴OB BM OA AN=, ∵点N 是AF 的中点, ∴1522AN AF ==,∴52BM =,解得:BM =1, ∴AM =AB -BM =4, ∴552tan 48AN AMN AM ∠===. 故答案为:5821. 【分析】 取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ⊥AB ,则OB ==cos ∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∴OD ⊥AB ,∴∠ODB =90°,∴OB ==cos ∠DOB =13OD OB ==, ∵OA =OB ,∴∠BOD =12∠AOB ,∵∠ACB =12∠AOB ,∴∠ACB =∠DOB ,∴cos ∠ACB = cos ∠DOB =故答案为:22. 【分析】从阅读可得:BC 2=AB 2+AC 2﹣2AB AC cos A ,将数值代入求得结果.【详解】解:由题意可得,BC 2=AB 2+AC 2﹣2AB •AC •cos A=32+42﹣2×3×4cos60°=13,∴BC故答案为:【点睛】本题考查了阅读理解能力,特殊角锐角三角函数值等知识,解决问题的关键是公式的具体情景运用.23. 【答案】6【分析】先计算算术平方根、绝对值、零指数幂、特殊角三角函数值,再合并即可.【详解】解:原式=4﹣2×1+3+1=4﹣2+3+1=6【点睛】此题考查的是算术平方根、绝对值、零指数幂、特殊角三角函数值,掌握其运算法则是解决此题的关键.24. 【答案】2【分析】根据绝对值的意义,零指数幂的定义,数的开方法则以及特殊角的三角函数的值代入计算即可.【详解】解:01|()tan 452+︒11-2=【点睛】此题考查了实数的运算,熟练掌握运算法则和方法是解本题的关键. 25. 【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.26. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()2022112sin 3013213132-︒=+-⨯=+-=. 27. 【答案】3【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可.【详解】 解:原式113322=+-=. 28. 【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=1142-⨯+1=.29. 【答案】AC =4,sin A =35 【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∵∠C =90°,AB =5,BC =3,∴4AC .3sin 5BC A AB ==.30. 【答案】11x -,2【分析】 先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得.【详解】 解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅-11x =-∵2112x =⨯+=∴原式==31. 【答案】11a +,【分析】先算分式的减法,再把除法化为乘法进行约分化简,最后代入求值,即可求解.【详解】解:原式=223(1)23111a a a a a a ++-⎛⎫-⋅ ⎪--⎝⎭=33231(1)(1)a a a a a a +---⋅+- =1(1)(1)a a a a a -⋅+- =11a +,当2sin 451a =︒-=21=1时,原时。

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。

锐角三角函数(小结与思考)(单元复习课件)-2023-2024学年九年级数学下册同步精品(苏科版)

锐角三角函数(小结与思考)(单元复习课件)-2023-2024学年九年级数学下册同步精品(苏科版)
(1)尽量选可以直接应用原始数据的关系式;
(2)设法选择便于计算的关系式,若能用乘法计算就避免用除法计算.
知识回顾
解直角三角形的简单应用
概念
定义
仰角
当从低处观测高处的目标时,视线与水平
线 所成的锐角称为仰角.
俯角
坡度(坡
比)、坡角
当从高处观测低处的目标时,视线与水平
线 所成的锐角称为俯角.
坡面的垂直高度h与水平宽度l的比叫做坡

②由sinA= ,得a=c·sinA



③由cosA= ,得b=c·cosA

一直角边和一 ①∠B=90°-∠A;

②由tanA= ,得b=
锐角(如
(在Rt△ABC中,∠C=90°
,a,b,c分别为∠A,∠B,
a,∠A)
∠C的对边)






③由sinA= ,得c=


知识回顾
已 知 类 型

三角函数值
sin θ
cos θ
tan θ
30°






45°




1
60°





知识回顾
解直角三角形的基本类型和解法
已 知 类 型
已知条件
一边和一锐角
(在Rt△ABC中,∠C=90°
斜边和一锐角
,a,b,c分别为∠A,∠B, (如c,∠A)
∠C的对边)
一边和一锐角
解 法 步 t△ABC中,∠C=90°
,a,b,c分别为∠A,∠B,
∠C的对边)
已知条件
解 法 步 骤

中学中考数学《锐角三角函数》复习教案苏科版

中学中考数学《锐角三角函数》复习教案苏科版

江苏省连云港市岗埠中学2013届中考数学《锐角三角函数》复习教案 苏科版备课时间: 上课时间: 总课时:课 题:教学目标:1.理解三角函数的定义和性质2.会利用特殊角的三角函数值计算.教学重难点:三角函数定义和特殊角的三角函数值的应用教学过程:【查漏补缺】根据学生完成中考指南情况(学案—知识建构与基础训练)进行解疑答疑【课前热身】1.在△ABC 中,∠C=90°,BC =2,sinA =23,则AC 的长是( ) A .5 B .3 C .45D .13 2.Rt ∆ABC 中,∠C=︒90,∠A∶∠B=1∶2,则sinA 的值( )A .21 B .22 C .23 D .1 3.如图,在平面直角坐标系中,已知点A (3,0),点B (0,-4),则cos OAB ∠等于_______.4.︒+︒30sin 130cos =____________.【典例精析】例1 在Rt△ABC 中,a =5,c =13,求sinA ,cosA ,tanA .例2 计算:4sin 30245360︒︒︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.【中考演练】1. 在△ABC 中,∠C = 90°,tan A =13,则sin B =( ) A .1010B .23 C .34 D .310102.若3cos 4A =,则下列结论正确的为( ) A . 0°<∠A <30° B.30°<∠A <45°C . 45°<∠A<60° D.60°<∠A<90°3. 在Rt ABC △中,90C ∠=o ,5AC =,4BC =,则tan A =.4.计算οοο45tan 30cos 60sin -的值是. 5. 已知3tan 30 A -=∠A =则.6.△ABC 中,若(sinA -12)2+|3-cosB|=0,求∠C 的大小.﹡7.图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC 是等边三角形,若AB=2,求EF的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 ta n∠AFE.【当堂反馈】见中考指南【作业】中考指南活页训练。

