2013年高考数学函数压轴题突破训练-尖子生必备

合集下载

2013年高考压轴题跟踪演练(全6套)

2013年高考压轴题跟踪演练(全6套)

备战2013高考数学――压轴题跟踪演练系列一1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=+∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴=+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k值;若不存在,说明理由; (Ⅲ)对任意正整数n,不等式1120111111n n n a b b b +-≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L 成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==Q 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

2013年高考数学压轴题训练及详细的解析

2013年高考数学压轴题训练及详细的解析

2013年高考数学压轴题训练注:试题均为历年高考试题,精选其中有代表性的题目。

非常适合2013年参加高考的学生和老师复习及冲刺使用。

1.(本小题满分14分)已知椭圆)0(12222>>=+b a by ax 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x ac a P F +=||1;(Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分. (Ⅰ)证法一:设点P 的坐标为).,(y x由P ),(y x 在椭圆上,得.)()()(||222222221x ac a xab bc x y c x P F +=-++=++=由0,>+-≥+≥a c x ac a a x 知,所以 .||1x ac a P F +=………………………3分证法二:设点P 的坐标为).,(y x 记,||,||2211r P F r P F ==则.)(,)(222221y c x r y c x r ++=++=由.||,4,211222121x a c a r P F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x a c a由椭圆第二定义得ac cax P F =+||||21,即.||||||21x ac a c a x a c P F +=+=由0,>+-≥+-≥a c x ac a a x 知,所以.||1x ac a P F +=…………………………3分(Ⅱ)解法一:设点T 的坐标为).,(y x当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF PT 且时,由0||||2=⋅TF PT ,得2TF PT ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a Q F OT ==||21||1,所以有.222a yx =+综上所述,点T 的轨迹C 的方程是.222a y x =+…………………………7分解法二:设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥.又||||2PF PQ =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x因此⎩⎨⎧='-='.2,2y y c x x ①由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+……………………7分(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20cby ≤ 所以,当cb a 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.………………………11分 当cba 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF MF =-=+-=⋅,212121cos ||||MF F MF MF MF MF ∠⋅=⋅,③ ④22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F解法二:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20cby ≤ 上式代入③得.0))((2224220≥+-=-=cba cba cb a x于是,当cba 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.………………………11分当cb a 2≥时,记cx y k k cx y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan212121=+-=∠k k k k MF F (14)分2.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分 (Ⅰ)解:).()(000x f x x f m '-=…………………………………………2分 (Ⅱ)证明:令.0)(),()()(),()()(00=''-'='-=x h x f x f x h x f x g x h 则 因为)(x f '递减,所以)(x h '递增,因此,当0)(,0>'>x h x x 时;当0)(,0<'<x h x x 时.所以0x 是)(x h 唯一的极值点,且是极小值点,可知)(x h 的最小值为0,因此,0)(≥x h 即).()(x f x g ≥…………………………6分(Ⅲ)解法一:10≤≤b ,0>a 是不等式成立的必要条件,以下讨论设此条件成立.③ ④0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是.)1(221b a -≤另一方面,由于3223)(x x f =满足前述题设中关于函数)(x f y =的条件,利用(II )的结果可知,3223x b ax =+的充要条件是:过点(0,b )与曲线3223x y=相切的直线的斜率大于a ,该切线的方程为.)2(21b x b y +=-于是3223x b ax≥+的充要条件是.)2(21b a ≥…………………………10分综上,不等式322231x b ax x ≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤- ①显然,存在a 、b 使①式成立的充要条件是:不等式.)1(2)2(2121b b -≤- ②有解、解不等式②得.422422+≤≤-b ③因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分(Ⅲ)解法二:0,10>≤≤a b 是不等式成立的必要条件,以下讨论设此条件成立. 0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是.)1(221b a -≤………………………………………………………………8分令3223)(x b ax x -+=φ,于是3223x b ax ≥+对任意),0[+∞∈x 成立的充要条件是.0)(≥x φ 由.0)(331--==-='ax x a x 得φ当30-<<ax 时;0)(<'x φ当3->ax 时,0)(>'x φ,所以,当3-=ax 时,)(x φ取最小值.因此0)(≥x φ成立的充要条件是0)(3≥-a φ,即.)2(21-≥b a ………………10分综上,不等式322231x b ax x≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤- ①显然,存在a 、b 使①式成立的充要条件是:不等式2121)1(2)2(b b -≤- ②有解、解不等式②得.422422+≤≤-b因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分3.(本小题满分12分)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈ (I )证明数列{}1n a +是等比数列;(II )令212()n n f x a x a x a x =+++ ,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;(II )由(I )知321n n a =⨯-因为212()n n f x a x a x a x =+++ 所以112()2n n f x a a x na x -'=+++ 从而12(1)2n f a a na '=+++ =()()23212321(321)n n ⨯-+⨯-++⨯- =()232222n n +⨯++⨯ -()12n +++ =()1(1)31262n n n n ++-⋅-+由上()()22(1)23131212n f n n n '--=-⋅-()21221n n --=()()1212121(21)nn n n -⋅--+=12(1)2(21)nn n ⎡⎤--+⎣⎦① 当1n =时,①式=0所以22(1)2313f n n '=-;当2n =时,①式=-120<所以22(1)2313f n n '<-当3n ≥时,10n ->又()011211nnn nn n nn C C C C -=+=++++ ≥2221n n +>+所以()()12210nn n ⎡⎤--+>⎣⎦即①0>从而2(1)f '>22313n n -4.(本小题满分14分) 已知动圆过定点,02p⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程;(II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线O A 和O B 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线A B 恒过定点,并求出该定点的坐标.yA xoB,02p F ⎛⎫⎪⎝⎭MN2p x =-解:(I )如图,设M 为动圆圆心,,02p⎛⎫⎪⎝⎭为记为F ,过点M 作直线2p x =-的垂线,垂足为N ,由题意知:M F M N =即动点M 到定点F 与定直线2p x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中,02pF ⎛⎫⎪⎝⎭为焦点,2p x =-为准线,所以轨迹方程为22(0)y px P =>;(II )如图,设()()1122,,,A x y B x y ,由题意得12x x ≠(否则αβπ+=)且12,0x x ≠所以直线A B 的斜率存在,设其方程为y kx b =+,显然221212,22y y x x pp==,将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+=由韦达定理知121222,p pb y y y y kk+=⋅=①(1)当2πθ=时,即2παβ+=时,tan tan 1αβ⋅=所以121212121,0y y x x y y x x ⋅=-=,221212204y y y y p-=所以2124y y p =由①知:224pb p k=所以2.b pk =因此直线A B 的方程可表示为2y k x P k =+,即(2)0k x P y +-=所以直线A B 恒过定点()2,0p - (2)当2πθ≠时,由αβθ+=,得tan tan()θαβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p+-将①式代入上式整理化简可得:2tan 2p b pkθ=-,所以22tan p b pk θ=+,此时,直线A B 的方程可表示为y kx =+22tan ppk θ+即2(2)0tan p k x p y θ⎛⎫+--= ⎪⎝⎭ 所以直线A B 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭所以由(1)(2)知,当2πθ=时,直线A B 恒过定点()2,0p -,当2πθ≠时直线A B 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭. 5.(本小题满分12分)已知椭圆C 1的方程为1422=+yx,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-yx(II )将.0428)41(1422222=+++=++=kx x k yxkx y 得代入由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆kk k即 .412>k ①0926)31(1322222=---=-+=kx x k yxkx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A B A B A B B A A kx kx x x y y x x y y x x OB OA kx x kk x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=kk kk k kk x x k x x kB A B A.0131315,613732222>--<-+kk kk 即于是解此不等式得.31151322<>k k或 ③由①、②、③得.11513314122<<<<kk或故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----6.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a nn a a nn n 且.(Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828…. (Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+kk k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:由递推公式及(Ⅰ)的结论有 )1.()2111(21)11(221≥+++≤+++=+n a nn a nn a n nnn n两边取对数并利用已知不等式得 n nn a nn a ln )2111ln(ln 21++++≤+.211ln 2nn nn a +++≤ 故nn n n n a a 21)1(1ln ln 1++≤-+ ).1(≥n上式从1到1-n 求和可得 121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n nn a a.22111121121121111)3121(211<-+-=--⋅+--++-+-=nnn nn即).1(,2ln 2≥<<n ea a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n对成立,故).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a nn a n nn n令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b nn n n 则取对数并利用已知不等式得 n n b n n b ln ))1(11ln(ln 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得 )1(1321211ln ln 21-++⨯+⨯≤-+n n b b n.11113121211<--++-+-=nn因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n ee b b a b n n 故故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立. 7.(本小题满分12分)已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+(1)证明;,21N n a a n n ∈<<+ (2)求数列}{n a 的通项公式a n . 解:(1)方法一 用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a∴210<<a a ,命题正确. 2°假设n=k 时有.21<<-k k a a 则)4(21)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时).4)((21))((21)(211111k k k k k k k k k k a a a a a a a a a a ---=+---=-----而.0,04.0111<-∴>--<----k k k k k k a a a a a a又.2])2(4[21)4(2121<--=-=+k k k k a a a a∴1+=k n 时命题正确.由1°、2°知,对一切n ∈N 时有.21<<+n n a a 方法二:用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴2010<<<a a ;2°假设n=k 时有21<<-k k a a 成立, 令)4(21)(x x x f -=,)(x f 在[0,2]上单调递增,所以由假设有:),2()()(1f a f a f k k <<-即),24(221)4(21)4(2111-⨯⨯<-<---k k k k a a a a也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有 (2)下面来求数列的通项:],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a an n n n n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令, 又b n =-1,所以1212)21(22,)21(---=+=-=n nn n n b a b 即。

