(高二数学学案-19)简单的逻辑联结词
高二数学 简单的逻辑联结词(1)
高二数学简单的逻辑联结词(1)1、通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义;2、能正确地利用“或”、“且”、“非”表述相关的数学内容;3、知道命题的否定与否命题的区别、教学重点及难点:1、掌握真值表的方法;2、理解逻辑联结词的含义主要内容:1、一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作,读作“p且q”、2、一般地,用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作:,读作:p或q、注:逻辑联结词中的“或”相当于集合中的“并集”,它与日常用语中的“或”的含义不同、日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”,可以是两个都选,但又不是两个都选,而是两个中至少选一个,因此,有三种可能的情况、逻辑联结词中的“且”相当于集合中的“并集”即两个必须都选、3、一般地,对一个命题p 全盘否定,就得到一个新命题,记作:p,读作“非p”或“p的否定”、“非”命题最常见的几个正面词语的否定:正面是都是至多有一个至少有一个任意的所有的否定不是不都是至少有两个一个也没有某个某些典型例题:例1:指出下列复合命题的形式及构成它的简单命题:(1)24既是8的倍数,也是6的倍数;(2)李强是篮球运动员或跳高运动员;(3)平行线不相交解:(1)中的命题是p且q的形式,其中p:24是8的倍数;q:24是6的倍数、(2)的命题是p或q的形式,其中p:李强是篮球运动员;q:李强是跳高运动员、(3)命题是非p的形式,其中p:平行线相交。
例2: 分别指出下列复合命题的形式(1)8≥7(2)2是偶数且2是质数;(3)不是整数;解:(1)是“”形式,:,:8=7;(2)是“”形式,:2是偶数,:2是质数;(3)是“”形式,:是整数;例3:写出下列命题的非命题:(1)p:对任意实数x,均有x2-2x+1≥0;(2)q:存在一个实数x,使得x2-9=0(3)“AB∥CD”且“AB=CD”;(4)“△ABC是直角三角形或等腰三角形”、解:(1)存在一个实数x,使得x2-2x+1<0;(2)不存在一个实数x,使得x2-9=0;(3)AB不平行于CD或AB≠CD;(4)原命题是“p或q”形式的复合命题,它的否定形式是:△ABC既不是直角三角形又不是等腰三角形、课后练习1、命题“正方形的两条对角线互相垂直平分”是()A、简单命题B、非p形式的命题C、p或q形式的命题D、p且q的命题2、命题“方程x2=2的解是x=是( )A、简单命题B、含“或”的复合命题C、含“且”的复合命题D、含“非”的复合命题3、若命题,则┐p()A、B、C、D、4、命题“梯形的两对角线互相不平分”的形式为( )A、p或qB、p且qC、非pD、简单命题5、x≤0是指 ( )A、x<0且x=0B、x>0或x=0C、x>0且x=0D、x<0或x=06、对命题p:A∩=,命题q:A∪=A,下列说法正确的是()A、p且q为假B、p或q为假C、非p为真D、非p为假7、用“或”“且”“非”填空,使命题成为真命题:(1)x∈A∪B,则x∈A__________x∈B;(2)x∈A∩B,则x∈A__________x∈B;(3)a、b∈R,a>0__________b>0,则ab>0、8、分别用“p或q”,“p且q”,“非p”填空(1)命题“的值不超过2”是_________形式、(2)命题“方程(x-2)(x-3)=0的解是x=2或x=3”是_________形式、(3)命题“方程(x-2)2+(y-3)2=0的解是”是_________形式、9、把下列写法改写成复合命题“p或q”“p且q”或“非p”的形式:(1)(a-2)(a+2)=0;(2);(3)a>b≥0、10、在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p1是“第一次射击中飞机”,命题p2是“第二次射击中飞机”试用p1、p2以及逻辑联结词或、且、非(∨,∧,┐)表示下列命题:命题S:两次都击中飞机;命题r:两次都没击中飞机;命题t:恰有一次击中了飞机;命题u:至少有一次击中了飞机、参考答案:1、D2、B3、D4、C5、D6、D7、(1)或(2)且(3)且8、(1)非p (2)p或q (3)p且q9、(1)p:a-2=0或q:a+2=0;(2)p:x=1且q: y=2 (3)p:a>b且q:b≥010、(1)(2)(3)(4)。
2020高考数学 第3讲 简单的逻辑联结词、全称量词与存在量词
1.逻辑联结词——或、且、非与集合中的并集、交集、 补集有着密切的关系,要注意类比.
点评:(1)要判定一个全称命题是真命题,必须对限定 集合 M 中的每个元素 x 验证 p(x)成立;但要判定全称命题 是假命题,只要能举出集合 M 中一个 x=x0,使得 p(x0)不 成立即可.要判定一个特称命题成立,只要在限定集合 M 中,至少能找到一个 x=x0,使 p(x0)成立即可,否则,这一 特称命题就是假命题
C.﹁p∧q
D.﹁p∧﹁q
解:因为一元二次方程 x2-x+1=0 的判别式 Δ=(-1)2 -4×1×1<0,所以 x2-x+1>0 恒成立,
所以 p 为真命题,﹁p 为假命题. 因为当 a=-1,b=-2 时,(-1)2<(-2)2,但-1>-2, 所以 q 为假命题,﹁q 为真命题. 根据真值表可知 p∧﹁q 为真命题,p∧q,﹁p∧q,﹁p ∧﹁q 为假命题.
