多元函数可微性的研究

合集下载

多元函数的可微性

多元函数的可微性

x0
x
2022年9月1日10时41分
上一页 下一页 主 页 返回 退出
9
类似地可定义关于 y 的偏导数
f y
( x0 , y0 )
f y ( x0 , y0 )
lim
y y0
f ( x0 , y) f ( x0 , y0 ) y y0
lim f ( x0 , y0 y) f ( x0 , y0 )
上一页 下一页 主 页 返回 退出
22
例6. 已知理想气体的状态方程
(R 为常数) ,
求证: p V T 1 V T p
证: p RT , V
p V
RT V2
说明: 此例表明,
V RT , p
V R T p
偏导数记号是一个 整体记号, 不能看作
分子与分母的商 !
p V V T
T p
z
lim f (x0 x, y0 ) f (x0, y0 )
x (x0, y0 )
x0
x
作平面 y =y0 , 得曲线 L ,
z f (x, y)
y
y0
在点 P0 ( x0 , y0 , f (x0 , y0 ))处
作曲线L的切线 Tx
由一元函数导数的几何意义:
z = tan
x ( x0 , y0 )
A( x x0 ) B( y y0 )
dz
从而
f ( x, y) f ( x0 , y0 ) A( x x0 ) B( y y0 )
2022年9月1日10时41分
上一页 下一页 主 页 返回 退出
5
在使用上,⑴式常写成下列形式:
其中
z Ax By x y
lim lim 0

浅谈多元函数的持续及可微

浅谈多元函数的持续及可微

浅析多元函数的持续及可微
摘要:在学习多元函数以前,咱们关于一元函数的熟悉都是超级熟悉的,对一元函数持续、可微之间的关系也都超级清楚.而多元函数是一元函数的推行,它具有比一元函数更复杂的性质.就一样的二元函数来讲,学习数学分析以后,咱们明白当二元函数的两个偏导数都持续时,函数可微.第一证明了当二元函数的一个偏导数存在,另一个偏导数持续时,函数可微.然后考虑了一样的多元函数的情形,取得了当多元函数的某个偏导数持续,而其余偏导数存在时,函数可微.由此可见可微性与偏导存在性间的关系是复杂的.本文通过具体实例对多元微分学中的几个重要概念间的进行分析讨论,要紧研究二元函数的持续性,偏导存在性,可微性等概念和它们之间因果关系.在了解本文以后,读者会对多元函数有更深刻的熟悉!
关键词:可微; 偏导数; 持续。

多元函数的连续性与可微性

多元函数的连续性与可微性

多元函数的连续性与可微性多元函数的连续性与可微性是微积分的重要概念。

在解析几何中,我们经常需要研究多元函数的性质,而连续性与可微性是我们理解和分析多元函数的基础。

在本文中,我将讨论多元函数的连续性与可微性的概念、定义以及它们在实际问题中的应用。

首先,我们来定义多元函数的连续性。

假设有一个定义在某个区域D上的多元函数f(x1, x2, ..., xn),其中x1, x2, ..., xn为自变量。

我们称函数f在某点(a1, a2, ..., an)处连续,如果当自变量x1, x2, ..., xn逐渐接近(a1, a2, ..., an)时,函数值f(x1, x2, ..., xn)也逐渐接近f(a1, a2, ..., an)。

用数学语言表达,即:lim┬(x→a) ⁡f(x) = f(a)其中,lim表示极限的概念。

如果函数f在集合D的每个点都连续,我们称函数f在D上连续。

那么,多元函数的可微性又是什么意思呢?我们称多元函数f(x1,x2, ..., xn)在某点(a1, a2, ..., an)处可微,如果该函数在该点附近的某个区域内有一个线性逼近函数。

这个线性逼近函数被称为多元函数的导数。

用数学语言表达,即:f(x1, x2, ..., xn) ≈ f(a1, a2, ..., an) + ∑┬(i=1)ⁿ ∂f/∂xi (a1, a2, ..., an)(xi - ai)其中,∂f/∂xi表示函数f对自变量xi的偏导数,xi - ai表示自变量与其对应的变化量。

连续性与可微性是密切相关的,一般来说,可微性是连续性的强化形式。

根据数学定义,若一个函数在某点可微,那么它在该点也是连续的。

而连续函数并不一定可微。

多元函数的连续性与可微性在数学中具有广泛的应用。

例如,在物理学中,我们经常需要利用多元函数来描述物体的运动轨迹、能量分布等。

通过研究函数的连续性,我们可以了解物体在不同时刻的位置、速度以及加速度等信息。

多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系一、前言多元函数是数学中的重要概念,它在物理、经济学、工程学等众多领域都有广泛的应用。

而多元函数偏导数连续和可微的关系是多元函数研究中的一个重要问题,本文将详细介绍这个问题。

二、多元函数偏导数的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数的定义。

对于一个二元函数$f(x,y)$,它在点$(x_0,y_0)$处对$x$求偏导数,记为$\frac{\partial f}{\partial x}(x_0,y_0)$,表示当$y$固定在$y_0$时,$f(x,y)$对$x$的变化率。

同理,它在点$(x_0,y_0)$处对$y$求偏导数,记为$\frac{\partial f}{\partial y}(x_0,y_0)$,表示当$x$固定在$x_0$时,$f(x,y)$对$y$的变化率。

对于一个$n(n\geqslant3)$元函数$f(x_1,x_2,\cdots,x_n)$,它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数,记为$\frac{\partial f}{\partial x_i}(x_{10},x_{20},\cdots,x_{n0})$,表示当$x_j(j\neq i)$固定在$x_{j0}(j\neq i)$时,$f(x_1,x_2,\cdots,x_n)$对$x_i$的变化率。

三、多元函数偏导数连续的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数连续的定义。

对于一个$n(n\geqslant2)$元函数$f(x_1,x_2,\cdots,x_n)$,如果它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数存在且连续,那么称$f(x_1,x_2,\cdots,x_n)$在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数连续。

多元函数的连续性,偏导数,方向导数及可微性之间的关系

多元函数的连续性,偏导数,方向导数及可微性之间的关系

多元函数的连续性,偏导数,方向导数及可微性之间的关

多元函数这些性质之间的关系是:可微分是最强的性质,即可微必然
可以推出偏导数存在,必然可以推出连续。

反之偏导数存在与连续之间是
不能相互推出的(没有直接关系),即连续多元函数偏导数可以不存在;
偏导数都存在多元函数也可以不连续。

偏导数连续强于函数可微分,是可
微分的充分不必要条件,相关例子可以在数学分析书籍中找到。

其中可微分的定义是:
以二元函数为例(n元类似)
扩展:可微分可以直观地理解为用线性函数逼近函数时的情况(一元
函数用一次函数即切线替代函数增量,二元函数可以看做是用平面来代替,更多元可以看做是超平面来的代替函数增量,当点P距离定点P0的距离
p趋于零时,函数增量与线性函数增量的差是自变量与定点差的高阶无穷
小(函数增量差距缩小的速度快与自变量P靠近P0的速度))。

