1:方程与不等式综合--讲义[中考数学108-120分冲刺:代数综合篇]
中考数学第一轮复习《方程与不等式的综合应用》教案
方程与不等式的综合运用学习目标:1.进一步加强方程(组)与不等式(组)的之间的联系;2.会运用方程(组)或不等式(组)模型解决实际问题, .在问题解决的过程中理解数学思想方法.学习重点:方程(组)或不等式(组)的综合运用 学习难点:方程(组)或不等式(组)的综合运用 课前准备:下列问题你能不能不用老师点拨就把别人讲懂?请先尝试看,看自己有无“漏洞”. 问题1:若不等式组2x x a<⎧⎨≥⎩ 无解,那么a 的取值范围是 问题2:如果关于x 的方程3211ax x x =-++ 无解,则a 的值为判断方程ax bx c ++=0(a ≠0,a ,b ,c 为常数)一个解x 的范围是( )A 、 3<x <3.23B 、 3.23<x <3.24C 、 3.24<x <3.25D 、 3.25<x <3.26 问题4:甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1A .9 B.10 C.11 D.12问题5:某商场计划拨款9万元从厂家购进50台电视机。
已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,你选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案。
教学过程(一)与大家交流你的“课前准备”是否有“漏洞”?你能以知识点或题型给它们分类吗?解决这些问题后,你发现了哪些解题规律或数学思想方法?(二)变一变,你还认识下列问题吗?请运用发现的规律或方法挑战下列问题,试试你的能力吧!问题1:若关于x 的不等式组3155x a x a≥-⎧⎨≤-⎩无解,则二次函数21(2)4y a x x =--+的图象与x 轴( )A . 没有交点 B. 相交于一点 C.相交于两点 D. 相交于一点或没有交点问题2:已知不等式组 111x x x k >-⎧⎪<⎨⎪<-⎩(1)当12k =时,不等式组的解集是 ; 当3=k 时,不等式组的解集是 ; 当2-=k 时,不等式组的解集是 ;(2)由(1)知不等式组的解集随实数k 的变化而变化,当k 为任意实数时,写出不等式组的解集。
2024年中考数学提高复习讲义:方程与不等式
中考专题复习之方程与不等式知识梳理1.一元二次方程的一般形式ax²+bx+c=0(a,b,c是常数,a≠0).在解一元二次方程时,应按方程的特点选择方法,主要方法包括:①直接开平方法;②配方法;③公式法;④因式分解法.一元二次方程的求根公式是:x=−b±√b2−4ac2a(b2−4ac≥0). (注意符号问题)2.解分式方程的基本思想将分式方程转化为整式方程,转化的方法有两种:①去分母法;②换元法.3.根的判别式一元二次方程ax²+bx+c=0(a≠0)的根的判别式为Δ=b²−4ac.当△>0时,方程有两个不相等的实数根,即x1=−b+√b2−4ac2a ,x2=−b−√b2−4ac2a;当△=0时,方程有两个相等的实数根x1=x2=−b2a;当△<0时,方程没有实数根.4.一元二次方程两根之间的关系若一元二次方程ax²+bx+c=0(a≠0)的两个实数根为x₁,x₂,则x1+x2=−ba ,x1x2=ca,(注意两根的和是ba的相反数).以。
x₁,x₂为根的一元二次方程是x²−(x₁+x₂)x+x₁x₂=0.5.不等式的解法解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变.6.一元一次不等式组的解集由两个一元一次不等式组成的一元一次不等式组的解集的四种情况见下表:典型例题例 1不等式3x-5≥5x-11的正整数解的个数为( ).A.0B.1C.2D.3解析解不等式3x-5≥5x-11,得x≤3,则其正整数的解有1,2,3,所以正整数解的个数为 3 个,选 D.例 2若|x2−9|+(y+4)2=0,则x+y的值为( ).x+3A.-1或-7B. -7C. -1D.7解析因为|x2−9|+(y+4)2=0,x+3所以x+3≠0 且|x²−9|+(y+4)²=0,所以x≠-3 且|x²−9|+(y+4)²=0.又因为|x²−9|+(y+4)²=0且|x²−9|≥0,(y+4)²≥0,所以|x²−9|=0且(y+4)²=0,所以x=±3,y=-4.因为x≠-3,所以x=3,所以x+y=3+(-4)=-1.故选C.例3某电器商家,计划购进电视机、洗衣机、冰箱总数为40台,而现在商家打算总共用 12万元,各种家电价格如下表所示.(1)若总共用的资金不超过 12万,买进的洗衣机和冰箱数量相同,电视机不超过洗衣机数量的三倍,请问商家有几种购买方式?(2)针对上述3 种电器,商家推出“满1000元送50元家电消费券一张,多买多送”,在(1)的条件下,若三种电器都售完,商家预计最多送出多少张消费券?