立体几何中的轨迹问题9

合集下载

例谈立体几何中轨迹问题

例谈立体几何中轨迹问题

3根据截面图形求轨迹 . 例 3 正方体AB D— l E、 C A BCD ,
盼 别是A 、C的 中点 ,是 C 。 的 A, C P C上 动点 ( 括端点 )过E、 P 包 , D、 作正 方体
的截面 , 若截面 为四边形 , 点P 则 的轨
迹为( ) .
A直线 .
算题 , ) 略
2 3 5, × = . + = 2 3 6
解. 近年来 高考 中常见的题 型有 以下几类.
1利 用 圆锥 曲线 定 义 求轨 迹 . 点评 : 圆锥 曲 线 的 统 一 定 义 为 : 定 点 的距 离与 到 到
学思 想 与方法 , 综合性 强 , 能力 要求高 , 教师可集 中讲 定直线的距 离比为常数 的点的轨迹 , 该常数 叫做 圆锥 曲 线的 离心 率 , 表 示. < < 时 , 用e 当0 e l 为椭 圆; = 时, 当e l 为
点 评 : 面 图形确 定后 , 点 的轨 迹 也 是 确 定 的 , 截 动 此 4 立 函 数模 型 求 函数 解 析式 建
的轨迹是以c点 为焦点 , C 以B 为准线 的抛 物线 ( 在侧 面 线 与D 平 行 , E 由此 得 , 与c 当P 重合时 , 面过B 。 中 截 B的 点评 : 点在平 面 内运动的轨迹有 直线、 圆和 圆锥 曲 而 当截面过c时 , 。 截面也是四边形. 故选C .
抛 物 线 ; > 时 . 双 曲 线. 当e l 为
例 1 如 图 ,在 正 方 体A C B D— ABCD 中 , 侧 面 BB C 内一 动 1 P是 1C 点 ,若P 到直线B 与直线 CD的距离 C 。 相等 ,则动点J p 的轨迹所在 的曲线是
( ) . d

立体几何中的轨迹判断问题(教案)

立体几何中的轨迹判断问题(教案)

⽴体⼏何中的轨迹判断问题(教案)⽴体⼏何中的轨迹判断问题1. 已知平⾯//α平⾯β,直线l α?,点l P ∈,平⾯α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是() A. ⼀个圆 B. 两条平⾏直线 C. 四个点 D. 两个点解析:如图1,设点P 在平⾯β内的射影是O ,则OP 是α、β的公垂线,OP=4。

在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆⼼,3为半径的圆上。

⼜在β内到直线l 的距离等于29的点的集合是两条平⾏直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点。

因此所求点的轨迹是四个点,故选C 。

2.已知平⾯βα||,直线α?l ,点P l ∈,平⾯βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是( ) A .⼀个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内⼀动点,点P 在β内射影为O ,过O, l 的平⾯与β的交线为l ', PQ=10,∴OQ==-228106点Q 在以O 为圆⼼6为半径圆上,过Q 作QM l '⊥于M ,⼜点Q到直线l 的距离为9∴QM=178922=-则点Q 在以l '平⾏距离为17的两条平⾏线上两条平⾏线与圆有四个交点∴这样的点Q 有四个,故答案选D 。

点评:本题以空间图形为背景,把⽴体⼏何问题转化到平⾯上,再⽤平⾯⼏何知识解决,要熟记⼀些平⾯⼏何点的轨迹。

3.如图2,定点A 和B 都在平⾯α内,定点P ,PB ,α⊥α?C 是α内异于A 和B 的动点。

且AC PC ⊥,那么动点C 在平⾯α内的轨迹是() A. ⼀条线段,但要去掉两个点 B. ⼀个圆,但要去掉两个点 C. ⼀个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即?=∠90ACB 。

例谈立体几何中的轨迹问题

例谈立体几何中的轨迹问题

参考文献 :
1《 课 程 标 准 实施 纲要 》 .新
参与 了活动
所 学 的 内 容 能否 运 用 到 日常 生 活 中 , 例说 明 举
2《 课 程 标 准 》 北京 师 范 大 学 出版 社 .新 3《 学数学教学》 .中
4 《 国教 育 网 》 .中
你喜 欢 今 天 的数 学 课
吗?为什么?
5《 学 老 师 札 记 》 上 海教 育 出版 社 .数
2 4
维普资讯
专题 探讨 ★
点 M 在 正 方 形 ABC 内 的 轨 迹 为 ( 为 正 方 形 AB D 0
C 的 中心 ) D ( ) . 【 6 四 棱 锥 P—AB D, 例 】 C AD上 面 P AB, 上 BC
) .
侧面 AB 内一 动 点 P 到 底 C
面 BC 的 距 离 与 到 棱 AB D 的距 离 相 等 , 动 点 P 的 轨 则
八S C的 中点
C 线段 S . C
B 点 S与 C 中点 的连线 . D
D. C 中点 与 C 中 点 的 连 线 S D
解 : 图 2 M 、 分 如 , F

由 lM I P —
一 l A 1 ADl 2 . l “ P 一 _ .


, { l l l I l I l l即 + + AB 所 在 直 线 为 轴 建 M 得P +H 一M , C H M C
( - ) y- 1
面 P AB, 面 AB D 是 梯 形 , 底 C AD 一 4 BC 一 8 , , AB= 6  ̄APD= / C , PB, 足 上 述 条 件 的 四棱 锥 顶 满
点 P的轨迹是 ( ) .