2013年高考数学压轴题训练二及解析

2013年高考数学压轴题训练二及解析

2013年高考数学压轴题训练二注:试题均为历年高考试题和模拟试题,精选其中有代表性的题目。

非常适合2013年参加高考的学生和老师复习及冲刺使用。

1. (本小题满分12分)已知常数a > 0, n 为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x 的函数. (1) 判定函数f n ( x )的单调性,并证明你的结论. (2) 对任意n ≥ a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) 解: (1) f n `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,∵a > 0 , x > 0, ∴ f n `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分 (2)由上知:当x > a>0时, f n ( x ) = x n – ( x + a)n 是关于x 的减函数,∴ 当n ≥ a 时, 有:(n + 1 )n – ( n + 1 + a)n ≤ n n – ( n + a)n . 2分又 ∴f `n + 1 (x ) = ( n + 1 ) [x n –( x+ a )n ] ,∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n + 1 )[ n n – ( n + a)n ] = ( n + 1 )[ n n – ( n + a )( n + a)n – 1 ] 2分( n + 1 )f n `(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分 ∵( n + a ) > n ,∴f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) . 2分 2. (本小题满分12分)已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v ∈[–1,1],都有|f (u) – f (v) | ≤ | u –v | .(1) 判断函数p ( x ) = x 2 – 1 是否满足题设条件? (2) 判断函数g(x)=1,[1,0]1,[0,1]x x x x +∈-⎧⎨-∈⎩,是否满足题设条件?解: (1) 若u ,v ∈ [–1,1], |p(u) – p (v)| = | u 2 – v 2 |=| (u + v )(u – v) |,取u =43∈[–1,1],v = 21∈[–1,1], 则 |p (u) – p (v)| = | (u + v )(u – v) | = 45| u – v | > | u – v |, 所以p( x)不满足题设条件. (2)分三种情况讨论:10. 若u ,v ∈ [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件; 20. 若u ,v ∈ [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件;30. 若u ∈[–1,0],v ∈[0,1],则:|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件; 40 若u ∈[0,1],v ∈[–1,0], 同理可证满足题设条件.综合上述得g(x)满足条件. 3. (本小题满分14分)已知点P ( t , y )在函数f ( x ) = 1x x+(x ≠ –1)的图象上,且有t 2 – c 2at + 4c 2 = 0 ( c ≠ 0 ). (1) 求证:| ac | ≥ 4;(2) 求证:在(–1,+∞)上f ( x )单调递增. (3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1. 证:(1) ∵ t ∈R, t ≠ –1,∴ ⊿ = (–c 2a)2 – 16c 2 = c 4a 2 – 16c 2 ≥ 0 , ∵ c ≠ 0, ∴c 2a 2 ≥ 16 , ∴| ac | ≥ 4. (2) 由 f ( x ) = 1 –1x 1+, 法1. 设–1 < x 1 < x 2, 则f (x 2) – f ( x 1) = 1–1x 12+–1 + 1x 11+= )1x )(1x (x x 1221++-. ∵ –1 < x 1 < x 2, ∴ x 1 – x 2 < 0, x 1 + 1 > 0, x 2 + 1 > 0 ,∴f (x 2) – f ( x 1) < 0 , 即f (x 2) < f ( x 1) , ∴x ≥ 0时,f ( x )单调递增. 法2. 由f ` ( x ) =2)1x (1+> 0 得x ≠ –1,∴x > –1时,f ( x )单调递增.(3)(仅理科做)∵f ( x )在x > –1时单调递增,| c | ≥|a |4> 0 , ∴f (| c | ) ≥ f (|a |4) = 1|a |4|a |4+= 4|a |4+f ( | a | ) + f ( | c | ) = 1|a ||a |++ 4|a |4+> 4|a ||a |++4|a |4+=1.即f ( | a | ) + f ( | c | ) > 1. 4.(本小题满分15分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当 x= -1时,f (x)取得极大值23,并且函数y=f (x+1)的图象关于点(-1,0)对称. (1) 求f (x)的表达式;(2) 试在函数f (x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间2,2⎡⎤-⎣⎦上; (3) 若+212(13),(N )23n n n n n nx y n --==∈,求证:4()().3n n f x f y -< 解:(1)31().3f x x x =-…………………………5分 (2)()20,0,2,3⎛⎫-⎪ ⎪⎝⎭或()20,0,2,.3⎛⎫- ⎪ ⎪⎝⎭…………10分 (3)用导数求最值,可证得4()()(1)(1).3n n f x f y f f -<--<……15分 5.(本小题满分13分)设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ ………………………………………………………3分 由(1)-(2)可得1.3MN QN k k ∙=-………………………………6分 又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN yk x = 直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.xy x y =-……10分 从而得1111,.22x x y y ==-所以112,2.x x y y ==- 代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程.………………13分 6.(本小题满分12分)过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=⋅PB PA (1)求点P 的轨迹方程;(2)已知点F (0,1),是否存在实数λ使得0)(2=+⋅FP FB FA λ?若存在,求出λ的值,若不存在,请说明理由.解法(一):(1)设)(),4,(),4,(21222211x x x x B x x A ≠由,42y x =得:2'x y =2,221x k x k PB PA ==∴ 4,,021-=∴⊥∴=⋅x x PB PA PB PA ………………………………3分直线PA 的方程是:)(241121x x x x y -=-即42211x x x y -= ① 同理,直线PB 的方程是:42222x x x y -= ② 由①②得:⎪⎩⎪⎨⎧∈-==+=),(,142212121R x x x x y x x x ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:),14,(211-=x x FA ),14,(222-=x x FB )1,2(21-+x x P 4),2,2(2121-=-+=x x x x FP 42)14)(14(2221222121x x x x x x FB FA +--=--+=⋅ …………………………10分2444)()(22212212++=++=x x x x FP所以0)(2=+⋅FP FB FA故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=⋅PB PA ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y由⎩⎨⎧=+=yx m kx y 42得:0442=--m kx x 016162=+=∆∴m k 即2k m -=…………………………3分即直线PA 的方程是:2k kx y -= 同理可得直线PB 的方程是:211kx k y --= 由⎪⎩⎪⎨⎧--=-=2211k x k y k kx y 得:⎪⎩⎪⎨⎧-=∈-=11y R k k x 故点P 的轨迹方程是).(1R x y ∈-=……………………………………6分 (2)由(1)得:)1,1(),1,2(),,2(22---kk P k k B k k A )11,2(),1,2(22--=-=kk FB k k FA)2,1(--=kk FP)1(2)11)(1(42222kk k k FB FA +--=--+-=⋅………………………………10分)1(24)1()(2222kk k k FP ++=+-=故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 7.(本小题满分14分)设函数x axxx f ln 1)(+-=在),1[+∞上是增函数. (1) 求正实数a 的取值范围; (2) 设1,0>>a b ,求证:.ln 1bba b b a b a +<+<+ 解:(1)01)(2'≥-=axax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求.…………………………4分 (2)取b b a x +=,1,0,1>+∴>>bba b a , 一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数, 0)1()(=>+∴f b b a f0ln 1>+++⋅+-∴b b a b b a a b b a 即ba b b a +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G)1(0111)('>>-=-=x xx x x G ∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G∴x x ln > 即bba b b a +>+ln 综上所述,.ln 1bba b b a b a +<+<+………………………………………………14分 8.(本小题满分12分)如图,直角坐标系xOy 中,一直角三角形ABC ,90C ∠=,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,3BD DC =,ABC !的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.(1) 求双曲线E 的方程;(2) 若一过点(,0)P m (m 为非零常数)的直线l 与双曲线E相交于不同于双曲线顶点的两点M 、N ,且MP PN λ=,问在x 轴上是否存在定点G ,使()BC GM GN λ⊥-?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.解:(1) 设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =. ∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩(3分)解之得1a =,∴2,3c b ==.∴双曲线E 的方程为2213y x -=.(5分) (2) 设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-.设直线l 的方程为x m ky -=,1122(,),(,)M x y N x y . 由MP PN λ=,得120y y λ+=. 即12yy λ=-① (6分)∵(4,0)BC =,xyDO CAB xyDO CAB NBCOyxGMP1212(,)GM GN x t x t y y λλλλ-=--+-, ∴()BC GM GN λ⊥-12()x t x t λ⇔-=-. 即12()ky m t ky m t λ+-=+-. ② (8分)把①代入②,得12122()()0ky y m t y y +-+=③ (9分)把x m ky -=代入2213y x -=并整理得222(31)63(1)0k y kmy m -++-=其中2310k -≠且0∆>,即213k ≠且2231k m +>. 212122263(1),3131km m y y y y k k --+==--.(10分)代入③,得2226(1)6()03131k m km m t k k ---=--,化简得 kmt k =. 当1t m=时,上式恒成立. 因此,在x 轴上存在定点1(,0)G m,使()BC GM GN λ⊥- .(12分)9.(本小题满分14分)已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p 为大于1的常数),记12121C C C ()2nn n n nn na a a f n S ++++= .(1) 求n a ;(2) 试比较(1)f n +与1()2p f n p+的大小(*n ∈N ); (3) 求证:2111(21)()(1)(2)(21)112n p p n f n f f f n p p -⎡⎤⎛⎫++-+++--⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦剟,(*n ∈N ). 解:(1) ∵(1)n n p S p pa -=-,① ∴11(1)n n p S p pa ++-=-.②②-①,得11(1)n n n p a pa pa ++-=-+,即1n n a pa +=.(3分)在①中令1n =,可得1a p =.∴{}n a 是首项为1a p =,公比为p 的等比数列,n n a p =. (4分)(2) 由(1)可得(1)(1)11n n n p p p p S p p --==--.12121C C C n n n n n a a a ++++ 1221C C C (1)(1)n n n nn n n p p p p p =++++=+=+ .∴12121C C C ()2nn n n nn na a a f n S ++++= 1(1)2(1)n n n p p p p -+=⋅-,(5分)(1)f n +1111(1)2(1)n n n p p p p +++-+=⋅-. 而1()2p f n p +1111(1)2()n n n p p p p p +++-+=⋅-,且1p >, ∴1110n n p p p ++->->,10p ->. ∴(1)f n +<1()2p f n p+,(*n ∈N ). (8分)(3) 由(2)知 1(1)2p f p +=,(1)f n +<1()2p f n p+,(*n ∈N ).∴当2n …时,211111()(1)()(2)()(1)()2222n np p p p f n f n f n f p p p p-++++<-<-<<= . ∴221111(1)(2)(21)222n p p p f f f n p p p -⎛⎫⎛⎫++++++-+++ ⎪ ⎪⎝⎭⎝⎭…2111112n p p p p -⎡⎤⎛⎫++=-⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦, (10分)(当且仅当1n =时取等号).另一方面,当2n …,1,2,,21k n =- 时, 2221(1)(1)()(2)2(1)2(1)k n k k k n k n k p p p f k f n k p p p ---⎡⎤-+++-=+⎢⎥--⎣⎦2221(1)(1)22(1)2(1)k n kk k n k n k p p p p p p ----++⋅⋅--… 212(1)12(1)(1)n n k n k p p p p p --+=⋅--2212(1)121n nn k n k p p p p p p --+=⋅--+.∵22k n k n p p p -+…,∴2222121(1)n k n k n n n p p p p p p ---+-+=-….∴12(1)()(2)2()2(1)nn n p p f k f n k f n p p -++-⋅=-…,(当且仅当k n =时取等号).(13分)∴2121211111()[()(2)]()(21)()2n n n k k k f k f k f n k f n n f n ---====+-=-∑∑∑….(当且仅当1n =时取等号).综上所述,2121111(21)()()112n n k p p n f n f k p p --=⎡⎤⎛⎫++--⎢⎥∑ ⎪-⎢⎥⎝⎭⎣⎦剟,(*n ∈N ).(14分)。

2013高考数学三轮冲刺押题 基础技能闯关夺分必备 数列的应用(含解析)

2013高考数学三轮冲刺押题 基础技能闯关夺分必备 数列的应用(含解析)

图1 图2 图3 图4数列的应用【考点导读】1.能在具体的问题情景中发现数列的等差、等比关系,并能用有关知识解决相应的问题。

2.注意基本数学思想方法的运用,构造思想:已知数列构造新数列,转化思想:将非等差、等比数列转化为等差、等比数列。

【基础练习】1.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24第4行 32 30 28 26 ……………则2008在第 251 行 ,第 5 列。

2.图1,2,3,4分别包含1,5,13和25个互不重叠的单位正方形,按同样的方式构造图形,则第n 个图包含 2221n n -+ 个互不重叠的单位正方形.3.若数列{}n a 中,311=a ,且对任意的正整数p 、q 都有q p q p a a a =+,则=n a 13n . 4.设等比数列{}n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q 的值为2- 。

5.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则2a =6- 。

【X 例导析】例1.一种计算装置,有一数据入口A 和一个运算出口B ,按照某种运算程序:①当从A 口输入自然数1时,从B 口得到13 ,记为()113f = ;②当从A 口输入自然数()2n n ≥时,在B 口得到的结果()f n 是前一个结果()1f n -的()()211213n n ---+倍。

(1)当从A 口分别输入自然数2 ,3 ,4 时,从B 口分别得到什么数?并求()f n 的表达式; (2)记n S 为数列(){}f n 的前n 项的和。

当从B 口得到16112195的倒数时,求此时对应的n S 的值.分析:根据题意可以知道()f n =()1f n -⋅()()211213n n ---+,所以可以采用迭乘法求出()f n 的表达式,这样就可以解决题目中的问题。

2013年高考数学押题卷(最后一卷)试题及答案(理科数学)

2013年高考数学押题卷(最后一卷)试题及答案(理科数学)

2013高考数学押题卷(最后一卷)( 理 科 数 学)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一个选项是符合题目要求的) 1.若ii m -+1是纯m 的值为( )A .1-B .0C .1 D2.已知集合}13|{},1|12||{>=<-=xx N x x M ,则N M ⋂=( )A .φB .}0|{<x xC .}1|{<x xD .}10|{<<x x3.若)10(02log ≠><a a a 且,则函数)1(log )(+=x x f a 的图像大致是( )4.已知等比数列}{n a 的公比为正数,且1,422475==⋅a a a a ,则1a =( )A .21 B .22 C .2 D .2 5.已知变量x 、y 满足的约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x xy ,则y x z 23+=的最大值为( )A .-3B .25 C .-5 D .46.过点(0,1)且与曲线11-+=x x y 在点(3,2)处的切线垂直的直线的方程为( )A .012=+-y xB .012=-+y xC .022=-+y xD .022=+-y x 7.函数)sin (cos 32sin )(22x x x x f --=的图象为C ,如下结论中正确的是( ) ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数;④由x y 2sin 2=的图角向右平移π3个单位长度可以得到图象C (A )①②③ (B )②③④ (C )①③④ (D )①②③④8.已知620126(12)xa ax axa x-=+++⋅⋅⋅+,则0126a a a a +++⋅⋅⋅+=( )A .1B .1-C .63 D .629.若函数)(x f 的导函数34)('2+-=x x x f ,则使得函数)1(-x f 单调递减的一个充分不必要条件是x ∈( )A .[0,1]B .[3,5]C .[2,3]D .[2,4]10.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a 的值是( ) A. -1 B. 2 C. 1 D.-211.△ABC 中,∠A=60°,∠A 的平分线AD 交边BC 于D ,已知AB=3,且)(31R ∈+=λλ,则AD 的长为( )A .1B .3C .32D .312.在三棱锥S —ABC 中,AB ⊥BC,AB=BC=2,SA=SC=2,,二面角S —AC —B 的余弦值是33-,若S 、A 、B 、C 都在同一球面上,则该球的表面积是( ) A .68B .π6C .24πD .6π二、填空题:(本大题4小题,每小题5分,共20分) 13.在△ABC 中,B=3π中,且34=⋅BC BA ,则△ABC 的面积是14.若函数1)(2++=mx mx x f 的定义域为R ,则m 的取值范围是15.已知向量,满足:2||,1||==,且6)2()(-=-⋅+b a b a ,则向量a 与b 的夹角是16.某几何体的三视图如图所示,则它的体积是正视图 侧视图 俯视图三、解答题(本大题共6小题,共70分。

2013高考数学押题卷:高三理科数学高考押题卷(带答案)

2013高考数学押题卷:高三理科数学高考押题卷(带答案)