含有逻辑联结词命题的真假判断 含一个量词的命题的真假判定与否定 逻辑联结词命题真假的应用
考点一·含有逻辑联结词命题的真假判断
【例 1】设 a,b,c 是非零向量.已知命题 p:若 a·b=0,
b·c=0,则 a·c=0;命题 q:若 a∥b,b∥c,则 a∥c.则下列命
题中真命题是
A.p∨q
B.p∧q
答案:C
5.命题“∀x∈[0,+∞),x3+x≥0”的否定是( ) A.∀x∈(-∞,0),x3+x<0 B.∀x∈(-∞,0),x3+x≥0 C.∃x0∈[0,+∞),x03+x0<0 D.∃x0∈[0,+∞),x03+x0≥0
简单的逻辑联结词、全称量词与存在量词
知识点一 命题及四种命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假 的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.注意:命题必须是陈述句,疑问句、祈使句、感叹句 都不是命题。
2.四种命题及其关系(1)四种命题间的相互关系.(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性无关.注意:(补充)1、一个命题不可能同时既是真命题又是假命题 原词语 等于(=) 大于(>) 小于(<)是 否定词语 不等于(≠) 不大于(≤) 不小于(≥)不是 原词语 都是 至多有一个 至多有n 个或 否定词语 不都是 至少有两个 至少有n+1个且 原词语 至少有一个 任意两个 所有的任意的 否定词语 一个也没有 某两个 某些某个 知识点二 充分条件与必要条件1、充分条件与必要条件的概念(1)充分条件:q p ⇒ 则p 是q 的充分条件即只要有条件p 就能充分地保证结论q 的成立, 亦即要使q 成立,有p 成立就足够了,即有它即可。
(2)必要条件: q p ⇒ 则q 是p 的必要条件q p ⇒⇔q p ⌝⇒⌝ 即没有q 则没有p ,亦即q 是p 成立的必须要有的条件,即无它不可。
(补充)(3)充要条件q p ⇒且q p ⇒即p q ⇔ 则p 、q 互为充要条件(既是充分又是必要条件) “p 是q 的充要条件”也说成“p 等价于q ”、“q 当且仅当p ”等(补充)2、充要关系的类型 (1)充分但不必要条件定义:若q p ⇒,但p q ⇒/,则p 是q 的充分但不必要条件; (2)必要但不充分条件定义:若p q ⇒,但q p ⇒/,则p 是q 的必要但不充分条件 (3)充要条件定义:若 q p ⇒,且 p q ⇒,即p q ⇔,则p 、q 互为充要条件; (4)既不充分也不必要条件定义:若q p ⇒/,且p q ⇒/,则p 、q互为既不充分也不必要条件. 3、判断充要条件的方法:①定义法;②集合法;③逆否法(等价转换法).逆否法----利用互为逆否的两个命题的等价性集合法----利用集合的观点概括充分必要条件 若条件p 以集合A 的形式出现,结论q 以集合B 的形式出现,则借助集合知识,有助于充要条件的理解和判断.(1)若⊂≠A B ,则p 是q 的充分但不必要条件(2)若⊂≠B A ,则p 是q 的必要但不充分条件 (3)若B A =,则p 是q 的充要条件(4)若B A ⊂/,且B A ⊃/,则p 是q 的既不必要也不充分条件 (补充)简记作----若A 、B 具有包含关系,则(1)小范围是大范围的充分但不必要条件(2)大范围是小范围的必要但不充分条件二、例题分析(一)四种命题及其相互关系例1.(1) 命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数例1.(2)下列命题中正确的是( )①“若a ≠0,则ab ≠0”的否命题;②“正多边形都相似”的逆命题; ③“若m>0,则x2+x -m =0有实根”的逆否命题;④“若x -123是有理数,则x 是无理数”的逆否命题.A .①②③④ B .①③④ C .②③④ D .①④例1.(3) 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真 B .假,假,真 C .真,真,假 D .假,假,假 问题2四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题; 互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.例2.(1)已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”的否命题是( )(A)若a+b+c ≠3,则222a b c ++<3 (B)若a+b+c=3,则222a b c ++<3(C)若a+b+c ≠3,则222a b c ++≥3 (D)若222a b c ++≥3,则a+b+c=3 例2.)命题:“若0xy =,则0x =或0y =”的否定是:________注意:命题的否定与否命题的区别(二)充要条件的判断与证明例1.(1)(补充) (07湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
高中数学 简单的逻辑联结词
p且q p或q
p∨ q
綈p
2.“p∧q”“p∨q”“綈 p”的真假判断
p 真 真 假 假 q 真 假 真 假 p∨q p∧q 真 綈p
真
真
假
假
假
假
真
假
真
真
假
[点睛]
(1)“或”含义的理解
对“或”的理解,可联想集合中“并集”的概念,“x∈A∪B” 是指“x∈A”“x∈B”中至少有一个是成立的,即 “x∈A,且 x∉ B”,也可以“x∉A,且 x∈B”,也可以“x∈A,且 x∈B”.逻辑 联结词中的“或”的含义与“并集”中的“或”的含义是一致的, 它 们都不同于生活用语中的 “或”的含义,生活用语中的“或”表示 “不兼有”,而数学中的“或”则表示“可兼有但不必兼有”.
简单的逻辑联结词
预习课本 P14~17,思考并完成以下问题
1.课本提到的简单的逻辑联结词有哪些?
2.命题 p∧q、p∨q 以及綈 p 的真假是如何确定的?
[新知初探]
1.逻辑联结词,“且”“或”“非”
符号 p∧ q 含义 用联结词“且”把命题 p 和命题 q 联 结起来的一个新命题 用联结词“或”把命题 p 和命题 q 联 结起来的一个新命题 对一个命题 p 全盘否定的一个新命题 非 p 或 p 的否定 读法
A.p∧q C.綈 p∧q B.綈 p∧綈 q D.p∧綈 q
)
[解析]
(1)由不等式的性质可知,命题 p 是真命题,命
题 q 为假命题,故①p∧q 为假命题,②p∨q 为真命题,③ 綈 q 为真命题,则 p∧(綈 q)为真命题,④綈 p 为假命题,则
(綈 p)∨q 为假命题,所以选 C.
(2) 依 题 意 , 命 题 p 是 真 命 题 . 由 x>2 ⇒ x>1 , 而 x>1 x>2,因为此 “x>1”是“x>2”的必要不充分条件,故命
1.4简单的逻辑联结词
1.4简单逻辑联结词【学习目标】1. 正确理解逻辑联结词“且”“或”“非”的含义和表示;2. 会判断用“且”“或”“非”联结成新命题的真假; 【学习重点】了解逻辑联结词“且”“或”“非”的含义,并能正确的表示相关教学内容 【学习难点】理解用逻辑连接词“且”“或”“非”联结的新命题的真假性【学习过程】 一、探求新知 1.一般地,用联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作 读作 .(一假必假)2.一般地,用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作 读作 .(一真必真)3.一般地,对一个命题全盘否定,就得到一个新命题, 记作 读作 .(真假相反)二、例题与练习例1将下列命题分别用“且”与“或”联结成新命题“p且q”与“p或q”的形式,并判断它们的真假。
(1) p:平行四边形的对角线互相平分q:平行四边形的对角线相等;(2) p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3) p:35是15的倍数,q:35是7的倍数。
例2选择合适的逻辑连接词改写下列命题,并判断它们的真假。
(1)1即是奇数,又是素数;(2)2和3都是素数;(3)2≤2.例3判断下列命题的真假:(1)6是自然数且是偶数;(2)是A的子集且是A的真子集;(3)集合A是A∩B的子集或是A∪B的子集;(4)周长相等的两个三角形全等或面积相等的两个三角形全等。
例4已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围。
[课堂检测]1.指出下列命题中的“p∧q”、“p∨q”的真假:(1) P:3是13的约数,q:3是方程x2-4x+3=0的解;(2) P:x R,则x2+1≥1,q:34;(3) P:四边形的一组对边平行,q:四边形的一组对边相等;(4) P:1,q:2.p:大于900的角叫做钝角,q:三角形三边的垂直平分线相交于一点,则命题组成的新命题的真假是()A“p或q”假 B“p且q”真C“非p”真 D“p或q”真3.下列命题中是“p或q”形式的是()A 正数或负数的倒数是正数B 方程x2+1=0C 当a=0且b=0时,a2+b2=0D 小王在足球队中既是队员又是教练4.“xy≠0”是指()A x≠0且y≠0B x≠0或y≠0C x,y至少有一个不为0D 不都是0[课堂小结]完成下列真值表。
高中数学常用逻辑用语简单的逻辑联结词且and或or非not学案