立体几何中的动点轨迹问题

立体几何中的动点轨迹问题

同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为

立体几何中轨迹问题

立体几何中轨迹问题

立体几何中的轨迹问题立体几何是考查学生空间想象能力和转化能力,在立体几何中出现了一些轨迹问题,本人将这些问题作了如下归类,以供参考。

一、轨迹是抛物线例1.2004年高考北京卷(文),如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc与直线c1d1的距离相等,则动点p的轨迹所在的曲线是()a.直线b.圆c.双曲线d.抛物线解:连接pc1,∵d1c1⊥面bb1c1c,又pc?奂面bb1c1c,∴d1c1⊥pc1,即可得线段pc1长为点p到c1d1的距离,原题意可转化为:在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离相等.由抛物线定义可知:点p的轨迹所在的曲线是抛物线.例2.2004年高考北京卷(理),正方体abcd-a1b1c1d1的棱长为1,点m在棱ab上,且am=,点p是平面abcd上的动点,且点p到直线a1d1的距离与到点m的距离的平方差为1,则点p的轨迹是()a.抛物线b.双曲线c.直线d.以上都不对解:在正方形add1a1中过点e作ef⊥a1d1交ad于f,连接pf,pe,pm. ∵pe为点p到a1d1的距离∴pe⊥a1d1∴a1d1⊥efp面,又ad∥a1d1∴pf⊥ad即pf为点p到直线ad的距离.由条件和所作不难知ef⊥fp.pe2-pm2=ef2+pf2-pm2=1+pf2-pm2=1即:pf=pm,同样由抛物线定义可知:点p的轨迹所在的曲线是抛物线.二、轨迹是椭圆例3.由2004年高考北京卷,(文4)得变题1,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离2倍,则动点p的轨迹是()a.线段b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:变为在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离之比为1∶2.由椭圆第二定义可知:点p的轨迹所在的曲线是椭圆(在正方形bb1c1c内),且离心率为.故本题选b.三、轨迹是双曲线例4.变题2,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离一半,则动点p的轨迹是双曲线的一部分,且离心率为2.四、轨迹是线段例5.变题3,如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c 内一动点,且始终满足ap⊥d1b,则动点p的轨迹所在的曲线是() a.线段 b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:连接ac,ab1,b1c,易证bd1⊥面ab1c,∴点p在线段b1c动,才能满足ap⊥d1b.故本题选a.例6.(2005年5月苏州市高三教学调研测试)如图,△adp为正三角形,四边形abcd为正方形,平面pad⊥平面abcd.m为平面abcd内的一动点,且满足mp=mc.点m在正方形abcd内的轨迹为(o为正方形abcd的中心)()解:空间中到p、c两点距离相等的点应在过线段pc中点且垂直于此线段pc的平面α上。

立体几何中的轨迹交汇问题解析

立体几何中的轨迹交汇问题解析

立体几何中的轨迹问题以立体图形为载体的轨迹问题,将立体几何和解析几何巧妙地整合在一起,立意新颖,综合性强,是新课程高考命题的一大趋势。

解答这类问题的关键是把空间问题转化为平面问题,一般可从两个方面考虑:一是利用曲线的定义,二是用解析法求出轨迹方程。

例1. 已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A. 一个圆B. 两条平行直线C. 四个点D. 两个点简析:如图1,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4。

在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上。

又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点。

因此所求点的轨迹是四个点,故选C 。

例2. 如图2,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点。

且AC PC ⊥,那么动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点B. 一个圆,但要去掉两个点C. 一个椭圆,但要去掉两个点D. 半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB 。

所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B 。

例3 (04年北京高考题)在正方体ABCD A B C D -1111中,P 是侧面BB C C 11内一动点,若P 到直线BC 与直线C D 11的距离相等,则动点P 的轨迹所在的曲线是( )A . 直线B .圆C .双曲线D .抛物线 分析 如图1,由C D 11⊥平面BB C C 11,得1PC ⊥C D 11,所以1PC 就是点P 到直线C D 11的距离,因此条件转化为点P 到BC 的距离等于点P 到点1C 的距离.根据抛物线的定义,点P 的轨迹所在的曲线是抛物线.选D .变式1:. 已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A. 抛物线 B. 双曲线C. 椭圆 D. 直线简析:以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系。

刍议立体几何中常见的轨迹问题

刍议立体几何中常见的轨迹问题

复习参考中’7欺7(2008年第10期高中版)37刍议立体几何中常见的轨迹问题313000浙江省湖州市第一中学黄加卫立体几何中的轨迹问题是以空间直线与平面的位置关系为依托,研究平面解析几何中一类点的轨迹.这类题型在历年高考卷中“闪亮登场”,成为高考命题的一个创新点.并且这类题型往往是客观题,其立意新颖、构思巧妙,注重多元联系和多元应用,集知识的交汇性、综合性,方法的灵活性,能力的迁移性于一体,极富思考性和挑战性,因此学生求解起来颇感困难,考试时经常弃而不答,令人惋惜!本文试通过实例来展示立体几何中轨迹问题的常用类型.1直线型轨迹问题例1(2008年北京)如图l,动点P在正方体A B C D—A l B。

C。

D。

的对角线B D。

上.过点P作垂直于平面BB.D.D的直线,与正方体表面相交于M,M设B P=石。

M N=Y,则函数Y=以石)的图象大致是()A图1 BC分析由题意可知,M N//A C,如图2,过P,N分别作PE上B D于点E,N F上BC于点,,连接EF,易知四边形EFN P为平行四边形,故EF=P N=1÷M N A EF L B D.千是A B E F D图2是等腰直角三角形.不妨设正方体的棱长为1,由于△8PE'一A BD,D,可得址争舭脚E萼,于是,,=学--x(O一务同理孚<膏≤万时,得),=一学茹+2厄(拿<算≤厕,J警一龟赫I-筝+2凰字<茸≤园.~丛A B公座∑C D分析如图3,过P分别作PH上平面B C D,PE上B C,P,上A B于日,E,,,则尸_日=PF.如图4,在平面A B C内,以B为原点,BC所在直线为并轴建立直角坐标系,设A(口,b),P(石,Y),故k:bx—ay=0.图3图4.,器=si n£删圳定值)'筹吨38十。

7擞.7(2008年第10期高中版)复习参考化简整理得如一(o±k/口2+b2)Y=0,因为直线缸一(a—k/口2+62)Y=0的斜率大于L旦,所以动点P的轨迹在A A B C内的图形是一条线口段.又由于I PFI<I PEI,故选D.点评直线型轨迹问题包含轨迹为直线、线段、射线以及折线等问题类型.解题的关键往往在于求出所涉及的函数表达式,另外,通过空间想象,再利用客观题的特点去剖析问题也常起到意想不到的功效.2圆型轨迹问题例3(2004年天津)如图5,定点A和日都在平面a内,定点P每a,PB上a,C是a内异于A和B的动点且P C上A C.那么动点C在平面a内的轨迹是()图5A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点分析‘.’PC.LA C且PC在a内的射影为B C,.‘.B C_LA C,即/_A C B=90。