2013年⾼考数学(理)押题精粹(课标版)(30道选择题+20道⾮选择题)⼀.选择题(30道)1.设集合,,若,则的值为()A.0 B.1 C. D.2. 已知是实数集,集合,,则 ( )A. B.C. D.3.已知i为虚数单位,则复数等于()A.-1-i B.-1+i C.1+i D.1—i4.复数在复平⾯上对应的点不可能位于A.第⼀象限 B.第⼆象限 C.第三象限 D.第四象限5. “ ”是“⽅程表⽰焦点在y轴上的椭圆”的()A.充分⽽不必要条件 B.必要⽽不充分条件C.充要条件 D.既不充分也不必要条件6.若命题“ R,使得 ”为假命题,则实数m的取值范围是()(A)(B)(C)(D)7.⼀个算法的程序框图如右,则其输出结果是()A.0B.C. D.8.下⾯的程序框图中,若输出的值为,则图中应填上的条件为()A. B. C. D.9.右图是函数在区间上的图象.为了得到这个函数的图象,只需将的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变10.已知则的值( )A.随着k的增⼤⽽增⼤B.有时随着k的增⼤⽽增⼤,有时随着k的增⼤⽽减⼩C.随着k的增⼤⽽减⼩D.是⼀个与k⽆关的常数11.关于函数的四个结论:P1:值为 ;P2:最⼩正周期为 ;P3:单调递增区间为 Z;P4:图象的对称中⼼为 Z.其中正确的有( )A.1 个 B.2个 C.3个 D.4个12. 是两个向量,,,且,则与的夹⾓为()(A)(B)(C)(D)13.已知a,b是两个互相垂直的单位向量,且c•a=c•b=1,,则对任意正实数t, 的最⼩值是( )A. B. C. D.14.⼀个⼏何体的三视图如右图所⽰,则它的体积为()A. B.15.正⽅形的边长为 ,中⼼为 ,球与正⽅形所在平⾯相切于点,过点的球的直径的另⼀端点为 ,线段与球的球⾯的交点为 ,且恰为线段的中点,则球的体积为( )A. B. C. D.16.不等式组表⽰⾯积为1的直⾓三⾓形区域,则的值为()A. B. C. D.17.设函数, . 若当时,不等式恒成⽴,则实数的取值范围是().A. B. C. D.18、⼀个盒⼦⾥有3个分别标有号码为1,2,3的⼩球,每次取出⼀个,记下它的标号后再放回盒⼦中,共取3次,则取得⼩球标号值是3的取法有()A.12种B. 15种C. 17种D.19种19、⼆项式的展开式中常数项是()A.28 B.-7 C.7 D.-2820、⾼三毕业时,甲,⼄,丙等五位同学站成⼀排合影留念,已知甲,⼄相邻,则甲丙相邻的概率为() A. B. C. D.⼀、某苗圃基地为了解基地内甲、⼄两块地种植的同⼀种树苗的长势情况,从两块地各随机抽取了10株树苗测量它们的⾼度,⽤茎叶图表⽰上述两组数据,对两块地抽取树苗的⾼度的平均数和中位数进⾏⽐较,下⾯结论正确的是()A. B.C. D.22、公差不为0的等差数列{ }的前21项的和等于前8项的和.若,则k=()A.20 B.21 C.22 D.2323、已知数列为等⽐数列,,,则的值为()A. B. C. D.24. 已知分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若是锐⾓三⾓形,则该双曲线离⼼率的取值范围是( )A. B. C. D.25.圆-2x+my-2=0关于抛物线=4y的准线对称,则m的值为()A.1B. 2C. 3D. 426.已知抛物线的焦点到准线的距离为 , 且上的两点关于直线对称, 并且 , 那么 =( )A. B. C.2 D.327.如果函数图像上任意⼀点的坐标都满⾜⽅程,那么正确的选项是()(A) 是区间(0,)上的减函数,且(B) 是区间(1,)上的增函数,且(C) 是区间(1,)上的减函数,且(D) 是区间(1,)上的减函数,且28.定义在R上的奇函数,当 ≥0时,则关于的函数(0<<1)的所有零点之和为()(A)1- (B)(C)(D)29.的展开式中, 的系数等于40,则等于( )A. B. C.1 D.30.已知函数 ,,设函数,且函数的零点均在区间内,则的最⼩值为()A. B. C. D.⼆.填空题(8道)31.已知A ,B(0,1)),坐标原点O在直线AB上的射影为点C,则 = .32.在的展开式中,含项的系数是________.(⽤数字作答)33.若实数、满⾜,且的最⼩值为,则实数的值为__34.已知四⾯体的外接球的球⼼在上,且平⾯ , , 若四⾯体的体积为 ,则该球的体积为_____________35.已知是曲线与围成的区域,若向区域上随机投⼀点,则点落⼊区域的概率为.36.公⽐为4的等⽐数列中,若是数列的前项积,则有也成等⽐数列,且公⽐为;类⽐上述结论,相应的在公差为3的等差数列中,若是的前项和,则有⼀相应的等差数列,该等差数列的公差为_____________.37.在中,⾓所对的边分别为 ,且 ,当取值时,⾓的值为_______________38.已知抛物线的准线为 ,过点且斜率为的直线与相交于点 ,与的⼀个交点为 ,若 ,则等于____________三.解答题(12道)39、中,,,分别是⾓的对边,向量, , .(1)求⾓的⼤⼩;(2)若,,求的值.40、已知等差数列的⾸项,公差.且分别是等⽐数列的.(Ⅰ)求数列与的通项公式;(Ⅱ)设数列对任意⾃然数均有 … 成⽴,求 … 的值.41、⼀次考试中,五名同学的数学、物理成绩如下表所⽰:学⽣(1)请在直⾓坐标系中作出这些数据的散点图,并求出这些数据的回归⽅程;(2)要从名数学成绩在分以上的同学中选⼈参加⼀项活动,以表⽰选中的同学的物理成绩⾼于分的⼈数,求随机变量的分布列及数学期望的值.42、⼗⼀黄⾦周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意 单位:名男⼥总计满意 50 30 80不满意 10 20 30总计 60 50 110(1)从这50名⼥游客中按对景区的服务是否满意采取分层抽样,抽取⼀个容量为5的样本,问样本中满意与不满意的⼥游客各有多少名?(2)从(1)中的5名⼥游客样本中随机选取两名作深度访谈,求选到满意与不满意的⼥游客各⼀名的概率;(3)根据以上列联表,问有多⼤把握认为“游客性别与对景区的服务满意”有关附:P( )0.050 0.025 0.010 0.0053.841 5.024 6.635 7.87943、如图在四棱锥中,底⾯是边长为的正⽅形,侧⾯底⾯,且 ,设、分别为、的中点.(Ⅰ) 求证: //平⾯;(Ⅱ) 求证:⾯平⾯;(Ⅲ) 求⼆⾯⾓的正切值.44、已知椭圆 : 的焦距为 ,离⼼率为 ,其右焦点为 ,过点作直线交椭圆于另⼀点 .(Ⅰ)若 ,求外接圆的⽅程;(Ⅱ)若过点的直线与椭圆相交于两点、,设为上⼀点,且满⾜(为坐标原点),当时,求实数的取值范围.45. 已知定点A(1,0), B为x轴负半轴上的动点,以AB为边作菱形ABCD,使其两对⾓线的交点恰好落在y轴上.(1) 求动点D的轨迹五的⽅程.(2) 若四边形MPNQ的四个顶点都在曲线E上,M,N关于x轴对称,曲线E在M点处的切线为l,且PQ//l①证明直线PN与QN的斜率之和为定值;②当M的横坐标为,纵坐标⼤于O, =60°时,求四边形MPNQ的⾯积46. 对于函数f(x)(x∈D),若x∈D时,恒有>成⽴,则称函数是D上的J函数.(Ⅰ)当函数f(x)=m lnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,①试⽐较g(a)与 g(1)的⼤⼩;②求证:对于任意⼤于1的实数x1,x2,x3,…,xn,均有g(ln(x1+x2+…+xn))>g(lnx1)+g(lnx2)+…+g(lnxn).47. 设函数,.(Ⅰ)讨论函数的单调性;(Ⅱ)如果存在,使得成⽴,求满⾜上述条件的整数;(Ⅲ)如果对任意的,都有成⽴,求实数的取值范围.48.选修4-1:⼏何证明选讲.如图,过圆E外⼀点A作⼀条直线与圆E交B,C两点,且AB= AC,作直线AF与圆E相切于点F,连接EF交BC于点D,⼰知圆E的半径为2, =30.(1)求AF的长.(2)求证:AD=3ED.49. 在直⾓坐标系中,以原点为极点, 轴的正半轴为极轴建坐标系.已知曲线 ,已知过点的直线的参数⽅程为:,直线与曲线分别交于两点.(1)写出曲线和直线的普通⽅程;(2)若成等⽐数列,求的值.50. 选修4-5:不等式选讲设(1)当,求的取值范围;(2)若对任意x∈R,恒成⽴,求实数的最⼩值.2013年⾼考数学(理)押题精粹(课标版)【参考答案与解析】⼆.选择题(30道)1.【答案】A2.【答案】D【点评】:集合问题是⾼考必考内容之⼀,题⽬相对简单.集合的表⽰法有列举法、描述法、图⽰法三种,⾼考中与集合的运算相结合,不外乎上述⼏种题型。

2013全国大纲版高考压轴卷数学理试题密押卷.docx

2013全国大纲版高考压轴卷数学理试题密押卷.docx
1, B
45 ,
C
105
,
sin105
sin 60
45
sin60
cos45
cos45
sin 60
62,⋯⋯
4
⋯⋯⋯6分
由正弦定理
a
b
,得b
a sin B
1
sin45
2,⋯⋯⋯⋯⋯8分
sin A
sin 30
sin A
sin B
密押卷
SABC
1
ab sinC
1
2
6
2
3
1
⋯⋯⋯⋯⋯10
2
1
4
4
.

2
(18)解:依 意知, 一次骰子,球被放入甲盒、乙盒的概率分
A,B,C,D,大球半径为
是棱长为
的正
四面体,将正四面体
A-BCD
补形成正方体,则正方体棱长为
2r
,大球球心O为
OA
1
( 2r )2
( 2r )2
( 2r )2
6r
体对角线中点,易求
2
2,所以
R
r
6
r
r
(
6 2)R
OA
2,解得
(13
)2.
an
Cn2( 1)2
n(n 1)
1
2(1
1
1)
2
an
n
n
1
1
1
0
x
logm2 Cn2xn, x
0
处连续,则m的值为(

1
1
1
(D) 2
(A)
(B)
(C)
8
4

2013高考数学压轴题

2013高考数学压轴题

2013高考数学选择填空解答压轴题1.(四川卷)设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A )[1,]e (B )1[,1]e - (C )[1,1]e + (D )1[,1]e e -+2.(四川卷)(本小题满分13分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.3.(四川卷)(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.4.(江西卷)(如图,半径为1的半圆O与等边三角形ABC 夹在两平行线ι1,ι2之间,ι//ι1,ι与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D 两点。

设弧FG 的长为x(0<x <π),y=EB+BC+CD ,若ι从ι1平行移动到ι2,则函数y=f(x)的图像 大致是5.(江西卷)(本小题满分14分)已知函数f (x )=a (1-2丨x-错误!未找到引用源。

丨),a 为常数且a >0. (1) 证明:函数f (x )的图像关于直线x=错误!未找到引用源。

2013高考数学最终压轴题集

2013高考数学最终压轴题集

压轴题汇集一、选择题1.已知集合1{1,10,}10A =,{|lg ,}B y y x x A ==∈,则A B = ( ) A.1{}10B. {10}C. {1}D. ∅ 2.复数11zi=+在复平面的对应的点位于( )(A) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.设,a b ∈R ,若||0b a ->,则下列不等式中正确的是( )(A)0a b -> (B)0a b +> (C)220a b -> (D)330a b +<4.函数()sin xf x e x =的图象在点(0,(0))f 处的切线的倾斜角为( ) (A) 0 (B)4π (C) 1 (D)326.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x 的图像关于直线1x =对称,则下列命题为真命题的是( ) A.p q ∧ B.p q ⌝∧⌝ C.p q ⌝∧ D.p q ∧⌝7.如图,三棱锥VABC -底面为正三角形,侧面VAC 与底面垂直且VA VC =,已知其主视图的面积为23,则其左视图的面积为( )8.函数y =列的公比的数是( ) A .34B 二、填空题 9.若函数()sin()f x x ϕ=+是偶函数,则tan2ϕ=10.已知(1,)a k =- ,(4,2)b =-且a b + 与a 垂直,则k 的值为__________.11.抛物线22y px =与直线20x y a ++=交于A B 、两点,其中点A 的坐标为(1,2),设抛物线的焦点为F,则FA FB +的值等于 13.已知函数()f x 满足(1)()f x f x +=-,且()f x 是偶函数,当[0,1]x ∈时,2()f x x =,若在区间[1,3]-内,函数()()g x f x kx k=--有4个零点,则实数k 的取值范围是 三、解答题17.(本小题共13分) 已知等差数列}{n a 的前n 项和为n S ,且.62,546-=-=S a(1)求}{n a 通项公式; (2)求数列|}{|na 的前n 项和.n T19.(本小题共14分)已知函数2()2ln f x x a x =+.(Ⅰ)若函数()f x 的图象在(2,(2))f 处的切线斜率为1,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若函数2()()g x f x x=+在[1,2]上是减函数,求实数a 的取值范围. 一、选择题: 1.设集合}0103|{2<--∈=x x R x M ,}2|||{〈∈=x Z x N ,则M N 为( )A.)2,2(-B.)2,1(C.{-1,0,1}D.}2,1,0,1,2{--2.若复数)(13R x iix z ∈-+=是实数,则x 的值为( )A .3- B .3 C .0 D.3 3.曲线C :y = x 2 + x 在 x = 1 处的切线与直线ax -y+1= 0互相垂直,则实数a 的值为( )A .3B .-3C .31D .-314.已知变量x ,y 满足125,31x y x y z x y x -≤⎧⎪+≤=+⎨⎪≥⎩则的最大值为( )A .5 B .6C .7D .85.如图是一个几何体的三视图,则此三视图所描述几何体的表面积为( ) A .π)3412(+ B .20π C .π)3420(+ D .28π7.双曲线12222=-by a x 的离心率为3,则它的渐近线方程是( )A .x y 2±=B .x y 22±= C .x y 2±= D .x y 21±=8.将函数)(3cosπ+=x y 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位,所得函数的最小正周期为( ) A .π B .2π C .4π D .8π 9.数列{}n a 的前n 项和21n s n n =++;(1)n n n b a =-(n ∈N*);则数列{}n b 的前50项和为( ) A .49 B .50 C .99 D .100 11.数列{}n a 中,352,1,a a ==如果数列1{}1n a +是等差数列,则11a =( ) A .0 B . 111 C .113- D .17-12.已知⎪⎩⎪⎨⎧>-≤-=0,230,2)(2x x x x x f ,若ax x f ≥|)(|在]1,1[-∈x 上恒成立,则实数a 的取值范围是( )A .),0[]1(+∞--∞B .]0,1[-C .]1,0[D .)0,1[- 二、填空题:13.α是第四象限角,53cos =α,则)4cos(πα-___________________. 14.已知向量),4,(),2,1(x =-=且,//则||+的值是___________.15.过抛物线24y x =的焦点,且被圆22420x y x y +-+=截得弦最长的直线的方程是__________________。

2013高考数学三轮冲刺押题基础技能闯关夺分必备等差、等比数列(含解析)