1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)学习目标:1.了解逻辑联结词“且”“或”“非”的意义.(重点)2.能够判断命题“p 且q”“p或q”“非p”的真假.(难点)3.会使用联结词“且”“或”“非”联结并改写成某些数学命题,会判断命题的真假.(易错点)[自主预习·探新知]1.“且”(1)定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“p且q”.(2)真假判断当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q 是假命题.2.“或”(1)定义一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q.读作“p或q”.(2)真假判断当p,q两个命题有一个命题是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题.思考1:(1)p∨q是真命题,则p∧q是真命题吗?(2)若p∨q与p∧q一个是真命题,一个是假命题,那么谁是真命题?[提示](1)不一定,p∨q是真命题,p与q可能一真一假,此时p∧q是假命题.(2)p∨q是真命题,p∧q是假命题.3.“非”(1)定义一般地,对一个命题p全盘否定,就得到一个新命题,记作p,读作“非p”或“p的否定”.(2)真假判断若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.思考2:命题的否定与否命题的区别是什么?[提示](1)命题的否定是直接对命题的结论进行否定,而否命题则是对原命题的条件和结论分别否定.(2)命题的否定(非p)的真假与原命题(p)的真假总是相对的,即一真一假,而否命题的真假与原命题的真假无必然的联系.4.复合命题:用逻辑联结词“且”;“或”;“非”把命题p和命题q联结来的命题称为复合命题.复合命题的真假判断p1.思考辨析(1)若p∧q为真,则p,q中有一个为真即可.( )(2)若命题p为假,则p∧q一定为假.( )(3)“p∨q为假命题”是“p为假命题”的充要条件.( )(4)“梯形的对角线相等且互相平分”是“p∨q”形式的命题.( )[答案](1)×(2)√(3)×(4)×2.“xy≠0”是指( )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0A[xy≠0⇔x≠0且y≠0,故选A.]3.已知p,q是两个命题,若“(p)∨q”是假命题,则( )【导学号:97792023】A.p,q都是假命题B.p,q都是真命题C.p是假命题,q是真命题D.p是真命题,q是假命题D[若(p)∨q为假命题,则p,q都是假命题,即p真q假,故选D.][合作探究·攻重难](1)方程x2-3=0没有有理根;(2)有两个内角是45°的三角形是等腰直角三角形;(3)±1是方程x3+x2-x-1=0的根.[解](1)这个命题是“非p”形式的命题,其中p:方程x2-3=0有有理根.(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.(3)这个命题是“p或q”形式的命题,其中p:1是方程x3+x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.1.分别写出由下列命题构成的“p∨q”、“p∧q”、“p”形式的命题.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.【导学号:97792024】[解](1)p∧q:梯形有一组对边平行且有一组对边相等.p∨q:梯形有一组对边平行或有一组对边相等.p:梯形没有一组对边平行.(2)p∧q:-1与-3是方程x2+4x+3=0的解.p∨q:-1或-3是方程x2+4x+3=0的解.p:-1不是方程x2+4x+3=0的解.的已知命题p:方程x2-2ax-1=0有两个实数根;命题q:函数f(x)=x+x 最小值为4.给出下列命题:①p∧q;②p∨q;③p∧(q);④(p)∨(q).则其中真命题的个数为( )A.1 B.2 C.3 D.4[思路探究] 判断p,q的真假→判断p,q的真假→判断所给命题的真假[解析]由于Δ=(-2a)2-4×1×(-1)=4a2+4>0,所以方程x2-2ax-1=0有两个实数根,所以命题p是真命题;当x<0时,f(x)=x+4x<0,所以命题q为假命题,所以p∨q,p∧(q),(p)∨(q)是真命题,故选C.[答案] C”还是“2.(1)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(q);④(p)∨q中,真命题是( )A.①③ B.①④C.②③ D.②④C[由不等式的性质可知,命题p为真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③q为真命题,则p∧(q)为真命题,④p为假命题,则(p)∨q为假命题.](2)分别指出由下列命题构成的“p∨q”“p∧q”“p”形式的命题的真假.【导学号:97792025】①p:1∈{2,3},q:2∈{2,3};②p:2是奇数,q:2是合数;③p:4≥4,q:23不是偶数;④p:不等式x2-3x-10<0的解集是{x|-2<x<5},q:不等式x2-3x-10<0的解集是{x|x>5或x<-2}.[解] ①∵p 是假命题,q 是真命题,∴p ∨q 是真命题,p ∧q 是假命题,p 是真命题. ②∵p 是假命题,q 是假命题,∴p ∨q 是假命题,p ∧q 是假命题,p 是真命题. ③∵p 是真命题,q 是真命题,∴p ∨q 是真命题,p ∧q 是真命题,p 是假命题. ④∵p 是真命题,q 是假命题,∴p ∨q 是真命题,p ∧q 是假命题,p 是假命题.1.设集合A 是p 为真命题时参数的取值范围,则p 为假命题时,参数的取值范围是什么?提示:p 为假命题时,参数的取值范围是∁R A .2.设集合M 、N 分别是p ,q 分别为真命题时参数的取值范围,则p ∨q 与p ∧q 分别为真命题时参数的取值范围分别是什么?提示:当p ∨q 为真命题时,参数的取值范围是A ∪B . 当p ∧q 为真命题时,参数的取值范围是A ∩B .已知p :关于x 的方程x 2+mx +1=0有两个不相等的负根,q :关于x 的方程4x 2+4(m -2)x +1=0无实根.若p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.[思路探究][解] 当x 2+mx +1=0有两个不相等的负根为真时,⎩⎪⎨⎪⎧m 2-4>0,-m <0,解之得m >2,当4x 2+4(m -2)x +1=0无实根为真时,16(m -2)2-16<0,解之得1<m <3. 因为p ∧q 为假命题,p ∨q 为真命题,所以p 与q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧m >2,m ≥3或m ≤1,所以m ≥3.若p 假q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3,所以1<m ≤2.所以m 的取值范围为1<m ≤2或m ≥3.求出根据命题根据1.若命题“p∧q”为假,且p为假,则( )A.p∨q为假B.q假C.q真D.p假B[由p为假知,p为真,又p∧q为假,则q假,故选B.]2.给出下列命题:①2>1或1>3;②方程x2-2x-4=0的判别式大于或等于0;③25是6或5的倍数;④集合A∩B是A的子集,且是A∪B的子集.其中真命题的个数为( )A.1 B.2 C.3 D.4D[对于①,是“或”命题,且2>1是真命题,故①是真命题.对于②,是“或”命题,且Δ=(-2)2+16=20>0,故②是真命题.对于③,是“或”命题,且25是5的倍数,故③是真命题.对于④,是“且”命题,且集合A ∩B 是A 的子集,也是A ∪B 的子集.故④是真命题,故选D.]3.已知命题:p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .p ∧q C .p ∧qD .p ∧qD [因为指数函数的值域为(0,+∞),所以对任意x ∈R ,y =2x>0恒成立,故p 为真命题;因为当x >1时,x >2不一定成立,反之当x >2时,一定有x >1成立,故“x >1”是“x >2”的必要不充分条件,故q 为假命题,则p ∧q 、p 为假命题,q 为真命题,p ∧q 、p ∧q 为假命题,p ∧q 为真命题,故选D.]4.已知命题p :函数f (x )=(2a -1)x +b 在R 上是减函数;命题q :函数g (x )=x 2+ax 在[1,2]上是增函数,若p ∧q 为真,则实数a 的取值范围是________.【导学号:97792026】⎣⎢⎡⎭⎪⎫-2,12 [p 为真时,2a -1<0,即a <12,q 为真时,-a2≤1,即a ≥-2,则p ∧q 为真时,-2≤a <12.]5.分别指出由下列各组命题构成的“p ∧q ”“p ∨q ”“ p ”形式的命题的真假:(1)p :点P (1,1)在直线2x +y -1=0上,q :直线y =x 过圆x 2+y 2=4的圆心; (2)p :4∈{2,3,4},q :不等式x 2-x -2>0的解集为{x |-2<x <1}; (3)p :若a >b ,则2a>2b,q :若a >b ,则a 3>b 3. [解] (1)∵p 是假命题,q 是真命题,∴p ∧q 为假命题,p ∨q 为真命题,p 为真命题. (2)∵p 是真命题,q 是假命题,∴p ∧q 为假命题,p ∨q 为真命题,p 为假命题. (3)∵p 是真命题,q 是真命题,∴p ∧q 为真命题,p ∨q 为真命题,p 为假命题.。
简单的逻辑联结词有答案
即a的取值范围为(-∞,-2)∪(2,+∞).