立体几何中轨迹问题的处理技巧与方法

立体几何中轨迹问题的处理技巧与方法

ʏ陈 婷立体几何中的轨迹问题,是立体几何与解析几何的知识交汇点㊂这类问题,立意新颖,重视不同知识的交叉与渗透,重视对数学知识与数学能力的考查与应用,是培养同学们数学核心素养的好素材㊂一㊁直接法直接法就是直接利用立体几何的相关知识,合理分析和研究问题中各个元素之间的关系,或者直接利用轨迹定义进行求解的方法㊂例1 如图1,在正方体A B C D -A 1B 1C 1D 1中,P 是侧面B C C 1B 1上的一个动点,若点P 到直线B C 与直线C 1D 1的距离相等,则动点P 的轨迹是下列哪种线的一部分( )㊂图1A.直线 B .圆C .双曲线 D .抛物线分析:根据题设条件,利用空间点线面的位置关系,直接得到动点P 到直线B C 与到点C 1的距离相等,再结合解析几何中抛物线的定义,可得对应的答案㊂解:根据正方体的性质,可知C 1D 1ʅ平面B C C 1B 1,所以动点P 到直线C 1D 1的距离与到点C 1的距离相等㊂又动点P 到直线B C 与到直线C 1D 1的距离相等,所以动点P 到直线B C 与到点C 1的距离相等㊂根据抛物线的定义,可得动点P 的轨迹是一条抛物线的一部分㊂应选D ㊂二㊁转化法转化法就是将立体几何问题转化为平面几何问题,进行合理 降维 处理,进而应用平面几何㊁解析几何等相关知识来分析与求解的方法㊂例2 (2022年高考北京卷)已知正三棱锥P -A B C 的六条棱长均为6,S 是әA B C 及其内部的点构成的集合㊂设集合T ={Q ɪS |P Q ɤ5},则T 表示的区域的面积为( )㊂A .3π4B .πC .2πD .3π分析:根据题设条件,结合正三棱锥的性质,合理构建点P 在底面әA B C 内的射影点O ,结合集合的创新设置进行合理转化,将空间中的距离问题转化为平面上的距离问题加以分析与求解㊂解:设点P 在底面әA B C 内的射影为点O ㊂依题意知әA B C 是边长为6的正三角形,所以A O =B O =C O =23㊂因为P A =P B =P C =6,所以P O =62-(23)2=26㊂若P Q =5,则O Q =P Q 2-P O 2=1,可知动点Q 的轨迹是在底面әA B C 内,以O 为圆心,半径为r =1的圆及其内部,其对应的面积为πr 2=π㊂应选B ㊂三㊁解析法解析法就是利用解析几何在研究轨迹方面的一整套比较完整的理论体系,通过坐标法进行代数运算与逻辑推理的一种求轨迹的方法㊂解析法是解决立体几何图形的二维轨迹问题的常用方法之一㊂例3 (多选题)如图2所示,在正方体A B C D -A 1B 1C 1D 1中,E 是C C 1的中点,点P 在底面A B C D 内运动,若P D 1,P E 与底面A B C D 所成的角相等,则动点P 的轨迹是( )㊂71知识结构与拓展高一数学 2023年4月Copyright ©博看网. All Rights Reserved.图2A.圆的一部分B.椭圆的一部分C.经过线段B C靠近B的三等分点D.经过线段C D靠近C的三等分点分析:根据题意得D P=2P C,以点D为坐标原点,建立平面直角坐标系,通过坐标法进行讨论求解㊂解:由正方体的性质得D D1ʅ平面A B C D,E Cʅ平面A B C D,所以øD P D1,øC P E分别为P D1,P E与底面A B C D所成的角,所以øD P D1=øC P E㊂因为t a nøD P D1=D D1D P,t a nøC P E= C EP C,又D D1=2C E,所以D P=2P C㊂在平面A B C D中,以D为坐标原点,建立平面直角坐标系,如图3所示㊂图3设正方体的边长为a,点P(x,y),xȡ0,yȡ0,则点D(0,0),C(a,0),所以D P2= x2+y2,P C2=(x-a)2+y2,所以x2+y2= 4(x-a)2+4y2,整理得3x2+3y2-8a x+ 4a2=0,显然3x2+3y2-8a x+4a2=0表示圆的方程,所以动点P的轨迹是圆的一部分,A正确,B错误㊂线段B C靠近B的三等分点的坐标为a,23a,线段C D靠近C的三等分点的坐标为23a,0,分别代入方程3x2+3y2-8a x+4a2=0,可得3a2+3ˑ23a2-8a2+4a2=13a2ʂ0,3ˑ23a2+ 3ˑ02-8aˑ23a+4a2=0,所以23a,0在圆3x2+3y2-8a x+4a2=0上,a,23a不在圆3x2+3y2-8a x+4a2=0上,C错误,D 正确㊂应选A D㊂四㊁性质法性质法就是利用轨迹的相关知识来解决立体几何中轨迹问题的一种基本方法㊂有些空间图形的轨迹不一定是二维的,转化为平面问题比较困难,这时可借助性质法来处理㊂例4已知棱长为3的正方体A B C D-A1B1C1D1中,长为2的线段M N的一个端点M在D D1上运动,另一个端点N在底面A B-C D上运动,则线段M N的中点P的轨迹与正方体的面所围成的几何体的体积为㊂分析:不论әMD N如何变化,点P到点D的距离始终等于1㊂从而点P的轨迹是一个以点D为球心,半径为1的球的18,由此可求出体积㊂解:如图4所示,端点N在正方形A B C D内运动㊂图4因为әMD N为直角三角形,P为斜边MN的中点,所以不论әMD N如何变化,点P到点D的距离始终等于1㊂利用立体几何的性质,可知动点P的轨迹是一个以点D为球心,半径为1的球的18,所以所求体积V= 18ˑ43ˑπˑ13=π6㊂作者单位:江苏省海安高级中学(责任编辑郭正华)8 1知识结构与拓展高一数学2023年4月Copyright©博看网. All Rights Reserved.。

与立体几何有关的轨迹问题

与立体几何有关的轨迹问题

如 图 5 ,已 知 正 方 体
: 二 :
A B C D
AB D- A B C D 的棱 长 为 1 点 M C - ,

在 A上且 M -Q 平 棱 l ,a= ̄ 是 面 B ,
A C 内 的 动 点 , 点 Q 到 直 线 B D 若
A。 的 距 离 与 点 Q 到 点 M 的 距 离 D 的平 方 差 为 l ,则 点 Q 的 轨 迹 为( ) . A. 物 线 抛 B 双 曲 线 . C 椭 圆 .

名师专题讲座
21年 期 0 第1 2
与 立体 几 何 有 关 的轨 迹 问题
■ 唐 建 明
近几 年 的 高考 题 中 现 了一 些 与 立 体 几 何 有 关 的轨 迹 问 题 . 些 问题 大 致 可 分 为 两 大 类 : 体 几 何 中 的 轨 迹 问题 与 以 这 立
空 间 图形 为 载 体 的 圆锥 曲线 问题 .
何 中点 、 、 的 基 本 知 识 , 要 掌 握 有 关 的 轨 迹 问 题 : 1 空 线 面 还 () 间 中到 两 定 点 的 距 离 相 等 点 的轨 迹 是 以这 两 个 点 为 端 点 的 线
二、 以空 间 图 形 为 载体 的 圆锥 曲线 问题
解 决 这 类 问 题 , 了 要 熟 练 掌 握 立 体 几 何 中 点 、 、 的 除 线 丽