浅谈多元函数的连续及可微-转载1

浅谈多元函数的连续及可微-转载1

浅析多元函数的连续及可微摘要:在学习多元函数以前,我们对于一元函数的认识都是非常熟悉的,对一元函数连续、可微之间的关系也都非常清楚.而多元函数是一元函数的推广,它具有比一元函数更复杂的性质.就一般的二元函数来说,学习数学分析之后,我们知道当二元函数的两个偏导数都连续时,函数可微.首先证明了当二元函数的一个偏导数存在,另一个偏导数连续时,函数可微.然后考虑了一般的多元函数的情形,得到了当多元函数的某个偏导数连续,而其余偏导数存在时,函数可微.由此可见可微性与偏导存在性间的关系是复杂的.本文通过具体实例对多元微分学中的几个重要概念间的进行分析讨论,主要研究二元函数的连续性,偏导存在性,可微性等概念以及它们之间因果关系.在了解本文之后,读者会对多元函数有更深刻的认识!关键词:可微; 偏导数; 连续目录1引言 (1)2多元函数的连续、偏导数及可微........................... ... (1)2.1多元函数的连续性 (1)2.2 多元函数的偏导数 (3)2.3多元函数的可微性 (4)2.4多元函数连续性、偏导数存在性、及可微间的关系 (7)2.4.1二元函数连续性与偏导存在性间的关系 (7)2.4.2二元函数的可微性与偏导存在性间的关系 (8)2.4.3二元函数的连续性与可微性间的关系 (10)3小结.................................... .. (11)参考文献 (12)致谢辞 (13)1 绪论在中学时,我们着重学习了一元函数,对于函数()y f x =在0x 极限存在、连续、可微,这三个概念的关系是很清楚的.比如说:可微一定连续,但连续不一定可微,连续一定有极限,但有极限不一定连续等一些性质.简单表示为:可微⇒连续⇒极限存在(且不可逆).在什么条件下可逆,我们也都曾经学习过.对于多元函数而言,主要是讲二元函数,它既不同于一元函数有可导与可微的等价关系,也没有一元函数的“可导必连续”的关系.但对于二元函数的可微性,是可以证明的.从二元函数的一些性质中,我们可以看到:若二元函数(,)z f x y =在点0p (0x ,0y )可微,则函数(,)f x y 在点0p (0x ,0y ) 连续,偏导存在;若二元函数(,)z f x y =的两个偏导数'x f (x,y )与'y f (x,y)在点0p (0x ,0y )连续,则函数(,)f x y 在0p (0x ,0y )可微.因此对于函数的连续、偏导存在、可微、偏导连续,有下列蕴涵关系:偏导连续⇒可微⇒(连续,偏导存在);它们反方向结论不成立.当然,其可逆也是需要一定条件的.本文主要是就他们之间的关系作简单的分析.大家都知道,多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有某些差异,而且情况也更复杂一些.在我们研究多元函数的连续、偏导、可微之间的相互关系时,需要注意许多方面的问题.下面我们分别从多元函数的可微性、偏导存在性、连续性,进而到它们之间的关系进行具体的探讨.2多元函数的连续、偏导数及可微性2.1 多元函数的连续性一个一元函数若在某点存在左导数和右导数,则这个一元函数必在这点连续.但对于二元函数(,)f x y 来说,即使它在某点000(,)p x y 既存在关于x 的偏导数00(,)x f x y ,又存在关于y 的偏导数00(,)y f x y ,(,)f x y 也未必在000(,)p x y 连续.甚至,即使在000(,)p x y 的某邻域0()U p 存在偏导数(,)x f x y (或(,)y f x y ),而且(,)x f x y (或(,)y f x y )在点000(,)p x y 连续,也不能保证(,)f x y 在000(,)p x y 连续.如函数(,)f x y =21sin ,00,0x y y y ⎧⎛⎫+≠⎪ ⎪⎪⎝⎭⎨⎪⎪=⎩关于具体验算步骤不难得出.不过,我们却有如下的定理.定理1 设函数(,)f x y 在点000(,)p x y 的某邻域0()U p 内有定义,若0(,)f x y 作为y 的一元函数在点y=0y 连续,(,)x f x y 在0()U p 内有界,则(,)f x y 在点000(,)p x y 连续.证明 任取00(,)x x y y ++ 0()U p ∈,则0000(,)(,)f x x y y f x y ++-00000000(,)(,)(,)(,)f x x y y f x y y f x y y f x y =++-+++- (1) 由于(,)x f x y 在0()U p 存在,故对于取定的0y y + ,0(,)f x y y + 作为x 的一元函数在以0x 和0x x + 为端点的闭区间上可导,从而据一元函数微分学中的Lagrange 中值定理,存在(0,1)θ∈,使0000(,)(,)f x x y y f x y y ++-+ = 00(,)x f x x y y x θ++将它代入(1)式得0000(,)(,)f x x y y f x y ++-000000(,)(,)(,)x f x x y y x f x y y f x y θ=++++- (2) 由于00(,)x x y y θ++ 0()U p ∈,故00(,)x f x x y y θ++ 有界,因而当(,)(0,0)x y → 时,有00(,)0x f x x y y x θ++→又,据定理的条件知,0(,)f x y 在0y y =连续,故当(,)(0,0)x y → 时,又有0000(,)(,)0f x y y f x y +-→所以,由(2)知,有00000lim (,)(,)y x f x x y y f x y →→++- =0这说明(,)f x y 在00(,)x y 连续. 同理可证如下的定理定理2 设函数(,)f x y 在点000(,)p x y 的某邻域0()U p 有定义,(,)y f x y 在0()U p 内 有界,0(,)f x y 作为x 的一元函数在点0x x =连续,则(,)f x y 在点000(,)p x y 连续. 定理1和定理2可推广到更多元的情形中去.定理 3[5] 设函数12(,,,)n f x x x ⋅⋅⋅在点000012(,,,)n p x x x ⋅⋅⋅的某邻域0()U p 内有定义, 12(,,)i x n f x x x ⋅⋅⋅在0()U p 有界{}0111(1,2,),(,,,,)i i i n i n f x x x x x -+∈⋅⋅⋅⋅⋅⋅⋅⋅⋅作为111,,,i i n x x x x -+⋅⋅⋅⋅⋅⋅的n-1元函数在点0000111(,,,)i i n x x x x -+⋅⋅⋅⋅⋅⋅连续,则 12(,,,)n f x x x ⋅⋅⋅在 点000012(,,,)n p x x x ⋅⋅⋅连续. 证明 任取00001122(,,,,,)i i n n x x x x x x x x ++⋅⋅⋅+⋅⋅⋅+ 0()U p ∈,则 000000111(,,,,)(,,)i i n n i n f x x x x x x f x x x +⋅⋅⋅+⋅⋅⋅+-⋅⋅⋅⋅⋅⋅ =00011(,,,,)i i nn f x x x x x x +⋅⋅⋅+⋅⋅⋅+ 00000111111(,,,,,)i i i i i n n f x x x x x x x x x --++-+⋅⋅⋅++⋅⋅⋅+000000001111111(,,,,,)(,,,)i i i i i n n i n f x x x x x x x x x f x x x --++++⋅⋅⋅++⋅⋅⋅+-⋅⋅⋅⋅⋅⋅由于1(,,,i x i n f x x x ⋅⋅⋅⋅⋅⋅)在0(U p )内存在,故对于固定的{}0(1,2,,j j x x j n +∈⋅⋅⋅ \{}),i 0000111111(,,,,,,)i i i i i n n f x x x x x x x x x --+++⋅⋅⋅++⋅⋅⋅+ 作为i x 的一元函数在以01x 和0i i x x +为端点的闭区间上可导,从而据一元微分学中的Lagrange 中值定理,存在(0,1)θ∈,使00000111111(,,,,,)i i i i i i n n f x x x x x x x x x x --+++⋅⋅⋅+++⋅⋅⋅+ -00000111111(,,,,,)i i i i i nn f x x x x x x x x x --+++⋅⋅⋅++⋅⋅⋅+=00000111111(,,,,,)i x i i i i i i nn i f x x x x x x x x x x x θ--+++⋅⋅⋅+++⋅⋅⋅+ 由于00000111111(,,,,,)i i i i i i n n x x x x x x x x x x θ--+++⋅⋅⋅+++⋅⋅⋅+ 0()U p ∈故00000111111(,,,,,)i x i i i i i i n n f x x x x x x x x x x θ--+++⋅⋅⋅+++⋅⋅⋅+ 有界因而,当111(,,,,,,)(0,,0)i i i n x x x x x -+⋅⋅⋅⋅⋅⋅→⋅⋅⋅ 时,00000111111(,,,,,)0i x i i i i i i n n i f x x x x x x x x x x x θ--+++⋅⋅⋅+++⋅⋅⋅+→ .又,据定理的条件知,0111(,,,,,)i i i n f x x x x x -+⋅⋅⋅⋅⋅⋅作为111,,,,i i n x x x x -+⋅⋅⋅⋅⋅⋅的1n -元函数在点0111(,,,,)oi i nx x x x -+⋅⋅⋅⋅⋅⋅连续,故当111(,,,,,,)(0,0,0)i i i n x x x x x -+⋅⋅⋅⋅⋅⋅→⋅⋅⋅ 时,有00000111111(,,,,,)i i i i i n n f x x x x x x x x x --+++⋅⋅⋅++⋅⋅⋅+ 00000111(,,,,,)0i i i nf x x x x x -+-⋅⋅⋅⋅⋅⋅→ 所以,由(3)知,当111(,,,,,,)(0,0,0)i i i n x x x x x -+⋅⋅⋅⋅⋅⋅→⋅⋅⋅ 时,有00000111111(,,,,,)i i i i i i n n f x x x x x x x x x x --+++⋅⋅⋅+++⋅⋅⋅+ 00000111(,,,,,)0i i i n f x x x x x -+-⋅⋅⋅⋅⋅⋅→ 这说明111(,,,,,,)i i i n f x x x x x -+⋅⋅⋅⋅⋅⋅在点000000111(,,,,,)i i i np x x x x x -+⋅⋅⋅⋅⋅⋅连续. 证毕.2.2多元函数的偏导数我们知道高等数学及数学分析教材中有:////0000(,)(,)xyyx f x y f x y =此式成立的条件为:偏导数//xy f 和//yx f 在00(,)x y 都连续.下面给出一个更若条件下二元混合偏导数求导次序无关的条件.定理4 若函数(,)f x y 在0p 00(,)x y 的某邻域内偏导数/x f ,/y f 及//yx f 存在,且//yx f 在0p 对y 连续,则偏导数//xy f 在0p 存在,且 ////0000(,)(,)xyyx f x y f x y = 证明 不妨设000(,)p x y 的邻域为 :{}000()(,)(,),(,)U p x y x U x y y δδ=∈∈ 又设x在0x 有增量x 00(0,(,))x x x U x δ≠+∈ ,y在0y 有增量y 00(0,(,))y y y U y δ≠+∈ ,则要证极限////0000000(,)(,)(,)lim x x xyy f x y y f x y f x y y→+-= (1)存在且值为//00(,)xyf x y . 因为/x f 在0()U p 存在,所以/0000000(,)(,)(,)limx x f x x y y f x y y f x y y x→++-++=及 /0000000(,)(,)(,)limx x f x x y f x y f x y x→+-=都存在,将其代入(1)式右端得//00(,)xy f x y 00lim limy x →→= [][]00000000(,)(,)(,)(,)f x x y y f x y y f x x y f x y y x++-+-+- (2)作辅助函数 (,)(,)(,)x y f x x y f x y ϕ=+-因为/y f 在0()U p 存在,所以///(,)(,)(,)yy y x y f x x y f x y ϕ=+- 在0()U p 存在,故对函数0(,)x y ϕ,在以0y 和0y y + 为端点的区间上应用Lagrange 中值定理,得/000000(,)(,)(,)y x y y x y x y y y ϕϕϕθ+-=+ (01)θ<<而由(,)x y ϕ的构造可知,上式即[]0000(,)(,)f x x y y f x y y ++-+ []0000(,)(,)f x x y f x y -+-//0000(,)(,)y y f x x y y f x y y θθ⎡⎤=++-+⎣⎦ y (01)θ<<将其代入(2)式右端得//0000//0000(,)(,)(,)lim lim y y xy y x f x x y y f x y y y f x y y xθθ→→⎡⎤++-+⎣⎦=//000000(,)(,)lim limy y y x f x x y y f x y y xθθ→→++-+= (0)y ≠又因为//yx f 在0()U p 存在,所以//00000(,)(,)limy y x f x x y y f x y y xθθ→++-+ //00(,)yx f x y y θ=+//////0000000(,)lim (,)(,)xy yx yx y f x y f x y y f x y θ→=+= (//yx f 在0p 对y 连续)定理得证.2.3 多元函数的可微性考察函数的可微性时,如果知道偏导数连续,则函数一定可微.但是偏导数连续性条件常常不满足,或不易判断.熟知函数在点0p 可微的必要条件是各个偏导数在0p 处存在.如果函数(,)z f x y =在0p 处的全增量可表示为:z=A x+B y+()ορ则常数A 与B 一定为A=x f (0p ) B=y f (0P ) 且函数在0P 处可微.于是验证函数可微性的一个方法是检验极限:0limρ→00()()x y Z f p f p yρ-- 是否等于零,然而这先要求偏导数A=0()x f p 和B=0()y f p .有无可能不求偏导数,而设法判断可微性?例1 考虑函数Z=()()22221()sin ,0,00,,0,0x y x y x y x y ⎧+≠⎪+⎪⎨⎪⎪=⎩在(0,0)处的可微性.由 Z =22221()()sin()()x y x y ⎡⎤+⎣⎦+ 知22221limlim ()()sin0()()Zx y x y ρρρ→→=+=+ 能否判定此函数在(0,0)可微?事实上,上式极限等价于()Z o ρ= 或写成00()Z x y o ρ=++ 由全微分定义即知此函数在(0,0)可微,(0,0)(0,0)0x y f f ==且(0,0)dz =0这个例子启示我们有可能通过考察极限0limZρρ→ 判断某些函数的可微性.我们可以证明如下的定理定理5[2] 设n 元函数()z f p =在0p 的某个邻域内有定义,且极限0lim Zρρ→ 存在,记为α(1) 若0α≠,则函数()z f p =在0p 处不可微;(2) 若α=0,则函数在0p 处可微且00dz p =,其中221()()n x x ρ=+⋅⋅⋅+ . 我们以二元函数为例证明.证明(1)反证.设函数(,)z f x y =在000(,)p x y =处可微,则()Z A x B y o ρ=++由0lim0zραρ→=≠ 及上式可得220A B +≠ 考察等式()A xB yZo ρρρρ+=-两边的极限.令cos ,sin ,02x y ρθρθθπ==≤< ,则 左=0limlim(cos sin )A x B yA B ρρθθρ→→+=+ 极限不存在 (220A B +≠)右=0lim0Zραρ→=≠ 矛盾.故函数(,)z f x y =在0p 处不可微.(2)若0lim0Zρρ→= 即()Z o ρ= 则有 00()Z x y o ρ=++故z=f(x,y)在0p 处可微.且00dz p = 这时有0000(,)(,)0x y f x y f x y == 需要说明的是,0limZρρ→ 不存在时,函数()z f p =在0p 点的可微性不确定.我们熟知如果一个多元函数的所有偏导数在某一点都存在并连续,则它一定在该点可微.那么是不是非得满足这一条件才可微呢?以下我们介绍一个较弱条件小关于多元函数可微的定理.定理6[3] 若n+1元函数1(,,)n f x x y ⋅⋅⋅关于y 的偏导数对n+1个变量连续,关于1,n x x ⋅⋅⋅可微(即把1,(,)n f x x y ⋅⋅⋅中的y 看成常数后可微),则n+1元函数1,(,)n f x x y ⋅⋅⋅可微.证明 因为1,(,)n f x x y ⋅⋅⋅关于1,n x x ⋅⋅⋅可微,所以1//111(,,)(,,)n x n x n n f a a b x f a a b x ⋅⋅⋅+⋅⋅⋅⋅⋅⋅= 1111(,...,)(,...,)()n n n f a x a x b f a a b ορ++-+ (1) 其中2211()()n x x ρ=+⋅⋅⋅ 有因为1(,,)n f x x y ⋅⋅⋅关于y 有连续的偏导数,有Lagrange 中值定理,在b 与b+y 之间存在ζ满足/11(,,)y n n f a x a x y ζ+⋅⋅⋅+=1111(,,)(,,)n n n n f a x a x b y f a x a x b +⋅⋅⋅++-+⋅⋅⋅+由连续性有//1110lim (,)(,,)y n n y n f a x a x f a a b ρζ→+⋅⋅⋅+=⋅⋅⋅其中2221()()()n x x y ρ=+⋅⋅⋅++ ,所以//111(,,)(,,)()y n y n n f a a b y f a x a x y o ζρ⋅⋅⋅=+⋅⋅⋅++=1111(,,)(,,)()n n n n f a x a x b y f a x a x b o ρ+⋅⋅⋅++-+⋅⋅⋅++ (2)(1)+(2)得1///1111(,,)(,,)(,,)n x n x n n y n f a a b x f a a b x f a a b y ⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅=1111(,,)(,,)()()n n n f a x a x b y f a a b o o ρρ+⋅⋅⋅++-⋅⋅⋅++因为10ρρ≤≤,所以1()()o o ρρ=,即1(,,)n f x x y ⋅⋅⋅可微.推论 若n(n ≥2)元函数1(,,)n f x x ⋅⋅⋅的偏导数存在,且至多有一个偏导不连续,则1(,,)n f x x ⋅⋅⋅可微.证明 对n 作数学归纳.当n=2时,不妨设2/x f 连续,而由一元函数可导与可微的关系知12(,)f x x 关于1x 可微,由定理12(,)f x x 可微.设n=k 时结论成立,则当n=k+1时,不妨设11(,,)k k f x x x +⋅⋅⋅关于1k x +有连续偏导数,此时1//,k x x f f ⋅⋅⋅仍最多有一个不连续,由假设11(,,)k k f x x x +⋅⋅⋅关于1,k x x ⋅⋅⋅可微.所以11(,,)k k f x x x +⋅⋅⋅可微.2.4 多元函数连续性、偏导数存在性、及可微间的关系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微间的关系. 2.4.1 二元函数连续性与偏导存在性间的关系(1) 函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例 2证明函数(,)f x y 22x y =+在点(0,0)连续偏导数不存在. 证明:因为22(,)(0,0)(,)(0,0)lim (,)lim0(0,0)x y x y f x y x y f →→=+==, 故函数22(,)f x y x y =+在点(0,0)连续.由偏导数定义:2001,0(0,0)(0,0)(0,0)limlim 1,x x x x f x f x f x x x →→>⎧+-===⎨-<⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.(2)函数(,)f x y 在点000(,)p x y 偏导存在,但不一定连续.例 3 函数22,0(,)1,0x y xy f x y xy ⎧+=⎪=⎨⎪≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→→+-=== 同理可求得(0,0)0y f =因为22(,)(0,0)(,)(0,0)lim(,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+=⎪=⎨⎪≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 2.4.2 二元函数的可微性与偏导存在性间的关系(1) 可微与偏导存在定理7 (可微的必要条件)若二元函数(,)f x y 在其定义域内一点000(,)p x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,及二元函数(,)f x y 在点000(,)p x y 处的偏导即使存在,也不一定可微.例 4 证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx →→+--=== 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[]22(0,0)(0,0)(0,0)(0,0)x y x y f df f x y f f dx f dy x y⎡⎤-=++--+=⎣⎦+应是较22x y ρ=+ 的高阶无穷小量,为此考察极限220limlimf dfx y x y ρρρ→→-=+当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)limlim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.(2) 偏导连续与可微定理8 (可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)p x y 的某邻域内存在,且x f 与y f 在点000(,)p x y 处连续,则函数(,)f x y 在点000(,)p x y 可微.注2 偏导连续是函数可微的充分而非必要条件.例5 证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+⎪=⎨⎪⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)点却间断.证明 22(,),0x y x y ∀+≠,有222222121(,)2sin cos x x f x y x x y x y x y =-+++ 222222121(,)2sincos y y f x y y x y x y x y=-+++ (1)当y=x 时,极限22111lim (,)lim(2sincos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)因200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x →→-=== 200(0,)(0,0)1(0,0)limlim sin 0y y y f y f f y y y→→-=== 则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→-===即函数(,)f x y 在点(0,0)可微. 2.4.3二元函数的连续性与可微性间的关系类似于一元函数的连续性与可微性间的关系,即二元函数(,)f x y 在000(,)p x y 可微 则必然连续,反之不然.例6 证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明 (1)因为00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.(2)因为(0,0)(0,0)f f x y f x y =++-=(0,0)(0,0)0x y df f dx f dy =+=所以2222limlim lim x x y y x y x y f dfx yx yρρ→→→→→-==++当动点(,)x y 沿着线y x = 趋于(0,0)时,有221lim 02x y x y x y →→=≠+即0lim0f dfρρ→-≠ ,故(,)f x y 在原点(0,0)不可微.综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:3 小结对于多元函数的连续性,偏导存在性,可微性等概念以及它们之间因果关系的研究,是多元微分学中的一个难点.本文在分别给出了一系列关于多元函数可微、可偏导,可连续的定理之后,主要以二元函数为例,通过具体实例对多元微分学中的几个重要概念间的关系进行了一些探讨.和一元微分学相比,尽管多元微分学有许多和一元微分学情形相似,但一元函数到多元函数确有不少质的飞跃,而从二元到三元以上的函数,则只有技巧上的差别,而无本质上的不同.学习多元微分学就要紧紧抓住这两个特点,既看到它们的相同之处,又要注意不同之点.偏导连续可微连续 偏导存在参考文献:[1] 同济大学应用数学系,高等数学.(第五版,下册)[M] 北京:高等教育出版社,2002,6.[2] 刘波,李晓楠.关于多元函数可微性的一个注记[J]高等数学研究,2008.3:36—38.[3] 汪明瑾 . 一个关于多元函数可微的定理[J] 高等数学研究,2001.3:8.[4] 李晓芬 . 关于混合偏导求导次序无关的条件[J] 山西师大学报(自然科学版)1996.6:1—2.[5] 李超. 有关多元函数连续性的几个新结论[J] 韶关学院学报(自然科学版)2002.6:1-4.[6] 华东师范大学数学系.数学分析(三版)[M]北京:高等教育出版社,2004,5.[7] 张鸿,门艳红. 讨论二元函数连续性、偏导存在性、及可微性间关系[J] 哈尔滨师范大学自然科学学报,2006.1:32—34.[8] 周良金,王爱国.偏导数存在、函数连续及可微间的关系[J]高等函授学报(自然科学版),2005,10:34—40.[9] 刘玉琏,傅沛仁.数学分析讲义(三版)[M]北京:高等教育出版社,2001,2.[10] 刘玉琏,等.数学分析讲义学习辅导书(二版)[M]北京:高等教育出版社,2004,7.谢辞经过半年的忙碌和工作,本次毕业论文设计已经接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有导师的督促指导,以及一起工作的同学们的支持,想要完成这个设计是难以想象的.在这里首先要感谢我的论文指导老师张璐老师.张老师平日里工作繁多,但在我做毕业设计的每个阶段,从选题到查阅资料,论文提纲的确定,中期论文的修改,后期论文格式调整等各个环节中都给予了我悉心的指导.除了敬佩张老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,并将积极影响我今后的学习和工作,在此谨向张老师致以诚挚的谢意和崇高的敬意!在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!最后,我要向在百忙之中抽时间对本文进行审阅、评议和参加本人论文答辩的各位师长表示感谢!。