1.已知命题p:3≥3,q:3>4,则下列判断正确的是()
A.p∨q为真,p∧q为真,﹁p为假
B.p∨q为真,p∧q为假,﹁p为真
C.p∨q为假,p∧q为假,﹁p为假
D.p∨q为真,p∧q为假,﹁p为假
【解析】p为真,q为假,故选D.
∴命题“p∧q”为假命题,故原命题为假命题.
判断含逻辑联结词的命题的真假时,首先确定该命题的构成,再确定其中简单命题的真假,最后由真值表进行判断.
[再练一题]
2.分别写出由下列各组命题构成的“p∧q”“p∨q”“﹁p”形式的命题,并判断其真假.
(1)p:等腰梯形的对角线相等,q:等腰梯形的对角线互相平分;
∴当命题p为真命题时, ≤1或|-a|≤1,
∴|a|≤2.
又“只有一个实数x0满足不等式x +2ax0+2a≤0”,
即抛物线y=x2+2ax+2a与x轴只有一个交点,
∴Δ=4a2-8a=0,∴a=0或a=2,
∴当命题q为真命题时,a=0或a=2,
∴命题“p或q”为真命题时,|a|≤2.
∵命题“p或q”为假命题,
p∨q:∅⊆{0}或∅={0}.
﹁p:∅⃘{0}.
③p∧q:甲是运动员且甲是教练员.
p∨q:甲是运动员或甲是教练员.
﹁p:甲不是运动员.
1.判断一个命题的构成形式时,不能仅从命题的字面上找逻辑联结词,而应当从命题的结构特征进行分析判断.
2.用逻辑联结词构造新命题的两个步骤
3.常见词语的否定形式:
正面
由于 ⇔ 解得0<a<4,∴0≤a<4.
因为“p或q”与“﹁q”同时为真命题,即p真且q假,
江苏淮阴中学高二数学《简单的逻辑联结词(一)或且非》学案(苏教版必修3)
高二年级数学学科学案课题:简单的逻辑联结词(一)或且非学习目标:能了解逻辑联结词“或”、“且”、“非”的含义理解复合命题的结构课堂导航:一:复习旧知问题1:下列语句是命题吗?如果不是,请你将它改为命题的形式①11>5 ②3是15的约数吗?③0.7是整数二.认识一类命题的结构(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3)2不是有理数问题:上述三个命题与前面所学的命题在结构上有什么区别?问题:这儿的“且、或”与集合中的“且、或”的含义的联系?三:认识有关概念(1)逻辑连接词(2)复合命题的构成(3)复合命题的构成形式四.运用有关概念解决实际问题例1:指出下列复合命题的形式及构成它的简单命题:(1)24既是8的倍数,也是6的倍数;(2)李强是篮球运动员或跳高运动员;(3)平行线不相交例2:分别指出下列复合命题的形式(1)8≥7(2)2是偶数且2是质数;(3) 不是整数;例3:写出下列命题的非命题:(1)p:对任意实数x,均有x2-2x+1≥0;(2)q:存在一个实数x,使得x2-9=0(3)“AB∥CD”且“AB=CD”;(4)“△ABC是直角三角形或等腰三角形”.小结:一些关键词的否定: 正面 语词 或 等于大于小于 是 都是 至少一个至多 一个 否定五.课堂反馈:1.命题“方程x 2=2的解是x =±2是( )A .简单命题B .含“或”的复合命题C .含“且”的复合命题D .含“非”的复合命题 2.用“或”“且”“非”填空,使命题成为真命题: (1)x ∈A ∪B ,则x ∈A__________x ∈B ; (2)x ∈A ∩B ,则x ∈A__________x ∈B ;(3)a 、b ∈R ,a >0__________b >0,则ab >0. 3.把下列写法改写成复合命题“p 或q ”“p 且q ”或“非p ”的形式: (1)(a -2)(a+2)=0;(2)⎩⎨⎧==21y x ;(3)a >b ≥0.4.已知命题p :a ∈A ,q :a ∈B ,试写出命题“p 或q ”“p 且q ”“┐p ”的形式. 5.用否定形式填空:(1)a >0或b ≤0; (2)三条直线两两相交 (3)A 是B 的子集.___________________ (4)a ,b 都是正数.___ ________ (5)x 是自然数.___________________(在Z 内考虑)6.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p 1是“第一次射击中飞机”,命题p 2是“第二次射击中飞机”试用p 1、p 2以及逻辑联结词或、且、非(∨,∧,┐)表示下列命题:命题S :两次都击中飞机;命题r :两次都没击中飞机; 命题t :恰有一次击中了飞机; 命题u :至少有一次击中了飞机.六.回顾反思本节课讨论了简单命题与复合命题的构成,以及逻辑联结词“或”、“且”、“非”的含义。
学案4 简单的逻辑联结词
学案4 简单的逻辑联结词和全称量词及存在性量词一.知识清单:1.简单的逻辑联接词(A 级)2.全称量词和存在量词(A 级)回归课本知识点:1.简单的逻辑联接词 2.全称量词和存在量词二.基础自检1.命题“2,380x R x x ∃∈-+<”的否定是2.已知:225,:32,,,,p q p q p q p q +=>∨∧⌝⌝则命题中真命题的有3.命题“每一个素数都是奇数”的否定为4.命题“2,2290x R x ax ∃∈-+<”为假命题,则实数a 的取值范围是5.命题“∃x ∈R ,x ≤1或x 2>4”的否定是________6.给出下列四个结论:①“∃x ∈⎣⎡⎦⎤0,π2,sin x +cos x ≥2”的否定是“∀x ∈R ,sin x +cos x <2”; ②“∀x ∈(3,+∞),x 2+1>3x ”的否定是“∃x ∈(3,+∞),x 2+1<3x ”;③“∃x ∈R ,x 2+x +1=0”的否定是“∀x ∈R ,x 2+x +1>0”;④“∀x ∈⎝⎛⎭⎫π2,π,tan x >sin x ”的否定是“∃x ∈⎝⎛⎭⎫π2,π,tan x ≠sin x ”. 其中错误结论的序号是________.三.典型例题题型:含有逻辑联接词的应用例1.(2011·山东省日照调研)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.例2.命题2:10p x mx ++=方程有两个不等的负实数根,命题2:44(2)10q x m x +-+=方程无实根,若“p 或q ”为真命题,“p 且q ”为假命题,求实数m 的取值范围四.巩固练习1.命题:,x R x ∀∈≥20的否定是2.(2011·山东省菏泽测试)给出如下四个命题:①若“p ∧q ”为假命题,则p 、q 均为假命题;②命题“若a >b ,则2a >2b -1”的否命题为“若a ≤b ,则2a ≤2b -1”;③“∀x ∈R ,x 2+1≥1”的否定是“∃x ∈R ,x 2+1≤1”;④在△ABC 中,“A >B ”是“sin A >sin B ”的充要条件.其中不正确的命题的序号是________.3.已知命题P :关于x 的方程x mx ++=210有两个不等的负根,命题:q 实数m 满足不等式,m m +≥-203若命题“p 或q ”是真命题,“p 且q ”是假命题,求实数m 的取值范围?。