江苏苏州市2018年中考数学《锐角三角函数》复习精讲

江苏苏州市2018年中考数学《锐角三角函数》复习精讲

2018年中考数学《锐角三角函数》复习精讲一、重点、难点梳理本单元学习的重点是锐角三角函数的概念、特殊角的三角函数值、解直角三角形的方法以及它的实际应用.要正确理解其概念和意义,并能推出特殊角的三角函数值,会运用“转化”思想化斜三角形为直角三角形.通过建立解直角三角形的数学模型,解决距离、高度、角度等计算问题.在解决实际问题时,要正确理解俯角、仰角、方位角、方向角及坡角、坡度等常用术语.注意把握各类图形的特征,综合运用全等三角形、相似三角形和三角形的边角关系解决问题.学习的难点是构造直角三角形,从复杂的几何图形中找出基本图形,综合运用相关知识以及转化的思想、方程的思想、变与不变的思想等解决生产、生活中的实际问题.二、易混、易错点剖析不能准确把握直角三角形中边角之间的关系,张冠李戴,不管是否是直角三角形就盲目套用锐角三角函数的定义求解;不能正确迅速地从比较复杂的图形中找出基本图形,未能掌握“遇斜化直”的基本方法致使解题受阻;在求解直角三角形的应用问题时,不能正确理解常用术语的含义,出现计算、推理错误等等. 三、中考命题解读中考对锐角三角函数的概念及简单性质、特殊角的三角函数值、已知三角函数值求角等知识点的考查,多以中低难度客观题的形式呈现;解直角三角形实际应用的题目几乎是每卷必考,一般是中等难度的解答题,背景公平,贴近生活,颇具时代性,且与全等三角形、平行四边形等知识适度融合,具有一定的综合性.围绕直角三角形边角关系的探索规律、猜想验证、知识拓展等创新性题目近年来也悄然兴起,成为中考试卷一道亮丽的风景. 四、考点题型精讲考点1 锐角三角函数的概念例1 (2017·兰州)如图1,一个斜坡长130 m ,坡顶离水平地面的距离为50 m ,那么这个斜坡与水平地面夹角的正切值等于( ) A.513 B. 1213 C. 512 D. 1312 解析:如图1,在Rt ABC ∆中,90,130ACB AB ∠=︒=Q m, 50BC =m,120AC ∴==m. 505tan 12012BC BAC AC ∴∠===, 故选C.例2 (2016·荆州)如图2,在4X4的正方形方格图形中,小正方形的顶点称为格点,ABC ∆的顶点都在格点上,则ABC ∠的余弦值是( )A.2B.5 C. 12D. 5 解析:首要的问题是确定ABC ∆的形状,可以根据图形信息,尝试运用勾股定理的逆定理判断.易知,在ABC ∆中. 22220,5,25AC BC AB ===. ABC ∴∆是直角三角形,且90ACB ∠=︒.cos BC ABC AB ∴∠==故选D. 评注:锐角三角函数是在直角三角形中定义的,在求锐角三角函数值时,一定不能忽略这一点.例3 (2016·攀枝花)如图3,点(0,3),(0,0),(4,0)D O C 在⊙A 上,BD 是⊙A 的一条弦,则sin OBD ∠=( )A.12 B. 34 C. 45 D. 35解析:依题意,易知3,4OD OC ==.90,5C O D C D ∠=︒∴=Q .如图3,连接CD ,由圆周角定理,得OBD OCD ∠=∠.3s i n s i n 5OD OBD OCD CD ∴∠=∠==.故选D. 评注:求一个角的三角函数值,通常有两种方法,找出(或构造)所求角所在的直角三角形,直接利用定义来求,如上面的例1,例2;抑或把所求角转化为直角三角形中与它相等的角间接求解,如本例和下面的例4等.例4 (2017·无锡)在如图4的正方形方格纸中,每个小的四边形都是相同的正方形,,,,A B C D 都在格点处,AB 与CD 相交于O ,则tan BOD ∠的值等于 .解析:解题的关键是构造直角三角形.平移CD 到C D ''交AB 于O '(还有其他的平移方法吗?),如图4所示,则BO D BOD ''∠=∠.tan tan BOD BO D ''∴∠=∠.设每个小正方形的边长为a ,则,,3O B O D BD a ''''=====.作BE O D ''⊥于点E ,则BD O F BE O D ''⋅===''2O E '∴===. tan 3BEBO E O E'∴∠==',故tan 3BOD ∠=.故填3.评注:在求解涉及直角三角形边角关系的问题时,如果题中没有可用的直角三角形,需要添加辅助线构造直角三角形来解决.常见辅助线的作法有作高或作平行线两种.本题综合运用了这两种方法.其中体现的转化思想十分重要,需要同学们用心体悟. 考点2 求特殊角的三角函数值 例5 (2017·平凉)计算:0113tan 30(4)()2π-︒+--.解析:原式312121=-=-=. 评注:对特殊角的三角函数值的考查,一般有两种方式:一是在难度较低的混合运算题中,将其和二次根式化简、零指数幂、负整数指数幂等一并考查;二是在解直角三角形时,需要求出特殊角的三角函数值解决问题. 考点3 已知三角函数值求(锐)角例6 (2016·潍坊)若关于x 的一元二次方程2sin 0x α+=有两个相等的实数根,则锐角α等于( )A.15ºB.30 ºC.45 ºD.60 º解析: Q 关于x 的一元二次方程2sin 0x α+=有两个相等的实数根,2(4sin 24sin 0αα∴∆=-=-=,解得1sin 2α=. αQ 为锐角,30α∴=︒.故选B.评注:解题的关键是借助一元二次方程根的判别式得到一个关于sin α的等式,进而在sin α为锐角的约束条件下求解. 考点4 解直角三角形例7 (2016·西宁)⊙O 的半径为1,弦AB =AC =BAC ∠的度数为 .解析:因为题目中没有给出弦,AB AC 的位置关系,所以需分情况讨论:①如图5,连接OA ,过O 作OE AB ⊥于,E OF AC ⊥于F .90OEA OFA ∴∠=∠=︒.由垂径定理,得,cos 2AE AE BE AF CF OAE OA ====∠==, cos 2AF OAF OA ∠==, 30,45,304575OAE OAF BAC ∴∠=︒∠=︒∠=︒+︒=︒;②如图6所示,仿①中的方法,可求得30,45.453015OAE OAF BAC ∠=︒∠=︒∴∠=︒-︒=︒.综上,答案为75º或15º.评注:忽视分类讨论,就有可能造成漏解.例8 (2017·徐州)如图7,已知AC BC ⊥,垂足为,4,C AC BC ==,将线段AC 绕点A 按逆时针方向旋转60º,得到线段AD ,连接,DC DB . (1)线段DC = ;(2)求线段DB 的长度.解析:(1)∵AC AD =,60CAD ∠=︒, ∴ACD ∆是等边三角形, 故4DC AC ==.(2)为构造直角三角形,作DE BC ⊥于点E . ∵ACD ∆是等边三角形, ∴60ACD ∠=︒. 又∵AC BC ⊥,∴906030DCE ACB ACD ∠=∠-∠=︒-︒=︒∴在Rt CDE ∆中,122DE DC ==,cos30CE DC =︒=∴BE BC CE =-=在Rt BDE ∆中,BD == 评注:本题需要综合运用旋转、等边三角形以及直角三角形中的边角关系等知识和转化的思想方法解决问题.考点5解直角三角形的应用.例9 (2017·新疆建设兵团)如图8,甲、乙为两座建筑物,它们之间的水平距离BC 为30 m ,在A 点测得D 点的仰角EAD ∠为45︒,在B 点测得D 点的仰角CBD ∠为60︒,求这两座建筑物的高度(结果保留根号).解析:在Rt BCD ∆中,60CBD ∠=︒,30BC =m , ∵tan CDCBD BC=∠,∴tan CD BC CBD =∠=g (m),即乙建筑物的高度为如图8,过A 作AF CD ⊥于点F , 在Rt AFD ∆中,45FAD ∠=︒, ∴30DF AF BC ===m ,∴1)AB CF CD DF ==-=(m),即为甲建筑物的高度.评注:解题的关键在于一是正确理解仰角、俯角等术语的含义,二是对特殊角的三角函数值能够了然于心.其实,特殊角的三角函数的取值和变化是有规律可循的,记忆起来并不难.如,正弦值逐渐增大,角度:(0)30456090α︒→︒→︒→︒→︒,01sin :(0)22α=→1222=→→→=. 例10 (2017·庆阳)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风景线是兰州最美的景观之一,数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图9,测得45DAC ∠=︒,65DBC ∠=︒,若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据: sin650.91︒≈,cos650.42︒≈,tan65 2.14︒≈)图 9解析:易知,若过点D 作DE AC ⊥,垂足为E , 则可出现两个直角三角形. 设BE x =,在Rt DE ∆中,tan DEDBE BE∠=, ∵65DBC ∠=︒, ∴tan65DE x =︒g . 又∵45DAC ∠=︒, ∴AE DE =∴132tan65x x +=︒g , 解得115.8x ≈. ∴248DE ≈(米). 答:(略).评注:本题的解答体现了方程思想.当三角形中的线段不易直接求出时,需要依托方程求解.运用三角函数的定义建立方程,选好三角函数是关键.其一般规律是,当已知或求解中有斜边时,可用正弦或余弦,无斜边时,就用正切,即所谓的“有斜用弦,无斜用切”.还应注意,当所求元素既可用乘法算式又可用除法算式表示时,尽量用乘法算式;既可用已知数值又可用中间数值运算时,尽量用已知数值;不要企求每一步都得出具体数值,“能拖则拖”,尝试整体处理,尽量缩小误差,降低运算的繁杂程度.例11 (2017·泸州)如图10,海中一渔船在A 处且与小岛C 相距70. n mile ,若读刨nb 由西向东航行30 n mile 到达B 处,此时测得小岛C 位于B 的北偏东30º方向上,求该渔船此时与小岛C 之间的距离.解析:过点C 作CD AB ⊥于点D .由题意,得30BCD ∠=︒. 设BC x =,则在Rt BCD ∆中,1sin 302BD BC x =︒=g ,cos30CD BC x =︒=g .∴1302AD x =+. ∵222AD CD AC +=,即2221(30))702x x ++=, 解得50x =(舍去负值).答:(略).评注:通过添加辅助线,构造两个直角三角形,借助于勾股定理,建立起了已知量与未知量之间的相互联系,使问题顺利得以解决.例12 (2017·江西)如图11,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角” α约为20º,而当手指接触键盘时,肘部形成的“手肘角” β约为100º.图11②是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽20BC =cm ,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长; (2)若肩膀到水平地面的距离100DG =cm ,上臂30DE =cm ,下臂EF 水平放置在键盘上,其到地面的距离72FH =cm.请判断此时β是否符合科学要求的100º?(参考数据:14sin 6915︒≈,14cos 2115︒≈,4tan 2011︒≈,14tan 4315︒≈,所有结果精确到个位) 解析:(1)∵在Rt ABC ∆中,tan BCA AB=,∴20554tan tan 2011BC BC AB A ==≈=︒(cm).(2)延长FE 交DG 于点I ,则2007228DI DG FH =-=-=(cm ).在Rt DEI ∆中,2814sin 3015DI DEI DE ∠===, ∵14sin 6915︒≈,∴69DEI ∠=︒,180********β∠=︒-︒=︒≠︒,故此时β不符合100º的科学要求.评注:本题取材既具有时代性,又十分贴近生活,还顺便普及了科学使用电脑的知识.命题者通过从现实场景中抽象出几何图形,用分数表出参考数据等举措,有效地降低了题目的难度.例13 (2017·威海)图12①是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太光线与玻璃吸热管垂直),请完成以下计算:①②③图12如图12②,AB BC⊥,垂足为点B,EA AB⊥垂足为点A,//CD AB,10CD=cm,120DE=cm,FG DE⊥,垂足为点G.(1)若3750'θ∠=︒,则AB的长约为cm.(参考数据: sin3750'0.61︒≈,cos3750'0.79︒≈,tan3750'0.78︒≈)(2)若30FG=cm,60θ∠=︒,求CF的长.解析:(1)如图123,作EP BC⊥于点P,作DQ EP⊥于点Q,则10CD PQ==,2390∠+∠=︒.