高等数学第17章第1节可微性

高等数学第17章第1节可微性

第十七章 多元函数微分学§1可微性一 可微性与全微分与一元函数一样,在多元函数微分学中,主要讨论多元函数的可微性及其应用.本章首先建立二元函数可微性概念,至于一般n 元函数的可微性不难据此相应地给出(对此,在第二十三章有更详细的论述).定义1 设函数),(y x f z =在点()000,y x P 的某领域)(0P U 内有定义,对于)(0P U 中的点),,(),(00y y x x y x P ∆+∆+=若函数f 在点0P 处的全增量z ∆可表示为: ),(),(00y x f y y x x f z -∆+∆+=∆),(ρo y B x A +∆+∆= )1(其中A,B 是仅与点0P 有关的常数,)(,22ρρo y x ∆+∆=是较ρ高阶的无穷小量,则称函数f 在点0P 可微,并称)1(式中关于y x ∆∆,的线性函数y B x A ∆+∆为函数f 在点0P 的全微分,记作y B x A y x df dz P ∆+∆==),(|000)2(由)1()2(可见dz 是z ∆的线性主部,特别当y x ∆∆,充分小时,全微分dz 可作为全增量z ∆的近似值,即).()(),(),(0000y y B x x A y x f y x f -+-+≈ )3(在使用上,有时.也把()1式写成如下形式,y x y B x A z ∆+∆+∆+∆=∆βα )4( 这里()()()().0lim lim 0,0,0,0,==→∆∆→∆∆βαy x y x例1 考察函数xy y x f =),(在点),(00y x 处的可微性. 解 在点),(00y x 处函数f 的全增量为()000000,),(,y x y y x x y x f -∆+∆+=∆ =.00y x y x x y ∆∆+∆+∆ 由于(),00→→≤∆∆=∆∆ρρρρρρyx yx因此()p o y x =∆∆.从而函数f 在00,y x 可微,且.00y x x y df ∆+∆= □二 偏导数由一元函数微分学知道:若()x f 在点0x 可微,则函数增量(),)()(00x o x A x f x x f ∆+∆=-∆+其中()0'x f =A .同样,由上一段已知,若二元函数f 在点),(00y x 可微,则f 在点),(00y x 处的全增量可由(1)式表示.现在讨论其中A 、B 的值与函数f 的关系.为此,在(4)式中令()00≠∆=∆x y ,这时得到z ∆关于x 的偏增量z x ∆,且有x x A z x ∆+∆=∆α或.α+=∆∆A xzx 现让0→∆x ,由上式便得A 的一个极限表示式.),(),(lim lim000000xy x f y x x f x z A x x x ∆-∆+=∆∆=→∆→∆ ()5容易看出,(5)式右边的极限正是关于x 的一元函数()0,y x f 在0x x =处的导数.类似地,令()00≠∆=∆y x ,由(4)式又可得到.),(),(limlim000000yy x f y y x f y zB y y y ∆-∆+=∆∆=→∆→∆ ()6它是关于y 的一元函数()y x f ,0在0y y =处的导数.二元函数当固定其中一个自变量时,它对另一个自变量的导数称为偏导数,定义如下: 定义2 设函数.),(),,(D y x y x f z ∈=若D y x ∈),(00,且()0,y x f 在0x 的某一邻域内有定义,则当极限.),(),(lim ),(lim00000000xy x f y x x f x y x f x x x ∆-∆+=∆∆→∆→∆ ()7存在时,称这个极限为函数f 在点),(00y x 关于x 的偏导数,记作()00,y x f x 或 ().00,y x xf ∂∂注意1 这里符号y x ∂∂∂∂,专用于偏导数算符,与一元函数的导数符号dxd相仿,但又有差别.注意2 在上述定义中,f 在点),(00y x 关于x (或y )的偏导数,f 至少在(){}(){}),|,(,|,000δδ<-=<-=y y x x y x xx y y y x 或上必须有定义. 若函数()y x f z ,=在区域D 上每一点()y x ,都存在对x (或对y )的偏导数,则得到函数),(y x f z =在区域D 上对x (或对)y 的偏导函数(也简称偏导数),记作),(y x f x 或xy x f ∂∂),( ()⎪⎪⎭⎫ ⎝⎛∂∂y y x f y x f y ),(,或, 也可简单地写作x f ,x z 或x f ∂∂⎪⎪⎭⎫ ⎝⎛∂∂.,y f z f y y 或 在上一章中已指出,二元函数),(y x f z =的几何图象通常是三维空间中的曲面.设()0000,,z y x P 为这曲面上一点,其中),(000y x f z =,过0P 作平面0y y =,它与曲面的交线⎩⎨⎧==),(,:0y x f z y y C是平面0y y =上的一条曲线。

多元函数的可微性

多元函数的可微性

摘要对于多元函数的连续性,偏导存在性,可微性等概念和它们之间因果关系的研究是多元微分学中的一个难点.此文在分别给出了一系列关于多元函数可微、连续,偏导存在的定理之后,本文主要以二元函数为例,通过具体实例对多元微分学中的几个重要概念间的关系进行了一些研究.多元函数微分学和一元微分学相比,虽然多元微分学有许多和一元微分学情形相似,但多元函数确也有不少质的飞跃,而从二元到三元以上的函数,则只有技复杂程度上的差别,而无本质上的不同.学习多元微分学就要抓住这两个特点,我们要看到它们的相同之处,又要分清它们不同之处.关键词连续性偏导存在性可微性AbstractFor continuous multivariate function, the existence of partial derivation, differentiability of concept and Research on the causal relationship between them, is a difficult problem in multivariate differential science. In this paper respectively gives a series on the differentiability of multivariate function, can be partial to guide, after the continuous theorem, mainly two unary as a function of example, through concrete examples for some discussion on the relations of several important concepts of differential calculus of differential calculus. And compared, although there are many multivariate differential calculus and differential calculus similar, but a function of many qualitative leap has multiple functions, and from two unary to three unary, function above, only the skills of the differences, but not essentially different. Study of differential calculus to seize these two characteristics, only to see their similarities, pay attention to different points again.KeywordsContinuity the existence of partial derivation differentiability内蒙古财经学院本科毕业论文多元函数的可微性作者姚淑艳系别统计与数学学院专业数学与应用数学年级 09 级学号 902091125指导教师王君导师职称一、绪论在这里我们讨论多元函数的可微性,多元函数是一元函数的推广,所以它保留着一元函数的一些性质,由于自变量有一个增加多个,就有了某些新的内容.以前学习的时候,我们主要学习了一元函数,对于函数()0y f x =在x 极限存在、连续、可微,以及这三个概念之间的关系.例如它们之间有一些性质:可微必连续,但连续不一定可微,连续必有极限,但有极限不一定连续.多元函数微分学是我们在大学时学习中的一个重点和难点,它涉及的内容是微积分学在多元函数中的体现,有关多元函数的连续性,可微性及偏导数存在之间的关系是我们在学习中容易发生模糊和不易把握的一个知识点. 在学习的时候容易混淆它们之间的关系。