简单的逻辑联结词
简单的逻辑联结词高二数学学案一、学习目标:1.3简单的逻辑联结词p真真假假q真假真假非p假假真真p或q真真真假p且q真假假假使用时间:2021年11月23日编印者:段会茹审定者:赵国宾1、了解逻辑联结词“或”、“且”、“非”的含义;2、正确应用“或”、“且”解决问题。
3、掌握真值表并会用真值表解决问题。
二、自主学习:基本梳理1。
和(1)定义:一般地,用联结词“”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“.(2)当命题P和Q都是真命题时,P∧Q是真命题;当两个命题P和Q中只有一个为假时,P∧Q为假2.或(or).(1)定义:一般来说,一个新命题是通过连接命题p和命题q与连词“”而获得的,并记录为p∨ 问:它被解读为“(2)当p,q两个命题中,只要有一个命题为真命题时,p∨q就为;当p,q两个命题都为假命题时,p∨q就为.3.不是(1)定义:一般地,对一个命题p,就得到一个新命题,记作p.读作“”或“”.(2)如果P是真命题,那么P必须是;如果P是一个假命题,那么P是。
4.复合命题真值表复合命题的真假可通过真值表加以判断:注:判断复合命题真实性的基本步骤是:(1)确定复合命题的构成形式(先找出逻辑连接词,再确定连接的简单命题);(2)判断每个简单命题的真实性;(3)结合真值表推断复合命题的真假5.复合命题的否定.(1)命题的否定:“?P”是命题“P”的否定,与命题“P”的真或假相反。
(2)命题否定(P∧ q):命题的否定(P∧ q)是吗∨ (3)命题的否定(P∨ q):命题的否定(P∨ q)是吗∧? 6.常用词及其否定原词等于大于(>)不大于(≤)小于(<)是不是都是不都是不等于不小于(≥)至多有一个至少有两个有个至少有一至多有n个一个也没至少有n+1个任意的任意两个所有的能不能某个某两个某些第3节简易逻辑连结词及全称存在量词1例1。
将下列命题与“and”连成一个新命题,判断其正确与否。
逻辑联结词(很全,含全部的及真值表。补充例题。)
“非”命题对常见的几个正面词语的否定.
正面 否定 = ≠ > ≤ 是 都是 至多有 至少有 任意 所有 一个 一个 的 的 至少有 没有一 某个 某些 两个 个 不是 不都是
例4 写出下列命题的否定,并判断它 们的真假:
( )p:y sin x是周期函数; 1 (2)p:3 2; (3)p:空集是集合A的子集。
逻辑联结词中的”且”相当于集合中的”交 集”,即两个必须都选.
1.3.3 非(not)
思考?
下列命题间有什么关系? (1)35能被5整除;
(2)35不能被5整除.
一般地,对一个命题p全盘否定,就得 到一个新命题,记作
p
读作”非p”或”p的否定” 若p是真命题,则 p 必是假命题;若 p是假命题,则 p 必是真命题.
全真为真,有假即假.
p q
例1
将下列命题用”且”联结成新命题,并判断 它们的真假: (1)P:平行四边形的对角线互相平分,q:平行四 边形的对角线相等. (2)P:菱形的对角线互相垂直,q:菱形的对角线 互相平分.
例2
用逻辑联结词”且”改写下列命题,并判断它 们 的真假:
(1)1既是奇数,又是素数; (2)2和3都是素数.
2 2 (1)2+2=5; (2)3是方程x 9 0的根;(3) (-1) 1。
补例1 分别指出下列各组命题组成的“p或 q”,“p且q”,“非p”形式的复合命题的真假。 (1)p:2+2=5,q:3>2; (2)p:9是质数,q:8是12的约数; (3)p:1∈{1,2},q:{1}∈{1,2}. 补例2 指出下列复合命题的形式及构成复合 命题的简单命题,并判断复合命题的真假。 (1)非空集合A∩B的元素,既是集合A的元素,也 是集合B的元素. (2)5≥3. (3)梯形的中位线平行于两底且等于两底之和. (4)正数或0的平方根是实数.
高三数学简单的逻辑联结词
基础知识梳理
2.全称量词和存在量词 (1)全称量词有:所有的,任意一个, 任给,用符号“ ∀ ”表示. 存在量词有:存在一个,至少有一个, 有些,用符号“ ∃ ”表示. (2)含有全称量词的命题,叫做 全称命题 ;“对M中任意一个x,有p(x) 成立”,可用符号简记为 ∀x∈M,p(x) , 读作“对任意x属于M,有p(x)成立”.
答案:p∨q, ¬p p∧q, ¬q
课堂互动讲练
考点一 命题真假的判断
“p∨q”、“p∧q”、“¬p”形式命 题真假的判断步骤:
(1)确定命题的构成形式; (2)判断其中命题p、q的真假; (3)确定“p∨q”、“p∧q”、“¬p” 形式命题的真假.
课堂互动讲练
例1 写出由下列各组命题构成的“p或 q”、“p且q”、“非p”形式的复合命题, 并判断真假. (1)p:1是素数;q:1是方程x2+2 x-3=0的根; (2)p:平行四边形的对角线相等; q:平行四边形的对角线互相垂直; (3)p:方程x2+x-1=0的两实根 符号相同;q:方程x2+x-1=0的两实 根的绝对值相等.
三基能力强化
4.(教材习题改编)“矩形的对角 线互相平分或互相垂直”是________ 命题.
答案:真
三基能力强化
5.命题p:“-2不是偶数”,q:π是 无理数,则在“p∧q”,“p∨q”,“¬p”,“ ¬q”中,真命题有________,假命题有___ _____.
解析:易判断知p假,q真,故真命题 有p∨q, ¬p;假命题有p∧q, ¬q.
课堂互动讲练
【思路点拨】 (1)利用“或”、 “且”、“非”把两个命题联结成新 命题;
(2)根据命题p和命题q的真假 判断复合命题的真假.