中学鸯数理亿 . 学饼版
解: 连接 E 易知△E A, AF为直 角 i角形 , P 则 A一÷ E F

.ห้องสมุดไป่ตู้
故 点 P 到 定 点 A 的距 离 为 定 值 , 由球 面 的 定 义 Ⅻ , 选

立体 几 何 中的 轨 迹 问 题

微专题19 立体几何中的动点及其轨迹问题

微专题19 立体几何中的动点及其轨迹问题

微专题19立体几何中的动点及其轨迹问题求空间图形中点的轨迹既是中学数学学习中的一个难点,也是近几年高考的一个热点,是立体几何与解析几何相交汇的问题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面几何的轨迹问题来处理的数学思想,常用方法主要有:(1)定义法(如圆锥曲线定义);(2)解析法;(3)交轨法.类型一定性的研究动点的轨迹立体几何中与动点轨迹有关的问题归根还是利用线面的平行、垂直关系,在此类问题中要么容易看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式.例1 (1)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P 满足∠P AB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支(2)(多选)(2022·济南质检)已知正方体ABCD-A1B1C1D1的棱长为4,M为DD1的中点,N为ABCD所在平面上一动点,则下列命题正确的是()A.若MN与平面ABCD所成的角为π4,则点N的轨迹为圆B.若MN=4,则MN的中点P的轨迹所围成图形的面积为2πC.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线D.若D1N与AB所成的角为π3,则点N的轨迹为双曲线答案(1)C(2)ACD解析(1)由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60°角的平面截圆锥,所得图形为椭圆.(2)如图所示,对于A,根据正方体的性质可知,MD⊥平面ABCD,所以∠MND为MN与平面ABCD所成的角,所以∠MND=π4,所以DN=DM=12DD1=12×4=2,所以点N的轨迹为以D为圆心,2为半径的圆,故A正确;对于B,在Rt△MDN中,DN=MN2-MD2=42-22=23,取MD的中点E,因为P为MN的中点,所以PE∥DN,且PE=12DN=3,DN⊥ED,所以PE⊥ED,即点P在过点E且与DD1垂直的平面内,又PE=3,所以点P的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确; 对于C ,连接NB ,因为BB 1⊥平面ABCD , 所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,所以点N 到点B 的距离等于点N 到定直线CD 的距离, 又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0), 则AB →=(0,4,0),D 1N →=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3, 所以|cos 〈AB →,D 1N →〉|=cos π3, 所以|4y |4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 正确.训练1 (1)如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A.圆B.椭圆C.一条直线D.两条平行直线(2)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与底面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 内运动,若EP 与AC 成30°角,则点P的轨迹为()A.圆B.抛物线C.双曲线D.椭圆答案(1)B(2)A解析(1)由题意知,点P到线段AB的距离为定值,则点P为在以AB为旋转轴的圆柱表面上一点,故平面α斜截圆柱,所得图形为椭圆.(2)因为在平行六面体ABCD-A1B1C1D1中,AA1与底面A1B1C1D1垂直,且AD=AB,所以该平行六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,连接EF,则EF∥AC.因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面圆周,故选A.类型二定量的研究动点的轨迹当涉及动点轨迹的长度、图形的面积和图形的体积以及体积的最值,一般要用未知变量表示轨迹,然后借助于函数的性质求解.例2 (1)在棱长为22的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为()A.2153 B.433C.2133 D.423(2)(多选)(2022·南京质检)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点(不包含端点),若正方体棱长为1,则下列结论正确的有( )A.直线D 1P 与AC 所成角的取值范围是⎣⎢⎡⎦⎥⎤π6,π2B.存在P 点,使得平面APD 1∥平面C 1BDC.三棱锥D 1-CDP 的体积为16D.平面APD 1截正方体所得的截面可能是直角三角形 答案 (1)C (2)BC解析 (1)如图,连接B 1D 1,因为E ,F 分别为棱AB ,AD 的中点, 所以B 1D 1∥EF ,则B 1,D 1,E ,F 四点共面.连接A 1C 1,A 1D ,设A 1C 1∩B 1D 1=M ,A 1D ∩D 1F =N ,连接MN , 则点Q 的轨迹为线段MN , 易得A 1D =A 1D 21+DD 21=4,△A 1ND 1∽△DNF ,且A 1D 1FD =2,所以A 1N =23A 1D =83. 易知A 1C 1=C 1D =A 1D =4,所以∠C 1A 1D =60°,又A 1M =2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1M cos ∠MA 1N =529,所以MN =2133,即点Q 的轨迹长度为2133.(2)对于A 选项,如图①,连接AC ,D 1P ,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),A 1(1,0,1),D (0,0,0),D 1(0,0,1),C (0,1,0).则有AC →=(-1,1,0),D 1P →=D 1A 1→+λA 1B →=(1,0,0)+λ(0,1,-1)=(1,λ,-λ),λ∈(0,1), 所以|cos 〈AC →,D 1P →〉|=|-1+λ|2·2λ2+1=(1-λ)24λ2+2.令f (λ)=(1-λ)24λ2+2,λ∈(0,1), f ′(λ)=8λ2-4λ-4(4λ2+2)2=4(2λ+1)(λ-1)(4λ2+2)2<0,所以f (λ)=(1-λ)24λ2+2在(0,1)上单调递减.因为f (0)=12,f (1)=0,所以0<|cos 〈AC →,D 1P →〉|<22,又〈AC →,D 1P →〉∈⎣⎢⎡⎦⎥⎤0,π2, 故〈AC →,D 1P →〉∈⎝ ⎛⎭⎪⎫π4,π2,故A 选项错误.图①对于B选项,当P为A1B的中点时,有AP∥C1D,AD1∥C1B,易证平面APD1∥平面C1BD,故B选项正确.对于C选项,三棱锥D1-CDP的体积VD1-CDP=VP-CDD1=13×S△CDD1×AD=1 3×12×1×1×1=16,故C选项正确.对于D选项,设A1B的中点为O,连接AP,AD1,D1P.当P点在线段OB(不包含端点)上时,此时平面APD1截正方体所得的截面为梯形AEFD1,如图②;当P点在O点时,此时平面APD1截正方体所得的截面为正三角形AB1D1;当P点在线段OA1(不包含端点)上时,此时平面APD1截正方体所得的截面为等腰三角形AD1G,如图③,且AG2+D1G2≠AD21,所以该三角形不可能为直角三角形,故D选项错误.故选BC.训练2 (1)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F为AA1,AB的中点,点M是正方形ABB1A1内的动点,若C1M∥平面CD1E,则点M的轨迹长度为()A.22 B.1C. 2D.3(2)(多选)(2022·重庆诊断)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论中,正确的结论是()A.三棱锥A-D1PC的体积不变B.A1P与平面ACD1所成的角大小不变C.DP⊥BC1D.DB1⊥A1P答案(1)C(2)ABD解析(1)如图所示,取A1B1的中点H,B1B的中点G,连接EF,FC,GH,C1H,C1G,EG,HF可得四边形EGC1D1是平行四边形,∴C1G∥D1E,又D1E⊂平面CD1E,C1G⊄平面CD1E,∴C1G∥平面CD1E,同理可得C1H∥CF,又CF⊂平面CD1E,C1H⊄平面CD1E,∴C1H∥平面CD1E,又C1H∩C1G=C1,∴平面C1GH∥平面CD1E,又M点是正方形ABB1A1内的动点,若C1M∥平面CD1E,∴点M在线段GH上,∴M点轨迹的长度GH=12+12= 2.(2)如图,因为BC1∥AD1,AD1⊂平面D1AC,BC1⊄平面D1AC,所以BC1∥平面D1AC,故点P在BC1上运动时,点P到平面D1AC的距离d是定值,所以V A-D1PC =V P-AD1C=13S△AD1C×d是定值,A项正确.连接A1B,A1C1,如图所示.易知平面A1BC1∥平面ACD1,A1P⊂平面A1BC1,所以A1P∥平面ACD1,故A1P与平面ACD1所成的角大小不变,B项正确.易知DP在平面BCC1B1内的射影是CP,若DP⊥BC1,则CP⊥BC1,故点P在BC1上运动时,不一定有DP⊥BC1,C项错误.易知DB1⊥平面A1BC1,而A1P⊂平面A1BC1,所以DB1⊥A1P,D项正确.故选ABD.一、基本技能练1.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹为()A.直线B.圆C.双曲线D.抛物线答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.如图,正方体ABCD-A1B1C1D1中,P为底面ABCD上的动点.PE⊥A1C于E,且P A=PE,则点P的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分答案A解析由题意知,△A1AP≌△A1EP,则点P为在线段AE的中垂面上运动,从而与底面ABCD 的交线为线段.3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是( )A.13B.7C.433D.332答案 B解析 在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23π, 所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7, 所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为( )A.4πB.2πC.πD.π2答案 D解析 易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2. 5.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤-12,0B.⎣⎢⎡⎦⎥⎤-34,0 C.⎣⎢⎡⎦⎥⎤-12,1 D.⎣⎢⎡⎦⎥⎤-34,1 答案 B解析 根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O , 则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合. 则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈⎣⎢⎡⎦⎥⎤12,1,即|PO →|2∈⎣⎢⎡⎦⎥⎤14,1,所以|PO→|2-1∈⎣⎢⎡⎦⎥⎤-34,0, 即PM →·PN →∈⎣⎢⎡⎦⎥⎤-34,0.6.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为( ) A.π B.2π C.4π D.25π答案 C解析 根据题意知,该正方体的内切球半径为r =5, 如图,取BB 1的中点N ,连接CN ,则CN ⊥BM , 在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线, ∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为1, ∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.(2022·北京卷)已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为( ) A.3π4 B.π C.2π D.3π答案 B解析 设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心, 且BO =23×6×32=23, 故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部, 故其面积为π.8.如图,三角形P AB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案 A解析 由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8, 可得tan ∠APD =AD P A =CBPB =tan ∠CPB , 即PB P A =CBAD =2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0), 设P (x ,y ),则有PBP A =(x -3)2+y 2(x +3)2+y2=2, 整理可得x 2+y 2+10x +9=0(x ≠0). 由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是( ) A. 2 B.233 C.62 D.1答案 B解析 A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为( )A.2π3B.3π3C.π3D.3π6答案 B解析 如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ), 由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,整理可得⎝⎛⎭⎪⎫y -322+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F ⎝ ⎛⎭⎪⎫1,32为圆心,半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33, 所以O ′G =O ′O ·sin ∠GOF =32, 所以△O ′GF 是等边三角形, 即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC )解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC , 所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD⊥平面PCD.12.如图,P是棱长为1的正方体ABCD-A1B1C1D1表面上的动点,且AP=2,则动点P的轨迹的长度为________.答案3π2解析由已知AC=AB1=AD1=2,在平面BC1,平面A1C1中,BP=A1P=DP=1,所以动点P的轨迹是在平面BC1,平面A1C1,平面DC1内分别以B,D,A1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.在棱长为3的正方体ABCD-A1B1C1D1中,E是AA1的中点,P是底面ABCD 所在平面内一动点,设PD1,PE与底面ABCD所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P-BB1C1体积的最小值是()A.92 B.52C.32 D.54答案C解析以D为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3, 则E ⎝ ⎛⎭⎪⎫3,0,32,D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →=⎝ ⎛⎭⎪⎫3-x ,-y ,32,PD 1→=(-x ,-y ,3). 因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1), 所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0, 即(x -4)2+y 2=4(0≤y ≤2), 则动点P 的轨迹为圆的一部分, 所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.(多选)(2022·武汉模拟)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则( )A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形 答案 BCD解析 如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M , 则平面α由平面AEF 扩展为平面APM . 由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]), DA →=(2,0,0),AM →=(-2,t ,0),P A →=(2,0,-4), 则可知点P 到直线AM 的距离为d =|P A →|2-⎪⎪⎪⎪⎪⎪⎪⎪P A →·AM →|AM →|2=20t 2+644+t2, S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4, 设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2, 由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.答案 32 3+32解析 依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S-ABC的体积为13×3×32=32.如图,取AC边上靠近点A的四等分点G,取BA的中点为H,连接EH,EG,GH,故点F的轨迹长度即为△EHG的周长,又EG=GH=32,EH=12SB=32,故点F的轨迹长度为3+32.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.答案6π12解析设P到直线MN的距离为d,由题易得d=6 6,易知H为△ABC的中心,又MN⊥平面ABC,当点P在平面ABC内时,其轨迹是以H为圆心,66为半径的圆.∵△ABC内切圆的半径为3 6,∴圆H的一部分位于△ABC外,结合题意得,点P的轨迹为圆H位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H有一部分在△ABC外,才能正确得到点P的轨迹),如图,过点H作HO⊥AC,垂足为O,则HO=36,记圆H与线段OC的交点为K,连接HK,可得HK=66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。