数学分析17.1多元函数微分学之可微性

数学分析17.1多元函数微分学之可微性

第十七章 多元函数微分学1可微性一、可性性与全微分定义1:设函数z=f(x,y)在点P 0(x 0,y 0)的某邻域U(P 0)上有定义,对于U(P 0)中的点P(x,y)=(x 0+△x,y 0+△y),若f 在点P 0处的全增量可表示为: △z=f(x 0+△x,y 0+△y)-f(x 0,y 0)=A △x+B △y+o (ρ),其中ρ=22y x ∆+∆, o (ρ)是较ρ高阶的无穷小量,A,B 是仅与点P 0有关的常数, 则称函数f 在P 0可微. 并称A △x+B △y 为函数f 在点P 0的全微分, 记作dz|0P =df(x 0,y 0)=A △x+B △y.当|△x|,|△y|充分小时,dz 可作为△z 的近似值,即 f(x,y)≈f(x 0,y 0)+A(x-x 0)+B(y-y 0). 有时也表示为: △z= A △x+B △y+α△x+β△y ;其中)0,0()y x,(lim→∆∆α=)0,0()y x,(lim→∆∆β=0.例1:考察函数f(x,y)=xy 在点(x 0,y 0)处的可微性. 解:在点(x 0,y 0)处函数的全增量为:△z=f(x 0+△x,y 0+△y)-f(x 0,y 0)=y 0△x+x 0△y+△x △y.∵ρy x ∆∆ρy∆≤ρ→0, ρ→0.∴△x △y=o (ρ),∴f 在(x 0,y 0)处的可微, 且df=y 0△x+x 0△y.二、偏导数定义2:设函数z=f(x,y), (x,y)∈D, 若(x 0,y 0)∈D 且f(x,y 0)在x 0的某一邻域内有定义,则极限x )y ,x (f lim00x 0x ∆∆→∆=x)y ,x (f )y x,x (f lim 00000x ∆-∆+→∆存在时,这个极限称为函数f 在(x 0,y 0)关于x 的偏导数,记作: f x (x 0,y 0)或z x (x 0,y 0),)y ,(x 0xf∂∂,)y ,(x 00xz ∂∂.同样定义f 在点(x 0,y 0)关于y 的偏导数为:f y (x 0,y 0)或)y ,(x 00yf ∂∂.若f 在区域D 上每一点(x,y)都存在对x(或对y)的偏导数,则f 在区域D 上对x(或对y)的偏导函数(简称偏导数),记作:f x (x,y)或xy)f(x,∂∂ (f y (x,y)或y y)f(x ,∂∂) 也简写为f x ,z x 或x f ∂∂,xz ∂∂( f y ,z y 或y f ∂∂,y z ∂∂).注:1、这里符号x ∂∂,y ∂∂专用于偏导数运算,与一元函数的导数符号dxd相似,又有差别;2、定义中,f 在点(x 0,y 0)存在关于x(或y)的偏导数,f 至少在 {(x,y)|y=y 0,|x-x 0|<δ}(或{(x,y)|x=x 0,|y-y 0|<δ})上必须有定义.二元函数偏导数的几何意义:设P 0(x 0,y 0,z 0)是曲面z=f(x,y)上一点,过P 0作平面y=y 0与曲面的交线为C :其中⎩⎨⎧==y),x (f z y y 0是平面上的一条曲线.因此,f x (x 0,y 0)作为一元函数f(x,y 0)在x=x 0的导数,就是曲线C 在点P 0处的切线T x 对于x 轴的斜率,即T x 与x 轴正向所成倾角的正切tan α.同样的,f y (x 0,y 0)是平面x=x 0曲面z=f(x,y)的交线⎩⎨⎧==y),x (f z x x 0在点P 0处的切线T y 关于y 轴的斜率tan β.例2:求函数f(x,y)=x 3+2x 2y-y 3在点(1,3)关于x 和关于y 的偏导数. 解法1:f x (1,3)=1x dxdf(x,3)==3x 2+12x 1x ==15;f y (1,3)=3y dyy)df(1,==2-3y 23y ==-25.解法2:∵f x (x,y)=3x 2+4xy ,∴f x (1,3)=15;又f y (x,y)=-3y 2+2x 2,∴f x (1,3)=-25.例3:求函数z=x y (x>0)的偏导数. 解:z x =yx y-1;z y =x y lnx.例4:求三元函数u=sin(x+y 2-e z )的偏导数.解:u x =cos(x+y 2-e z );u y =2ycos(x+y 2-e z );u z =-e z cos(x+y 2-e z ).三、可微性条件定理17.1:(可微的必要条件)若二元函数f 在定义域内一点(x 0,y 0)可微,则f 在该点关于每个自变量的偏导数都存在,且△z=A △x+B △y+o (ρ)中A=f x (x 0,y 0), B=f y (x 0,y 0). 即全微分df)y ,(x 00=f x (x 0,y 0)·△x+f y (x 0,y 0)·△y.或dz=f x (x 0,y 0)dx+f y (x 0,y 0)dy. f 在D 上全微分为df(x,y)=f x (x,y)dx+f y (x,y)dy.例5:考察函数f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x xy 222222,在原点的可微性.解:根据偏导数的定义,f x (0,0)=x)0,0(f )x,0(f limx ∆-∆→∆=0; 同理f y (0,0)= 0;△z-dz=f(△x,△y)-f(0,0)-f x (0,0)△x-f y (0,0)△y=22yx y x ∆+∆∆∆.∵ρdz-z lim 0ρ∆→=220ρy x y x lim ∆+∆∆∆→不存在,即△z-dz 不是ρ的高阶无穷小量, ∴f 在原点不可微.定理17.2:(可微的充分条件)若函数z=f(x,y)的偏导数在点(x 0,y 0)的某邻域上存在,且f x 与f y 在点(x 0,y 0)连续,则函数f 在点(x 0,y 0)可微. 证:△z=f(x 0+△x,y 0+△y)-f(x 0,y 0)=[f(x 0+△x,y 0+△y)-f(x 0,y 0+△y)]+[f(x 0,y 0+△y)-f(x 0,y 0)];即全增量等于两个偏增量的和. 对它们分别应用拉格朗日中值定理得: △z=f x (x 0+θ1△x,y 0+△y)△x+f y (x 0,y 0+θ2△y)△y, 0<θ1,θ2<1. (中值公式) ∵f x 与f y 在点(x 0,y 0)连续,∴f x (x 0+θ1△x,y 0+△y)=f x (x 0,y 0)+α, f y (x 0,y 0+θ2△y)=f y (x 0,y 0)+β, 其中当(△x,△y)→(0,0)时,α→0, β→0. ∴△z=f x (x 0,y 0)△x+f y (x 0,y 0)△y+α△x+β△y ,即f 在点(x 0,y 0)可微.注1:例2函数f(x,y)=x 3+2x 2y-y 3在点(1,3)可微,且df(1,3)=15dx-25dy ;例3函数z=x y 在D={(x,y)|x>0,- ∞<y<+∞}上可微,且dz=yx y-1dx+x y lnxdy. 注2:偏导数连续并不是函数可微的必要条件,如函数f(x,y)=⎪⎩⎪⎨⎧=+≠+++0y x 00y x y x 1sin )y x (22222222,在原点(0,0)可微,但 f x 与f y 却在点(0,0)不连续. 若z=f(x,y)在点(x 0,y 0)的偏导数f x ,f y 连续,则称f 在(x 0,y 0)连续可微.定理17.3:(中值公式)设函数f 在点(x 0,y 0)的某邻域上存在偏导数,若(x,y)属于该邻域,则存在ξ=x 0+θ1(x-x 0)和η=y 0+θ2(y-y 0), 0<θ1,θ2<1,使得 f(x,y)-f(x 0,y 0)=f x (ξ,y 0)(x-x 0)+f y (x 0,η)(y-y 0).注:1、函数可微必连续,但连续不一定存在偏导数,也不一定可微. 如:函数f(x,y)=22y x +(圆锥)在原点连续,但在该点不存在偏导数; 2、函数在某一点存在对所有自变量的偏导数,不保证在该点连续,如:f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x xy222222, 在原点不连续,但两个偏导数都为0.四、可微性几何意义及应用定义3:设P 是曲面S 上一点,T 为通过点P 的一个平面,曲面S 上的动点Q 到定点P 和到平面T 的距离分别为d 与h ,若当Q 在S 上以任何方式趋近于P 时,恒有dh→0,则平面T 为曲面S 到点P 处的切平面,P 为切点.定理17.4:曲面z=f(x,y)在点P(x 0,y 0,f(x 0,y 0))存在不平行于x 轴的切平面T 的充要条件是函数f 在点(x 0,y 0)可微.证:[充分性]若函数f 在点(x 0,y 0)可微,由定义知,△z=z-z 0=f x (x 0,y 0)(x-x 0)+f y (x 0,y 0)(y-y 0)+o (ρ);ρ=2020)y -(y )x -(x +. 在过P 的平面T 上任取点(X,Y,Z),若有Z-z 0=f x (x 0,y 0)(X-x 0)+f y (x 0,y 0)(Y-y 0);则曲面上任一点Q(x,y,z)到这个平面的距离为: h=)y ,(x f )y ,(x f 1|)y -)(y y ,(x f -)x -)(x y ,(x f -z -z |002y002x000y 000x 0++=)y ,(x f )y ,(x f 1|) (ρ|002y002x++ο,又P 到Q 的距离为d=202020)z -(z )y -(y )x -(x ++=202)z -(z ρ+≥ρ. 由0≤dh <ρh =)y ,(x f )y ,(x f 11ρ|) (ρ|002y 002x ++ο→0, ρ→0,根据定义3知, 平面T 为曲面z=f(x,y)在点P(x 0,y 0,f(x 0,y 0))的切平面.[必要性]若曲面z=f(x,y)在点P(x 0,y 0,f(x 0,y 0))存在不平行于x 轴的切平面, 且Q(x,y,z)是曲面上任意一点,则点Q 到这个平面的距离为: h=22000B A 1|)y -B(y -)x -A(x -z -z |++,令△x=x-x 0,△y=y-y 0,△z=z-z 0,ρ=22y x ∆+∆.由切平面定义知,当Q 充分接近P 时,dh →0,∴对于充分接近P 的Q 有d h =22B A 1d |y B -x A -z |++∆∆∆<22BA 121++, 即 |△z-A △x-B △y|<2d=222z y x 21∆+∆+∆=22z ρ21∆+<21(ρ+|△z|), 又|△z|-|A||△x|-|B||△y|≤|△z-A △x-B △y|<21(ρ+|△z|),∴21|△z|<|A||△x|+|B||△又由ρ|z |∆<2(|A|ρ|x |∆+|B|ρ|y |∆)+1<2(|A|+|B|)+1知,ρ|z |∆有界,从而 由ρd =ρz ρ22∆+=2ρz 1⎪⎪⎭⎫ ⎝⎛∆+<1+ρz ∆<2(|A|+|B|+1)知,ρd也有界. 于是,当ρ→0时,有ρ|y B -x A -z |∆∆∆=2222B A 1ρd B A 1d |y B -x A -z |++++∆∆∆=22B A 1ρdd h ++→0,ρ→0, 即△z= A △x|+B △y+o (ρ),即函数z=f(x,y)在点(x 0,y 0)可微.注:定理17.4说明,若函数f 在点(x 0,y 0)可微,则曲面z=f(x,y)在点P(x 0,y 0,f(x 0,y 0))的切平面方程为:z-z 0=f x (x 0,y 0)(x-x 0)+f y (x 0,y 0)(y-y 0), 过切点P 与切平面垂直的直线称为曲面在点P 的法线. 由切面方程知,法线的方向数为:±(f x (x 0,y 0),f y (x 0,y 0),-1),即 过切点P 的法线方程为:)y ,(x f x -x 00x 0=)y ,(x f y -y 00x 0=1-z -z 0.二元函数全微分的几何意义如图所示: 当自变量x,y 的增量分别为△x,△y 时, 函数z=f(x,y)的增量△z 是竖坐标上的一段NQ , 而二元函数z=f(x,y)在点(x 0,y 0)的全微分 dz=f x (x 0,y 0)△x+f y (x 0,y 0)△y 的值是过点P 的切平面PM 1MM 2上相应的增量NM , 于是△z 与dz 之差MQ 的值随着ρ→0而趋于零, 而且是较ρ高阶的无穷小量.例6:试求抛物面z=ax 2+by 2在点M(x 0,y 0,z 0)的切平面方程与法线方程. 解:∵f x (x 0,y 0)=2ax 0, f y (x 0,y 0)=2by 0, ∴在点M(x 0,y 0,z 0)的切平面方程为: z-z 0=2ax 0(x-x 0)+2by 0(y-y 0),即z=2ax 0x+2by 0y-z 0-z=0; 在点M(x 0,y 0,z 0)的法线方程为:002ax x -x =002by y -y =1-z -z 0.例7:求1.083.96的近似值.解:设f(x,y)=x y , 令x 0=1, y 0=4, △x=0.08, △y=-0.04, 则 1.083.96=f(x 0+△x,y 0+△y)≈f(1,4)+f x (1,4)△x+f y (1,4)△y =1+4×0.08+0×(-0.04)=1.32.例8:应用公式S=21absinC 计算某三角形面积,现测得a=12.50, b=8.30,C=30⁰,若测量a,b 的误差为±0.01,C 的误差为±0.1⁰,求用此公式计算三角形面积时的绝对误差限与相对误差限. 解:依题意,测量中a,b,C 的绝对误差限分别为:|△a|=0.01, |△b|=0.01, |△C|=0.1⁰=08001π. ∴S 的绝对误差限分别为: |△S|≈|dS|=a a S ∆∂∂+b b S∆∂∂+C C S ∆∂∂≤a a S ∆∂∂+b b S ∆∂∂+C C S ∆∂∂=21|bsinC||△a|+21|asinC||△b|+21|abcosC|≈0.13. 又S=21absinC ≈25.94,∴S 的相对误差限为:SS ∆≈25.9413.0≈0.5%.习题1、求下列函数的偏导数: (1)z=x 2y ;(2)z=ycosx ;(3)z=22y x 1+;(4)x=ln(x 2+y 2);(5)z=e xy ;(6)z=arctan x y ;(7)z=xye sin(xy);(8)u=x y +y z -zx ;(9)u=(xy)z ;(10)u=zy x .解:(1)z x =2xy; z y =x 2. (2)z x =-ysinx; z y =cosx.(3)z x =322)y (x x +-; z y =322)y (x y +-.