课堂互动讲练
高二数学 简单的逻辑联结词(2)
高二数学简单的逻辑联结词(2)1、加深对“或”“且”“非”的含义的理解,2、能利用真值表判断含有复合命题的真假;学习重点及难点:判断复合命题真假的方法;主要内容:1、简单命题:不含有逻辑联结词的命题是简单命题2、复合命题:由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题3、复合命题的构成形式是:p或q(记作“p∨q” ); p且q(记作“p∨q” );非p(记作“┑q” )4、“非p”形式的复合命题真假:当p为真时,非p为假;当p为假时,非p为真、p非p真假假真(真假相反)5、“p且q”形式的复合命题真假:当p、q为真时,p且q 为真;当p、q中至少有一个为假时,p且q为假。
pqp且q真真真真假假假真假假假假(一假必假)6、“p或q”形式的复合命题真假:当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。
pqP或q真真真真假真假真真假假假(一真必真)注:1像上面表示命题真假的表叫真值表;2由真值表得:“非p”形式复合命题的真假与p 的真假相反;“p且q”形式复合命题当p与q同为真时为真,其他情况为假;“p或q”形式复合命题当p与q同为假时为假,其他情况为真;3真值表是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容。
如:p 表示“圆周率π是无理数”,q表示“△ABC是直角三角形”,尽管p与q的内容毫无关系,但并不妨碍我们利用真值表判断其命题p或q 的真假。
4介绍“或门电路”“与门电路”。
或门电路(或)与门电路(且)典型例题:例1、判断下列命题的真假:(1)4≥3 (2)4≥4 (3)4≥5(4)对一切实数分析:(4)为例:第一步:把命题写成“对一切实数或”是p或q形式第二步:其中p是“对一切实数”为真命题;q是“对一切实数”是假命题。
第三步:因为p真q假,由真值表得:“对一切实数”是真命题。
例2、分别指出由下列各组命题构成的p或q、p且q、非p形式的复合命题的真假:(1)p:2+2=5;q:3>2(2)p:9是质数;q:8是12的约数;(3)p:1∈{1,2};q:{1}{1,2}(4)p:{0};q:{0}解:①p或q:2+2=5或3>2 ;p且q:2+2=5且3>2 ;非p:2+25、∵p假q真,∴“p或q”为真,“p且q”为假,“非p”为真、②p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数、∵p假q假,∴“p或q”为假,“p且q”为假,“非p”为真、③p或q:1∈{1,2}或{1}{1,2};p且q:1∈{1,2}且{1}{1,2};非p:1{1,2}、∵p 真q真,∴“p或q”为真,“p且q”为真,“非p”为假、④p 或q:φ{0}或φ={0};p且q:φ{0}且φ={0} ;非p:φ{0}、∵p真q假,∴“p或q”为真,“p且q”为假,“非p”为假、课后练习1、如果命题p是假命题,命题q是真命题,则下列错误的是()A、“p且q”是假命题B、“p或q”是真命题C、“非p”是真命题D、“非q”是真命题2、下列命题是真命题的有( )A、5>2且7<3B、3>4或3<4C、7≥8D、方程x2-3x+4=0的判别式Δ≥03、若命题p:2n-1是奇数,q:2n+1是偶数,则下列说法中正确的是()A、p或q为真B、p且q为真C、非p为真D、非p为假4、如果命题“非p”与命题“p或q”都是真命题,那么( B )A、命题p与命题q的真值相同B、命题q一定是真命题C、命题q不一定是真命题D、命题p不一定是真命题5、由下列各组命题构成的复合命题中,“p或q”为真,“p 且q”为假,“非p”为真的一组为( )A、p:3为偶数,q:4为奇数B、p:π<3,q:5>3C、p:a∈{a,b},q:{a}{a,b}D、p:QR,q:N=Z6、在下列结论中,正确的是()①为真是为真的充分不必要条件;②为假是为真的充分不必要条件;③为真是为假的必要不充分条件;④为真是为假的必要不充分条件;A、①②B、①③C、②④D、③④7、(1)如果命题“p或q”和“非p”都是真命题,则命题q的真假是_________。
《 简单的逻辑联结词》教案
第4课时简单的逻辑联结词1.理解逻辑联结词“且”“或”“非”的含义.2.会判断含“且”“或”“非”的命题的真假及相关应用.前面我们讲过一个故事:一位文艺批评家在路上,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高傲地往前走,一边大声说道:“我从来不给傻子让路!”面对如此尴尬局面,只见歌德笑容可掬,谦恭地闪在一旁,一边有礼貌地回答道:“呵呵,我可恰恰相反.”问题1: 歌德表达的意思是,对一个命题p的结论的否定,就得到一个新命题,记作,读作“非p”,即是“p的否定”.问题2: 常见的逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫,含有逻辑联结词的命题叫.(1)用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作,读作“p或q”.(2)用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作,读作“p且q”.问题3: 命题的否定与否命题的区别(1)命题的否定是否定命题的,而命题的否命题是对原命题的和同时进行否定.(2)命题的否定的真假与原命题的真假总是的,即一真一假;而否命题的真假与原命题的真假无必然的联系.问题4: (1)复合命题是由简单命题与逻辑联结词构成的,简单命题的真假决定了复合命题的真假,复合命题的真假用真值表来判断.(2)常见关键词及其否定形式附表如下:1.命题:“方程x2-1=0的解是x=±1”,其使用逻辑联结词的情况是().A.使用了逻辑联结词“且”B.使用了逻辑联结词“或”C.使用了逻辑联结词“非”D.没有使用逻辑联结词2.有下列命题:①2是偶数,又是素数;②10的倍数一定是5的倍数;③梯形不是矩形;④明天早餐吃面包或鸡蛋.其中可使用逻辑联结词的命题有().A.1个B.2个C.3个D.4个3.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为.4.分别写出由下列各组命题构成的“p∧q”“p∨q”“p”形式的命题:(1)p:π是无理数,q:e是有理数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任一个内角.含有逻辑联结词命题的构成指出下列命题的形式及构成它的简单命题.(1)48是16与12的倍数.(2)方程x2+x+3=0没有实数根.(3)属于集合Q或属于集合R.判断含逻辑联结词命题的真假分别指出由下列各组命题构成的“p或q”“p且q”“非p”形式的命题的真假.(1)p:3>3,q:3=3;(2)p:⌀⫋{0},q:0∈⌀;(3)p:A⊆A,q:A∩A=A;(4)p:函数x2+3x+4=0的图象与x轴有公共点,q:方程x2+3x-4=0没有实根.命题的否定写出下列命题的否定:(1)正方形的四条边都相等;(2)已知a,b∈N,若ab能被5整除,则a,b中至少有一个不能被5整除;(3)若x2-x-2≠0,则x=-1且x=2.指出下列命题的形式及构成它的简单命题.(1)方程x2+x+1=0没有实数根;(2)他是运动员,又是教练;(3)这些文学作品不仅艺术上有缺点,而且政治上有错误.已知命题p、q,试写出p或q、p且q、非p形式的命题并判断真假.(1)p:平行四边形的一组对边平行,q:平行四边形的一组对边相等;(2)p:2∈{1,3,5,7},q:2∈{2,4,6,8};(3)p:1∈{1,2}, q:{1}⫋{1,2}.写出下列命题的否定和否命题,并判定其真假.(1)p:若x2+y2=0,则x,y全为零;(2)p:若x=3且y=5,则x+y=8.1.已知命题p:2+2=5,命题q:3>2,则下列判断正确的是().A.“p或q”为假,“非q”为假B.“p或q”为真,“非q”为假C.“p且q”为假,“非p”为假D.“p且q”为真,“p或q”为假2.已知p:⌀⊆{0},q:{1}∈{1,2}.由它们构成的新命题“p∧q”“p∨q”“p”中,真命题有().A.1个B.2个C.3个D.0个3.命题“若a<b,则2a<2b”的否命题为,命题的否定为.4.分别指出由下列各组命题构成的“p∨q”“p∧q”形式的复合命题的真假.(1)p:在集合{x|0<x<2}中,q:在集合{x|x>1.5}中.(2)p:方程x2-3x-1=0有两正根,q:方程x2-3=0有两实数根.(3)p:集合{x|1<x<2}是集合{x|x>0}的子集,q:集合{x|1≤x<2}是集合{x|1<x<4}的子集.(2013年·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为().A.(p)∨(q)B.p∨(q)C.(p)∧(q)D.p∨q。