2023高考一轮热题---立体几何中的轨迹问题

2023高考一轮热题---立体几何中的轨迹问题

19立体几何中的轨迹问题【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )AB C D【提分秘籍】基本规律1.线面平行转化为面面平行得轨迹2.平行时可利用法向量垂直关系求轨迹【变式演练】1.在三棱台111A B C ABC −中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是( )A .三角形111ABC 边界的一部分 B .一个点C .线段的一部分D .圆的一部分2.已知正方体1111ABCD A B C D −的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A 1BC D3.在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为( )A .1BC .2D .【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D −中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是( )A .点1B B .线段1BC C .线段11B CD .平面11B BCC【提分秘籍】基本规律1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹2.利用空间坐标运算求轨迹3.利用垂直关系转化为平行关系求轨迹【变式演练】1.在正方体1111ABCD A B C D −中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为 A .线段1CBB .线段1BC C .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段2.在棱长为1的正方体1111ABCD A B C D −中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法:①点P 可以是棱1BB 的中点;②线段MP 的最大值为34; ③点P 的轨迹是正方形;④点P 轨迹的长度为2其中所有正确说法的序号是________.3.如图,在正方体1111ABCD A B C D −中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是( )A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD −的体积为定值【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( )A .直线B .椭圆C .抛物线D .双曲线【提分秘籍】基本规律1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹2.利用空间坐标计算求轨迹【变式演练】1.如图,在四棱锥P ABCD −中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为( )A .B .C .D .2.如图,在棱长为4的正方体ABCD A B C D ''''−中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为( )A .43π B .23π C .6π D .3π 3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ⊥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( )A .B .C .D .6【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D −中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为( )A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【提分秘籍】基本规律1. 直线与面成定角,可能是圆锥侧面。