∵190θ∠+∠=︒,且12∠=∠,∴33750'θ∠=∠=︒,则sin3120sin3750'EQ DE=∠=︒g g,∴120sin3750'1083.2AB EP EQ PQ==+=︒+≈g(cm).(2)如图12③,延长ED,BC交于点K,由(1)知360Kθ∠=∠=∠=︒.在Rt CDK∆中,tanCDCKK==∠在Rt KGF∆中,sinGFKFK===∠,则CF KF KC=-===,即为所求.评注:正确添加辅助线构造直角三角形,善于从复杂的图形中找出可用的简单图形和数量关系,是顺利解题的先决条件.考点6其他创新题型例14 (2017·嘉兴)如图13,把n个边长为1的正方形拼接成一排,求得1tan1BAC∠=,21tan3BA C∠=,31tan7BA C∠=,计算4tan BA C∠=,…按此规律,写出tannBA C∠=(用含n的代数式表示).解析:如图13,过点C作4CE A B⊥于E,易得441A BC BA A∠=∠,∴4411tan tan4A BC BA A∠=∠=.在Rt BCE∆中,由41tan4A BC∠=,得4BE CE=,而1BC=,则CE=BE=而4A B==∴44A E AB BE=-=在4Rt A EC∆中,441tan13CEBA CA E∠==.又∵11tan1101BAC∠==⨯+,211tan3211BA C∠==⨯+,31tan 7BA C ∠= 1321=⨯+, 411tan 13431BA C ∠==⨯+,…, 由此规律,不难得出211tan (1)11n BA C n n n n ∠==⨯-+-+故答案为113,211n n -+. 评注:本题属于规律探究型问题,需运用定义,求出锐角三角函数的值,并结合已知数值,探求数字规律,现在的问题是,题目中与求解关联度很高的三角形都是斜三角形,需要“遇斜化直”,引垂线构造直角三角形,综合运用其中的边角关系解决问题.例15 (2017·福建)小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945︒+︒≈+= 2222sin 22sin 680.370.93 1.0018︒+︒≈+= 2222sin 29sin 610.480.870.9873︒+︒≈+= 2222sin 37sin 530.600.80 1.0000︒+︒≈+=2222sin 45sin 45((122︒+︒=+= 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+︒-=. (1)当30α=︒时,验证22sin sin (90)1αα+︒-=是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.解:(1)当30α=︒时,22sin sin (90)αα+︒-22sin 30sin 60=︒+︒221()2=+ 1=∴22sin sin (90)1αα+︒-=成立.(2)小明的猜想成立,证明如下:如图14,在ABC ∆中,90C ∠=︒,设A α∠=,则90B α∠=︒- ∴22sin sin (90)αα+︒-22()()BC AC AB AB=+ 222BC AC AB +=22AB AB=1= 评注:本题属于归纳猜想型问题,证明猜想的思路是,回到锐角三角函数的定义,在直角三角形中,借助勾股定理进行推证.本例的结论揭示了直角三角形中两个互余锐角的同名函数(正弦、余弦)之间存在的一种平方关系,它又可表述为22sin cos 1αα+=,这是一个非常有用的结论. 【中考演练】1.(2017·烟台)在Rt ABC ∆中,90C ∠=︒,2AB =,BC =,则sin2A= . 2.(2016·陕西)已知抛物线223y x x =--+与x 轴交于,A B 两点,将这条抛物线的顶点记为C ,连接,AC BC ,则tan CAB ∠的值为( )A.12B. C. D. 23.(2017·衢州)计算:0(1)2tan 60π+⨯--︒.4.(2017·台州)如图15是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙MN 平行且距离为0.8米,已知小汽车车门AO 宽为1.2米,当车门打开角度AOB ∠为40︒时,车门是否会碰到墙?请说明理由.(参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)图 155.(2017·宜宾)如图16,为了测量某条河的宽度,现在河边的一岸边任意取一点A ,又在河的另一岸边取两点B ,C ,测得30α∠=︒,45β∠=︒,量得BC 长为100米,求河的宽度(结果保留根号).6.(2017·黔东南州)如图17,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60º,根据有关部门的规定,39α∠≤︒时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin390.63︒≈,cos390.78︒≈,tan390.81︒≈ 1.41≈ 1.73≈ 2.24≈)7.(2017·河南)如图18所示,我国两艘海监船,A B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45º方向,B 船测得渔船C 在其南偏东53º方向.已知A 船的航速为30海里/时,B 船的航速为25海里/时,问C 船至少要等待多长时间才能得到救援?(参考数据: 4sin 535︒≈,3cos535︒≈,4tan 533︒≈)8. ( 2017·常德)图19和图20分别是某款篮球架的实物图与示意图,已知底座0.60BC =米,底座BC 与支架AC 所成的角75ACB ∠=︒,支架AF 的长为2.50米,篮板顶端F 点到篮筐D 的距离 1.35FD =米,篮板底部支架HE 与支架AF 所成的角60FHE ∠=︒,求篮筐D 到地面的距离(精确到0.01米).(参考数据:cos750.2588︒≈,sin750.9659︒≈,tan75 3.732︒≈ 1.732≈ 1.414≈)图 19 图 209.(2017·舟山)如图21是小强洗漱时的侧面示意图,洗漱台(矩形ABCD )靠墙摆放,高80AD =cm ,宽48AB =cm ,小强身高166cm ,下半身100FG =cm ,洗漱时下半身与地面成80︒ (80FGK ∠=︒),身体前倾成125︒(125EFG ∠=︒),脚与洗漱台距离15GC = cm(点,,,D C G K 在同一直线上).(1)此时小强头部E 点与地面DK 相距多少?(2)小强希望他的头部E 恰好在洗漱盆AB 的中点O 的正上方,他应向前进或后退多少?(sin800.98︒≈,cos800.18︒≈ 1.41≈,结果精确到0.1)10. (2017年赤峰)如图22,在ABC ∆中,设A ∠,B ∠,C ∠的对边分别为a ,b ,c ,过点A 作AD BC ⊥,垂足为D ,会有sin AD C AC =,则12ABC S BC AD ∆=g 11sin sin 22BC AC C ab C ==g ,即1sin 2ABC S ab C ∆=. 艺同理,1sin 2ABC S bc A ∆=,1sin 2ABC S ac B ∆=.通过推理还可以得到另一个表达三角形边角关系的定理一余弦定理:如图23,在ABC ∆中,若A ∠,B ∠,C ∠的对边分别为a ,b ,c ,则2222cos a b c bc A =+-, 2222cos b a c ac B =+- 2222cos c a b ab C =+-用上面的三角形面积公式和余弦定理解决问题:(1)如图24,在D E F∆中,60F ∠=︒,D ∠,E ∠的对边分别是3和8.求DEF S ∆和2DE .1sin 2DEF S EF DF F ∆==g ;2222cos DE EF DF EF DF F =+-=g .(2)如图25,在ABC ∆中,已知AC BC >,60C ∠=︒,'ABC ∆,'BCA ∆,'ACB ∆分别是以AB ,BC ,AC 为边长的等边三角形,设ABC ∆,'ABC ∆,'BCA ∆,'ACB ∆的面积分别为1234,,,S S S S ,求证:1234S S S S +=+.答案:1. 122. D3.0(1)2tan 60π+⨯--︒122=⨯-=4. 依题意,过A 作AC OB ⊥于点C , 在Rt AOC ∆中,40AOC ∠=︒, ∴sin 40ACOA︒=. ∵ 1.2OA =,∴sin 40 1.20.640.768AC OA =︒≈⨯=(米). ∵0.7680.8AC =<, ∴车门不会碰到墙.5.过点A 作AD BC ⊥于点D . ∵45β∠=︒,90ADC ∠=︒, ∴AD CD =.设AD CD x ==m ,则tan 30100x x ︒==+,解得1)x =.答:(略)6.如图27,假设点D 移到'D 的位置时,恰好39α∠=︒,过点D 作DE AC ⊥于点E ,作''D E AC ⊥于点'E .∵ 1.2CD =米,60DCE ∠=︒,∴sin 6012DE CD =︒==米), 1cos601262CE CD =︒=⨯=(米). ∵DE AC ⊥,''D E AC ⊥,'//'DD CE , ∴四边形''DEE D 是矩形.∴''DE D E ==米) ∵''39D CE ∠=︒,∴'''12.8tan 39D E CE =≈≈︒,∴''12.86 6.8EE CE CD =-=-=(米). 答:(略).7. 过点C 作CD AB ⊥交AB 的延长线于点D , 则90CDA ∠=︒.已知45CAD ∠=︒,设CD x =, 则AD CD x ==.∴5BD AD AB x =-=-.在Rt BDC ∆中,tan53CD BD =︒g , 即(5)tan 53x x =-︒g ,∴455tan 533204tan 53113x ⨯︒=≈=︒--. ∴20254sin 53sin 535CD x BC ==≈=︒︒∴B 船到达C 船处约需时间:25251÷=(小时).在Rt ADC ∆中,AC ==,0.9430=. 故C 船至少要等待0.94小时才能得到救援.8.如图28,过点E 作EP BC ⊥于P ,过点A 作AQ FP ⊥于Q . 在Rt ABC ∆中,∵tan ABACB CB∠=∴tan750.60 3.732 2.239AB CB =︒≈⨯=g (米),易知四边形ABPQ 是矩形. ∴ 2.239PQ =米.又∵HE FP ⊥,AQ FP ⊥, ∴//HE AQ ,60FAQ FHE ∠=∠=︒. 在Rt FAQ ∆中,sin FQFAQ FA∠=,∴ 2.50 2.165FQ =≈(米). ∴ 2.165 1.350.815DQ FQ FD =-=-=(米),0.815 2.239 3.05DP DQ PQ =+=+≈(米).答:(略).9.(1)如图29,过点F 作FN DK ⊥于点N ,过点E 作EM FN ⊥于点M . ∵166,100EF FG FG +==, ∴66EF =.∵80FGK ∠=︒,∴100sin8098FN =︒≈. 又∵125EFG ∠=︒,∴1801251045EFM ∠=︒-︒-︒=︒.∴66cos 4546.53FM =︒=≈.∴144.5MN FN FM =+≈.故此时小强头部E 点与地面DK 相距约144.5 cm.(2)如图29,过点E 作EP AB ⊥于点P ,延长OB 交MN 于点H . ∵48AB =,O 为AB 的中点, ∴24AO BO ==.∵66sin 4546.53EM =︒≈,即46.53PH ≈,100cos8018GN =︒≈,15CG =, ∴24151857OH =++=,5746.5310.4710.5OP OH PH =-=-=≈. 故小强应向前讲约10.5 cm.10.(1)在DEF ∆中,60F ∠=︒,D ∠,E ∠的对边分别是3和8,∴11sin 38sin 6022DEF S EF DF F ∆==⨯⨯⨯︒=g 222222cos 38238cos6049DE EF DF EF DF F =+-=+-⨯⨯︒=g(2)证明:如题图25, ∵60C ∠=︒,∴222222cos60AB AC BC AC BC AC BC AC BC =+-︒=+-g g , 即222AB AC BC AC BC =+-g两边同乘以告1sin 602︒, 得2221111sin 60sin 60sin 60sin 602222AB AC BC AC BC ︒=︒+︒-︒g , 即2221111sin 60sin 60sin 60sin 602222AC BC AB AC BC ︒+︒=︒+︒g . 又∵'ABC ∆,'BCA ∆,'ACB ∆都是等边三角形,∴11sin 602S AC BC =︒g221sin 602S AB =︒,231sin 602S BC =︒,241sin 602S AC =︒,故1234S S S S +=+.。