高三数学总复习 简单的逻辑联结词、全称量词与存在性量词
简单的逻辑联结词、全称量词与存在性量词【知识网络】【考点梳理】一、复合命题的真假p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真。
二、全称命题与特称命题1、全称量词:类似“所有”这样的量词,并用符号“∀”表示。
2、全称命题:含有全称量词的命题。
其结构一般为:,()x M p x ∀∈3、存在量词:类似“有一个”或“有些”或“至少有一个”这样的量词,并用符号“∃”表示。
4、特称命题:含有存在量词的命题。
其结构一般为:,()x M p x ∃∈ 三、全称命题与特称命题的否定1、命题的否定和命题的否命题的区别命题p 的否定 ,即p ⌝,指对命题p 的结论的否定。
命题p 的否命题,指的是对命题p 的条件和结论的同时否定。
2、全称命题的否定 全称命题p :,()x M p x ∀∈ 全称命题p 的否定(p ⌝):,()x M p x ∃∈⌝ 特称命题:p ,()x M p x ∃∈ 特称命题的否定:p ⌝,()x M p x ∀∈⌝所以全称命题的否定是特称命题,特称命题的否定是全称命题。
四、常见结论的否定形式原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有n 个 至多有(1n -)个简易逻辑逻辑联结词简单命题与复合命题全称量词、存在量词或、且、非小于不小于至多有n个至少有(1n+)个对所有x,成立存在某x,不成立p或q p⌝且q⌝对任何x,不成立存在某x,成立p且q p⌝或q⌝【典型例题】类型一:判定复合命题的真假【高清课堂:逻辑例2】例1.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.(1)若q<1,则方程x2+2x+q=0有实根;(2)若ab=0,则a=0或b=0;(3)若实数x、y满足x2+y2=0,则x、y全为零.解析:(1)逆命题:若关于x的方程x2+2x+q=0有实根,则q<1,为假命题.否命题:若q≥1,则关于x的方程x2+2x+q=0无实根,假命题.逆否命题:若关于x的方程x2+2x+q=0无实根,则q≥1,真命题.(2)逆命题:若a=0或b=0,则ab=0,真命题.否命题:若ab≠0,则a≠0且b≠0,真命题.逆否命题:若a≠0且b≠0,则ab≠0,真命题.(3)逆命题:若x、y全为零,则x2+y2=0,真命题.否命题:若实数x、y满足x2+y2≠0,则x、y不全为零,真命题.逆否命题:若实数x、y不全为零,则x2+y2≠0,真命题.【变式1】已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【答案】B .【解析】命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=-1,b=-2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.【变式2】满足“p或q”为真,“非p”为真的是(填序号)(1)p:在ABC中,若cos2A=cos2B,则A=B;q: =sinx在第一象限是增函数(2)p:;q: 不等式的解集为(3)p:圆的面积被直线平分;q:椭圆的一条准线方程是.【答案】(2);【解析】由已知条件,知命题p假、命题q真. 选项(1)中,命题p真而命题q假,排除;选项(2)中命题p假、命题q真;选项(3)中,命题p和命题q都为真,排除;故填(2).2.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A解析:直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a ,b 可能相交,也可能平行、异面,故选A.点评:1. 判断复合命题的真假的步骤:①确定复合命题的构成形式;②判断其中简单命题p 和q 的真假;③根据规定(或真假表)判断复合命题的真假.2. 条件“x N ∈或0x <”是“或”的关系,否定时要注意. 举一反三:【变式1】(2016 四川高考)设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A ;解析:画出可行域(如图所示),可知命题q 中不等式组表示的平面区域ABC ∆在命题p 中不等式表示的圆盘内,故选 A.类型二:全称命题与特称命题真假的判断例3. 判断下列命题的真假,写出它们的否定并判断真假.(1):p 2,20x R x ∀∈+>; (2):p 200,10x R x ∃∈+=; (3):p 2,320x R x x ∀∈-+=; (4):p 200,4x Q x ∃∈=.解析:(1)由于x R ∀∈都有20x ≥,故2220x +≥>,p 为真命题;p ⌝:200,20x R x ∃∈+≤,p ⌝为假命题(2) 因为不存在一个实数x ,使210x +=成立,p 为假命题;p ⌝:2,10x R x ∀∈+≠,p ⌝为真命题.(3)因为只有2x =或1x =满足方程,p 为假命题;p ⌝:2000,320x R x x ∃∈-+≠,p ⌝为真命题.(4) 由于使24x =成立的数有2±,且它们是有理数,p 为真命题;p ⌝:2,4x Q x ∀∈≠,p ⌝为假命题.点评:1. 要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,验证()p x 成立;要判断全称命题是假命题,只要能举出集合M 中的一个0x x =,使0()p x 不成立即可;2.要判断一个特称命题的真假,依据:只要在限定集合M 中,至少能找到一个0x x =,使0()p x 成立,则这个特称命题就是真命题,否则就是假命题.举一反三:【高清课堂:逻辑 思考题2】【变式1】分别写出下列各命题的逆命题,否命题,逆否命题,并判断它们的真假.(1)若a>b 且c>d ,则a +c>b +d(2)若a<0,则方程ax 2+2x +1=0至少有一个负数根. 【答案】(1)逆命题:若a +c>b +d ,则a>b 且c>d(假命题) 否命题:若a ≤b 或c ≤d ,则a +c ≤b +d(假命题) 逆否命题:若a +c ≤b +d ,则a ≤b 或c ≤d(真命题)(2)逆命题:若方程ax 2+2x +1=0至少有一个负数根,则a<0否命题:若a ≥0,则方程ax 2+2x +1=0无负实数根逆否命题:若方程ax 2+2x +1=0无负实数根,则a ≥0因为若a<0时,方程ax 2+2x +1=0为两根之积为1a <0,所以方程有一个负根,所以原命题为真命题,所以其逆否命题也为真命题.逆命题为假命题.事实上,方程ax 2+2x +1=0,有两个负数根时1a >0此时a>0,所以逆命题不成立.因此否命题也是假命题. 类型三:在证明题中的应用例 4.若,,a b c 均为实数,且222a x y π=-+,223b y z π=-+,226c z x π=-+.求证:,,a b c 中至少有一个大于0.解析:假设,,a b c 都不大于0,即0,0,0a b c ≤≤≤,则0a b c ++≤ 而222222222(1)(1)(1)3236a b c x y y z z x x y z ππππ++=-++-++-+=-+-+-+-∵222(1)(1)(1)0x y z -+-+-≥,30π->.∴0a b c ++>,这与0a b c ++≤相矛盾.因此,,a b c 中至少有一个大于0.点评: 1.利用反证法证明时,首先正确地作出反设(否定结论).从这个假设出发,经过推理论证,得出矛盾,从而假设不正确,原命题成立,反证法一般适宜结论本身以否定形式出现,或以“至多…”、“至少…”形式出现,或关于唯一性、存在性问题,或者结论的反面是比原命题更具体更容易研究的命题.2.反证法时对结论进行的否定要正确,注意区别命题的否定与否命题. 举一反三:【变式】求证:关于x 的方程20ax bx c ++=有一根为1的充分必要条件是0a b c ++=. 证明:(1)必要性,即 证“1x =是方程20ax bx c ++=的根⇒0a b c ++=”.∵1x =是方程的根,将1x =代入方程,得2110a b c ⋅+⋅+=,即0a b c ++=成立. (2)充分性,即证“0a b c ++=⇒1x =是方程20ax bx c ++=的根”. 把1x =代入方程的左边,得211a b c a b c ⋅+⋅+=++∵0a b c ++=, ∴2110a b c ⋅+⋅+= ,∴1x =是方程的根成立. 综合(1)(2)知命题成立.。