高考专题 立体几何中轨迹、翻折、探索性问题

高考专题 立体几何中轨迹、翻折、探索性问题
返回导航
12
解析:如图所示,连接 AC1 交平面 A1BD 于 O,连接 EO, 由题意可知 AC1⊥平面 A1BD, 所以∠AEO 是 AE 与平面 A1BD 所成的角,所以∠AEO=α.
返回导航
13
由 sin α=255可得 tan α=2,即AEOO=2. 在四面体 A-A1BD 中,BD=A1D=A1B=2 6, AB=AD=AA1=2 3,所以四面体 A-A1BD 为正三棱锥,O 为△BDA1 的重心,
返回导航
17
∴平面 BCE∥平面 MND,即平面 MND 为平面 α, 则点 G 到平面 DMN 的距离 d 即为点 G 到直线 DQ 的距离, ∵D→G=0, 33,- 36,D→Q=(0,-2 3,- 6), ∴D→G·D→Q=-2+2=0,即 DG⊥DQ, ∴点 G 到直线 DQ 的距离 d=|D→G|=1, ∴截面圆的半径 r= 22-12= 3,∴球被平面 α 截得的截面圆周长为 2πr=2 3π, 即平面 α 截点 P 的轨迹所形成的图形的周长为 2 3π.
返回导航
19
解: (1)证明:在△ABD 中,由余弦定理得,BD= AB2+AD2-2AB·ADcos A= 4+1-2×2×1×12= 3,
∴AD2+BD2=AB2,得 AD⊥DB,翻折后有 A′D⊥DB, 又平面 A′BD⊥平面 BCD,且平面 A′BD∩平面 BCD=DB, 根据平面与平面垂直的性质定理可得 A′D⊥平面 BCD, 又∵BC⊂平面 BCD,∴A′D⊥BC. 在平行四边形 ABCD 中,AD⊥DB,BC∥AD,∴BC⊥DB, ∵A′D∩DB=D,∴BC⊥平面 A′DB, ∵BC⊂平面 A′BC,∴平面 A′BC⊥平面 A′BD.
返回导航
15

立体几何中动点轨迹问题的几种解题方法_柳双生

立体几何中动点轨迹问题的几种解题方法_柳双生

82 教育研究 2014.2
考试复习
A. 圆 B. 椭圆 C. 双曲线
N z G A1 y D P B AM C x B1 D1 C1
例 5. 已知平面 α∥ 平 面 β , 且 两 平 面 间 的 距 离 是
8 , 点 A 、B 在 平 面 α 内 , 则 在 平 面 β 内 , 到 点 A 的 距
离为 10 , 且到直线 AB 的距离为 9 的点的个数为 ( )
A.1 个 B.2 个 C.3 个 D.4 个
B α
A
D. 抛物线
分 析 : 以 AB 为 x 轴 , 以 AD 为 y 轴 建 立 直 角 坐 标 系 , 设 P(x,y) , 则 PM=|y | , 作 PN ⊥AD 于 N ,NG ⊥
分析 : 以直线 l 为 x 轴 , 面 α 上垂直 l 的直线为 y 轴 ,交点为原点 O,建立如图空间直角坐标系 . 令 M (x,
A. 线段 B.△CSD 的中位线 C.△CSD 的中线 D. 线段 SD
B A
S
y,0),P(a,b,c)(其中 c≠0),线 l 所在向量为 I=(1,0,0),
2 2 2
分析 :在平面 β 内作 AB 的射影 A1B1, 则在平面 β 内到 A 的距离为 10 的轨迹是一个以 A1 为圆心 , 以 6 为半径的圆 (它是以 A 为球心 ,10 为半径的球面与平面
β 的交线 ),而在平面 β 内到 AB 的距离为定长 9 的轨
迹是两条平行直线 (它是以直线 AB 为旋转轴 ,9 为底 面半径的圆柱面与平面 β 的交线 ), 且到 A1B1 的距离 为 姨17 ,这两条平行直线与圆有 4 个交点,故选 D. 点评 : 本 题 分 别 求 出 满 足 条 件 的 点 的 轨 迹 , 再 求 两者的交的轨迹 , 将 复 杂 的 图 形 进 行 了 分 解 , 这 样 使 题目的条件容易理解 .

立体几何中的轨迹问题(详细版)

立体几何中的轨迹问题(详细版)

立体几何中的轨迹问题高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难。

通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。

一、用空间运动的观点来得到点的轨迹。

例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹。

解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。

再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线。

针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。

由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。

由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。

因此,我们在以下命题:直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B ,求动点B 的轨迹。

结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线;(3)若α≠90°,β≠90°,则①若90°>α>β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。

立体几何中的轨迹问题探求

立体几何中的轨迹问题探求
21 0 2年第 7期
中学 数学 月刊
・ 5 ・ 3
立 体 几 何 中 的 轨 迹 问题 探 求
赵 加营 ( 苏省宿 迁 中学 江 2 30 ) 2 8 0
立体几 何 中也 会 遇 到 与 解 析 几 何 一 样 探 求 满 足条件 的动 点轨 迹 问题 , 这类 问题 以 立 体 图形 为 载体 , 将立 体几 何 与 解 析几 何 以及 代 数 知识 交 汇 于一 体 , 有较 强 的探索性 、 放性 、 具 开 创新 性. 处 理 这类 问题 的关键 是依 据立 体几 何 中点线 面关 系
ADD 内 , 平面 A D A 而 C n A D 所 DD A 一A , 以点 P 的轨迹是 线段 AD .
由已知条件, F 一( P 。 . 得P 。 - M) 一1 在  ̄

5 4・
中学 数学 月刊
21 0 2年第 7期
△P EF 中 , F。 雎 一 E 一 1 所 以 P 一 P 一 F。 , F
以B 为 焦 点 、 线 B 为 准 线 的双 曲 线 在 侧 面 直 C
面 内的轨迹 是 (
) .
( A)一条 线段 , 要去掉 两个 点 但 ( 一个圆, B) 但要 去 掉两个 点
B 内的部 分 ; 0< < 1时 , P的轨迹 是 以 C 当 点 B 为 焦点 、 直线 B C为 准线 的椭 圆在侧 面 B 内 C
于 A 和 B 的动点 , P 且 C 上 A 那 么 动 点 C 在 平 C,
图 1
B 的 中点 为顶 点 的抛物 线在侧 面 B 内的部分 B。 C。
( C 点) 过 1 .
拓 展 若 点 P到直 线A 的距 离是 点 P到 B 直线 B C的距离 的 , 当 > 1 , P的轨迹 是 则 时 点