2013高考数学三轮冲刺押题基础技能闯关夺分必备等差、等比数列(含解析)

n 项和 S10 及 T10.
解:∵ { an} 为等差数列, { bn } 为等比数列,∴ a2+a4=2a3,
b2· b4=b3 2,
已知 a2+a4=b3, b2· b4=a3, ∴ b3=2a3, a3=b32, 得 b3=2b32,
∵b3≠0, ∴ b3= 1 , a3= 1 . 24
由 a1=1, a3= 1 ,知 { an} 的公差 d=- 3 ,
下列结论错.误.的是( C )
A. d< 0
B. a7=0
C. S9> S5
D. S6 与 S7 均为 Sn 的最大值
-3-
( 2)等差数列 { an } 的前 m项和为 30,前 2m项和为 100,则它的前 3m项和为( C )
A.130
B.170
C.210
D.260
解:( 1)答案: C;
由 S5<S6 得 a1+a2+a3+… +a5<a1+a2+… +a5+a6,∴ a6 >0,
(4a 4)(1 2n 1)
( 2) Sn a
12
3a 4 (2a 2)2n
当 n≥ 2 时, Sn Sn 1
(2a 2)2n 3a 4
3a 4
(2a 2)2n 1 3a 4 2 (a 1)2n 1 3a 4
∵ { Sn } 是等比数列 , ∴ Sn (n ≥ 2) 是常数,
Sn 1
∴3a+4=0,即 a
a11 a12 a13 105 。
5.公差不为 0 的等差数列 { an} 中, a2,a3, a6 依次成等比数列,则公比等于 3

2013年高考数学压轴题训练三及解析

2013年高考数学压轴题训练三及解析

2013年高考数学压轴题训练三注:试题均为历年高考试题和模拟试题,精选其中有代表性的题目。

非常适合2013年参加高考的学生和老师复习及冲刺使用。

1.(本小题满分13分)如图,已知双曲线C :x a y ba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:OM MF →⊥→;(II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程; (III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P 在A 、Q 之间,满足AP AQ →=→λ,试判断λ的范围,并用代数方法给出证明.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c ab c F c c a b ()()22220,,,, ,∴→=OM a c ab c ()2, MF c a c ab c b c abc →=--=-()()22,, OM MF a b c a b cOM MF →⋅→=-=∴→⊥→2222220……3分(II ) e b a e a b =∴=-=∴=621222222,, ||()MF b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ……8分证明:设l 31:y kx =+,点P x y Q x y ()()1122,,,由x y y kx 22221-==+⎧⎨⎩得()1244022--+=k x kxl 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k……11分AP AQ x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x k k k k k k ,-<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分2.(本小题满分13分)已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,,数列{}a n 满足a f n n N n =∈()(*) (I )求数列{}a n 的通项公式;(II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为S a a ()()≥0,求S n S n n N ()()(*)--∈1;(III )在集合M N N k k Z ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n ->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得lim()n n b b b →∞+++12 存在,并求出这个极限值.解:(I ) n N ∈*∴=--+-=+-f n n n n f n n f n ()[()]()()111 ∴--=f n f n n ()()1……1分∴-=-=-=f f f f f f ()()()()()()101212323……f n f n n ()()--=1 将这n 个式子相加,得 f n f n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+ ∴=+∈a n n n N n ()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为f n f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n ()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,, ∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列.设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N min =2010 ……9分(IV )设b a n n =1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313*********+++=-+-+-++-+=-+ [()()()()]() 显然,其极限存在,并且lim()lim[]n n n b b b n →∞→∞+++=-+=122112 ……10分注:b c a n n=(c 为非零常数),b b q q n a n n an n n==<<++()(||)12012121,等都能使lim()n n b b b →∞+++12 存在.19. (本小题满分14分)设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由. 解:(I ) e c a =∴=2422, c a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] OP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+=∴k 不存在,即不存在满足条件的直线l . 14分3. (本小题满分13分)已知数列{}a n 的前n 项和为S n N n ()*∈,且S m ma n n =+-()1对任意自然数都成立,其中m 为常数,且m <-1.(I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,lim (lg )lim (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?解:(I )由已知S m ma n n ++=+-1111()()S m ma n n =+-()1 (2)由()()12-得:a ma ma n n n ++=-11,即()m a ma n n +=+11对任意n N ∈*都成立{} m m a a mm a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m ma 111=+-()∴====+∴==+≥∈---a b I q f m m m b f b b b n n N n n n n 11111113112,从而由()知,()()()*∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n ,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-lim (lg )lim lg lg lim ()lim n b a n n n m m mm n b b b b b b n n n n n n n 121133131414151112112231·……由题意知lgm m +=11,∴+=∴=-m m m 110109, 13分4.(本小题满分12分)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率;(2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程. 解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分 (2)满足条件的圆心为)0,2(22cc b O -',)0,(,2222222c O c cc c a c c b '∴=--=-, 8分 圆半径a ca cb r ==+=22222. 10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(本小题满分14分)(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++ d n n a n n 2)1()1(1+++=+ 4分 )2)(1()2)(1(1111a a a n nda n n n n -++=++=+++ )3(2111a a n n -+=+. 7分 又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分)2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分 又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111bb a b a a a a n n n n -≤-+--=-+-=-++++. 当且仅当231=+n a 时,等号成立. 11分 ∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.(本小题满分12分)垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;22020为定值y x + (Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线 ①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为 2220201222242y y y x d +=+=+=于是……10分 11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分 7.(本小题满分14分) 已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出比较过程).解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f f x f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( xf x f fg x g x x g g x g +≥+=≥∈θθθπθπ(Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分。

2013高考数学三轮冲刺押题 基础技能闯关夺分必备 不等式综合(含解析)

2013高考数学三轮冲刺押题 基础技能闯关夺分必备 不等式综合(含解析)

不等式综合【考点导读】能利用不等式性质、定理、不等式解法及证明解决有关数学问题和实际问题,如最值问题、恒成立问题、最优化问题等. 【基础练习】 1.若函数()()()()22112,022x f x x x g x x x -⎛⎫=+>=≠ ⎪-⎝⎭,则()f x 与()g x 的大小关系是()()f x g x >2.函数()()22f x a x a =-+在区间[]0,1上恒为正,则a 的取值范围是0<a <2 3.当点(),x y 在直线320x y +-=上移动时,3271x y z =++的最小值是74.已知f(x)、g(x)都是奇函数,f(x)>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),则f (x )·g (x )>0的解集是22,,22b b a a ⎛⎫⎛⎫⋃-- ⎪ ⎪⎝⎭⎝⎭5.对于0≤m ≤4的m ,不等式x 2+mx >4x +m -3恒成立,则x 的取值范围是x >3或x <-1【范例导析】例1、已知集合⎥⎦⎤⎢⎣⎡=2,21P ,函数()22log 22+-=x ax y 的定义域为Q(1)若φ≠Q P ,求实数a 的取值范围。

(2)若方程()222log 22=+-x ax 在⎥⎦⎤⎢⎣⎡2,21内有解,求实数a 的取值范围。

分析:问题(1)可转化为2220ax x -+>在⎥⎦⎤⎢⎣⎡2,21内有有解;从而和问题(2)是同一类型的问题,既可以直接构造函数角度分析,亦可以采用分离参数. 解:(1)若φ≠Q P ,0222>+-∴x ax 在⎥⎦⎤⎢⎣⎡2,21内有有解x xa 222+->∴ 令2121122222+⎪⎭⎫⎝⎛--=+-=x x x u当⎥⎦⎤⎢⎣⎡∈2,21x 时,⎥⎦⎤⎢⎣⎡-∈21,4u所以a>-4,所以a 的取值范围是{}4->a a(2)方程()222log 22=+-x ax 在⎥⎦⎤⎢⎣⎡2,21内有解则0222=--x ax 在⎥⎦⎤⎢⎣⎡2,21内有解2121122222-⎪⎭⎫⎝⎛+=+=∴x x x a当⎥⎦⎤⎢⎣⎡∈2,21x 时,⎥⎦⎤⎢⎣⎡∈12,23a 所以⎥⎦⎤⎢⎣⎡∈12,23a 时,()222log 22=+-x ax 在⎥⎦⎤⎢⎣⎡2,21内有解 点拨:本题用的是参数分离的思想例2.已知f (x)是定义在[—1,1]上的奇函数,且f (1)=1,若m 、n ∈[—1,1],m+n ≠0时有()().0>++nm n f m f(1)判断f (x)在[—1,1]上的单调性,并证明你的结论; (2)解不等式:⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛+1121x f x f ; (3)若f (x)≤122+-at t 对所有x ∈[—1,1],a ∈[—1,1]恒成立,求实数t 的取值范围.分析:可利用定义法判断单调性,再利用单调性解决问题(2),问题(3)只要f (x)max ≤()2min21tat -+解:(1)任取—1≤x 1<x 2≤1,则f (x 1)—f (x 2)= f (x 1)+f (-x 2)=()()()212121x x x x x f x f -⋅--+∵—1≤x 1<x 2≤1,∴x 1+(-x 2)≠0, 由已知()()2121x x x f x f --+>0,又x 1-x 2<0,∴f (x 1)—f (x 2)<0,即f (x)在[—1,1]上为增函数. (2)∵f (x)在[—1,1]上为增函数,故有⎭⎬⎫⎩⎨⎧-<≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-123,1121,1111,1211x x x x x x 由此解得 (3)由(1)可知:f (x )在[—1,1]上是增函数,且f (1)=1,故对x ∈[—l ,1],恒有f (x )≤1.所以要使f (x )≤122+-at t ,对所有x ∈[—1,1],a ∈[—1,1]恒成立, 即要122+-at t ≥1成立,故at t 22-≥0成立.记g(a )=at t 22-对a ∈[—1,1],g(a )≥0恒成立,只需g(a )在[—1,1]上的最小值大于等于零. 故()()⎩⎨⎧≥-≤⎩⎨⎧≥>.010010g t g t ,或,, 解得:t ≤—2或t=0.点拨:一般地,若()[],,y f x x a b =∈与()[],,y g t t m n =∈若分别存在最大值和最小值,则()()f x g t ≤恒成立等价于()()max min f x g x ≤.例3.甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,已知汽车每小时的运输成本........(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元.(1)把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶? 分析:需由实际问题构造函数模型,转化为函数问题求解解:(1)依题意知汽车从甲地匀速行驶到乙地所用的时间为h vs,全程运输成本为)(2bv vas v s bv v s a y +=⋅+⋅=.故所求函数为)(bv bas y +=,定义域为)0(c v ,∈.(2)由于v b a s 、、、都为正数,故有bv bas bv v a s ⋅⋅≥+2)(,即ab s bv vas 2)(≥+. 当且仅当bv va=,即b a v =时上式中等号成立. 若c b a ≤时,则bav =时,全程运输成本y 最小; 当c b a ≤,易证c v <<0,函数)()(bv vas v f y +==单调递减,即c v =时,)(min bc cas y +=.综上可知,为使全程运输成本y 最小, 在c b a ≤时,行驶速度应为b a v =; 在c ba≤时,行驶速度应为c v =. 点拨:本题主要考查建立函数关系式、不等式性质(公式)的应用.也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题. 反馈练习:1.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是),0(+∞2.一个直角三角形的周长为2P ,其斜边长的最小值122+P3.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是833d <≤ 4.如果函数213log (23)y x x =--的单调递增区间是(-∞,a ],那么实数a 的取值范围是____a <-1____5.若关于x 的不等式m x x ≥-42对任意]1,0[∈x 恒成立,则实数m 的取值范围为(,3]-∞-6.设实数m ,n ,x ,y 满足ny mx b y x a n m +=+=+则,,2222的最大值ab7.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是[-2,2]8.对于满足0≤p ≤4的所有实数p ,使不等式342-+>+p x px x 都成立的x 的取值范围13-<>x x 或9..三个同学对问题“关于x 的不等式2x +25+|3x -52x |≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值”. 乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 a ≤1010.设曲线cx bx ax y ++=23213在点x 处的切线斜率为()x k ,且()01=-k ,对一切实数x ,不等式()()1212+≤≤x x k x 恒成立(0≠a ). (1)求()1k 的值; (2) 求函数()x k 的表达式. 解:(1)设()c bx ax x k ++=2,()()1212+≤≤x x k x , ()()1112111=+≤≤∴k , ()11=∴k (2)解:⎩⎨⎧==-1)1(0)1(k k=+=+-10c c b a ∴ ⎪⎪⎩⎪⎪⎨⎧=+=2121c a bx c x ax ≥++∴212, 161,0441,0212≥∴≤-=∆≥+-ac ac c x ax , 又()16142=+≤c a ac , 即41,161,161161==∴=∴≤≤c a ac ac ()()22141412141+=++=∴x x x x k 11.已知二次函数f (x)=()0,,12>∈++a R b a bx ax 且,设方程f (x )=x 的两个实根为x 1和x 2.(1)如果x 1<2<x 2<4,且函数f (x )的对称轴为x =x 0,求证:x 0>—1; (2)如果∣x 1∣<2,∣x 2—x 1∣=2,求b 的取值范围.解:(1)设g(x)= f (x)—x=()()0242.011212<<<<>+-+g x x a x b ax 得,由,且,且g(4)>0,即,81,221443,221443,03416,0124>-<--<<-∴⎩⎨⎧<-+<-+a a a a b a b a b a 得由∴.1814112,4112832-=⋅->-=->->-ab x a a b a 故(2)由g(x)=()同号、可知2121,01,011x x ax x x b ax ∴>==+-+.①若0<x 1<2,则x 2一x 1=2,即x 2=x 1+2>2,∴g(2)=4a +2b —1<0, 又()()(),负根舍去,得01112441222212>+-=+=--=-a b a aa b x x ,代入上式得();41,231122<-<+-b b b 解得②若-2<x 1<0,则x 2=-2+x 1<-2,∴g (-2)<0,即4a -2b +3<0,同理可求得47>b . 故当0<x 1<2时, 41<b ;当-2<x 1<0时,47>b . 12.已知A 、B 两地相距200km ,一只船从A 地逆水到B 地,水速为8km/h ,船在静水中的速度为v km/h(8<v 0v ≤),若船每小时的燃料费与其在静水中速度的平方成正比,当v=12 km/h 时,每小时的燃料费为720元,为了使全程燃料费最省,船的实际速度v 0应为多少?分析:本题是应用不等式知识解决实际问题的应用题,中间体现了分类讨论这一重要的数学思想,本题中的分类讨论思想很隐蔽,它是由均值不等式中“等号”能否成立引起的,解题中要重视。