2023年中考数学一轮复习:锐角三角函数

2023年中考数学一轮复习:锐角三角函数

2023年中考数学一轮复习:锐角三角函数一、单选题1.如图,一座厂房屋顶人字架的跨度12AC =m ,上弦AB BC =,25BAC ∠=︒.若用科学计算器求上弦AB 的长,则下列按键顺序正确的是( )A .1225cos ÷=B .625cos ÷=C .625tan ÷=D .625sin ÷=2.如图,一块矩形木板ABCD 斜靠在墙边(OC⊥OB ,点A ,B ,C ,D ,O 在同一平面内) 。

已知AB=a ,AD=b ,⊥BCO=θ,则点A 到OC 的距离等于( )A .asinθ+bsinθB .acosθ+bcosθC .asinθ+bcosθD .acosθ+bsinθ3.如图,在⊥ ABC 中,⊥C =90°,以OA 为半径的半圆经过Rt ⊥ABC 的顶点B ,交直角边AC 于点E ,且B ,E 是半圆的三等分点,弧BE 的长为43π,则图中阴影部分的面积为( )A .38π B .83π C .38πD .83π二、填空题4.在 Rt ABC 中, 90ACB ∠=︒ , 6BC = , 3sin 5A =,则 AB = . 5.计算: ()0212014()2sin 6012π----︒+= .6452sin 60︒-︒= .三、综合题7.如图,在⊥ABC 中,AB=AC ,以AC 边为直径作O 交BC 边于点D ,过点D 作DE⊥AB 于点E ,ED 、AC 的延长线交于点F.(1)求证:EF 是O 的切线;(2)若EB=6,且sin⊥CFD=35,求O 的半径.8.如图,四边形ABCD 是平行四边形,延长AD 至点E ,使DE =AD ,连接BD 、CE.(1)求证:四边形BCED 是平行四边形;(2)若DA =DB =4,cosA =14,求点B 到点E 的距离. 9.(1)计算:02012460sin ⨯︒(2)求代数式的值:2222(2)42x x x x x x -÷++-+,其中12x =.10.测量计算是日常生活中常见的问题,如图,建筑物BC 的屋顶有一根旗杆AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°,观测旗杆底部B 点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2).(1)若已知CD =20米,求建筑物BC 的高度; (2)若已知旗杆的高度AB =5米,求建筑物BC 的高度.11.随着精准扶贫政策的落地实施,小亮家所在的村落进行了整村搬迁,小亮同家人一起告别了祖辈们世代居住的窑洞,搬进了宽敞明亮的新房.他家的新房全部安装的是内倒式窗户.为帮助家人确定窗边家具摆放位置,小亮想要知道开启窗扇时,窗扇顶端向屋内移动的水平距离.如图,小亮测得窗扇高度AB=80cm,开启时的最大张角⊥A=22.5°,窗扇开启后的位置为AB'.(1)请根据这些数据帮助小亮计算开启窗扇时,窗扇顶端向屋内移动的最大水平距离(不考虑窗扇的厚度,参考数据sin22.5°≈0.38,cos22.5°≈0.92,tan22.5°≈0.41);(2)小亮的爸爸说:“咱家安装窗户总共花了4800元,隔壁小明家安装的是平移式窗户,他家窗户总面积比咱家多3平方米,但他家总共才花了3680元,咱家安装的这种内倒式窗户每平方米的价格是小明家安装的平移式窗户每平方米价格的1.5倍.”请你根据以上信息求出小亮家安装的这种内倒式窗户每平方米多少元?12.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,⊥ADB=30°.(1)试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;(2)把⊥BCD 与⊥MEF 剪去,将⊥ABD绕点A顺时针旋转得⊥AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当⊥AFK 为等腰三角形时,求β的度数;(3)若将⊥AFM沿AB方向平移得到⊥A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP⊥AB时,求平移的距离.13.如图,在⊥ABC中,以BC为直径的⊥O交AC于点D,点E在⊥O上,且BD DE=,连接BE交AC于点F,已知BA=BF.(1)求证:AB是⊥O的切线;(2)若AF=6,35ABAC=,求⊥O的直径.14.如图,在⊥O中,C,D是直径AB上的两点,且AC=BD,EG⊥AB,FH⊥AB,交AB于C、D,点E,G,F,H在⊥O上.(1)若EG=8,AC=2,求⊥O半径;(2)求证:AE=BF;(3)若C,D分别为OA,OB的中点,则AE=EF=FB成立吗?请说明理由.15.如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏东60°方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M小区位于北偏东30°方向,测绘员从A处出发,沿主输气管道步行到达C 处,此时测得M小区位于北偏西60°方向.(1)求⊥AMC与⊥ACM度数.(2)现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短,且AC=2000米,求A小区与支管道连接点N的距离.16.在平面直角坐标系中,一次函数()0y ax b a=+≠的图形与反比例函数()0ky kx=≠的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH y⊥轴,垂足为H,3OH=,4tan3AOH∠=,点B的坐标为()2m-,.(1)求 AHO 的周长;(2)求该反比例函数和一次函数的解析式;(3)写出不等式 kax b x+≥ 的解集.17.(1)计算: ()(04116tan 303--+︒-- ;(2)已知 ()223400x xy y y --=≠ ,试求代数式2x yx y-+ 的值. 18.如图,ABCD 中,点E ,F 分别在BC ,AD 上,BE=DF ,连结AE ,CF 。