(4)z x =22y x x 2+; z y=22y x y2+. (5)z x =ye xy ; z y =xe xy . (6)z x =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+22x y 1x x-=22y x x -+; z y =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+2x y 1x 1=22yx x +. (7)z x =ye sin(xy)+xy 2e sin(xy)cos(xy); z y =xe sin(xy)+x 2ye sin(xy)cos(xy). (8)u x =-2x y -z 1; u y =x 1-2y z ; u z =y 1+2zx. (9)u x =yz(xy)z-1; u y =xz(xy)z-1; u z =(xy)z ln(xy). (10)u x =y z1y z x -; u y =zy z-1zy x lnx; u z =y zzy x lnx·lny.2、设f(x,y)=x+(y-1)arcsinyx,求f x (x,1). 解:∵f(x,1)=x ,∴f x (x,1)=1.3、设f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x yx 1ysin 222222,,考察f 在原点(0,0)的偏导数. 解:∵x)0,0(f )x,00(f lim0x ∆-∆+→∆=x 00lim 0x ∆-→∆=0,∴f x (0,0)=0;又y )0,0(f )y ,00(f lim 0y ∆-∆+→∆=20y y)(1sin lim ∆→∆不存在,f y (0,0)不存在.4、证明函数z=22y x +在点(0,0)连续,但偏导数不存在.证:∵22)0,0()y x,(y x lim +→=0=z(0,0),∴z=22y x +在点(0,0)连续. 又x)0,0(f )x,00(f lim0x ∆-∆+→∆=x |x |lim 0x ∆∆→∆,y )0,0(f )y ,00(f lim 0y ∆-∆+→∆=x |x |lim0x ∆∆→∆, 即两个极限都不存在,∴两个偏导数都不存在.5、考察函数f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x yx 1xysin 222222,在点(0,0)的可微性. 解:∵x)0,0(f )x,00(f lim 0x ∆-∆+→∆=x 00lim 0x ∆-→∆=0,∴f x (0,0)=0;同理f y (0,0)=0;又ρy)0,0(f -x )0,0(f f y x ∆∆-∆=2222y)(x)(1siny)(x)(y x ∆+∆∆+∆∆∆≤2222y)(x)(2y)(x)(∆+∆∆+∆=2y)(x)(22∆+∆→0,ρ→0,∴f 在点(0,0)可微.6、证明函数f(x,y)=⎪⎩⎪⎨⎧=+≠++0y x 00y x y x y x 2222222,在点(0,0)连续且偏导数存在,但在此点不可微.证:∵222yx y x +≤2xy y x 2=2x→0,(x,y)→0,即)0,0()y x,(lim →f(x,y)=0=f(0,0),∴f 在点(0,0)连续. 又x )0,0(f )x,00(f lim0x ∆-∆+→∆=x 00lim 0x ∆-→∆=0,y )0,0(f )y ,00(f lim 0y ∆-∆+→∆=x 00lim 0x ∆-→∆=0, ∴f x (0,0)=0; f y (0,0)=0. 但ρy)0,0(f -x )0,0(f f y x ∆∆-∆=3222]y)(x)[(y x)(∆+∆∆∆. 当△x=△y 时,3222]y)(x)[(y x)(∆+∆∆∆=81,当y=0时,3222]y)(x)[(yx)(∆+∆∆∆=0.∴ρy)0,0(f -x )0,0(f f lim y x 0ρ∆∆-∆→不存在,∴f 在点(0,0)不可微.7、证明函数f(x,y)=⎪⎩⎪⎨⎧=+≠+++0y x 00y x y x 1sin )y x (22222222,在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在点(0,0)可微. 证:∵2222y x 1sin)y x (++≤x 2+y 2→0,(x,y)→0,即)0,0()y x,(lim →f(x,y)=0=f(0,0),∴f 在点(0,0)连续.当x 2+y 2≠0时,f x (x,y)=2xsin 22yx 1+-22y x x +cos 22y x 1+, ∵)0,0()y x,(lim →2xsin 22yx 1+=0,而)0,0()y x,(lim→22yx x +cos22yx 1+不存在,∴)0,0()y x,(lim →f x (x,y)不存在,即f x (x,y)在点(0,0)不连续, 同理f x (x,y)在点(0,0)不连续. 但x)0,0(f )x,00(f lim 0x ∆-∆+→∆=x 1x sin lim 0x ∆∆→∆=0,∴f x (0,0)=0;同理f y (0,0)=0. ∴ρy)0,0(f -x )0,0(f f y x ∆∆-∆=222222y)(x)(1siny)(x)(y)(x)(∆+∆∆+∆∆+∆≤22y)(x)(∆+∆→0,ρ→0,∴f 在点(0,0)可微.8、求下列函数在给定点的全微分: (1)z=x 4+y 4-4x 2y 2在点(0,0), (1,1);(2)z=22yx x +在点(1,0),(0,1).解:(1)∵z x =4x 3-8xy 2,z y =4y 3-8x 2y 在(0,0)和(1,1)都连续,∴z 在(0,0)和(1,1)都可微;又z x (0,0)=0, z y (0,0)=0; z x (1,1)=-4, z y (1,1)=-4;∴dz|(0,0)=0;dz|(1,1)=-4(dx+dy).(2)∵z x =2222222yx y x x y x ++-+=3222)y (x y +在(1,0)和(0,1)都连续;z y =2222yx y x xy ++-=322)y (x xy -+在(1,0)和(0,1)也都连续;∴z 在(1,0)和(0,1)都可微;又z x (1,0)=0, z y (1,0)=0; z x (0,1)=1, z y (0,1)=0; ∴dz|(1,0)=0;dz|(0,1)= dx.9、求下列函数的全微分:(1)z=ysin(x+y);(2)u=xe yz +e -z +y. 解:(1)∵z x =ycos(x+y), z y =sin(x+y)+ycos(x+y)在R 2上都连续, ∴z 在R 2上可微;且dz=ycos(x+y)dx+[sin(x+y)+ycos(x+y)]dy. (2)∵u x =e yz , u y =xze yz +1, u z =xye yz -e -z 在R 3上都连续, ∴u 在R 3上可微;且dz=e yz dx+(xze yz +1)dy+(xye yz -e -z )dz.10、求曲面z=arctan xy 在点(1,1,4π)的切平面方程和法线方程. 解:∵z 在(1,1)处可微,∴切平面存在. 又z x (1,1)=-21,z x (1,1)=21, ∴切平面方程为-21(x-1)+21(y-1)-(z-4π)=0,即x-y+2z=2π;法线方程:21-1-x =211-y =14π-z -,即2(1-x)=2(y-1)=4π-z.11、求曲面3x 2+y 2-z 2=27在点(3,1,1)的切平面与法线方程.解:3x 2+y 2-z 2=27两边对x 微分得:6x-2z·z x =0,∴z x =3x 1z 2z6x ===9;3x 2+y 2-z 2=27两边对y 微分得:2y-2z·z y =0,∴z y =1x 1z 2z2y===1;∴切平面方程为9(x-3)+(y-1)-(z-1)=0,即9x+y-z-27=0; 法线方程:93-x =11-y =11-z -,即x-3=9(y-1)=9(1-z).12、在曲面z=xy 上求一点,使这点的切平面平行于平面x+3y+z+9=0, 并写出该切平面方程和法线方程.证:设该点为(x 0,y 0,x 0y 0),∵z x (x 0,y 0)=y 0; z y (x 0,y 0)=x 0;∴切平面方程为y 0(x-x 0)+x 0(y-y 0)-(z-x 0y 0)=0,即y 0x+x 0y-z-x 0y 0=0; 由切平面平行于平面x+3y+z+9=0知,y 0=-1; x 0=-3. ∴该点切平面方程为-x-3y-z-3=0,即x+3y+z+3=0. 由00y x -x =00x y -y =1-y x -z 00得1-3x +=3-1y +=1-3-z . ∴该切平面的法线方程为: 3(x+3)=y+1=3(z-3).13、计算近似值:(1)1.002×2.0032×3.0043;(2)sin29⁰·tan46⁰.解:(1)设u=xy 2z 3; x 0=1,y 0=2,z=3; △x=0.002, △y=0.003, △z=0.004;则 u(1,2,3)=108; u x (1,2,3)=108; u y (1,2,3)=108; u z (1,2,3)=108.由u(1.002,2.003,3.004)=u(1,2,3)+u x (1,2,3)△x+u y (1,2,3)△y+u z (1,2,3)△z, 得1.002×2.0032×3.0043≈108(1+0.002+0.003+0.004)=108.972. (2)设z=sinxtany; x 0=6π,y 0=4π; △x=-180π, △y=180π;则 z(6π,4π)=21;z x (6π,4π)=tan 4πcos 6π=23; u z (6π,4π)=sin 6πsec 24π=1;∴sin29⁰·tan46⁰≈21-23×180π+180π≈0.5023.14、设圆台上下底的半径分别为R=30cm, r=20cm, 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm ,求此圆台体积变化的近似值. 解:圆台体积为:V(R,r,h)=3πh(R 2+Rr+r 2), ∴V R (30,20,40)=3π(2×40×30+40×20)=33200π, V r (30,20,40)=3π(2×40×20+40×30)=32800π, V h (30,20,40)=3π(302+30×20+202)=31900π, 当△R=0.3,△r=0.4,△h=0.2时, △V ≈33200π×0.3+32800π×0.4+31900π×0.2=820π≈2576(cm 3). ∴此圆台体积约增加了2576cm 3.15、证明:若二元函数f 在点P(x 0,y 0)的某邻域U(P)上的偏导函数f x 与f y 有界,则f 在U(P)上连续.证:∵f x ,f y 在U(P)有界, 设此邻域为U(P;δ1),则 存在M>0, 使|f x |<M, |f y |<M 在U(P;δ1)内成立. 又|△f|=|f(x+△x,y+△y)-f(x,y)|=|f x (x+θ1△x,y+△y)△x+f y (x,y+θ2△y)△y| ≤M|△x |+M|△y|, ∴∀ε>0, ∃δ=min{δ1,1)2(M ε}, 使当|△x |<δ,|△y |<δ时,就有|f(x+△x,y+△y)-f(x,y)|< ε,∴f 在U(P; δ)上连续.16、设二元函数f 在区域D=[a,b]×[c,d]上连续. (1)若在intD 内有f x ≡0,试问f 在D 上有何特性? (2)若在intD 内有f x =f y ≡0,f 又怎样?(3)在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?解: (1)f(x,y)=φ(y). 即函数值与x 无关. 理由如下: 对intD 内任意两点(x 1,y),(x 2,y),由中值定理知: f(x 2,y)-f(x 1,y)=f x (x+θ(x 2-x 1),y)(x 2-x 1)=0,即f(x 2,y)=f(x 1,y), 由(x 1,y),(x 2,y)的任意性知,f(x,y)=φ(y).(2)若在intD 内有f x =f y ≡0,则f(x,y)=常数,即函数值与x,y 无关. 证: 对intD 内任意两点(x 1,y 1),(x 2,y 2),由中值定理知存在 ξ=x 1+θ1(x 2-x 1), η=y 1+θ2(y 2-y 1),使得f(x 2,y 2)-f(x 1,y 1)=f x (ξ,y 2)(x 2-x 1)+f x (x 1,η)(y 2-y 1),∵f x =f y ≡0,∴f(x 2,y 2)≡f(x 1,y 1). 由(x 1,y 1),(x 2,y 2)的任意性知,f(x,y)=常数.(3)(1)中关于f 在D 上的连续性假设不能省略,否则不一定成立.例如,在矩形区域D=⎢⎣⎡-23,⎥⎦⎤23×[0,2]上二元函数f(x,y)=⎩⎨⎧>>中其它部分D 00y 0,x y 3,在intD 内,f x ≡0,但不连续,f(1,1)=1; f(-1,1)=0, 显然f 与x 有关,结论不成立.(1)中长方形区域不能改为任意区域,否则不一定成立.例如,设I={(x,y)|x=0,y ≥0}, D=R 2-I ,则二元函数f(x,y)=⎩⎨⎧>>中其它部分D 0y 0,x y 3, 在D 上连续,且f x ≡0,但f(1,1)=1; f(-1,1)≡0, 即f 与x 有关,结论不成立.17、试证在原点(0,0)的充分小邻域内,有arctan x y1yx ++≈x+y. 证:设f(u,v)=arctan uv1vu ++,u 0=0,v 0=0,△u=x,△v=y ,则 arctanx y1yx ++≈f(u 0,v 0)+f u (u 0,v 0)△u+f v (u 0,v 0)△v ,其中 f(u 0,v 0)=arctan0=0, f u (u 0,v 0)=f v (u 0,v 0)=1,∴arctan x y1yx ++≈△u+△v=x+y.18、求曲面z=4y x 22+与平面y=4的交线在x=2处的切线与Ox 轴的交角.解:∵z x (2,4)=2x|x=2=1;∴切线与Ox 轴的交角为arctan1=4π.19、试证(1)乘积的相对误差限近似于各因子相对误差限之和; (2)商的相对误差限近似于分子和分母相对误差限之和. 证:(1)设u=xy, 则du=ydx+xdy ,∴u u ∆≈u du =y dy x dx +≤x dx +ydy. (2)设v=yx , 则dv=y dx -2y xdy,∴v v ∆≈v dv =y dy x dx -≤x dx +ydy .20、测得一物体的体积V=4.45cm 3, 其绝对误差限为0.01cm 3;又测得重量W=30.80g,其绝对误差限为0.01g. 求由公式d=VW算出的密度d 的相对误差限和绝对误差限. 解:|△d|≈|d W ·△W+d v ·△V|=V VW V W 2∆-∆=01.045.430.804.4501.02⨯-≈0.017. 方法一:d d ∆=W d V ∆=30.80017.045.4⨯≈0.25%; 方法二:d d ∆≈W dW +VdV ≈0.032%+0.225%≈0.26%; ∴密度d 的相对误差限为约0.25%(或0.26%),绝对误差限为0.017.。