立体几何中动点轨迹的长度问题

立体几何中动点轨迹的长度问题

则总能使 P与 BN 垂直 的点 P所构成 的轨迹的周长等于
尸 的轨 迹为 △EFG 的三条边,其周 长显然 为 ASDB 的周 长 的 一 半 .由 AB = OS = 2,BD = 2 ,BS = ,易 知 A EFG 的周 长 为 + .
例 5点 P 为棱长是 2的正方体 ABCD —A1BIC1D1 的 内 切 球 0 球 面 上 的 动 点,M 为 B 中 点.若 满 足 DP.kBM ,则动点 P 的轨迹 的周长为 —— .
例 8 如 图 9,在 三 棱 锥 A — B D 中,ABAD : 90。, D上B , D = 4,AB = AC = 2、/3, BAC : 120。.若 点 P为 AABC 内的动点,且满 足直线 DP与平面 ABC所 成角 的正切值 为 2,则点 P在 AABC 内所成 的轨迹 长度为
例 1 已知 等边 △AB 边长 为 2,动点 P 在边 c,上, 现将 △ABP 沿直线 BP 折起来,使二 面角 A 一BP — 成 直二 面角,则 点 A 在平 面 BP 内的射影 日 的轨迹 长度为


图 1
图 2
D I

解 析 根 据 题 蔑 点 P 为 正

解 析 由 题 意,因
以考查 同学们 的空间想象 能力 和构造图形 的能力 .这类 问题 D 上AE,所 以 日 的 轨 迹
往往会 与垂 直 、投 影等有关,要解决这类 问题,首先需根 据题 是 以 AD 为 直 径 的 一 段 圆
意,利用 圆的定义 、线段 的定 义 、平面截 球、平面截 柱体及锥
解 析 根 据 DP ̄BM 可 知 ,过 定点 D 的动直线 DP与直线 BM 一 定垂直,所 以直线 DP在 过点 D 且 与 BM 垂 直 的 平 面 内 .又 因 为点

谈立体几何中动点轨迹问题的解题策略

谈立体几何中动点轨迹问题的解题策略

立体几何中的动点轨迹问题是一个常见的问题类型,它涉及到空间几何中的点、线、面等元素的运动和变化。

解决这类问题的关键在于理解运动和变化的过程,并能够通过数学模型进行描述。

解题策略主要包括以下几个方面:
1. **建立空间坐标系**:为了更好地描述空间几何元素的位置和运动,需要建立一个适当的空间坐标系。

坐标系的建立应依据问题的具体情境和需求,通常选择一个固定点作为原点,并确定三个互相垂直的轴。

2. **确定动点的坐标**:在确定了坐标系之后,需要确定动点的坐标。

这可以通过设定动点的坐标变量来实现,例如设动点的坐标为$(x, y, z)$。

3. **分析运动过程**:在确定了动点的坐标后,需要分析动点的运动过程。

这包括了解动点的运动方向、速度、加速度等参数,以及这些参数与坐标变量的关系。

4. **建立数学模型**:通过分析运动过程,可以建立描述动点运动的数学模型。

这通常涉及到物理、几何、代数等多个方面的知识,需要根据具体问题进行选择和应用。

5. **求解数学模型**:建立了数学模型后,需要求解该模型以得到动点的轨迹方程。

这可能涉及到微积分、线性代数、解析几何等多个数学领域的知识,需要根据问题的复杂程度和要求进行选择和应用。

6. **验证答案**:最后,需要对得到的答案进行验证,以确保其正确性和有效性。

这可以通过将答案代入原问题中进行检验,或者通过与其他已知的答案进行比较来进行验证。

综上所述,解决立体几何中的动点轨迹问题需要综合运用空间几何、物理、数学等多个领域的知识,并能够根据具体问题进行选择和应用。

同时,还需要有一定的逻辑思维和分析能力,以更好地理解和解决这类问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立空间直角坐标系 . 设 OP = 1 , 则 A( 3, 0,0),
P(0,0,1), Q( x, y, 0) . 在△ APQ 中 , 利用余弦定 理得:
AQ = AP + PQ − 2 AP ⋅ PQ ⋅ cos ∠APQ ,
2
2 2

( 3 − x) + y
2
2
= 4 + ( x 2 + y 2 + 1) − 2 3 ⋅ x 2 + y 2 + 1 ,
A1 B1C1 D1 的各条棱长均为 3, ∠BAD = 60° , 长
为 2 的线段 MN 的一个端点 M 在 DD1 上运动,
·29·
另一端点 N 在底面 ABCD 上运动 , 则 MN 的 中点 P 的轨迹 . 分 析 联 结 DP 、 DN 由 于 DD1 ⊥ 面
ABCD ,故无论 N 如何运动, ∆MDN 为直角三 MN = 1 ,又由已知 ∠BAD 角形,且 DP = 2 = 60° , ∠ADC = 120° ,根据球面的定义可判断, 1 点 P 的轨迹以点 D 为球心,半径为 1 的 球 6 面. 例 2 已知正方体 ABCD − A1 B1C1 D1 的棱
长是 1, 在正方体的侧面 BCC1 B1 上到点 A 距
分析 由三垂线定理的逆定理知 : BC 垂 直 AC ,在平面 α 内 A 、B 是两个定点,故 C 点 是以 AB 为直径的圆上的一个动点,又由已知 C 点不能与 A 、 B 重合.故选 B. 评注 题目设计匠心独运,形式新颖,很好 地将立体几何知识和圆的定义结合到一起 . 在知识的交汇处考查数学应用能力 , 是道难 得的好题. 例 4 (2004 年 北 京 卷 ) 在 正 方 体
).
分析 P 到直线 C1 D1 的距离即 P 到点 C1 的距离 , 则原问题可转化为在正方体右侧面 内 P 到点定点 C1 的距离 P 到定直线 BC 的距 离相等.在平面 BB1C1C 内满足抛物线定义,故 选 D. 例 5 在棱长为 2 的正方体 AC1 中, P 是侧 面 BB1C1C 内一动点 , 若 P 到直线 DC 与直线
整理得: 故选 D.
2 3 3 (x − ), 3 3 因而点 Q 在平面 α 上的轨迹是抛物线 .
y2 =
例 8 在长方体 ABCD − A1 B1C1 D1 中,
·31·
= a2 + an −1 = " ,可求得等差数列的前 n 项和. 相似地,令 t = f (−5) + f (−4) + " + f (5) + f (6) ,
由题意易得出: f (0) + f (1) = f (−1) + f (2) = " = f (−5) + f (6) 且 f (0) + f (1) =
2 3 BCC1 B1 的动点,总有 AB ⊥ BP ,且 AP = , 3 3 ∴ BP = , 故动点 P 的点的集合形成的曲 3 3 线是以 为半径,以 B 为圆心的圆弧. 3 评注 这类题目以空间几何体为载体 , 点、线、面的垂直或平行关系显而易见,解题 时结合它的几何性质 , 选择合适的定理或定 义进行判断 , 能轻而易举地解题 . 以上几题都 利用线面垂直的定义 : 若一条直线与一个平 面垂直 , 则这条直线与平面内的任何一条直 线都垂直 , 从而通过点的任意性和已知的有 关条件来确定动点的运动轨迹. 2 妙用圆锥曲线的定义判断 例 3 (2004 年天津卷,文 8)定点 A 和 B 都 在平面 α 内 , 定点 P ∉ α , PB ⊥ α , C 是 α 内异 于 A 和 B 的动点,且 PC ⊥ AC .那么,动点 C 在 平面 α 内的轨迹是( ). A、一条线段,但要去掉两个点 B、一个圆,但要去掉两个点 C、一个椭圆,但要去掉两个点 D、半圆,但要去掉两个点
0), F ( x, 0,1), N (0, y, 0) , 由 PF = PN , 可 得
y 2 + 1 = x 可解得 x 2 − y 2 = 1 ,因而 P 在平面
AA1 = 1 ,点 E 、F 分别在棱 A1 D1 、AB 上滑动, 且线段 EF 的长恒等于 2, 则线段 EF 的中点 P 的轨迹是( ). (B)椭圆的一部分 (A)圆的一部分 (C)双曲线的一部分 (D)抛物线的一部分 分析以 D 为坐标原点, DA 为 x 轴, DC 为 y 轴 , DD1 为 z 轴建立空间直角坐标系 . 设 AD = a, E ( x, 0,1), F (a, y, 0) , 则 EF 的 中 点 x+a y 1 P( , , ) , 过 E 点作 EM ⊥ AD 于 M 点 , 2 2 2 则 EM ⊥ 平面 ADCB , EM ⊥ MF , ∴ PM = 1 且 M ( x,0, 0) , x+a y 1 即 − x) 2 + ( )2 + ( )2 = 1 , ( 2 2 2 整理得 : ( x − a ) 2 + y 2 = 3 , 因而点 P 的轨 迹是圆的一部分,故选 A. 评注 以上 3 题通过建立空间直角坐标 系 , 设点的坐标 , 把几何的问题转化成代数问 题来解决 , 也使问题变得通俗易懂 . 充分体现 它的独特的作用. 以上是以空间图形为背景探求动点的轨 迹问题的几种主要思路 , 解题时要善于把立 体几何问题转化到平面问题 . 空间图形中的 轨迹问题的新颖性、综合性值得我们重视和 探索 , 这种知识的交汇融合与综合应用 , 对培 养学生的空间想象能力和数学实践能力大有 益处.
[1] 邵琼 . 椭圆与双曲线的对偶性质及应用 . 福建中学 数学.2005.3. [2] 虞 涛 . 高 考 数 学 命 题 新 思 维 . 汉 语 大 词 典 出 版 社,2004.