苏科版九年级数学下册第七章 锐角三角函数复习

苏科版九年级数学下册第七章  锐角三角函数复习

第七章 锐角三角函数复习班级 姓名 知识要点:1.锐角三角函数、锐角三角函数值的符号、锐角三角函数值的变化规律、特殊角三角函数值、互为余角的三角函数间的关系、同角三角函数间的关系(平方关系、商数关系、倒数关系)2. 锥度、坡度、仰角、俯角、方位角、方向角、解直角三角形、解直角三角形应用 典型例题:1.①在Rt △ABC 中,∠C =90°,3a = 3 b ,则∠A = ,sinA = ②Rt △ABC 中,∠C =90°,若sinA =45 ,AB =10,那么BC = ,tanB =2.①1-2sin30°·cos30°=②cos α=32,α= 3 tan 2α-4tan α+ 3 =0,则α=3.菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为 。

4.已知一山坡的坡度为1:3,某人沿斜坡向上走了100m ,则这个人升高了 m 。

5.某大学计划为新生配备如图(1)所示的折叠椅.图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm ,∠DOB =100°,那么椅腿的长AB 和篷布面的宽AD 各应设计为多少cm ?(结果精确到0.1cm )6.如图,家住江北广场的小李经西湖桥到教育局上班,路线为A→B →C →D.因西湖桥维修封桥,他只能改道经临津门渡口乘船上班,路线为A →F →E →D .已知BC EF ∥,BF CE ∥,AB BF ⊥,CD DE ⊥,200AB =米,100BC =米,37AFB ∠=°,53DCE ∠=°.请你计算小李上班的路程因改道增加了多少?(结果保留整数) 温馨提示:sin370.60cos370.80tan370.75︒°≈,≈,°≈.随堂演练:1.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )xy O CBAAO D 100º 32 cm D C BF E A 江北广场渡口渡口教育局 西湖桥 资 江 53°37°A .233cm B .433cm C .5cm D .2cm 2.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是() A .3 B .5 C .25 D .2253.如图5,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( ) A .2 B .433C .23D .43 4.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)5.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为 。

锐角三角函数复习题课件》初中数学苏科版九年级下册

锐角三角函数复习题课件》初中数学苏科版九年级下册

h
8
二.已知值,求角
(1)已知 sinA=
3 2
,求锐角A .
(2)已知2cosA - 2 = 0 , 求锐角A.
(3)已知 tan( ∠A+20°)= 3 ,求锐角A .
(4)在△ABC中, ∠ B、 ∠ C均为锐角,且
2
siBn12
coCs
3 2
0
ห้องสมุดไป่ตู้
,求∠A的度数。
h
9
三.解直角三角形
1.什么叫解直角三角形?
由直角三角形中,除直角外的已知元素,求出所 B 有未知元素的过程,叫做解直角三角形.
2.直角三角形中的边角关系:
ca
(1)三边关系: a2b2c2 (勾股定理)
(2)两锐角的关系:∠A十∠B=90°
A bC
(3)边角的关系:sin A a cos A b tan A a
c
c
b
归纳:只要知道其中的2个元素(至少有一个是_边___),
b
锐角A的正弦、余弦、正切都h 叫做∠A的锐角三角函数3.
1、如图,在Rt△ABC中,∠C=90, AB=5,AC=3,求sinA,cosA及tanA。
B
A
C
h
4
2、 在正方形网格中,△ABC的位置如图所示, 则cos∠ABC的值为________。
A
B
C
h
作辅助线构造 直角三角形!
5
3、如图,直径为5的⊙A经过点C(0,3)和 点O(0,0),B是y轴右侧⊙A优弧上一点, 则∠OBC的余弦值为_______。
2
那么△ABC是( D )
A.直角三角形
B.锐角三角形
C.钝角三角形

江苏省苏州市中考数学复习指导 锐角三角函数

江苏省苏州市中考数学复习指导 锐角三角函数

锐角三角函数考点例析锐角三角函数是初中“图形与几何”的重点内容之一,也是中考的重要考查内容.本文.采撷几例2016年部分省市的中考试题,进行分类评析,供同学们学习时参考.一、考查三角函数的的概念例1 (广东)如图1,在R t A B C V 中,30B ∠=︒,90ACB ∠=︒,CD AB ⊥交AB 于点D ,以CD 为较短的直角边向CDB V 的同侧作Rt DEC V ,满足30E ∠=︒,90DCE ∠=︒再用同样的方法作Rt FGC V ,90FGC ∠=︒,继续用同样的方法作Rt HCI V ,90HCI ∠=︒,若AC a =,求CI 的长.解析 由题意,知60A EDC GFC IHC ∠=∠=∠=∠=︒∵AC a =sin 60AC AC ∴=︒= 同理3sin 604CF DC a =︒=sin 60CH CF =︒= 9sin 6016CI CH a =︒=. 点评 本题考查三角形的内角和与三角函数的应用.解题的关键是明确题意,找出关键直角三角形,通过锐角三角函数的定义解决问题.二、锐角三角函数在四边形中的应用例2 (福州)如图2,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角O ∠为60︒,A 、B 、C 都在格点上,则tan ABC ∠的值是 解析 如图2,连结EA ,EC ,设菱形的边长为a .由题意,得30AEF ∠=︒,60BEF ∠=︒AE =,2EB a =90AEB ∴∠=︒tan AE ABC BE ∴∠===点评 本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形.本题属于中考常考题型.如图2,连结EA ,EB ,先证明90AEB ∠=︒,根据tan AE ABC BE∠=,求出AE 、BE 即可解决间题. 三、锐角三角函数在圆中的应用例3 (温州)如图3,在ABC V 中,90C ∠=︒,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF(1)求证:1F ∠=∠(2)若sin B =,EF =CD 的长解析 (1)如图3,连结DE .∵BD ⊙O 的直径90DEB ∴∠=︒∵E 是AB 的中点DA DB ∴=1B ∴∠=∠∵B F ∠=∠∴1F ∠=∠(2) ∵1F ∠=∠AE EF ∴==2AB AE ∴==sin 4AC AB B ==8BC ∴==设CD x =则8AD BD x ==-222AC CD AD +=Q即2224(8)x x +=- 3x ∴=,即3CD =.点评 此题考查圆周角定理与解直角三角形.连结DE ,由BD ⊙O 的直径,得到90DEB ∠=︒,由于E 是AB 的中点,得到DA DB =,根据等腰三角形的性质得到1B ∠=∠,等量代换即可得到结论.(2)根据等腰三角形的判定定理,得到AE EF ==,2AB AE ∴== 在Rt ABC V ,根据勾股定理,得到8BC ==.设CD x =,则8AD BD x ==-,根据勾股定理列方程即可得到结论.四、锐角三角函数的实际应用1.方向角问题例4 (大连)如图4,一艘渔船位于灯塔P 的北偏东30︒方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55︒方向上的B 处,此时渔船与灯塔P 的距离约为 海里(结果取整数)(参考数据:sin550.8︒≈,cos550.6︒≈,tan55 1.4︒≈).解析 如图4,作PC AB ⊥于点C .在Rt PAC V 中,18PA =Q ,30A ∠=︒1118922PC PA ∴==⨯=9PC =Q ,55B ∠=︒911sin 0.8PC PB B ∴=≈≈∠. 故此时渔船与灯塔P 的距离约为11海里. 点评 本题考查了解直角三角形的应用,方向角问题,含30︒角的直角三角形的性质,锐角三角函数定义,等.解一般三角形的问题可以转化为解直角三角形的间题,解决的方法就是作高线.变式 (大庆)一艘轮船在小岛A 的北偏东60︒方向距小岛80海里的B 处,沿正西方向 航行3小时后到达小岛的北偏西45︒的C 处,则该船行驶的速度为 海里/小时2.仰角俯角问题例5 (上海)如图6,航拍再人机从A 处侧得一幢建筑物顶部B 的仰角为30︒,测得底部C 的俯角为60︒,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为 米.(精确到1米,参考数据 1.73≈ )解析 由题意,可得tan 30903BD BD AD ︒===解得BD =tan 60903DC DC AD ︒===解得DC =故该建筑物的高度为208BC BD DC =+=≈(m)故答案为208米.点评此题主要考查直角三角形的应用,熟练应用锐角三角函数关系是解题的关键.分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.变式 (聊城)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图7,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33︒,测得圆心O的︒≈,仰角为21︒,则小莹所在C点到直径AB所在直线的距离约为(tan330.65︒≈)( )tan210.38(A )169米 (B)204米 (C)240米 (D )407米。