解析 (1)设购买冰箱的数量是x 台,则购进洗衣机的数量是x 台,电视机的数量为(40-2x)台,根据总共用的资金不超过12万和电视机不超过洗衣机数量的三倍列不等式组,即解得:8≤x≤10. 因为x 是整数, 所以x 可以为8,9,10. 有三种方案如下.方案一:冰箱8台,洗衣机8台,电视机24台. 方案二:冰箱9台,洗衣机 9台,电视机22台. 方案三:冰箱10台,洗衣机10台,电视机20台.(2)题中要求最多送出的消费券,满1000 元送50元消费券,多买多送,所以要根据售价总额来求出最大售价,即可求出最多消费券.设售价总额为y 元,由题意得,y=5480x+2280x+2600(40-2x)=2560x+104000 所以当x=10时,y 最大=2560×10+104000=129600, 故送出的消费券的张数为:129600÷1000=129.6≈130(张). 则商家预计最多送出消费券130张. 例 4某项工程,如果由甲、乙两队承包, 225天完成,需付180000元;由乙、丙两队承包, 334天完成,需付150000元;由甲、丙两队承包,2 67天完成,需付160000元.现在工程由一队单独承包,在保证一周完成的前提下,哪个队承包费最少?解析 设甲、乙、丙单独承包各需x ,y ,z 天完成, { 1x +19=51219+1z =415,1x +1x =720解得 {x =4y =6z =10.再设甲、乙、丙单独工作一天,各需付u ,v ,w 元, { 125(α+v )=80000154(ν+w )=15000,207(cos +α)=16000解得 {u =45500v =29500,w =10500因为丙队不能在一周内完成, 所以丙队舍去.因为甲队单独承包的费用:4 45500×4=182000)(元); 乙队单独承包的费用: 29500×6=177000(元). 又因为 177000<182000, 所以由乙队承包费用最少. 双基训练1.若x=6是关于x 的方程3x+4m-30=0的解,则m 的值为( ). A. 0 B.1 C. 2 D. 32.一元一次方程3x−12−5x+16=0解为( ).A.0B. -1C. 1D.2 3.已知代数式2x−35与代数式 35x −25的和为5,则x 的值为( ).A.4B.5C.6D.7 4.解方程2x−13−5x−32=3时,去分母后,正确的结果是( ).A.4x-1-15x+3=18B.4x-2-15x-3=18C.4x-2-15x-9=18D.4x-2-15x+9=185.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( ).A. 100(1+x)=121B.100(1-x)=121C.100(1+x )²=121D.100(1−x )²=121 6.方程 x²−5x +5=0的根为( ). A.5+√5 B.−5+√52C.5±√52 D.−5−√527.已知m ,n 是关于x 的一元二次方程 x²+mx +n =0的两个相等的实数根,且满足 1m +1n =3,则 m 的值为( ).A. -1B. 43或--1理C. 43D.−438.方程 x²−6x +5=0的两个根分别为.x ₁,x ₂,则 x 2x 1+x1x 2的值为( ).A. 265B.−265C. 365D. 659. 已知 {x =2y =−1是方程组 {mx −y =3x −ny =6的解,则m 和n 的值分别为( ).A.1,4B.4,1C. 2.-1D. -2,110.一元二次方程 x²−5x +4=0根的情况为( ).A.有一个根B.有两个相等的实根C.有两个不相等的实根D. 无解11.已知实数a≠b,且满足( (a +1)²=3−3(a +1),(b +1)²=3−3(b +1),则 ba +ab 的值为( ). A.23 B. -23 C. -2 D. -1312.用配方法解方程 4x²−12x −1=0,配方后的方程为( ). A.(2x −3)²=0 B.(2x +3)²=0 C.(2x −3)²=10 D.(2x +3)²=1013.若关于x 的一元二次方程 kx²−9x +6=0有两个不相等的实数根,则实数 k 的取值范围为( ). A. k≠0 B.k <278C. k≠0 且 k <278D.k >27814.已知(x−8)(x+3)|x|−3的值为0,则x 的值为( ).A.±3B. -3C.8D. -3 或815.毕业班同学合影拍照,已知冲一张底片需要0.8元,洗一张相片需要0.35 元,在每位同学得到一张照片,共用一张底片的前提下,平均每人分摊的钱不超过0.5元,那么参加合影的同学人数为( ).A.至多6人B.至少6人C. 至多5人D. 至少5人 16.不等式组 {5x −1>3(x +1)12x −1≤7−32x的解集是( ). A. x>2 B. x≤4 C. x<2或x≥4 D.2<x≤417.