2 , 2
立体几何中的轨迹问题
福建仙游第二中学 李天霞
∴ 2t = 12[ f (0) + f (1)] , t = 3 2 6 抽象与具体之间的类比 例 6 已知 f ( x) 是定义在 R 上的不恒为零 的 函 数 , 且 对 于 任 意 的 a, b ∈ R 都 满 足 f (ab) = af (b) + bf (a) ,(1)求 f (0), f (1) 的值;
立体几何中的轨迹问题是立体几何与解 析几何的交汇题 , 是以空间几何为载体 , 考查 空间某一动点的轨迹问题 , 要求熟练掌握立 体几何和解析几何有关知识内容 , 更要有跳 跃的思维 , 较强的转换能力 . 学生求解起来颇 感困难 , 不知从何入手 , 现略举几例探索此类 题型的解题的规律. 1 善用立体几何的定理或定义判断 例 1 已知直平行六面体 ABCD −
·30·
C1 D1 的距离之和等于 2 2 相等 , 则动点 P 的 ). 轨迹所在曲线是( B、圆 A、椭圆 D、抛物线 C、双曲线 分析 P 到直线 C1 D1 的距离即 P 到点 C1 的距离,且 P 到直线 CD 的距离即 P 到点 C 的
距离 , 则在侧面 BB1C1C 内 P 到 C , C1 的距离 之和为 2 2 ,是常数,符合椭圆的第一定义,所 以点 P 的轨迹是以 C , C1 为焦点,以 2 2 为长 轴的椭圆的一部分,故选 A. 评注 以上三题是以空间几何的点线距 为载体 , 利用已知的几何特征把空间的轨迹 迹问题转化成平面的轨迹问题 , 从而联想到 圆锥曲线的定义来判断 , 题目设计别出心意 , 考察学生立几和解几的交汇知识点的整合 , 训练学生的综合能力. 3 巧建空间直角坐标系以数解形
ABCD − A1 B1C1 D1 中 , P 是 侧 面 BB1C1C 内 一
动点,若 P 到直线 BC 与直线 C1 D1 的距离相等, 则动点 P 的轨迹所在的曲线是( B、圆 A、直线 C、双曲线 D、抛物线
2 3 离为 的点的集合形成一条曲线 , 那么这 3 . 条曲线的形状是
分析 ∵ AB ⊥ 侧面 BCC1 B1 , 设 P 为侧面
(2)判断 f ( x) 的奇偶性;(3)若 f (2) = 2 , Vn =
f (2− n ) (n ∈ N t ) ,求数列 {Vn } 的前 n 项和 S n . n 分析 (1)易得, f (0) = 0 , f (1) = 0 .(2)
f ( x) 是奇函数.(3) ab ≠ 0 时, f (ab) f (b) f (a) = + , ab b a
y−n y+n 得, , k PN = x−m x+m y 2 − n2 k PM ⋅ k PN = 2 , x − m2 b2 b2 将 y 2 = 2 x 2 − b2 , n2 = 2 m2 − b2 a a 2 b 代入得 k PM ⋅ k PN = 2 a 椭圆与双曲线同属于圆锥曲线 , 它们在 性质上有许多统一性与相似性 , 通过类比可 以获得许多对偶的性质. 5 数列求和与函数的求值类比 1 例 5 设 f ( x) = x ,利用课本中推导 2 + 2 等差数列的前 n 项和的公式的方法 , 可求得 f (−5) + f (−4) + " + f (0) + " + f (5) + k PM = f (6) 的值为: . 分析 等差数列求和用的是倒序相加法 , 即 S n = a1 + a2 + " + an −1 + an ,利用 a1 + an
几何研究的一种重要思路是代数化 , 建 立空间直角坐标系把立体几何中的几何问题 转化成代数问题 , 摒弃了繁杂的几何推理 , 减 低了思维的难度.使题目思路清晰明了. 例 6 已知正方体 ABCD − A1 B1C1 D1 的棱 长为 1, P 是平面 AC 内一动点 , 若 P 到直线
A1 D1 的距离等于 P 到直线 CD 的距离,则动点 P 的轨迹所在的曲线是( ). B、圆 A、椭圆 C、双曲线 D、抛物线 分析 以 D 为原点 , DA 为作 x 轴 , DC 为 y 轴 , DD1 为 Z 轴 , 建立空间直角坐标系 , 设 P( x, y,0) PE ⊥ AD 于 E , PF ⊥ A1 D1 于 F , 连 结 EF ,又作 PN ⊥ CD 于 N ,则 E ( x,0,
相关文档
最新文档