江苏省南京市溧水县中考数学一轮复习锐角三角函数学案(无答案)

江苏省南京市溧水县中考数学一轮复习锐角三角函数学案(无答案)

A CBBAC ABCD锐角三角函数姓名成绩【中考要求解读】1、理解锐角三角函数sinA、cosA、tanA的概念,知道30°,45°,60°角的三角函数值;2、掌握由已知锐角求它的三角函数值和由三角函数值求它对应的锐角;3、灵活运用三角函数解决与直角三角形有关的简单的实际问题【基础训练】1、在Rt△ABC中,∠C=90°,AB=5,AC=4。

求sinA、cosA、tanA的值 (5分+5分+5分))2、如图,△ABC中,AB=AC=5,BC=6。

求∠B的正弦值。

(14分)3、如图,⊙O的直径AB=13,弦AC=12,点D在⊙O上,求∠BDC的余弦值.(14分)4、若12c o s A 0-=,则锐角A= 。

(14分)5、已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.(14分)6、已知α是锐角,sin α=43,求tan α的值。

(15分)7、一架飞机在距离地面1000m 的高空飞行,在A 处观测前方航站B 的俯角是30°,飞行一段时间以后发现飞机在航站的正上方C 处。

飞机飞行的距离AC 是多少米?(14分)8、尊敬的读者:9、本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

10、This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.11、12、。

苏科版九年级下册数学学案设计 第7章锐角三角函数复习(无答案)

苏科版九年级下册数学学案设计 第7章锐角三角函数复习(无答案)

初三数学期中复习3 锐角三角函数复习 班级: 姓名: 一、复习目标:会正确应用锐角三角函数的定义,能通过画图找出直角三角形中边、角关系;准确记忆30°、45°、60°的三角函数值;会通过添加辅助线利用三角函数解决一些问题. (一)基本概念在Rt△ABC 中,∠C =90°, ⑴下列结论中正确的是 ( )A .sin c A a = B.cos bB c = C.tan a A b = D.tan c B b =⑵若AB =5,AC =3,则BC= , sinA =_____,sinB =_____,cosA= , cosB= ,tanA = , tanB= ,(3)若AC =1,sinA =23,则tanA = ;BC = .AB =(4)若cosA =513,则sinA = ;tanB = .⑹若AB=3BC ,则tanA = .(5)已知,tanA =125,△ABC 的周长为60,那么△ABC 的面积为____ _。

(二)特殊角三角函数1.求满足下列条件的锐角α:(1)cos α-23=0 (2)-3tan α+3=0 (3)2cos α-2=0 (4)tan (α+10°)=3 2.如果03tan 321cos =-+-B A 那么△ABC 是 ( )A 、直角三角形B 、锐角三角形C 、钝角三角形D 、等边三角形3.计算:(1)2sin30°×cos45° (2)sin 230°+cos 230° (3) 020230tan 45cos (4)0030tan 145cos —(三)知识运用1.如图,△AB C 的顶点是正方形网格的格点,求sinB , cosA 的值。

2.已知如图,在三角形ABC 中,AB=6 ,cos∠B=32,BC=5, 试求AC 的长,sinA 的值。

3.现有一块三角形形状的花圃ABC ,已知∠A =30°,AC =60米,BC =40米.请你求出这块花圃ABC 的面积.4.在Rt ABC ∆中,90C ∠=︒,30A B ∠-∠=︒,2a b -=,试解该直角三角形.6.直线l 与x 轴正半轴所夹的锐角为α且tan α=2,直线l 过点P(5,4),求该直线的解析式课后练习1.在Rt △ABC 中,∠C =90°,AC =12,BC =5,则sinA =_____,cosA =_____tanB=_____。

江苏省南京中考数学总复习锐角三角函数

江苏省南京中考数学总复习锐角三角函数

2011南京中考数学总复习:锐角三角函数【例1——特殊的锐角三角函数值】填写表格:【反馈】①已知∠A 是锐角,且sinA=32,那么90°—∠A 等于 . ②当锐角α>30°时,则co sα的值是( ) A.大于12B.小于12ﻩC .大于32ﻩﻩ D .小于32【例2——与三角形的有关计算】已知Rt △AB C中,∠C=90°,t anA=43,B C=8,则AC 等于( ) A.6 ﻩﻩﻩB .323ﻩﻩ C .10ﻩﻩﻩ D.12 【反馈】①如图,在等腰Rt△ABC 中,∠C =90o,AC =6,D 是AC 上一点,若ta n∠DB A=51,则A D的长为 .②在△ABC 中,∠A=75°,∠B=60°,A B=22,则AC= .【例3——锐角三角函数之间的关系】若si n28°=cosα,则α= . 【反馈】①直角三角形两锐角的正切函数的积为 .②在Rt △ABC 中,∠C=90°,若sin A是方程52x -14x +8=0的一个根,则sin A ,tan A . ③tan2°·tan4°·tan6°…tan 88°【例4——锐角三角函数的计算】sin 230°+cos 245°+2si n60°·tan45°30° 45°60° si nα c osα tanα【反馈】①()02cos602009π--°②先化简.再求代数式的值.22 ()2111a a a a a ++÷+-- 其中a=tan 60°-2sin30°.【例5——解直角三角形】在△AB C中,∠C=90°,BC =24cm ,cosA =513,求这个三角形的周长.【反馈】已知:如图,在Rt △ABC 中, 90=∠C,AC =点D 为BC 边上一点,且2BD AD =,60ADC ∠=︒.求△ABC 周长.(结果保留根号) D CBA【例6——方位角】如图,一巡逻艇航行至海面B 处时,得知其正北方向上C 处一渔船发生故障.已知港口A 处在B 处的北偏西37°方向上,距B 处20海里;C处在A 处的北偏东65°方向上.求B 、C 之间的距离(结果精确到0.1海里).参考数据:sin370.60cos370.80tan370.75≈≈≈,,, sin 650.91cos650.42tan 65 2.14.≈≈≈,,【反馈】①为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45︒并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60︒的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C 处?(结果精确到个位.参1.4 1.7)②某地有一居民楼,窗户朝南,窗户的高度为hm,此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大β.小明想为自己家的窗户设计一个直角三角形遮阳篷BCD .要求它既能最大限度地遮挡夏天炎热的阳光,又能最大限制地使冬天温暖的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24 °36′,∠β=73°30′,小明又得窗户的高A B=1.65m . 若同时满足下面两个条件,(1)当太阳光与地面的夹角为α时,要想使太阳光刚好全部射入室内:(2)当太阳光与地面的夹角为β时,要想使太阳光刚好不射入室内,请你借助下面的图形,帮助小明算一算,遮阳篷BCD 中,BC 和CD 的长各是多少?(精确到0.01m) 以下数据供计算中选用s in24°36′=0.416 cos24°36′=0.909 tan24°36′=0.458s in73°30′=0.959 c os73°30′=0.284CAB60° 45°北北t an73°30′=3.376【例7——俯角、仰角】如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60, 看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m,这栋高楼有多高? (结果精确到0.1 m ,参考数据:73.13≈)【反馈】①如图,线段AB DC 、分别表示甲.乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.(1)求乙建筑物的高DC ;(2)求甲.乙两建筑物之间的距离BC (结果精确到0.01米). (参考数据:2 1.4143 1.732≈,≈)②坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.CABαβD乙 CB A甲(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A .B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m(如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:Ⅰ在你设计的测量方案中,选用的测量工具是: ; Ⅱ要计算出塔的高,你还需要测量哪些数据?【例8——坡度】庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB 、AC 看成线段,结果保留根号)【反馈】①我市某区为提高某段海堤的防海潮能力,计划将长96m 的一堤段(原海堤的横断面如图中的梯形A BCD)的堤面加宽1.6m ,背水坡度由原来的1:1改成1:2,已知原背水坡长AD=8.0m,求完成这一工程所需的土方,要求保留两个有效数字. (提供数据:2 1.41,3 1.73,5 2.24≈≈≈)ABCD M N αβ图1图2PMNi=1:2i=1:11.6mEDCBAF②云南2009年秋季以来遭遇百年一遇的全省特大旱灾,部分坝塘干涸,小河、小溪断流,更为严重的情况是有的水库已经见底,全省库塘蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形AB CD ,AD ∥BC ,EF 为水面,点E在DC 上,测得背水坡A B的长为18米,倾角∠B=30°,迎水坡C D上线段DE 的长为8米,∠ADC=120°.(1)请你帮技术员算出水的深度(精确到0.01米,参考数据732..13≈);(2)就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用20天?(精确到0.01米)图7120︒30︒FED CBA【例9——几何综合型】如图,AB 是半圆O 的直径,C 为半圆上一点,N 是线段BC上一点(不与B ﹑C 重合),过N作AB 的垂线交AB 于M, 交AC 的延长线于E,过C 点作半圆O 的切线交EM 于F. (1)求证:△ACO∽△NCF; (2)若NC∶CF=3∶2,求si nB 的值.【反馈】①已知:如图,在△AB C中,AB=AC,AE 是角平分线,B M平分∠ABC 交AE 于点M,经过B 、M两点的⊙O交BC 于点G ,交A B于点F,FB恰为⊙O的直径. (1)求证:AE 与⊙O相切;EN O CB A F(2)当B C=4,31cos =C 时,求⊙O 的半径.②(请量力而行!)已知:在△AB C中AB=AC ,点D 为BC 边的中点,点F 是AB边上一点,点E 在线段DF 的延长线上,∠BAE=∠BD F,点M在线段DF 上,∠ABE =∠DBM . (1)如图1,当∠ABC =45°时,求证:AE=2M D;(2)如图2,当∠AB C=60°时,则线段AE 、MD 之间的数量关系为: . (3)在(2)的条件下延长BM 到P ,使MP=BM,连接CP,若AB =7,AE =72, 求t an ∠A CP 的值.【例10——大综合型】(请量力而行!)如图,在Rt △A BC中,∠AC B=90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E,连结D E并延长,与线段BC 的延长线交于点P. (1)当∠B =30°时,连结AP ,若△A EP 与△BDP相似,求CE 的长; (2)若C E=2,BD=BC ,求∠BPD 的正切值;(3)若1tan 3BPD ∠=,设CE=x,△ABC 的周长为y ,求y 关于x 的函数关系式.【反馈】(请量力而行!)如图10,以点M(—1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线33533--=xy与⊙M相切于点H,交x轴于点E,求y轴于点F。