(完整word版)高中数学导数压轴题专题训练

(完整word版)高中数学导数压轴题专题训练

高中数学导数尖子生指导(填选压轴)一.选择题(共 30 小题)1.( 2013?文昌模拟)如图是322+x 2 2的值是()f ( x ) =x +bx +cx+d 的图象,则 x 1 A . B . C .D .考点 : 利用导数研究函数的极值;函数的图象与图象变化. 专题 : 计算题;压轴题;数形联合.剖析: 先利用图象得: f (x ) =x ( x+1 )( x ﹣ 2)=x 3﹣ x 2﹣2x ,求出其导函数,利用 x 1, x 2 是原函数的极值点,求出 x 1+x 2= ,,即可求得结论.解答: 解:由图得: f ( x ) =x ( x+1 )(x ﹣ 2) =x 3﹣ x 2﹣ 2x ,∴ f'( x ) =3x 2﹣ 2x ﹣ 2∵ x 1, x 2 是原函数的极值点所以有 x 1+x 2= ,,222.故 x 1 +x 2 =(x 1+x 2) ﹣ 2x 1x 2== 应选 D .评论: 本题主要考察利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考察,属于基础题.2.( 2013?乐山二模)定义方程 f ( x ) =f ′( x )的实数根 x 0 叫做函数 f ( x )的 “新驻点 ”,若函数 g ( x ) =x , h ( x )=ln ( x+1), φ( x )=x 3﹣ 1 的 “新驻点 ”分别为 α, β, γ,则 α, β,γ的大小关系为( ) A .α> β> γB . β> α> γC . γ> α>βD .β> γ>α考点 : 导数的运算. 专题 : 压轴题;新定义.剖析: 分别对 g ( x ),h (x ),φ( x )求导,令g ′( x ) =g ( x ),h ′( x )=h ( x ),φ′( x ) =φ( x ),则它们的根分别32为 α, β, γ,即 α=1, ln ( β+1) =, γ﹣ 1=3γ,而后分别议论 β、 γ的取值范围即可.解答:解: ∵ g ′( x ) =1, h ′( x ) =, φ′(x ) =3x 2,由题意得:α=1, ln ( β+1) = 32, γ﹣ 1=3γ,① ∵ ln ( β+1) =,β+1∴ ( β+1 ) =e ,当 β≥1时, β+1≥2, ∴ β<1,这与 β≥1矛盾,∴ 0< β< 1;32② ∵ γ﹣ 1=3 γ,且 γ=0 时等式不行立,2∴ 3γ>3∴ γ> 1, ∴ γ> 1.∴ γ> α> β. 应选 C .评论: 函数、导数、不等式密不行分,本题就是一个典型的代表,此中对对数方程和三次方程根的范围的议论是一个难点.3.( 2013?山东)抛物线 C 1:的焦点与双曲线C 2: 的右焦点的连线交C 1 于第一象限的点 M .若 C 1 在点 M 处的切线平行于 C 2 的一条渐近线,则p=()A .B .C .D .考点 : 利用导数研究曲线上某点切线方程;双曲线的简单性质. 专题 : 压轴题;圆锥曲线的定义、性质与方程.剖析: 由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在 x 取直线与抛物线交点 M 的横坐标时的导数值,由其等于双曲线渐近线的斜率获得交点横坐标与 p 的关系,把 M 点的坐标代入直线方程即可求得 p 的值.解答:解:由,得 x 2=2py ( p > 0),所以抛物线的焦点坐标为 F ().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为 ,即① .设该直线交抛物线于M ( ),则 C 1 在点 M 处的切线的斜率为 .由题意可知,得 ,代入 M 点得 M ( )把 M 点代入 ① 得:.解得 p=.应选 D .评论: 本题考察了双曲线的简单几何性质,考察了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.4.( 2013?安徽) 已知函数3 2 +bx+c 有两个极值点1211 2 ,则对于 x 的方程 3( f (x )) f ( x )=x +axx,x,若 f ( x)=x < x2+2af (x ) +b=0 的不一样实根个数为( )A .3B . 4C . 5D .6考点 : 利用导数研究函数的极值;根的存在性及根的个数判断.专题 : 压轴题;导数的综合应用.剖析: 由函数 f ( x )=x 32′ 2有两个不相等的实数根,必有+ax +bx+c 有两个极值点 x 1, x 2,可得 f ( x )=3x +2ax+b=0 △ =4a 2﹣ 12b > 0.而方程 3(f ( x ))2+2af ( x )+b=0 的 △ 1=△ >0,可知此方程有两解且 f ( x )=x 1 或 x 2.再分别议论利用平移变换即可解出方程f ( x ) =x 1 或 f ( x )=x 2 解得个数.解答: 解: ∵ 函数 f ( x ) =x 3 212+ax +bx+c 有两个极值点 x, x ,′2∴ f ( x )=3x +2ax+b=0 有两个不相等的实数根,∴ △ =4a 2﹣ 12b > 0.解得= .∵ x 1< x 2,∴,.而方程 3(f (x ))21=△ > 0, ∴ 此方程有两解且1 2+2af (x ) +b=0的△f ( x ) =x 或 x .不如取 0<x 1< x 2, f ( x 1)> 0.y=f ( x )﹣ x 的图象, ∵ f ( x )=x ,可知方程 f ( x )=x① 把 y=f ( x )向下平移 x个单位即可获得1有两1 1 1 1 解.② 把 y=f ( x )向下平移 x 2 个单位即可获得y=f ( x )﹣ x 2 的图象, ∵f (x 1) =x 1, ∴f (x 1)﹣ x 2<0,可知方程 f ( x ) =x 2 只有一解.综上 ①② 可知:方程 f ( x )=x 1 或 f ( x )=x 2.只有 3 个实数解. 即对于 x 的方程 3(f (x ))2+2af ( x )+b=0的只有 3 不一样实根.应选 A .评论: 本题综合考察了利用导数研究函数得单一性、极值及方程解得个数、平移变换等基础知识,考察了数形联合的思想方法、推理能力、分类议论的思想方法、计算能力、剖析问题和解决问题的能力.5.( 2013?湖北)已知 A .a 为常数,函数 B .f ( x ) =x ( lnx ﹣ ax )有两个极值点C .x 1,x 2( x 1< x 2)(D .)考点 : 利用导数研究函数的极值;函数在某点获得极值的条件.专题 : 压轴题;导数的综合应用.剖析: 先求出 f ′( x ),令 f ′( x )=0,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x ) =lnx+1 ﹣ 2ax 有且只有两个零点 ? g ′( x )在( 0, +∞)上的独一的极值不等于 0.利用导数与函数极值的关系即可得出.解答:解: ∵=lnx+1 ﹣ 2ax ,( x >0)令 f ′( x )=0 ,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x )=lnx+1 ﹣ 2ax 有且只有两个零点? g ′( x )在( 0, +∞)上的独一的极值不等于 0..① 当 a ≤0 时, g ′( x )> 0, f ′(x )单一递加,所以 g ( x ) =f ′(x )至多有一个零点,不切合题意,应舍去.② 当 a > 0 时,令 g ′( x ) =0 ,解得 x= ,∵ x, g ′( x )> 0,函数 g ( x )单一递加;时, g ′( x )< 0,函数 g ( x )单一递减.∴ x=是函数 g ( x )的极大值点,则> 0,即> 0,∴ ln ( 2a )< 0,∴ 0< 2a <1,即.∵, f ′( x ) =lnx +1﹣2ax =0, f ′( x ) =lnx +1﹣ 2ax 2=0.11122且 f ( x 1) =x 1( lnx 1﹣ ax 1) =x 1(2ax 1﹣ 1﹣ ax 1) =x 1( ax 1 ﹣1)< x 1(﹣ ax 1) =< 0,f (x 2) =x 2( lnx 2﹣ ax 2) =x 2( ax 2﹣1)>=﹣.().应选 D .评论: 娴熟掌握利用导数研究函数极值的方法是解题的要点.6.( 2013?辽宁)设函数 f ( x )知足 x 2f ′(x ) +2xf ( x ) =,f (2) = ,则 x >0 时, f ( x )()A .有 极大值,无极小值B . 有极小值,无极大值C . 既有极大值又有极小值D .既 无极大值也无极小值考点 : 函数在某点获得极值的条件;导数的运算.专题 : 压轴题;导数的综合应用.剖析: 先利用导数的运算法例,确立 f (x )的分析式,再结构新函数,确立函数的单一性,即可求得结论.解答:,解: ∵ 函数 f ( x )知足∴∴ x > 0 时,dx∴∴令 g ( x )=,则令 g ′(x ) =0,则 x=2 , ∴x ∈( 0, 2)时, 数单一递加∴ g ( x )在 x=2 时获得最小值g ′( x )< 0,函数单一递减,x ∈( 2, +∞)时,g ′( x )> 0,函∵ f ( 2) =, ∴ g (2) = =0∴ g ( x ) ≥g ( 2) =0∴≥0即 x > 0 时, f ( x )单一递加∴ f ( x )既无极大值也无极小值应选 D .评论: 本题考察导数知识的运用,考察函数的单一性与极值,考察学生剖析解决问题的能力,难度较大.7.( 2013?安徽)若函数f ( x )=x 3+ax 2+bx+c 有极值点 x 1,x 2,且 f ( x 1)=x 1,则对于 x 的方程 3( f ( x ))2+2af ( x ) +b=0 的不一样实根个数是( )A .3B . 4C . 5D .6考点 : 函数在某点获得极值的条件;根的存在性及根的个数判断. 专题 : 综合题;压轴题;导数的综合应用.剖析: 求导数 f ′( x ),由题意知 x 1, x 2 是方程 3x 2+2ax+b=0 的两根,从而对于 f ( x )的方程 3( f ( x ))2+2af ( x )+b=0 有两个根,作出草图,由图象可得答案.解答: 解: f ′( x ) =3x 2+2ax+b , x 1, x 2 是方程 3x 2+2ax+b=0 的两根,不如设 x 2>x 1,由 3( f ( x ))2+2af ( x ) +b=0,则有两个 f ( x )使等式成立, x 1=f ( x 1),x 2> x 1=f ( x 1),以下表示图象:如图有三个交点,应选 A .评论: 考察函数零点的观点、以及对嵌套型函数的理解,考察数形联合思想.8.( 2014?海口二模)设f (x )是定义在R 上的奇函数,且f ( 2) =0,当x > 0 时,有恒成立,则不等式 x 2f ( x )> 0 的解集是()A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣2, 0) ∪ ( 0, 2)C . (﹣ ∞,﹣2)∪(2,+∞)D .(﹣ ∞,﹣ 2) ∪ ( 0,2)考点 : 函数的单一性与导数的关系;奇偶函数图象的对称性;其余不等式的解法. 专题 : 综合题;压轴题.剖析:第一依据商函数求导法例,把 化为 [] ′< 0;而后利用导函数的正负性, 可判断函数y=在( 0, +∞)内单一递减;再由f ( 2)=0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得f ( x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因 当 x > 0 ,有 恒成立,即 [ ]′<0 恒成立,所以在( 0, +∞)内 减.因 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0.又因 f ( x )是定 在R 上的奇函数,所以在( ∞, 2)内恒有 f ( x )> 0;在( 2, 0)内恒有f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案 ( ∞, 2)∪ ( 0,2).故 D .点 :本 主要考 函数求 法 及函数 性与 数的关系,同 考 了奇偶函数的 象特色.9.( 2014?重 三模) 于三次函数 f ( x )=ax 3+bx 2+cx+d ( a ≠0), 出定 : f ′(x )是函数 y=f ( x )的 数, f ″ ( x )是 f ′( x )的 数,若方程 f ′′(x )=0 有 数解 x 0, 称点( x 0, f (x 0)) 函数 y=f ( x )的 “拐点 ”.某同学研究 :任何一个三次函数都有 “拐点 ”;任何一个三次函数都有 称中心,且“拐点 ”就是 称中心. 函数g ( x ) =, g ( ) +=()A .2011B . 2012C . 2013D .2014考点 : 数的运算;函数的 ;数列的乞降. : ; 数的观点及 用.剖析: 正确求出 称中心,利用 称中心的性 即可求出.解答: 解:由 意,′2 ″g (x ) =x x+3 , ∴ g ( x ) =2x 1, ″,解得,令 g ( x )=0又, ∴ 函数 g ( x )的 称中心 .∴,, ⋯∴ g ( ) +=2012 .故 B .点 : 正确求出 称中心并掌握 称中心的性 是解 的关 .10.( 2014?上海二模) 已知 f ( x )=alnx+ 2x 1,x 2,都有x ( a > 0),若 随意两个不等的正 数 > 2 恒成立, a 的取 范 是( )A .( 0, 1]B . ( 1, +∞)C . (0, 1)D .[1, +∞)考点 : 数的几何意 ;利用 数研究函数的 性.: 算 ; .剖析:先将条件 “ 随意两个不等的正 数 x 1,x 2,都有> 2 恒成立 ” 成当 x > 0 ,f'( x )≥2 恒成立,而后利用参 量分别的方法求出a 的范 即可.解答:解:对随意两个不等的正实数x 1, x 2,都有> 2 恒成立则当 x > 0 时, f'( x )≥2 恒成立f' ( x ) = +x ≥2 在( 0, +∞)上恒成立则 a ≥( 2x ﹣ x 2) max =1 应选 D .评论: 本题主要考察了导数的几何意义,以及函数恒成立问题,同时考察了转变与划归的数学思想,属于基础题.11.(2012?桂林模拟)已知在(﹣ ∞, +∞)上是增函数,则实数 a 的取值范围是()A .(﹣ ∞, 1]B . [﹣ 1, 4]C . [﹣ 1,1]D .(﹣ ∞, 1)考点 : 利用导数研究函数的单一性.专题 : 计算题;压轴题.剖析: 假如一个分段函数在实数上是一个增函数,需要两段都是增函数且两个函数的交点处要知足递加,当于 0 时,要使的函数是一个减函数,求导此后导函数横小于0,注意两个端点处的大小关系.解答: 解: ∵ 假如一个分段函数在实数上是一个增函数.x 小需要两段都是增函数且两个函数的交点处要知足递加,当 x < 0 时, y ′=3x 2﹣( a ﹣1)> 0 恒成立,∴ a ﹣ 1< 3x 2∴ a ﹣ 1≤0∴ a ≤1,当 x=0 时, a 2﹣ 3a ﹣ 4≤0 ∴ ﹣ 1≤a ≤4,综上可知﹣ 1≤a ≤1 应选 C .评论: 本题考察函数的单一性,分段函数的单一性,解题的要点是在两个函数的分界处,两个函数的大小关系必定要写清楚.12.( 2012?河北模拟)定义在 [1, +∞)上的函数 f ( x )知足: ① f ( 2x ) =cf ( x )( c 为正常数);② 当 2≤x ≤4 时,f ( x ) =1﹣( x ﹣ 3) 2,若函数 f ( x )的图象上全部极大值对应的点均落在同一条直线上,则 c 等于( ) A .1 B . 