多元导数可导可微连续的关系

多元导数可导可微连续的关系

多元导数可导可微连续的关系多元导数可导可微连续的关系在数学中,多元函数的导数、可导性和可微性是非常重要的概念。

它们之间存在着密切的关系,理解这些关系对于深入理解多元函数的性质和特点至关重要。

在本篇文章中,我们将深入探讨多元导数可导可微连续的关系,并从简到繁,由浅入深地展开讨论。

1. 多元函数的导数让我们简单回顾一下多元函数的导数。

对于一个函数f(x1, x2, ..., xn),它的偏导数可以表示为∂f/∂xi,而函数的导数可以表示为▽f =(∂f/∂x1, ∂f/∂x2, ...,∂f/∂xn)。

多元函数的导数可以帮助我们理解函数在不同方向上的变化率,是研究多元函数性质的重要工具。

2. 可导性和可微性的概念接下来,我们来进一步讨论多元函数的可导性和可微性。

对于一个多元函数 f(x1, x2, ..., xn),如果存在一个点 (a1, a2, ..., an),使得极限lim┬(Δx→0)⁡〖(f(a1+Δx1, a2+Δx2, ..., an+Δxn)-f(a1, a2, ..., an)-∂f/∂x1Δx1-∂f/∂x2Δx2-...-∂f/∂xnΔxn)/│(Δx1,Δx2, ..., Δxn)│ 〗= 0成立,那么我们说函数在点 (a1, a2, ..., an) 可导,此时函数的导数就是由偏导数所构成的向量,即▽f(a1, a2, ..., an)。

如果一个函数在定义域内的每个点都可导,我们就称这个函数在该定义域内可导。

而可微性则是指函数在可导的情况下,函数的微分近似于其导数的线性变换。

3. 多元导数和可导可微的关系那么,多元导数与可导可微的关系是怎样的呢?在多元函数可导的情况下,它一定是连续的。

因为可导的定义本身需要对极限的存在进行要求,而对极限的要求可以保证函数在该点连续。

但是,可导并不一定代表可微,可导代表了在该点附近存在线性逼近,而可微代表了在该点的微分存在且近似于其导数的线性变换。

多元函数的连续性与可微性分析

多元函数的连续性与可微性分析

多元函数的连续性与可微性分析多元函数是一个与多个自变量相关的函数,其在数学和应用领域中具有重要的意义。

在研究多元函数的性质时,连续性和可微性是两个基本概念。

本文将对多元函数的连续性和可微性进行分析,并介绍这两个概念的重要性和应用。

1. 多元函数的连续性:连续性是指函数在某个区间上的连续性质。

对于多元函数而言,连续性的概念与一元函数类似,即函数在某一点上的极限存在且与该点的函数值相等。

形式化地说,设函数f(x, y)定义在某个区域D上,对于D内的任意一点P0(x0, y0),如果满足以下条件,则称函数f(x, y)在P0处连续:1) f(x0, y0)存在;2) 当(x, y)趋向于P0时,函数值f(x, y)趋向于f(x0, y0)。

连续性保证了函数的稳定性和可计算性。

连续函数在数学分析、物理学、经济学等领域具有广泛的应用。

通过研究函数的连续性,可以得到函数在某个区域内的性质和行为。

2. 多元函数的可微性:可微性是指函数在某个点上存在全部偏导数,且这些偏导数在该点上连续。

对于二元函数而言,函数的可微性可以通过一阶偏导数来判断。

形式化地说,设函数f(x, y)定义在某个区域D上,对于D内的任意一点P0(x0, y0),如果满足以下条件,则称函数f(x, y)在P0处可微:1) f(x, y)在P0处存在偏导数;2) 偏导数在P0处连续。

可微性是连续性的更严格要求,可微函数不仅在某个点上连续,而且具备了切线和法平面的概念。

可微函数在微积分、优化等领域有重要的应用。

通过研究函数的可微性,可以得到函数的局部性质和最优解等信息。

多元函数的连续性和可微性是函数分析的基础,它们在数学和应用中发挥着重要的作用。

通过这两个概念,我们可以了解函数的局部变化、极值点和极值等信息。

在数学分析中,我们可以使用极限的性质和一阶导数测试一个函数的连续性和可微性。

对于多元函数的连续性,我们可以通过极限的定义和极限的性质判断函数在某点的连续性。

多元函数可微的充分条件

多元函数可微的充分条件

多元函数可微的充分条件多元函数可微是微积分中的一个重要概念。

我们知道,在一元函数的情况下,函数可微的充分条件是其在这一点处的导数存在。

而对于多元函数,则需要更加严谨的定义和判定方法。

下面,我们来分步骤探讨多元函数可微的充分条件。

1.多元函数定义在介绍多元函数的可微性之前,我们先来定义一下多元函数。

多元函数是n个自变量x1,x2,...,xn所组成的函数f(x1,x2,...,xn),其取值为实数。

例如,三元函数f(x,y,z)=x^2+y^2+z^2就是一个多元函数,其中,x,y,z是自变量,f(x,y,z)是其函数值。

2.偏导数的定义在讨论多元函数的可微性之前,我们先来介绍一下偏导数的概念,因为它是判断多元函数可微的基础。

对于函数f(x1,x2,...,xn),在点(x1,x2,...,xn)处,对第i个自变量xi求偏导数的定义为:∂f/∂xi = lim Δxi→0 [f(x1,x2,...,xi+Δxi,...,xn) -f(x1,x2,...,xi,...,xn)]/Δxi其中,Δxi表示xi的增量,即Δxi=xi-xi0,xi0为xi的一个近似值,Δxi→0表示极限。

偏导数代表了函数在某一点处沿着此方向的变化率。

3.全微分的定义在讨论多元函数可微性时,还需要引入全微分的概念。

对于函数f(x1,x2,...,xn),在点(x1,x2,...,xn)处的全微分df 定义为:df = ∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn其中,dx1,dx2,...,dxn是自变量的增量。

全微分可以理解为函数在某一点处的微小变化量。

4.多元函数可微的充分条件有了偏导数和全微分的概念,我们就可以来讨论多元函数可微的充分条件了。

多元函数f(x1,x2,...,xn)在点(x1,x2,...,xn)处可微的充分条件是:存在n个偏导数∂f/∂xi(i=1,2,...,n),使得全微分df=∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn在该点处存在,并且满足:Δf = f(x1+Δx1,x2+Δx2,...,xn+Δxn) - f(x1,x2,...,xn) = df + o(√Δx1^2+Δx2^2+...+Δxn^2)其中,o(√Δx1^2+Δx2^2+...+Δxn^2)表示高阶无穷小,即当Δx1,Δx2,...,Δxn趋近于0时,o(√Δx1^2+Δx2^2+...+Δxn^2)趋近于0。

多元函数可微,连续,偏导数存在的关系证明

多元函数可微,连续,偏导数存在的关系证明

多元函数可微,连续,偏导数存在的关系证明多元函数的可微性、连续性和偏导数存在性是研究多元函数的三个重要的性质。

它们之间存在着一定的联系和关系。

本文将证明多元函数的可微性、连续性和偏导数存在性的相关性。

一、多元函数的可微性多元函数的可微性是指,若函数f(x1,x2,…,xn) 在点P0(x10,x20,…,xn0) 处的偏导数存在,且它在这一点处有连续的增量(即对任意小的增量Δ x1, Δ x2, …, Δ xn,都存在有限的增量Δ f 与它们的乘积之比趋于常数),则f(x1,x2,…,xn) 在 P0 处可微。

二、多元函数的连续性多元函数的连续性是指,若函数f(x1,x2,…,xn) 在点P0(x10,x20,…,xn0) 处连续,即对于任意的以 P0 为中心、半径为ε 的球面区域,都存在一个正数δ,使得当 |x1–x10|, |x2–x20|, …, |xn–xn0| 均小于δ 时,有|f(x1,x2,…,xn)–f(x10,x20,…,xn0)|<ε,则f(x1,x2,…,xn) 在 P0 处连续。