江苏省昆山市兵希中学九年级数学总复习:一轮复习第33课时:锐角三角函数

江苏省昆山市兵希中学九年级数学总复习:一轮复习第33课时:锐角三角函数

初三第一轮复习第33课时:锐角三角函数【知识梳理】1、锐角三角函数的定义:在Rt△ABC 中,∠C =90°,则正弦:sin A =∠A 的对边斜边=a c ,余弦:cos A =∠A 的邻边斜边=bc,正切:tanA =∠∠A 的对边A 的邻边=a b. 2、锐角三角函数的取值范围:0<sin A <1,0<cos A <1,tan A >0 3、各锐角三角函数间的关系:①sin (90○-A )=cosA ,cos (90○-A )=sin A ;②A A 22cos sin +=1;sin tan cos A =AA4、锐角三角函数的增减性:正弦、正切函数值随角的增大而增大,余弦函数值随角的增大而减小。

5、特殊角的三角函数值【课前预习】1、已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为 . 2、等腰三角形底边为10,周长为36,则其底角的正切值是 .3、如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .4、已知∠A 为锐角,且cosA≤0.5,那么( )A .0°<∠A≤60° B.60°≤∠A<90° C .0°<∠A≤30° D.30°≤∠A <90° 5)26011tan30-+-的结果是 .6、在Rt△ABC 中,∠C =90°,cos B =2,则∠A = . 7、计算:(1)0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°;(2)22sin30cos60tan 60tan30cos 45+-⋅+.a AB【例题讲解】例1 如图所示,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF =2,BC =5,CD =3,则tan C = .例2 如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点在格点上,请按要求完成下列各题: (1)画AD ∥BC (D 为格点),连接CD ; (2)线段CD 的长为 ;在ACD △的三个内角中任选一个锐角..,若你所选的(3)请你锐角是 ,则它所对应的正弦函数值是 .(4)若E 为BC 中点,则tan ∠CAE 的值是 .例3 如图,在△ ABC 中,AD 是BC 边上的,若tan B =cos∠DAC ,(1)AC 与BD 相等吗?说明理由;(2)若sin C =12/13,BC =12,求AD 的长.例4如图,在Rt△ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l .求BD 、DC 的长.【巩固练习】1、(1)在Rt△ABC 中,∠C =90°, AB =5,AC =3,则sin B = . (2)在△ABC 中,若BC ,AB AC =5,则cos A = .(3)在△ABC 中,AB =2,∠B =30°, AC ,则∠BAC 的度数是 . (4)一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为 . (5)若∠A 为锐角,且cos(A +15°)=2,则∠A = .2、已知α为锐角,当21tan α-无意义时,则tan(α+15°)-tan(α-15°)= .3、已知sin α<0.5,那么锐角α的取值范围 .4、计算:(12445sin 60)-+; (2)2sin 601(2tan 30)-+-5、如图所示,在△ABC 中,∠ACB=90°,BC=6,AC=8 ,CD⊥AB,BC求:①sin∠ACD 的值;②tan∠BCD 的值【课后作业】 班级 姓名 一、必做题:1、在Rt ABC △中,9032C AB BC ∠===°,,,则cos A 的值是 . 2、104cos30sin 60(2)2008)-︒︒+--=______.3、已知α为锐角,若cos α=12 ,则sin α= ,tan(90°-α)=4、Rt△ABC 中,∠C=90°,3a = 3 b ,则∠A = ,sin A =5、已知sin a =1213 ,a 为锐角,则cos a = ,tan a = .6、已知正三角形ABC ,一边上的中线长为32,则此三角形的边长为7、Rt△ABC 中,∠C =90°,∠A =30°,∠A 、∠B 、∠C 所对的边为a 、b 、c ,则a :b :c =( ) (A)1:2:3 (B)1: 2: 3 (C)1: 3:2 (D)1:2: 38、如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶3, 且AC =10,则DE 的长度是( )(A) 3 (B) 5 (C)9、正方形网格中,∠AOB 如图所示放置,则cos ∠AOB 的值为( )(A)5 (B) 2 (C) 12(D) 5 10、如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得 60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为 ( )(A)25米 (B) (C(D)(25+11、计算:(1)101|2|20093tan 303-⎛⎫+--+ ⎪⎝⎭°(22(3)先化简再求代数式的值.22 ()2111a a a a a ++÷+--,其中a =tan60°-2sin30°.12、某片绿地的形状如图所示,其中∠A =60°,AB ⊥BC ,CD ⊥AD ,AB =•200m ,CD =100m .求AD 、BC 的长(结果保留根号)BC ADBN60°P Q2cm13、如图,AC⊥BC,cos∠ADC=45,∠B=30°,AD=10,求BD的长.14、如图,在ABC中,AD是边BC上的高,E为边AC的中点,BC =14,AD=12,Sin B=4/5.求:(1)线段DC的长;(2)tan∠EDC的值.15、某班学生利用周末参观博物馆.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60°,乙:我站在此处看塔顶仰角为30°,甲:我们的身高都是1.5m,乙:我们相距20m。

2020年苏科版九年级数学一轮复习锐角三角函数习题精选(无答案)

2020年苏科版九年级数学一轮复习锐角三角函数习题精选(无答案)