2 C . 1 或 2 D .4 或 2 考点 : 利用导数研究函数的极值;抽象函数及其应用. 专题 : 计算题;压轴题.剖析: 由已知可得分段函数f ( x )的分析式,从而求出三个函数的极值点坐标,依据三点共线,则任取两点确立的直线斜率相等,能够结构对于c 的方程,解方程可得答案.解答: 解: ∵ 当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3)2当 1≤x < 2 时, 2≤2x < 4,则 f ( x ) = f ( 2x ) = [1﹣( 2x ﹣ 3) 2]此时当 x= 时,函数取极大值当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3) 2此时当 x=3 时,函数取极大值 1当 4< x≤8 时, 2<x≤4则f( x) =cf ( x) =c (1﹣( x﹣ 3)2,此时当 x=6 时,函数取极大值c∵ 函数的全部极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴解得 c=1 或 2.应选 C评论:本题考察的知识点是三点共线,函数的极值,此中依据已知剖析出分段函数 f ( x)的分析式,从而求出三个函数的极值点坐标,是解答本题的要点.13.( 2012?桂林模拟)设x﹣xf ′( x),且 f′( x)是奇函数.若曲线y=f ( x)的a∈R,函数 f ( x) =e+a?e 的导函数是一条切线的斜率是,则切点的横坐标为()A .ln2B .﹣ ln2C. D .考点:简单复合函数的导数.专题:压轴题.剖析:已知切线的斜率,要求切点的横坐标一定先求出切线的方程,我们可从奇函数下手求出切线的方程.解答:解:对f( x) =e x+a?e﹣x求导得 f ′( x) =e x﹣ ae﹣x又 f′( x)是奇函数,故f′( 0) =1﹣ a=0解得 a=1,故有f′( x) =e x﹣ e﹣x,设切点为( x0, y0),则,得或(舍去),得 x0=ln2 .评论:熟习奇函数的性质是求解本题的要点,奇函数定义域若包括x=0,则必定过原点.14.( 2012?太原模拟)已知定义在 R 上的函数 y=f( x﹣ 1)的图象对于点( 1,0)对称,且 x∈(﹣∞,0)时, f( x)+xf(′x)<0 成立,(此中 f(′x)是(f x)的导函数),a=( 30.3)(f 30.3),b=( log π3).(f logπ3),则 a, b, c 的大小关系是()A .a> b> cB . c> b>a C. c> a>b D .a> c> b 考点:利用导数研究函数的单一性;函数单一性的性质;导数的乘法与除法法例.专题 : 计算题;压轴题.剖析: 由 “当 x ∈(﹣ ∞, 0)时不等式f ( x )+xf ′(x )< 0 成立 ”知只需比较的大小即可.解答: 解: ∵ 当 x ∈(﹣ ∞, 0)时不等式 f ( x ) +xf ′(x )< 0 成立即:( xf ( x )) ′< 0,∴ xf ( x )在 (﹣ ∞, 0)上是减函数.又 ∵ 函数 y=f ( x ﹣ 1)的图象对于点( 1,0)对称,∴ 函数 y=f (x )的图象对于点( 0, 0)对称, xf ( x )是减函数,要获得a ,b ,c 的大小关系,∴ 函数 y=f (x )是定义在 R 上的奇函数∴ xf ( x )是定义在 R 上的偶函数∴ xf ( x )在 ( 0, +∞)上是增函数.又 ∵=﹣ 2,2=.∴> 30.3 0.3)>( log π π?f ( 3 3)?f ( log 3) 即> 30.3 0.3)>( log π π?f ( 33) ?f ( log 3) 即: c > a >b 应选 C .评论: 本题考察的考点与方法有: 1)全部的基本函数的奇偶性; 2)抽象问题详细化的思想方法,结构函数的思想; 3)导数的运算法例: ( uv )′=u ′v+uv ′; 4)指对数函数的图象; 5)奇偶函数在对称区间上的单一性:奇 函数在对称区间上的单一性同样;偶函数在对称区间上的单一性相反.本题联合已知结构出 h (x )是正确解答的要点所在.15.( 2012?广东模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,且e 为自然对数的底,则()A .f ( 1)> e?f (0), f ( 2012)> e2012?f ( 0) B . f (1)< e?f ( 0), f ( 2012)> e 2012?f ( 0)C . f ( 1)> e?f (0), f ( 2012)< e 2012?f ( 0)D .f (1)< e?f ( 0), f ( 2012)< e2012?f ( 0)考点 : 导数的运算. 专题 : 计算题;压轴题. 剖析:结构函数 y=的导数形式,并判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0即> 0,所以函数 y= 单一递加,故当 x > 0 时,=f ( 0),整理得出 f ( x )> e xf (0)当 x=1 时 f ( 1)> e?f ( 0),当x=2012 时 f( 2012)> e 2012?f( 0).应选 A .评论: 本题主要考察函数的单一性与其导函数的关系,函数单一性的关系,考察转变、结构、计算能力.16.( 2012?无为县模拟)已知定义在R 上的函数 f ( x )、g ( x )知足 ,且 f ′( x )g ( x )< f ( x )g ′(x ),,如有穷数列( n ∈N *)的前 n 项和等于,则 n 等于 ()A .4B . 5C . 6D .7考点 : 导数的运算;数列的乞降.专题 : 压轴题.剖析: 利用导数研究函数的单一性获得a 的范围,再利用等比数列前n 项和公式即可得出.解答:解: ∵=′′, f ( x ) g ( x )< f ( x ) g ( x ),∴= <0,即函数单一递减, ∴ 0<a < 1.又,即 ,即 ,解得 a=2(舍去)或 .∴,即数列 是首项为 ,公比 的等比数列,∴= = ,由解得 n=5 ,应选 B .评论: 娴熟掌握导数研究函数的单一性、等比数列前n 项和公式是解题的要点.17.( 2012?福建)函数 (f x )在[a ,b] 上有定义,若对随意 x1,x ∈[a ,b],有2则称 f ( x )在 [a , b] 上拥有性质 P .设 f ( x )在 [1, 3]上拥有性质 P ,现给出以下命题:① f ( x )在 [1, 3]上的图象是连续不停的;② f ( x 2)在 [1, ] 上拥有性质 P ;③ 若 f ( x )在 x=2 处获得最大值 1,则 f ( x )=1, x ∈[1, 3] ;④ 对随意 x 1,x 2, x 3, x 4∈[1, 3] ,有[f ( x 1) +f ( x 2) +f (x 3) +f ( x 4)]此中真命题的序号是( )A .① ②B . ① ③C . ② ④D .③ ④考点 : 利用导数求闭区间上函数的最值;抽象函数及其应用;函数的连续性.专题 : 压轴题;新定义.剖析: 依据题设条件,分别举出反例,说明 ① 和② 都是错误的;同时证明 ③ 和④ 是正确的.解答:解:在 ① 中,反例: f ( x ) =在 [1, 3] 上知足性质 P ,但 f ( x )在 [1, 3] 上不是连续函数,故 ① 不行立;在 ② 中,反例: f ( x ) =﹣ x 在 [1, 3]上知足性质 P ,但 f (x 2) =﹣ x 2在 [1, ] 上不知足性质 P ,故 ②不行立;在 ③ 中:在 [1 , 3] 上, f (2) =f () ≤ ,∴,故 f ( x ) =1,∴ 对随意的 x 1, x 2∈[1,3] , f ( x ) =1, 故 ③ 成立;在 ④ 中,对随意 x 1,x 2, x 3, x 4∈[1 ,3] ,有=≤≤= [f ( x 1) +f (x 2) +f ( x 3) +f ( x 4 )] ,∴[f (x 1) +f ( x 2) +f (x 3) +f ( x 4) ],故 ④ 成立. 应选 D .评论: 本题考察的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对全部的状况都成立.18.( 2013?文昌模拟)设动直线 x=m 与函数 f ( x ) =x 3,g ( x ) =lnx 的图象分别交于点M 、N ,则 |MN| 的最小值为 ( )A .B .C .D .l n3﹣ 1考点 : 利用导数求闭区间上函数的最值. 专题 : 计算题;压轴题.剖析: 结构函数 F ( x ) =f ( x )﹣ g ( x ),求出导函数,令导函数大于 0 求出函数的单一递加区间,令导函数小于0 求出函数的单一递减区间,求出函数的极小值即最小值.解答: 解:绘图能够看到 |MN| 就是两条曲线间的垂直距离.设 F ( x ) =f (x )﹣ g (x ) =x 3﹣lnx ,求导得: F'( x )=.令 F ′( x )> 0 得 x >;令 F ′( x )< 0 得 0< x < ,所以当 x=时, F (x )有最小值为 F ( ) = + ln3=( 1+ln3 ),应选 A评论: 求函数的最值时,先利用导数求出函数的极值和区间的端点值,比较在它们中求出最值.19.( 2011?枣庄二模)设 f ′( x )是函数 f ( x )的导函数,有以下命题: ① 存在函数 f ( x ),使函数 y=f ( x )﹣ f ′( x )为偶函数;② 存在函数 f ( x ) f ′( x ) ≠0,使 y=f ( x )与 y=f ′( x )的图象同样;③ 存在函数 f ( x ) f ′( x ) ≠0 使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称.此中真命题的个数为( )A .0B . 1C . 2D .3考点 : 导数的运算;函数奇偶性的判断.专题 : 计算题;压轴题.剖析: 对于三个命题分别找寻知足条件的函数,三个函数分别是x, f ( x )=e ﹣ x,从而获得结f ( x ) =0, f ( x )=e 论.解答: 解:存在函数 f ( x ) =0,使函数 y=f ( x )﹣ f ′( x )=0 为偶函数,故 ① 正确存在函数 f (x ) =e x,使 y=f ( x )与 y=f ′( x )的图象同样,故 ② 正确存在函数 f (x ) =e ﹣x使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称,故 ③ 正确. 应选 D .评论: 本题主要考察了函数的奇偶性以及函数图象的对称性,解题的要点就是找寻知足条件的函数,属于基础题.20.( 2011?武昌区模拟)已知f ( x )是定义域为R 的奇函数,f (﹣ 4)=﹣ 1, f ( x )的导函数f ′( x )的图象如图所示.若两正数a ,b 知足f ( a+2b )< 1,则的取值范围是()A .B .C . (﹣ 1, 10)D .(﹣ ∞,﹣ 1)考点 : 函数的单一性与导数的关系;斜率的计算公式.专题 : 计算题;压轴题;数形联合.剖析: 先由导函数 f ′( x )是过原点的二次函数下手,再联合f ( x )是定义域为 R 的奇函数求出f ( x );而后依据a 、b 的拘束条件画出可行域,最后利用的几何意义解决问题.解答: 解:由 f ( x )的导函数f ′( x )的图象,设 f ′( x ) =mx 2,则∵ f ( x )是定义域为 R 的奇函数, ∴ f ( 0) =0,即 n=0 .f ( x )=+n .又 f (﹣ 4) = m ×(﹣ 64) =﹣ 1, ∴ f ( x ) =x 3=.且 f ( a+2b ) =又 a > 0, b > 0,则画出点(< 1, ∴< 1,即 a+2b <4.b ,a )的可行域以以下图所示.而可视为可行域内的点(b, a)与点 M (﹣ 2,﹣ 2)连线的斜率.又因为 k AM =3,k BM = ,所以<< 3.应选 B .评论:数形联合是数学的基本思想方法:碰到二元一次不定式组要考虑线性规划,碰到的代数式要考虑点(x,y)与点( a, b)连线的斜率.这都是由数到形的转变策略.21.(2011?雅安三模)以下命题中:①函数, f ( x) =sinx+( x∈( 0,π))的最小值是 2;② 在△ ABC 中,若 sin2A=sin2B ,则△ ABC 是等腰或直角三角形;③假如正实数a, b, c 知足 a + b> c 则+>;④ 如果 y=f ( x)是可导函数,则f′( x0) =0 是函数 y=f (x)在 x=x 0处取到极值的必需不充足条件.此中正确的命题是()A .① ②③④B .① ④C.② ③④ D .② ③考点:函数在某点获得极值的条件;不等关系与不等式;三角函数中的恒等变换应用.专题:惯例题型;压轴题.剖析:依据基本不等式和三角函数的有界性可知真假,利用题设等式,依据和差化积公式整理求得cos(A+B )=0或 sin(A ﹣B ) =0,推测出 A+B=或 A=B ,则三角形形状可判断出.结构函数y=,依据函数的单一性可证得结论;由函数极值点与导数的关系,我们易判断对错.解答:解:① f ( x)=sinx+≥2 ,当 sinx=时取等号,而 sinx 的最大值是 1,故不正确;② ∵ sin2A=sin2B ∴ sin2A ﹣ sin2B=cos( A+B ) sin( A ﹣ B) =0∴ cos( A+B ) =0 或 sin( A ﹣B )=0∴ A+B=或 A=B∴ 三角形为直角三角形或等腰三角形,故正确;③可结构函数 y=,该函数在(0.+∞)上单一递加, a+b> c 则+>,故正确;④ ∵ f( x)是定义在R 上的可导函数,当 f′( x0)=0 时, x0可能 f ( x)极值点,也可能不是 f (x)极值点,当 x0为 f( x)极值点时, f ′( x0)=0 必定成立,故 f′( x0)=0 是 x0为 f ( x)极值点的必需不充足条件,故④ 正确;应选 C.评论:考察学生会利用基本不等式解题,注意等号成立的条件,同时考察了极值的相关问题,属于综合题.22.( 2011?万州区一模)已知 f ( x ) =2x的最小值是( )A .﹣ 37B .﹣ 29考点 : 利用导数求闭区间上函数的最值.专题 : 惯例题型;压轴题.3﹣ 6x 2 +m ( m 为常数)在 [ ﹣ 2, 2] 上有最大值 3,那么此函数在 [ ﹣ 2, 2]上 C .﹣5 D .以 上都不对剖析: 先求导数,依据单一性研究函数的极值点,在开区间(﹣2, 2)上只有一极大值则就是最大值,从而求出m ,经过比较两个端点﹣2 和 2 的函数值的大小从而确立出最小值,获得结论.2∵ f ( x )在(﹣ 2, 0)上为增函数,在( 0, 2)上为减函数, ∴ 当 x=0 时, f ( x ) =m 最大,∴ m=3,从而 f (﹣ 2) =﹣ 37, f ( 2) =﹣5. ∴ 最小值为﹣ 37.应选: A评论:本题考察了利用导数求闭区间上函数的最值, 求函数在闭区间 [a ,b] 上的最大值与最小值是经过比较函数在( a ,b )内全部极值与端点函数 f ( a ), f ( b ) 比较而获得的,属于基础题.23.(2010?河东区一模)已知定义在 R 上的函数 (fx )是奇函数,且(f 2)=0,当 x > 0 时有,则不等式 x 2?f ( x )> 0 的解集是( )A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣∞,﹣ 2)∪( 0,2)C . (﹣ 2, 0)∪ ( 0, 2)D .(﹣ 2, 2) ∪ ( 2,+∞)考点 : 函数的单一性与导数的关系;函数单一性的性质. 专题 : 计算题;压轴题.