三、多元函数的偏导数存在性多元函数的偏导数存在性是指,若函数f(x1,x2,…,xn) 在点P0(x10,x20,…,xn0) 处的偏导数均存在,则f(x1,x2,…,xn) 在 P0 处的偏导数存在。

四、证明多元函数可微性和连续性的关系假设多元函数f(x1,x2,…,xn) 在点P0(x10,x20,…,xn0) 处显然是可微的,则其在 P0 处的偏导数存在,即:∂f/∂x1 = lim(Δf/Δx1)∂f/∂x2 = lim(Δf/Δx2)…∂f/∂xn = lim(Δf/Δxn)其中Δf 为函数值在 P0 和P1(x1,x2,…,xn) 处的差,Δx1,Δx2, …, Δxn 为x1, x2, …, xn 在 P0 和 P1 处的差。

对于可微的f(x1,x2,…,xn),由定义可知:Δf = ∂f/∂x1 Δx1 + ∂f/∂x2 Δx2 + … + ∂f/∂xn Δxn +ε1(Δx1)^2 + ε2(Δx2)^2 + … + εn(Δxn)^2其中ε1, ε2, …, εn 为小量,且当Δx1, Δx2, …, Δxn 无限趋近于 0 时,它们趋近于 0。

多元函数的可导和可微关系

多元函数的可导和可微关系

多元函数的可导和可微关系多元函数是数学中重要的研究对象,它通过不同自变量的取值来描述现实世界中的问题。

在多元函数中,可导和可微是两个常用的概念,它们在数学和物理学等领域中发挥着重要的作用。

本文将讨论多元函数的可导和可微关系,并探讨它们之间的联系和区别。

首先,我们来看可导和可微的定义。

在一元函数中,可导性是指函数在某点上存在切线,而在多元函数中,可导性则是指函数在某点上存在线性逼近。

与一元函数类似,我们可以通过求导数来判断多元函数是否可导。

如果在某一点上所有偏导数都存在且连续,那么该点上的函数就是可导的。

而可微性则是可导性的更强条件,即函数在某点上可导,则在该点上必然可微。

可微性可以理解为可导性的一种特殊情况,反之则不一定成立。

然而,多元函数的可导和可微之间并非简单的等价关系。

一方面,可导不一定可微,即函数在某一点上所有偏导数都存在且连续,但该点上的函数并非可微。

这种情况发生在函数在某点上的偏导数存在但不连续或者存在偏导数的偏导数的情况。

另一方面,可微则必然可导,并且在可微的点上的所有偏导数存在且连续。

这意味着可微函数在某一点上的线性逼近是唯一的。

因此,可微性是一种更强的性质。

为了更深入地理解多元函数的可导和可微关系,我们可以从几何和物理两个角度来分析。

从几何角度看,函数的可导性意味着函数在某点上有切平面,而可微性则意味着函数在某点上有切平面,并且该平面是函数在该点上的最佳线性逼近。

从物理角度看,可导性可以理解为函数在某点上的瞬时变化率存在,而可微性则表示函数在某点上的瞬时变化率可以用线性函数来近似。

在实际问题中,多元函数的可导和可微性质往往与问题的解的存在性和唯一性有密切关系。

例如,在优化问题中,可导函数的驻点往往对应于函数的极值点。

在微分方程中,可微性意味着解的存在性和唯一性。

因此,研究多元函数的可导和可微性质对于求解实际问题具有重要意义。

总之,多元函数的可导和可微是数学中常用的概念,它们描述了函数在某点上的变化和逼近性质。

多元函数连续,可导,可微之间的关系

多元函数连续,可导,可微之间的关系

多元函数连续,可导,可微之间的关系在数学中,多元函数的连续与可导、可微性是相关的重要概念,它们之间的关系也非常密切。

在本文中,我们将对这一关系进行详细讨论,以期更好地理解多元函数的连续、可导、可微性之间的联系。

首先,让我们来了解多元函数的连续与可导之间的联系。

在数学中,多元函数是连续的,只要它在某一点、多个点上具有连续性,就能定义在一定的空间内,在这个空间内,这个函数的取值也是一致的。

如果该函数具有可导的性质,那么就可以说它点的连续性决定它在某处的变化率,从而确定函数的可导性。

可以说,多元函数的连续性与可导性是密切相关的,一个不能成立就不可能存在另一个。

其次,多元函数的可微与可导之间的关系也是不可忽视的。

在数学中,多变量函数的可微性是讨论多变量函数的重要概念,它指的是某一函数在变化后存在可微分的性质,即当某一函数在某一点变化时,其在该点处的微分方向可以进行求解。

可微性决定多元函数有多大的变化率,而多元函数的可微性也正是由可导性决定的。

可以看出,可微性与可导性之间也是密不可分的,一个不存在就不可能存在另一个。

最后,多元函数的连续与可微之间的联系也是一个重要的话题。

在数学中,多元函数的连续性是一个重要的概念,它指的是某一函数的取值在整个空间内是一致的。

当多元函数具有连续性时,它就具有可微性,也就是说,当某一函数在某一点发生变化时,其在该点处的微分方向可以进行求解。

可以看出,多元函数的连续性与可微性也是密不可分的,一个不能存在就不可能存在另一个。

综上所述,多元函数的连续、可导、可微性之间的关系密切而不可忽视。

多元函数的连续性决定函数的可导性,而可导性又决定函数的可微性,它们之间的关系是相互依赖的,一个不能成立就不可能存在另一个,所以在学习多元函数时,我们应该特别注意它们之间的联系,有助于更好地理解这一概念。

总之,多元函数的连续、可导、可微性之间的关系是密切相关,它们之间的关联是相互依赖的,一个不能成立就不可能存在另一个。

多元函数连续,可导,可微之间的关系

多元函数连续,可导,可微之间的关系

多元函数连续,可导,可微之间的关系
多元函数的连续性、可导性和可微性是数学分析中常见的概念,它们之间存在着紧密的关系。

这里我们将对多元函数连续、可导、可微之间的关系进行简单介绍。

首先,多元函数的连续性是它们极限可令其成立的一种性质,即极限可令这些函数从端点连续地达到它们的值,这意味着没有断点或缺口。

为了确保函数连续性,必须满足以下条件:函数在其定义域内具有连续的反对称性、增函数的性质以及不可减少的性质。

其次,多元函数的可导性是指函数的梯度。

如果多元函数是可导的,那么它的梯度是存在的,梯度能够反映函数的变化的程度,所以它也是研究函数的一种重要方法。

函数可导的条件是多元函数既连续又具有反对称性,即函数的极限不存在异号部分,满足可导性充分必要条件。

再次,多元函数的可微性是指函数可以被微分,也叫做微分。

函数的微分可以反映函数的变化的程度,是求解函数的局部和全局的变化的重要分析工具,反映了函数的变化的性质。

多元函数的可微性是满足可导性的充分必要条件,只有满足可导性的函数才能被微分。

最后,多元函数连续、可导、可微性之间存在着重要的关系。

这三者都是函数研究的重要组成部分,只有满足连续性的函数才能满足可导性,只有满足可导性的函数才能满足可微性。

因此,连续、可导、可微性是多元函数研究的重要基础,可以有效地帮助我们探究函数的变化的规律及行为的特征。

综上所述,多元函数的连续性、可导性和可微性之间存在着紧密的关系。

它们构成了函数研究的重要组成部分,可以帮助我们有效地探究函数的变化的规律及行为的特征,从而揭示函数的性质。

多元可微的定义与理解

多元可微的定义与理解

多元可微的定义与理解
多元可微是指一个多元函数在某个点上的所有偏导数都存在且连续。

具体来说,设函数 f(x1, x2, ..., xn) 是定义在 n 维欧几里得空间上的函数,如果对于该函数的任意一个点 P(x1, x2, ..., xn),其各个偏导数∂f/∂xi 都存在且连续,那么我们称函数 f 是在点 P 处可微的。

从几何的角度来理解,多元可微意味着函数在某个点上的图像具有光滑的切平面。

这个切平面可以近似地描述函数在该点附近的局部行为。

而偏导数则表示了函数在每个坐标轴方向上的变化率,因此多元可微也可以解释为函数在该点处沿着每个坐标轴方向上的变化率都存在且连续。

多元可微的定义是基于偏导数的存在和连续性,因此函数在某个点上的可微性与函数的光滑性和连续性密切相关。

如果一个函数在某个点上不可微,那么该点可能存在一个或多个方向上的变化率不连续或不存在。

总结来说,多元可微的定义与理解可以从代数和几何两个角度出发。

代数上,多元可微指函数在某个点上的所有偏导数都存在且
连续;几何上,多元可微表示函数在该点附近的图像具有光滑的切平面,函数沿着每个坐标轴方向上的变化率都存在且连续。

多元函数可微不可导

多元函数可微不可导

多元函数可微不可导对于单变量函数,我们知道可导性与连续性是等价的。

也就是说,如果一个函数在特定点可导,那么它在该点也一定连续;反之亦然,如果一个函数在特定点不连续,那么它在该点也一定不可导。

但是对于多元函数来说,情况就有所不同了。

首先,我们来回顾一下多元函数的可导性。

多元函数是指具有多个自变量的函数,例如f(x,y)。

对于这样的函数,我们可以使用偏导数来刻画其变化率。

偏导数就是将其他自变量视为常数,对目标变量求导的过程。

如果一个多元函数在特定点的所有偏导数都存在,那么我们就说这个函数在该点可偏导。

而如果所有的偏导数都连续,那么我们就说这个函数在该点可导。

然而,对于多元函数来说,并不是所有的可偏导函数都可导。

这是因为可导性要求所有偏导数都连续,而这并不是一个必要条件。

也就是说,虽然一个多元函数在特定点的所有偏导数都存在,但它们可能不连续或不满足其他条件,导致该函数在该点不可导。

举个例子来说明这个问题。

考虑函数 f(x, y) = ,xy,/ √(x^2 + y^2)。

我们可以看出,当 x 和 y 同时不为零时,函数的定义域包含原点(0, 0)。

我们可以计算出 f 在该点的偏导数。

首先,对于 x 的偏导数,我们需要计算 f 对 x 的变化率。

根据定义,我们有:∂f/∂x = (∂/∂x) (,xy,/ √(x^2 + y^2)) = (∂/∂x) (xy) /√(x^2 + y^2) = y^2 / (x^2 + y^2)^(3/2)类似地,我们可以计算出对于y的偏导数:∂f/∂y = (∂/∂y) (,xy,/ √(x^2 + y^2)) = (∂/∂y) (xy) /√(x^2 + y^2) = x^2 / (x^2 + y^2)^(3/2)可以看出,对于所有(x,y)≠(0,0),上述两个偏导数都存在。