高二 简单的逻辑联结词
简单的逻辑联结词问题知识梳理教学重、难点作业完成情况典题探究例1.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件.其中为真命题的是例2.若0)2)(1(=+-y x ,则1=x 或2-=y 的否命题是例3.已知p :方程x 2+m x +1=0有两个不等的负实根,q :方程4x 2+4(m -2)x +1=0无实根。
若p 或q 为真,p 且q 为假。
求实数m 的取值范围。
例4.将下列命题改写成“若p 则q ”的形式,并写出其逆命题、否命题、逆否命题。
(1) 正数a 的平方根不等于0;(2)两条对角线不相等的平行四边形不是矩形。
演练方阵A 档(巩固专练)1.设合集U=R ,集合}1|{},1|{2>=>=x x P x x M ,则下列关系中正确的是( )A .M=PB .M PC . PM D .M ⊇P2.如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于( )(A){}5 (B) {}8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,13.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若 }6,2,1{=Q ,则P+Q 中元素的个数是( ) (A) 6 (B) 7 (C) 8 (D) 94. 设集合{}21|<≤-=x x A ,{}a x x B <=|,若φ≠B A ,则a 的取值范围是(A )2<a (B )2->a (C )1->a (D )21≤<-a ( )5. 集合A ={x |11+-x x <0},B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是( ) (A )-2≤b <0 (B )0<b ≤2(C )-3<b <-1 (D )-1≤b <2 6.设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠φ ”的( )(A )充分不必要条件 (B )必要不充分条件(C)充要条件 (D)既不充分又不必要条件7. 已知23:,522:>=+q p ,则下列判断中,错误..的是 ( ) (A)p 或q 为真,非q 为假 (B) p 或q 为真,非p 为真(C)p 且q 为假,非p 为假 (D) p 且q 为假,p 或q 为真8.a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1<0和a 2x 2+b 2x +c 2<0的解集分别为集合M 和N ,那么“111222a b c a b c ==”是“M =N ” ( ) (A )充分非必要条件(B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件 9.“21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的 ( ) (A)充分必要条件 (B)充分而不必要条件(C)必要而不充分条件 (D)既不充分也不必要条件10. 已知01a b <<<,不等式lg()1x x a b -<的解集是{|10}x x -<<,则,a b 满足的关系是( )(A )1110a b -> (B )1110a b -= (C )1110a b-< (D )a 、b 的关系不能确定B 档(提升精练)1.下列语句中是命题的是( )(A )语文和数学 (B )sin45°=1(C)x 2+2x-1 (D )集合与元素2.下列语句中的简单命题是( )(A )3不是有理数 (B )∆ABC 是等腰直角三角形(C )3X+2<0 (D )负数的平方是正数3.已知下列三个命题① 方程x 2-x+2=0的判别式小于或等于零;②矩形的对角线互相垂直且平分;③2是质数,其中真命题是( )(A )①和② (B )①和③ (C )②和③ (D )只有①4.命题:“方程X 2-2=0的解是X=2±”中使用逻辑联系词的情况是( )(A )没有使用逻辑联结词 (B )使用了逻辑联结词“且”(C )使用了逻辑联结词“或” (D )使用了逻辑联结词“非”5.下列结论中正确的是( )(A )命题p 是真命题时,命题“P 且q ”定是真命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学备课组11-12学年上学期学案(序号-19) 编辑人: 刘辉 审核人 :张林德 2011—11—22 班级: 姓名: 组号:
数学是思维的体操 学好数学思维活跃
数学是筛选人才的工具 学好数学走向人才殿堂 1
学案19:简单的逻辑联结词
一、学习目标:
1、掌握逻辑联结词“或、且、非”的含义
2、正确应用逻辑联结词“或、且、非”解决问题
3、掌握真值表并会应用真值表解决问题。
二、学习重点: 了解逻辑联结词“或、且、非”的含义,能正确地表述相关数学内容。
三、学习难点:
1、正确理解命题“P ∧q ”“P ∨q ”真假的规定和判定.
2、简洁、准确地表述命题“P ∧q ”“P ∨q ”.
四、导学设计:
下列三个命题间有什么关系?并判定命题真假。
(1)12能被3整除;
(2)12能被4整除;
(3)12能被3整除且能被4整除;
可以看到:
新知:一般地,用联结词 把命题p 和命题q 联结起来,就得到一个新命题,记作
读作“p 且q ”。
例1:将下列命题用“且”联结成新命题并判断它们的真假:
(1)p :平行四边形的对角线互相平分, q :平行四边形的对角线相等
(2)p :菱形的对角线互相垂直, q :菱形的对角线互相平分。
(3)p :35是15的倍数, q : 35是7的倍数
解:
例2:用逻辑联结词“且”改写下列命题,并判断它们的真假:
(1)1既是奇数,又是素数;
(2)2和3都是素数;
练习:将下列命题用“且”联结成新命题,并判断它们的真假: (1)p :函数3x y =是奇函数, q :函数3x y =是减函数 (2)p :三角形三条中线相等, q :三角形三条中线交于一点 (3)p :相似三角形的面积相等, q :相似三角形的周长相等 (4)
结论:(即一假则 )第二部分:“或” 下列三个命题间有什么关系?并判定命题真假。
(1)27是7的倍数; (2)27是9的倍数; (3)27是7的倍数或是9的倍数 新知:一般地,用联结词 把命题p 和命题q 联结起来,就得到一个新命题,记作 ,读作“p 或q ”。
高二数学备课组11-12学年上学期学案(序号-19) 编辑人: 刘辉 审核人 :张林德 2011—11—22 班级: 姓名: 组号:
数学是思维的体操 学好数学思维活跃
数学是筛选人才的工具 学好数学走向人才殿堂 2
例3、判断下列命题的真假;
(1)2≤2 (2)集合A 是A ∩B 的子集或是A ∪B 的子集
(3)周长相等的两个三角形全等或面积相等的两个三角形全等.
结论:(即一真则 )
合作探究一
如果p q ∧为真命题,那么p q ∨一定是真命题吗?反之,如果p q ∨为真命题,那么p q ∧一定
是真命题吗?
合作探究二
判断命题p 和q 的真假
1、p 或q 为真,p 且q 为真,___________
2、p 或q 为真,p 且q 为假,___________________
3、p 或q 为假,p 且q 为假,______________________
合作探究三
逻辑联结词“且”“或”与集合的“交”“并”有关系吗?
第三部分: “非“ 下组命题中的两个命题间有什么关系? (1) 35能被5整除; (2) 35不能被5整除; 新知:一般地,对一个命题p ,就得到一个新命题,记作¬p 读作“非p ”或“p 的否定”。
例4:写出下列命题的否定,判断下列命题的真假 (1)p :y = sinx 是周期函数; (2)p :3<2; (3)p :空集是集合A 的子集。
(4) 1、分别用“p q ∧”、“p q ∨”填空 (1)命题“6是自然数且是偶数”是_________的形式。
(2)命题“3大于或等于2”是_________的形式。
2、“a ≥0”是指( ) A a >0且a=0 B a >0或a=0 C a <0或a=0 D a >0或a <0 3、命题p :6是12的约数.q :6是24的约数. “p q ∨”形式的命题是________________________________ “p q ∧”形式的命题是________________________________ 五、小结及作业: 本节课学习了什么? 作业:课本P18练习1、2,A 组1、2。