剖析:第一依据商函数求导法例,把化为 [ ]′< 0;而后利用导函数的正负性,可判断函数 y=在( 0,+∞)内单一递减;再由 f ( 2) =0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得 f (x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因为当 x > 0 时,有恒成立,即 []′< 0 恒成立,所以在( 0,+∞)内单一递减.因为 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0. 又因为 f ( x )是定义在 R 上的奇函数,所以在(﹣ ∞,﹣ 2)内恒有 f ( x )> 0;在(﹣ 2, 0)内恒有 f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案为(﹣ ∞,﹣ 2)∪ ( 0,2). 应选 B .评论: 本题主要考察函数求导法例及函数单一性与导数的关系,同时考察了奇偶函数的图象特色.24.( 2010?惠州模拟)给出定义:若函数 f ( x )在 D 上可导,即 f ′( x )存在,且导函数 f ′(x )在 D 上也可导,则称 f (x )在 D 上存在二阶导函数,记 f ″( x ) =( f ′( x )) ′,若 f ″( x )< 0 在 D 上恒成立,则称f ( x )在 D 上为凸函数.以下四个函数在上不是凸函数的是()A .f ( x ) =sinx+cosxB . f ( x )=lnx ﹣2xC . f ( x )=﹣ x 3+2x ﹣ 1﹣D .f ( x ) =﹣ xex考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析: 对 ABCD 分别求二次导数,逐个清除可得答案.解答:解:对于 f ( x )=sinx+cosx ,f ′(x )=cosx ﹣sinx ,f ″(x )=﹣ sinx ﹣ cosx ,当 x ∈ 时, f ″( x )< 0,故为凸函数,清除A ;对于 f ( x ) =lnx ﹣2x , f ′( x ) = , f ″(x ) =﹣,当 x ∈时, f ″( x )< 0,故为凸函数,清除 B ;对于 f ( x ) =﹣x 3+2x ﹣ 1, f ′(x ) =﹣ 3x 2+2, f ″(x ) =﹣ 6x ,当 x ∈时, f ″( x )< 0,故为凸函数,清除 C ;应选 D .评论: 本题主要考察函数的求导公式.属基础题.25.( 2010?黄冈模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,则 ( )A .f ( 2)> e 2f ( 0), f ( 2010)> e 2010f ( 0)B . f (2)< e 2f ( 0),f (2010)> e 2010f (0)C . f ( 2)> e 2f ( 0), f ( 2010)< e 2010f ( 0)D .f (2)< e 2f ( 0),f (2010)< e 2010f (0)考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析:先转变成函数 y=的导数形式,再判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0从而>0 从而函数 y= 单一递加,故 x=2 时函数的值大于 x=0 时函数的值,即所以 f ( 2)> e 2f ( 0).2010同理 f ( 2010)> ef ( 0);评论: 本题主要考察函数的单一性与其导函数的正负状况之间的关系,即导函数大于 0 时原函数单一递加,当导函数小于0 时原函数单一递减.26.( 2010?龙岩二模)已知f ( x )、g ( x )都是定义在R 上的函数,f ′( x )g ( x ) +f (x ) g ′( x )< 0, f ( x ) g ( x )=ax , f ( 1)g ( 1) +f (﹣ 1)g (﹣ 1) =.在区间[ ﹣3, 0]上随机取一个数x , f ( x ) g ( x )的值介于4 到 8 之间的概率是()A .B .C .D .考点 : 利用导数研究函数的单一性;几何概型.专题 : 计算题;压轴题.剖析: 依据函数积的导数公式,可知函数f ( x )g ( x )在R 上是减函数,依据f ( x )g ( x ) =a x , f ( 1)g ( 1)+f(﹣ 1) g (﹣ 1) =.我们能够求出函数分析式,从而可求出f (x )g ( x )的值介于4 到 8 之间时,变量的范围,利用几何概型的概率公式即可求得. 解答: 解:由题意, ∵ f' ( x ) g ( x )+f (x ) g'( x )< 0,∴ [f ( x ) g ( x ) ]'<0,∴ 函数 f ( x )g ( x )在 R 上是减函数∵ f ( x ) g (x ) =a x,∴ 0< a < 1∵ f ( 1) g (1) +f (﹣ 1)g (﹣ 1)= .∴∴∵ f ( x ) g (x )的值介于 4 到 8∴ x ∈[﹣ 3,﹣ 2]∴ 在区间 [﹣3, 0] 上随机取一个数 x ,f (x ) g ( x )的值介于 4 到 8 之间的概率是应选 A .评论: 本题的考点是利用导数确立函数的单一性,主要考察积的导数的运算公式,考察几何概型,解题的要点是确立函数的分析式,利用几何概型求解.27.( 2010?成都一模)已知函数 在区间( 1, 2)内是增函数,则实数m 的取值范围是( )A .B .C . (0, 1]D .考点 : 利用导数研究函数的单一性. 专题 : 压轴题.剖析: 第一求出函数的导数,而后依据导数与函数增减性的关系求出m 的范围.解答: 解:由题得 f ′( x )=x 2﹣ 2mx ﹣3m 2=( x ﹣ 3m )( x+m ),∵ 函数在区间( 1, 2)内是增函数,∴ f ′( x )> 0,当 m ≥0 时, 3m ≤1,∴ 0≤m ≤ ,当 m < 0 时,﹣ m ≤1, ∴ ﹣ 1≤m < 0,∴ m ∈[﹣ 1, ] .应选 D .点 :掌握函数的 数与 性的关系.28.( 2009?安徽) 函数 f ( x )= x 3+x 2+tan θ,此中 θ∈[0,] , 数 f (′1)的取 范 是 ()A .[ 2, 2]B . [, ]C . [ , 2]D .[ , 2]考点 : 数的运算.: .剖析: 利用基本求 公式先求出f ′( x ),而后令 x=1 ,求出 f ′(1)的表达式,从而 化 三角函数求 域 ,求解即可.2cos θ?x ,解答: 解: ∵ f ′( x ) =sin θ?x +∴ f ′( 1)=sin θ+ cos θ=2sin ( θ+ ).∵ θ∈[0, ],∴ θ+ ∈[ , ] . ∴ sin (θ+ ) ∈[ , 1] . ∴ 2sin ( θ+) ∈[, 2].故 D .点 : 本 合考 了 数的运算和三角函数求 域 ,熟 公式是解 的关 .29.( 2009?天津) 函数 f ( x )在 R 上的 函数f ′(x ),且 2f ( x ) +xf ′( x )> x 2,下边的不等式在R 内恒成立的是( )A .f ( x )> 0B . f ( x )< 0C . f ( x )> xD .f ( x )< x考点 : 数的运算. : .剖析: 于 参数取 , 些没有固定套路解决的 ,最好的 法就是清除法.解答: 解: ∵ 2f ( x ) +xf ′( x )> x 2,令 x=0 , f (x )> 0,故可清除 B ,D .假如 f ( x )=x 2+0.1, 已知条件 2f ( x ) +xf ′( x )> x 2成立,但 f ( x )>x 未必成立,所以 C 也是 的,故 A 故 A .点 :本 考 了运用 数来解决函数 性的 .通 剖析分析式的特色,考 了剖析 和解决 的能力.30.( 2009? 西) 曲 y=x n+1(n ∈N * )在点( 1, 1) 的切 与x 的交点的横坐 x n1 2n的, x ?x ?⋯?x( )A .B .C .D .1考点 : 利用 数研究曲 上某点切 方程;直 的斜率. : 算 ; . 剖析:欲判 x 1?x 2?⋯?x n 的 ,只 求出切 与x 的交点的横坐 即可,故先利用 数求出在 x=1 的 函数 ,再 合 数的几何意 即可求出切 的斜率.从而 解决.n+1*n解答: 解: y=x ( n ∈N )求 得 y ′=( n+1 )x ,令 x=1 得在点( 1,1) 的切 的斜率 k=n+1 ,在点( 1, 1) 的切 方程 y 1=k ( x n 1) =( n+1)( x n 1),不如 y=0,x 1?x 2?x 3⋯?x n = × × ,故 B .点 :本小 主要考 直 的斜率、利用 数研究曲 上某点切 方程、数列等基 知 ,考 运算求解能力、化 与 化思想.属于基 .高中数学导数尖子生指导(解答题)一.解答 (共30 小 )21.( 2014?遵 二模) 函数 f ( x ) =x +aln ( 1+x )有两个极 点x 1、x 2,且 x 1< x 2,( Ⅱ ) 明: f ( x 2)>.考点 : 利用 数研究函数的极 ;利用 数研究函数的 性;不等式的 明. : 算 ; 明 ; .剖析: ( 1)先确立函数的定 域而后求 数f ( x ),令g ( x )=2x 2+2x+a ,由 意知 x 1、 x 2 是方程 g ( x ) =0 的 两个均大于 1 的不相等的 根,成立不等关系解之即可,在函数的定 域内解不等式f ( x )> 0 和 f ( x )< 0,求出 区 ;( 2)x 2 是方程 g ( x ) =0 的根,将 a 用 x 2 表示,消去 a 获得对于 x 2 的函数,研究函数的 性求出函数的最大 ,即可 得不等式.解答:解:( I )令 g ( x )=2x2,其 称 .+2x+a由 意知x 1、 x 2 是方程 g ( x )=0 的两个均大于1 的不相等的 根,其充要条件,得( 1)当 x ∈( 1,x 1) , f'( x )> 0,∴ f ( x )在( 1, x 1)内 增函数; ( 2)当 x ∈( x 1, x 2) , f'(x )< 0, ∴f (x )在( x 1 ,x 2)内 减函数;( 3)当 x ∈( x 2, +∞) , f' ( x )> 0, ∴ f ( x )在( x 2, +∞)内 增函数;( II )由( I ) g ( 0) =a > 0, ∴,a= ( 2x222+2x )222∴ f ( x 2) =x 2 +aln ( 1+x 2) =x 2( 2x 2+2x 2) ln (1+x 2),h'( x ) =2x 2(2x+1 )ln ( 1+x ) 2x= 2( 2x+1 ) ln ( 1+x )( 1)当, h'(x )> 0,∴ h ( x )在 增;( 2)当 x ∈( 0, +∞) , h'( x )< 0, h (x )在( 0, +∞) 减. ∴故 .点 : 本 主要考 了利用 数研究函数的 性,以及利用 数研究函数的极 等相关知 ,属于基 .2﹣x2.( 2014?武汉模拟)己知函数 f ( x) =x e(Ⅰ)求 f ( x)的极小值和极大值;(Ⅱ)当曲线 y=f ( x)的切线 l 的斜率为负数时,求l 在 x 轴上截距的取值范围.考点:利用导数研究函数的极值;依据实质问题选择函数种类;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;转变思想;导数的综合应用.剖析:(Ⅰ )利用导数的运算法例即可得出f′( x),利用导数与函数单一性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ )利用导数的几何意义即可获得切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单一性、极值、最值即可.2 ﹣ x﹣x 2 ﹣ x ﹣ x2解答:解:(Ⅰ)∵ f( x) =x e,∴ f′( x) =2xe﹣ x e =e( 2x﹣ x ),令f′( x)=0 ,解得 x=0 或 x=2 ,令f′( x)> 0,可解得 0<x< 2;令 f′( x)< 0,可解得 x< 0 或 x> 2,故函数在区间(﹣∞, 0)与( 2,+∞)上是减函数,在区间( 0, 2)上是增函数.∴ x=0 是极小值点, x=2 极大值点,又f( 0) =0, f ( 2)=.故 f( x)的极小值和极大值分别为0,.( II )设切点为(),则切线方程为y﹣=(x﹣x0),令 y=0 ,解得 x==,因为曲线y=f ( x)的切线 l 的斜率为负数,∴(<0,∴ x0<0或x0>2,令,则=.①当 x0< 0 时,0,即 f′( x0)> 0,∴ f( x0)在(﹣∞, 0)上单一递加,∴ f(x0)< f( 0) =0;② 当x0> 2 时,令f′( x0) =0,解得.当时, f′( x0)> 0,函数 f ( x0)单一递加;当时, f ′( x0)< 0,函数f( x0)单一递减.故当时,函数f( x0)获得极小值,也即最小值,且=.综上可知:切线l 在 x 轴上截距的取值范围是(﹣∞,0)∪.评论:本题考察利用导数求函数的极值与利用导数研究函数的单一性、切线、函数的值域,综合性强,考察了推理能力和计算能力.3.( 2014?四川模拟)已知函数 f ( x) =lnx+x 2.( Ⅰ )若函数 g ( x ) =f ( x )﹣ ax 在其定义域内为增函数,务实数 a 的取值范围;( Ⅱ )在( Ⅰ )的条件下,若 a > 1, h ( x ) =e 3x ﹣ 3ae xx ∈[0, ln2] ,求 h ( x )的极小值;( Ⅲ )设 F ( x )=2f ( x )﹣ 3x 2﹣kx ( k ∈R ),若函数 F ( x )存在两个零点 m ,n ( 0< m <n ),且 2x 0=m+n .问:函数 F ( x )在点( x 0 ,F ( x 0))处的切线可否平行于x 轴?若能,求出该切线方程;若不可以,请说明原因.考点 : 函数的单一性与导数的关系;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题 : 计算题;压轴题;导数的观点及应用.剖析:( Ⅰ )先依据题意写出: g (x )再求导数, 由题意知, g ′( x )≥0,x ∈( 0,+∞)恒成立, 即由此即可求得实数 a 的取值范围;( Ⅱ )由( Ⅰ )知,利用换元法律t=e x ,则 t ∈[1,2] ,则 h ( t )=t 3﹣ 3at ,接下来利用导数研究 此函数的单一性,从而得出h (x )的极小值;( Ⅲ )对于可否问题,可先假定能,即设F (x )在( x 0,F ( x 0))的切线平行于 x 轴,此中 F ( x ) =2lnx﹣ x 2﹣ kx 联合题意,列出方程组,证得函数在( 0,1)上单一递加,最后出现矛盾,说明假定不行立,即切线不行否平行于x轴.解答:解:( Ⅰ ) g ( x ) =f ( x )﹣ ax=lnx+x 2﹣ax ,由题意知, g ′(x ) ≥0,对随意的x ∈( 0, +∞)恒成立,即又 ∵ x > 0,,当且仅当 时等号成立∴,可得( Ⅱ )由( Ⅰ )知,,令 t=e x,则 t ∈[1,2] ,则h ( t ) =t 3﹣3at ,由 h ′(t )=0,得或(舍去),∵ , ∴若 ,则 h ′( t )< 0,h ( t )单一递减;若 ,则 h ′( t )> 0, h ( t )单一递加∴ 当时, h ( t )获得极小值,极小值为x 轴,此中 F (x ) =2lnx ﹣ x 2﹣kx( Ⅲ )设 F ( x )在( x 0, F ( x 0))的切线平行于联合题意,有① ﹣ ② 得所以,由 ④ 得所以。