关于x 的分式方程 nx+1−4x 2−1=1无解,则n 的取值范围为 . 18.不等式 2+x+13>x +x+36的解是 .19.当k 取何值时,( (k +1)x²−4kx +3=0分别有两个不相等实数解?20.某公司做电饭锅促销活动,按照进价提高35%,然后“打九折,外送30元”的广告,每个电饭锅最后仍然获利200元,则每台电饭锅进价是多少元?能力提升21.设二元一次方程4x+3y-12=0,5x+3y--18=0,x+y+k=0有公共解,则k 的值是( ). A. -3 B. -2 C. -1 D. 0 22.方程 x+1x 2−x −13x =x+53x−3去分母后的结果为( ). A.x²+3x −4=0 B.x²−5x −2=0 C.x²+3x −2=0 D.x²−5x +4=023.如图所示,已知抛物线 y₁=−x²+4x 和直线 y₂=2x.我们约定:当x 任取一值时,x 对应的函数值分别为y ₁,y ₂,若. y₁≠y₂,取 y ₁,y ₂中的较大值记为N ;若 y₁=y₂,记 M =y₁=y₂.下列判断:①当x>2时, N =y₂; ②当x<0时,x 值越大,N 值越大; ③使得 N 大于 4 的x 值不存在; ④若N=2,则x=1.其中正确的判断有( ). A.1个 B.2个 C.3个 D. 4 个24. 关于方程 ax²−(3a +1)x +2(a +1)=0有两个不相等的实根x ₁,x ₂,.且有 x₁−x₁x₂ +x₂=1−a,则a 的值为( ).A. 1B. -1C. 1 或-1D.225.已知方程 23x −3k =5(x −k )+1的解为负数,则k 的取值范围为 .26.已知 5xᵃ⁺²ᵇ⁻⁵−4y³ᵃ⁻ᵇ⁻³=9是二元一次方程,那么a+3b= .27.若方程组 {x +y =93x −5y =11,则3(x+y)-(3x-5y)的值是 .28.解不等式方程组: {7x −3y =204x +3y =24.29.某物体从 P 点运动到Q 点所用时间为7s ,其运动速度V(m/s)关于时间t(s)的函数关系如图所示.某学习小组经过研究发现:该物体前进3s 运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前t(3<t≤7)s 运动路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题: (1) 当3<t≤7时,用含 t 的式子表示V.(2)分别求物体在0≤t≤3和3<t≤7时,运动路程S(m)关于时间t(s)的函数关系式; 并求该物体从 P 点运动到Q 点中总路程的 710时所用的时间.30.某食品加工厂准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现在主要原料有可可粉410克,核桃粉520 克.计划利用两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13 克,需核桃粉 4 克;加工一块益智核桃巧克力需可可粉5克,需核桃粉 14 克.加工一块原味核桃巧克力的成本是 1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味巧克力x 块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y 元,求y 与x 的函数关系式,并说明哪种加工方案使成本最低.总成本最低是多少元?拓展资源31.已知关于x ,y 的方程组 {x +3y =4−ax −y =3a,其中-3≤a≤1,给出下面结论:①{x =5y =−1是方程组的解;②当a=-2时,x ,y 的值互为相反数;③当a=-1时,方程组的解也是方程x+y=4-a的解;④若x≤1,则1≤y≤4.其中正确的是( ).A. ①②B. ②③C.②③④D. ①③④32.已知关于x 的方程 kx²+(1−k )x −1=0,下列说法正确的是( ). A.当k=0时,方程无解B. 当 k =1时,方程有一个实数解C. 当 k =−11时,方程有两个相等的实数解D.当 k ≠0时,方程总有两个不相等的实数解33.若关于 t 的不等式组 {t −a ≥02t +1≤4恰有三个整数解,则关于x 的一次函数 y =14x −a 的图像与反比例函数 y=3a+2x的图像的公共点的个数是 .34.若x,y,z 为整数,且满足不等式 {4x ≥z ≥3yy +z ≥4,则x 的最小值为 .35.解方程组: {|x +y|=43|x|+2|y|=101-5 DCCDC 6-10 CCAAC 11-16 ACCCBD17. -6<n<2 18.x <11519.k >3+√738或 k <3−√73820.约为 1070元21-24 BABC 225. k< 1226.8 27.1628.