苏科版九年级数学一轮复习锐角三角函数习题精选 【复习目标】 1、 复习回顾锐角三角函数的定义,特殊角的三角函数值,能进行相关的计算; 2、 能运用锐角三角函数解直角三角形;能通过作垂线将一般三角形转换成直角三角形,从而解决问题; 2、能建立直角三角形模型,利用锐角三角函数解决实际问题. 【课堂研讨】 一、锐角三角函数与解直角三角形 如图,在Rt △ABC 中,∠C=90°,两锐角的关系: ;三边的关系: ;边角关系:sinA = ,cosA = ,tanA=1.在△ABC 中,∠C=90°,AB=5,BC=3,则sinA=_____,cosA=_____,tanB=____.2.在△ABC 中,∠C=90°,AB=8,cosA=,则BC 的长__________;3.已知cosα<0.5,那么锐角α的取值范围 ( )A 、60°<α<90°B 、 0°< α <60°C 、30°<α<90°D 、 0°< α <30°4.若∠A 为锐角,且cos(A+15°)=23,则∠A=____;如果03tan 321cos =-+-B A 那么∠C=____;5. 2cos30°-2sin60°+tan45°= ;3tan 45sin 30tan 60︒-︒•︒= .6.(1)如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦,则sin ∠OBD= .(2)如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,AP 平分∠BAC,则tan ∠CAP= .(3)如图,在矩形ABCD 中,AB=3,BC=2,H 是AB 的中点,将△CBH 沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan ∠HAP= .(4)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则sin ∠BOD= .第6(1)题 第6(2)题 第6(3)题 第6(4)题二、解三角形1. 在△ABC 中,∠A=60°,∠B=45°,AC=32,则AB= .2. 在△ABC 中,∠A=30°,∠B=45°,AB=33+,则AC= .3. 在△ABC 中,AB =8,∠ABC =30°,AC =5,求BC 的长. B A三、锐角三角函数的应用1.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm (如箭头所示),则木桩上升了( )A .6sin15°cmB .6cos15°cmC .6tan15° cm D.015tan 6cm 2.如图,甲、乙为两座建筑物,它们之间的水平距离BC 为20m ,在A 点测得D 点的仰角∠EAD 为45°,在B 点测得D 点的仰角∠CBD 为60°,则乙建筑物的高度为 m .3.在某张航海图上,标明了三个观测点的坐标,如图,O (0,0)、B (6,0)、C (6,8),由三个观测点确定的圆形区域是海洋生物保护区.(1)求圆形区域的面积;(2)某时刻海面上出现-渔船A ,在观测点O 测得A 位于北偏东45°,同时在观测点B 测得A 位于北偏东30°,求观测点B 到A 船的距离;(3)当渔船A 由(2)中位置向正西方向航行时,是否会进入海洋生物保护区?通过计算回答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第33课时:锐角三角函数
【知识梳理】
1、锐角三角函数的定义:在Rt△ABC 中,∠C =90°,则 正弦:sin A =
∠A 的对边斜边=a c ,余弦:cos A =∠A 的邻边斜边=b c ,正切:tan A =∠∠A 的对边A 的邻边=a
b
. 2、锐角三角函数的取值范围:0<sin A <1,0<cos A <1,tan A >0
3、各锐角三角函数间的关系:①sin (90○-A )=cosA ,cos (90○
-A )=sin A ;
②A A 22cos sin +=1;sin tan cos A =
A
A
4、锐角三角函数的增减性:
正弦、正切函数值随角的增大而增大,余弦函数值随角的增大而减小。

5
1、已知在Rt ABC △中,3
90sin 5
C A ∠==°
,,则ta n B 的值为
.
2、等腰三角形底边为10,周长为36,则其底角的正切值是 .
3、如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .
4、已知∠A 为锐角,且cosA≤0.5,那么( )
A .0°<∠A≤60° B.60°≤∠A<90° C .0°<∠A≤30° D.30°≤∠A<90° 51ta n30
-
的结果是 .
6、在Rt△ABC 中,∠C =90°,cos B
=2
,则∠A = . 7、计算:
(1)0
200912sin603tan30(1)3⎛⎫
-++-
⎪⎝⎭
°°;
(2)2
2sin30cos60tan60tan30cos 45+-⋅+
.
【例题讲解】
例1 如图所示,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,
若EF =2,BC =5,CD =3,则tan C = .
a A
B
C
B 例2 如图,在边长为1的小正方形组成的网格中,△AB
C 的三个顶点在格点上,请按要求完成下列各题:
(1)画AD ∥BC (D 为格点),连接CD ; (2)线段CD 的长为 ;
(3)请你在ACD △的三个内角中任选一个锐角..
,若你所选的锐角 是 ,则它所对应的正弦函数值是 . (4)若E 为BC 中点,则tan∠CAE 的值是 .
例3 如图,在△ ABC 中,AD 是BC 边上的,若tan B =cos∠DAC ,(1)AC 与BD 相等吗?说明理由;
(2)若sin C =12/13,BC =12,求AD 的长.
例4如图,在Rt△ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l .
求BD 、DC 的长.
【巩固练习】
1、(1)在Rt△ABC 中,∠C =90°, AB =5,AC =3,则sin B = .
(2)在△ABC 中,若
BC
,AB AC =5,则cos A = .
(3)在△ABC 中,AB =2,∠B =30°,
AC BAC 的度数是 .
(4)一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为 . (5)若∠A 为锐角,且cos(
A +15°)=2
,则∠A = .
2、已知α为锐角,当
2
1tan α
-无意义时,则tan(α+15°)-tan(α-15°)= .
3、已知sin α<0.5,那么锐角α的取值范围 .
4、计算:
(1
sin60)4
-+
; (2
)sin601-
5
、如图所示,在△ABC 中,∠ACB=90°,BC=6
,AC=8 ,CD⊥AB,
求:①sin∠ACD 的值;②tan∠BCD 的值
【课后作业】 班级 姓名 一、必做题:
1、在Rt ABC △中,9032C A B B C ∠===°
,,,则cos A 的值是 . 2
、104cos30sin60(2)2008)-︒︒+--=______. 3、已知α为锐角,若cos α=1
2 ,则sin α= ,tan(90°-α)=
4、Rt△ABC 中,∠C=90°,3a = 3 b ,则∠A = ,sin A =
5、已知sin a =12
13
,a 为锐角,则cos a = ,tan a = .
6、已知正三角形ABC ,一边上的中线长为32,则此三角形的边长为
7、Rt△ABC 中,∠C =90°,∠A =30°,∠A 、∠B 、∠C 所对的边为a 、b 、c ,则a :b :c =( ) (A)1:2:3 (B)1: 2: 3 (C)1: 3:2 (D)1:2: 3 8、如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶3, 且AC =10,则DE 的长度是( )
(A) 3 (B) 5 (C)
2
9、正方形网格中,∠AOB 如图所示放置,则cos ∠AOB 的值为( )
(B) 2 (C) 12
(D) 10、如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,
在C 点测得 60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为 ( ) (A)25米 (B
) (C
(D )
(25+
11、计算:
(1
1
012|20093tan303-⎛⎫
+--+ ⎪⎝⎭
°(22
(3)先化简再求代数式的值.22
()211
1a a
a a a ++÷+--,其中a =tan60°-2sin30°.
12、某片绿地的形状如图所示,其中∠A =60°,AB ⊥BC ,CD ⊥AD ,AB =•200m ,CD =100m .
求AD 、BC 的长(结果保留根号)
B
C
A D l
B N 60°
P Q
2cm
13、如图,AC ⊥BC ,cos∠ADC =4
5
,∠B =30°,AD =10,求BD 的长.
14、如图,在ABC 中,AD 是边BC 上的高,E 为边AC 的中点,BC =14,AD =12,
Sin B =4/5.求:(1)线段DC 的长;(2)tan∠EDC 的值.
15、某班学生利用周末参观博物馆.下面是两位同学的一段对话:
甲:我站在此处看塔顶仰角为60°,乙:我站在此处看塔顶仰角为30°, 甲:我们的身高都是1.5m ,乙:我们相距20m 。

二、选做题:
15、如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射
向边BC ,然后反弹到边AB 上的P 点. 如果M
C n =,CMN α∠=.那么P 点与B 点的距离为 .
16、将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )
D E D C
B A
M N P
17、等腰三角形的腰长为2cm,面积为1 cm2,则顶角的度数为
18、如图所示,某幢大楼顶部有一块广告牌CD,甲、乙两人分别在相距8m的A、B两处测得点D和点C的仰角分别为45°和60°,且A、B、E三点在一条直线上,
若BE=15m,求这块广告牌的高度.
1.73,计算结果保留整数)。

相关文档
最新文档