然而,当(x,y)=(0,0)时,偏导数无法定义。

因为无论x或y的值如何取,都将导致分母为零,从而无法得到一个确定的值。

多元函数连续、可导和可微性关系的相关探讨

多元函数连续、可导和可微性关系的相关探讨

多元函数连续、可导和可微性关系的相关探讨摘要:函数的连续性、可导性和可微分性及其内在联系在高等数学和数学分析课程中都具有十足轻重的作用.本文主要通过相关概念及几何意义研究多元函数极限、连续、偏导数和微分之间的关系,旨在帮助学习者理清概念,更好地掌握这部分的知识.关键词:多元函数;连续性;偏导数;微分引言函数微分学和积分学是高等数学和数学分析课程的非常核心的内容,在多元函数微分学学习过程中,很多同学对多元函数的极限存在、函数连续性、函数偏导数存在与函数的可微性之间的关系认识比较迷糊,从而导致后续课程的学习很吃力;同时,该部分知识也是数学相关专业考研的必考科目,其重要性不言而喻;针对这一问题,本文从多元函数(以二元函数为例)出发讨论函数这几个概念之间存在的联系与区别,在难以理解的地方通过给予实例说明,同时结合相关该男的几何意义对概念之间的关系做直观描述,最后与一元函数相关概念关系进行对比,以便加深学习者对该部分知识的深入理解.1 多元函数重极限与累次极限的关系从多元函数重极限与累次极限的定义可知,二者的存在性没有必然的蕴含关系,也就是说无法由其中一种极限判断另一种极限是否存在以及极限值的情况,但在一定的条件下,二者也是有联系的.首先,如果重极限与某个累次极限都存在的话,二者必相等,也可以说如果重极限与两个累次极限都存在的话,三者也必然相等,这也说明了如果两个累次极限都存在但不相等时,可以判断重极限一定是不存在的.2 多元函数极限存在与连续性的关系函数在某点极限存在与否不能判断函数在该点是否连续.这是因为判断函数在某点极限是否存在的前提是该点为函数定义点集的聚点,而连续性没有这一要求,这样的话即使函数在该点极限不存在也可能在该点连续,如孤立点,同时,函数在该点的极限值即使存在也未必是函数在该点的函数值,所以也未必连续.函数在某点是否连续也不能判断函数在该点是否极限存在.也就是说连续点可以是聚点也可以是孤立点,由定义可知孤立点是连续点但极限不存在,但如果连续点是聚点的话一定极限存在.总的来说,函数在该点极限是否存在不能判断在该点是否连续(聚点的话由极限值是否等于函数值决定),函数在该点是否连续也不能判断函数在该点极限的存在性(如孤立点).3 多元函数连续性与偏导数存在之间的关系多元函数连续与否无法判断偏导数是否存在,如函数在点(0,0)连续但偏导数不存在,但在点(0,0)连续且偏导数存在.函数在点(0,0)不连续但偏导数存在.同时多元函数偏导数存在与否也无法判断函数是否连续,如上述函数在点(0,0)偏导数存在且连续,而函数在点(0,0)偏导数存在但不连续.总的来说,函数在该点连续与否不能判断函数在该点偏导数是否存在,按一元函数理论,函数偏导数存在则在该方向是连续的,但多元函数的连续要求在任意方向都是连续的,这也解释了多元函数连续性与偏导数存在性的关系.需要注意的是,虽然偏导数存在无法判断函数是否连续,但如果函数偏导数存在且有界的话,就能判断函数是连续的.4 多元函数连续性与可微性的关系由可微性定义易知,函数在某点可微则在该点一定是连续的,但函数在某点连续无法判断函数在该点是否可微,如3中函数在点(0,0)连续,但在该点不可微;但函数在点(0,0)连续且可微.总的来说,函数在某点可微一定连续,反之不一定成立.5 多元函数偏导数存在与可微性之间的关系由函数可微性定义可知,如果函数在某点可微则偏导数一定存在,但偏导数存在无法判断函数的可微性,如3中函数在点(0,0)偏导数存在且可微,而函数在点(0,0)偏导数存在但不可微.从几何意义来讲,多元函数在某点可微,则曲面在该点存在不平行于z轴的切平面,但偏导数存在只能保证该点处沿某个别方向切线存在,不能保证切平面存在,这也解释了多元函数在一点可微与偏导数存在的关系.总的来说,函数在某点可微偏导数一定存在,反之不一定不成立.需要注意的是,虽然偏导数存在无法判断函数可微,但如果函数偏导数存且偏导数连续的话,就能判断函数是可微的.结束语对于一元函数而言,函数在某点可微分函数在该点可导函数在该点连续函数在该点极限存在,反过来都不一定成立.但对于多元函数而言,除了函数在某点可微分函数在该点偏导数存在、函数在某点可微分函数在该点连续外,其它关系都不一定成立.通过以上分析,明确了多元函数极限、连续、偏导数和可微几个重要概念的关系,也给出了多元函数与一元函数本质上的区别和联系,对于容易弄不清的关系通过反例给出了解释,但对函数连续性与一致连续性的关系没有提及,同时函数连续性、可微性的充分条件还有待进一步的研究.参考文献[1] 华东师范大学数学科学学院.数学分析下[M].北京:高等教育出版社,2022:89-106.[2] 金少华,徐勇等. 关于多元函数可微性教学的一个注记[J].高师理科学刊,2018(2):61-62.[3] 王霞,谢孔锋. 二元函数连续、偏导数、可微分与方向导数之间的关系及举例[J].贵阳学院学报(自然科学版),2014,9(4):1-2,40.[4]齐小忠.浅谈二元函数中六大重要概念间的关系 [J].喀什师范学院报,2013,34(3):23-25.作者简介:宋玲珍,1980.01,女,河南滑县人,汉,硕士,讲师,研究方向:图像处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录中文摘要 (2)ABSTRACT (2)0引言 (2)1预备知识 (3)1.1多元函数全微分的定义 (3)1.2函数(),f x y在点00x y沿方向g可微的定义 (3)(,)2元函数可微的充分条件 (4)3 多元函数可微性的充要条件 (7)4定理的应用 (14)4.1 定理2.1,定理2.2的应用 (14)4.2 定理3.1,定理3.3的应用 (15)4.3 定理3.2,定理3.4的应用 (15)参考文献 (16)多元函数可微性的研究摘要: 本文针对多元函数可微性的充分条件和充要条件进行了研究。

第一,对Henle 定理(二元函数可微的充分条件)的充分条件的证明进行了改进,并将其充分条件推广到n 元,得出了从降低偏导连续的条件的多元函数可微的充分条件;第二,从多元函数可微的定义和方向导数的定义出发,并使用拼凑发得到了多元函数可微的的充要条件。

关键词:多元函数;可微;充分条件;充要条件;偏导数;连续Study of the Differenability of a Function Many VariblesAbstract: Based on multivariate function differentiable sex sufficient conditions and sufficient condition is studied. First,for Henle theorem (dual function of differentiable sufficient conditions of sufficient conditions of proof), and improvements will be generalized to the sufficient condition is obtained, n-gram from reducing partial derivative continuous conditions of differentiable multiple function fully conditions; In the second place, from multiple function of differentiable definition and directional derivative definition, and use of multivariate function together hair gets the sufficient and necessary conditions of differentiable.Key words : function of many variables; differentiable; sufficieny; necessary and sufficient conditions, partial derivative,continuity0引言众所周知,一元函数中,可微与可导是一回事,但在多元函数中情况就不同了,以二元函数为例,在现行的数学分析教材中给出了二元函数可微的充分条件和必要条件。

若函数()y x f ,在点P ()00,x y 处可微,则函数()y x f ,在点()00,x y P 处连续,且在该点处,x y f f 存在。

但,x y f f 存在,且()y x f ,在点()00,x y P 处连续仅是函数()y x f ,在点()00,x y P 处可微的必要但非充分的条件。

例如:()2222,00,x y f x y x y +≠=+=⎪⎩在点()0,0处,x yf f 存在,且()y x f ,连续,但()y x f ,在()0,0处不可微若函数()y x f ,的偏导数在点()00,x y P 的某领域内存在,且,x y f f 在该点连续,则()y x f ,在点()00,x y P 处可微。

但偏导数,x y f f 在点()00,x y P 连续仅是函数()y x f ,在点()00,x y P 处可微的充分但非必要条件。

例如:()()222222221sin ,0,00,x y x y x y f x y x y ⎧++≠⎪+=⎨+=⎪⎩,x y f f 在点()0,0不连续,但()y x f ,在()0,0处可微。

这说明,x y f f 在点()00,x y P 处连续作为函数()y x f ,在点()00,x y P 可微的条件较严格。

在一般的教材中,对可微的充要条件也未涉及。

本文的目的在于探究函数()y x f ,在点()00,x y P 处可微的较弱的充分条件和充要条件。

1预备知识1.1多元函数全微分的定义函数),(y x f z =在点()y x ,全微分的定义为:设函数()y x f z ,=在点()y x ,的某一领域内有定义,若全增量 ()(),,z f x x y y f x y ∆=+∆+∆- 可表示为 ()z A x B y ορ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,而仅与x 、y 有关,22y x ∆+∆=ρ,且()0lim0=→ρρορ,则称函数()y x f z ,=在点()y x ,可微分,而称y B x A ∆+∆为函数在点()y x ,的全微分,记作dz 即y B x A dz ∆+∆=1.2函数(),f x y 在点00(,)x y 沿方向g (g 为单位向量)可微的定义如果存在有限极限:()()10000000(,)lim ,,f x y f x y g f x y g ααα+-→∂⎡⎤=+-⎡⎤⎣⎦⎣⎦∂,则称00(,)f x y g∂∂为(),f x y 在00(,)x y 沿方向g 的方向导数,且有:()()00000000(,),,((,),,)f x y f x y g f x y o x y g gααα∂+=++⎡⎤⎣⎦∂,其中00((,),,)0(0)o x y g ααα+→→2元函数可微的充分条件Henle 定理[6] 如果函数()y x f ,在点()00,x y P 处的偏导数存在,至少有一偏导数在点()00,x y P 的一个领域内存在,且在点()00,x y P 处连续,则函数()y x f ,在点()00,x y P 可微。

证明的主要依据是引理[7]函数()y x f ,在点()00,x y P 可微的充要条件是曲面(),z f x y =在()00,x y P 处有切平面。

下面我将对Henle 定理的充分条件的证明进行改进,不必用上面的引理,并将其充分条件推广到n 元。

2.1 Henle 定理充分条件证明的改进定理2.1 若()y x f ,在点()00,x y P 处某个领域U ()0p 内偏导数存在,且其中有一个偏导数在点()00,x y P 处连续,则()y x f ,在点()00,x y P 处可微。

证明: 不妨设xf 在点()00,x y P 处连续,函数()y x f ,在点0p 处的全增量为:()()()()()()000000000000,,,,,,f x x y y f x y f x x y y f x y y f x y y f x y ∆Z =+∆+∆-=+∆+∆-+∆++∆-⎡⎤⎡⎤⎣⎦⎣⎦应用拉格朗日中值定理得:()()()()000000,,,,01x f x x y y f x y y f x x y y x θθ+∆+∆-+∆=+∆+∆∆<< 由于xf 在点()00,x y P 处连续,所以有: ()()0000,,x x f x x y y x f x y x x θα+∆+∆∆=∆+∆,其中0lim 0x y α∆→∆→=因为y f 在点()00,x y P 处存在,因而有:()()()000000,,,y f x y y f x y f x y y y β+∆-=∆+∆ 所以()()0000,x y f x y x f x y y x y αβ∆Z =+∆+∆+∆+∆这里当022→∆+∆y x 时,满足0,0→→βα.由函数f 在0p 点处可微的定义便知f 在0p 可微。

2.2定理2. 1的推广例1:函数22222/,0(,,)0,0xy z x y u f x y z x y ⎧+≠⎪==⎨+=⎪⎩在点(0,0,0)o 的偏导数为(0,0,0)(0,0,0)(0,0,0)lim0x x f x f f x∆→+∆-==∆(0,0,0)(0,0,0)(0,0,0)lim 0y y f y f f y ∆→+∆-==∆(0,0,0)(0,0,0)(0,0,0)lim0z z f z f f z∆→+∆-==∆所以,(0,0,0)x f ,(0,0,0)y f ,(0,0,0)z f 都存在,但(0,0,0)x f ,(0,0,0)y f 不连续,这是因为当220x y +=时,(0,0,0)0x f =,当220x y +≠时,2(,,)(/)x f x y z xy z x∂=∂=当(0)y kx k =≠时,22(,,)x f x y z =与k 有关,所以(,,)x f x y z 在原点(0,0,0)o 处的极限不存在,可见(,,)x f x y z 在原点(0,0,0)o 不连续。

由于y 与x 对称,所以(,,)y f x y z 在原点(0,0,0)o 不连续。

而当220x y +≠时,(,,)2z f x y z z =在点(0,0,0)o 处的极限与(,,)z f x y z 在该点的函数值都为0。

所以(,,)z f x y z 在平面内连续,且(0,0,0)0z f =。

当(,,)p x y z ∆∆∆沿着曲面y x =上任意曲线趋于(0,0,0)o 点时,由于0y x +∆=∆→,故2020lim{[(0,0,0)(0,0,0)(0,0,0)]}lim{/()lim{1/()}2x t z u f x f y f z x y z z ρρρ→→→∆-∆+∆+∆=∆⋅∆∆=∆=≠其中,ρ=(,,)u f x y z =在原点o 处不可微。

此例说明,对于三元函数来说,只有一个偏导数连续,另外两个偏导数存在是得不到函数可微的,但我们有定理2. 2(定理2. 1的推广)如果函数12(,,,)n f x x x 在点000012(,,,)n P x x x 处的某个领域内n 个偏导数()()00012,,,1,2,,i x n f x x x i n = 存在,且其中有1n -个偏导数在点000012(,,,)n P x x x 处连续,则12(,,,)n f x x x 在点000012(,,,)n P x x x 处可微。

相关文档
最新文档