2013年高考数学最后压轴大题1

2013年高考数学最后压轴大题1

2013年高考数学最后压轴大题1、解:(1)01)(2'≥-=axax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求。

(2)取b b a x +=,1,0,1>+∴>>bba b a ,一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,0)1()(=>+∴f b b a f0ln 1>+++⋅+-∴b b a b b a a b b a 即ba b b a +>+1ln另一方面,设函数)1(ln )(>-=x x x x G)1(0111)('>>-=-=x xx x x G ∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G∴x x ln > 即bba b b a +>+ln综上所述,.ln 1bba b b a b a +<+<+ 2.解:(1=1c ∴=…………………1分由题意1,b a =∴=所以椭圆方程为2212x y +=………………………3分 (2)容易验证直线l 的斜率不为0。

故可设直线l 的方程为 1x k y =+,2212x y +=代入中,得.012)2(22=-++ky y k设 1122(,),(,),A x y B x y则22221+-=+k k y y .21221+-=k y y ……………………………5分 ∵λ= ∴有.021<=λλ,且y y 222122212()414222y y k k y y k k λλ+∴=-⇒++=-++ 由021212125]1,2[≤++≤-⇒-≤+≤-⇒--∈λλλλλ.72072024212222≤≤⇒≤⇒≤+-≤-⇒k k k k …………7分∵).,4(),,2(),,2(21212211y y x x TB TA y x TB y x TA +-+=+∴-=-=又.2)1(42)(4,22222121221++-=-+=-+∴+-=+k k y y k x x k k y y 故2212212)()4(||y y x x TB TA ++-+=+222222222222)2(8)2(28)2(16)2(4)2()1(16+++-+=++++=k k k k k k k 222)2(822816+++-=k k ……………………………………………………8分 令720.2122≤≤+=k k t ∴21211672≤+≤k ,即 ].21,167[∈t ∴.217)47(816288)(||222--=+-==+t t t t f 而 ]21,167[∈t , ∴169()[4,]32f t ∈ ∴].8213,2[||∈+………………………………………………………10分 3.解:(1)01212)(2'≤-+=-+=xax x x a x x f 在[]2,1上恒成立,令 12)(2-+=ax x x h ,有⎩⎨⎧≤≤0)2(0)1(h h 得,271⎪⎩⎪⎨⎧-≤-≤a a ……………………… 4分得27-≤a …………………………………………………………………………… 5分(2)假设存在实数a ,使x ax x g ln )(-=(],0(e x ∈)有最小值3,x a x g 1)('-=xax 1-= ……………………………………………6分当0≤a 时,)(x g 在],0(e 上单调递减,31)()(min =-==ae e g x g ,ea 4=(舍去), ②当e a <<10时,)(x g 在)1,0(a 上单调递减,在],1(e a上单调递增 ∴3ln 1)1()(min =+==a ag x g ,2e a =,满足条件.③当e a ≥1时,)(x g 在],0(e 上单调递减,31)()(min =-==ae e g x g ,ea 4=(舍去),综上,存在实数2e a =,使得当],0(e x ∈时)(x g 有最小值3. ……………………10分(3)令x x e x F ln )(2-=,由(2)知,3)(min =x F .令25ln )(+=x x x ϕ,2'ln 1)(x xx -=ϕ, 当e x ≤<0时,0)('≥x ϕ,()h x 在],0(e 上单调递增 ∴32521251)()(max =+<+==e e x ϕϕ ,25ln ln 2+>-∴x x x x e 即x x e 2522-x x ln )1(+>.………14分4.解:(1)当1a =时32()f x x x x m =+-+,因为()f x 有三个互不相同的零点,所以32()0f x x x x m =+-+=,即32m x x x =--+有三个互不相同的实数根。

2013届全国各地高考押题数学(文科)精选试题分类汇编2:函数含答案

2013届全国各地高考押题数学(文科)精选试题分类汇编2:函数含答案

2013届全国各地高考押题数学(文科)精选试题分类汇编2:函数一、选择题1 .(2013届辽宁省高考压轴卷数学文试题)已知函数31,0()3,0x x f x xx x ⎧+>⎪=⎨⎪+≤⎩,则方程2(2)f xx a +=(2a >)的根的个数不可能为)(A 6)(B 5)(C 4 )(D 3【答案】A .2 .(2013届安徽省高考压轴卷数学文试题)已知函数3|log |(03)()12(3)3x x f x x x <<⎧⎪=⎨-+≥⎪⎩,又三个互不相等的αβγ、、满足()()()f f f αβγ==,则αβγ的范围是( )A .(06),B .(36),C .[]36,D .(03),【答案】B 【解析】数形结合,作出()f x 的图像,如图所示,若有()()()f f f αβγ==,不妨设αβγ<<,则有1αβ=,36γ<<,所以(36)αβγ∈,。

3 .(2013届山东省高考压轴卷文科数学)函数y =e sin x (—π≤x ≤π)的大致图象为【答案】D【解析】取x =-π,0,π这三个值,可得y 总是1,故排除 ( ) A .C;当0<x 〈错误!时,sin x 是增函数,e x 也是增函数,故y =e sin x 也是增函数,故选 D .4 .(2013届广东省高考压轴卷数学文试题)已知()f x 是定义在R 上的奇函数,且0x ≥时()f x 的图像如图2所示,则()2f -=( )A .3-B .2-C .1-D .2【答案】B ()()222f f -=-=-.5 .(2013届四川省高考压轴卷数学文试题)函数1()lg f x x x=-的零点所在的区间是 ( )A .(0,1)B .(1,2)C .(2,3)D .(3,10)【答案】C6 .(2013届福建省高考压轴卷数学文试题)函数13y x x =-的图象大致为【答案】A7 .(2013届山东省高考压轴卷文科数学)已知函数()f x 是R 上的奇13 2 xyO图2函数,若对于0x ≥,都有()2()f x f x +=,[)()()20,2,log 1x f x x ∈=+当时时,()()20132012f f -+的值为( )A .2-B .1-C .1D .2【答案】B【解析】由()2()f x f x +=知,函数()f x 的周期为2,所以()()20132012f f -+.1)0()1()0()121006()21006()2013(-=+-=++⨯-=⨯+-=f f f f f f8 .(2013届全国大纲版高考压轴卷数学文试题(一))若函数()()()()⎩⎨⎧≥<+=6log 632x x x x f x f ,则()1-f 的值是 ( )A .1-B .1C .3D .2-【答案】C9 .(2013届辽宁省高考压轴卷数学文试题)函数f(x)=2xex +-的零点所在的一个区间是 ( )A .(—2,-1)B .(-1,0)C .(0,1)D .(1,2) 【答案】C【解析】本题考查了函数零点的概念与零点定理的应用,属于容易题。

2013年高考数学 考前冲刺大题精做 专题09 函数与导数综合篇(学生版)

2013年高考数学 考前冲刺大题精做 专题09 函数与导数综合篇(学生版)

2013年高考数学 考前冲刺大题精做 专题09 函数与导数综合篇(学生版)【2013高考会这样考】1、 压轴题中若出现函数背景下的不等式问题,尝试构造函数,利用导数工具进行求解;2、 方程的根的问题注意转化为零点的问题进行探讨,可以利用函数的单调性和零点存在性定理进行求解;3、 数列是特殊的函数,可以结合函数的性质研究数列问题.【原味还原高考】【高考还原1:(2012年高考(某某理))】设函数()(,,)n n f x x bx cn N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值X 围; (3)在(1)的条件下,设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的零点,判断数列23,,,nx x x 的增减性.【高考还原2:(2012年高考(某某理))】已知函数()f x =axe x =-,其中a≠0. (1)若对一切x∈R,()f x ≥1恒成立,求a 的取值集合;(2)在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值X 围;若不存在,请说明理由【高考还原3:(2012年高考(某某理))】已知函数ln ()xx kf x e+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意20,()1x g x e -><+.【细品经典例题】【经典例题1】已知函数(),R xf x e kx x =-∈(e 是自然对数的底数,e=2.71828……) (1)若k=e ,求函数()f x 的极值; (2)若k R ∈,求函数()f x 的单调区间;(3)若k R ∈,讨论函数()f x 在(],4-∞上的零点个数.【经典例题2】集合A ={|lg x R y x ∈=},B ={2|22(1)(1)0x R x a x a a ∈--+->},D =A ∩B.(1)当a =2时,求集合D(用区间表示); (2)当102a <<时,求集合D(用区间表示); (3)在(2)的条件下,求函数32()43(12)6f x x a x ax =-++在D 内的极值点.【精选名题巧练】【名题巧练1】已知函数2()1f x a bx x =++在3x =处的切线方程为58y x =-. (1)求函数()f x 的解析式;(2)若关于x 的方程()xf x ke =恰有两个不同的实根,某某数k 的值; (3)数列{}n a 满足12(2)a f =,1(),n n a f a n N *+=∈ 求12320131111S a a a a =+++⋅⋅⋅⋅+的整数部分【名题巧练2】已知函数f(x)=lnx ,g(x)=k ·11+-x x . (Ⅰ)求函数F(x)= f(x)- g(x)的单调区间(Ⅱ)当x>1时,函数f(x)> g(x)恒成立,某某数k 的取值X 围;(Ⅲ)设正实数a 1,a 2,a 3,…,a n 满足a 1+a 2+a 3+…+a n =1,求证:ln(1+21a 1)+ln(1+22a 1)+…+ln(1+2a 1n )>222+n n .【名题巧练3】已知函数()ln f x x a x =+在1x =处的切线l 与直线20x y +=垂直,函数21()()2g x f x x bx =+-. (Ⅰ)某某数a 的值;(Ⅱ)若函数()g x 存在单调递减区间,某某数b 的取值X 围; (Ⅲ)设1212,()x x x x >是函数()g x 的两个极值点,若72b ≥,求12()()g x g x -的最大值.【名题巧练4】已知函数2()ln(1)f x a x ax x =+--. (Ⅰ)若1x =为函数()f x 的零点,求a 的值; (Ⅱ)求()f x 的极值;(Ⅲ)证明:对任意正整数n ,222134232)1ln(n n n +++++<+ .【名题巧练5】已知n ∈N *,设函数2321()1,2321n n x x x f x x x n -=-+-+-∈-R. (1)求函数y =2()f x kx k (-∈R )的单调区间;(2)是否存在整数t ,对于任意n ∈N *,关于x 的方程()0n f x =在区间1t t ,⎡⎤+⎣⎦上有唯一实数解,若存在,求t 的值;若不存在,说明理由.【名题巧练6】已知函数x a x a x x g ln )12()(2++-= (1)当1=a 时, 求函数)(x g 的单调增区间 (2)求函数)(x g 在区间[]e ,1上的最小值;(3)在(1)的条件下,设x x x x g x f ln 24)()(2--+=,证明:)2()1(23)(122≥+-->-∑=n n n n n k f k nk .参考数据:6931.02ln ≈.【名题巧练7】已知函数211()22f x x =-与函数()ln g x a x =在点(1,0)处有公共的切线,设 ()()()F x f x mg x =-(0)m ≠.(1)求a 的值;(2)求()F x 在区间[1,e]上的最小值.【名题巧练8】已知函数()ln f x ax b x c =++,(,,a b c 是常数)在x=e 处的切线方程为(1)0e x ey e -+-=,1x =既是函数()y f x =的零点,又是它的极值点.(1)求常数a,b,c 的值;(2)若函数2()()()g x x mf x m R =+∈在区间(1,3)内不是单调函数,某某数m 的取值X围;(3)求函数()()1h x f x =-的单调递减区间,并证明:ln 2ln 3ln 4ln 2012123420122012⨯⨯⨯⨯<【名题巧练9】已知函数2()ln .f x ax x =- (I )讨论函数f (x )单调性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档