{x =4y =8329.(1) V=2t-4; (2)S ={2t (0≤t ≤3)2t 2−4t(3<t ≤7),所用时间为 6 秒30.(1)有三种方案.方案一:原味核桃巧克力18块,益智核桃巧克力32块; 方案二:原味核桃巧克力19块,益智核桃巧克力31块; 方案三:原味核桃巧克力20块,益智核桃巧克力30块.(2)当原味核桃巧克力20块,益智核桃巧克力30块时,总成本最低为84元.31. 解方程组 {x +3y =4−a x −y =3a ,得 {x =1+2ay =1−a因为-3≤a≤1,所以-5≤x≤3,0≤y≤4.circle1{x =5y =−1不符合-5≤x≤3,0≤y≤4,结论错误.②当a=-2时,x=1+2a=-3,y=1-a=3,x,y 的值为互为相反数,结论正确. ③当a=-1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确.④当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1,所以-3≤a≤0,所以1≤1-a≤4,所以1≤y≤4,结论正确.选 C. 32. C33. 解 {t −a ≥02t +1≤4,得 a ≤t ≤32.因为不等式组恰好有3个整数解, 所以-2<a≤-1.求交点,联立方程组 {y =14x −a y =3a+2x 得 14x 2−ax −3a −2=0.Δ=a²+3a +2=(a +1)(a +2)因为-2<a≤-1,所以a+1≤0,a+2>0,所以△=(a+1)(a+2)≤0,所以交点的个数为0或1. 34.原不等式组 {4x ≥z ≥3yy +z ≥4可以化为 {4x ≥z circle1z −3y ≥0circle2,y +z ≥4circle3解②③得 {4x ≥zz ≥3y ≥1将z≥3代入①得: x ≥34,因此x 的最小值为3/4.35.(1) 若xy≥0时,原方程组为: {|x|+|y|=43|x|+2|y|=10,得|x|=2,|y|=1,所以x=2,y=1.(2) 若xy<0时,原方程组为: {|x|−|y|=43|x|+2|y|=10或 {|x|−|y|=−43|x|+2|y|=10,解得 {|x|=185|y|=25舍) {|x|=2|y|=6所以 {x =2y =−6,{x =−2y =6。
中考数学复习第二章方程组与不等式组讲义
第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
最新华东师大初中数学中考总复习:方程与不等式综合复习--知识讲解(基础)
中考总复习:方程与不等式综合复习—知识讲解(基础)【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:221,24(40)2b b ac x b ac a-±-=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a c x x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是: ①去分母,方程两边都乘以最简公分母; ②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; (2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变; (3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法 解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1. 4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集. 求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集. (2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集. 要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.【典型例题】类型一、方程的综合运用1.如图所示,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得,关于,y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是________.【思路点拨】两图象的交点就是方程组的解. 【答案】4,2x y =-⎧⎨=-⎩【解析】由图象可知y =ax+b 与y =kx 的交点P 的坐标为(-4,-2),所以二元一次方程组,y ax b y kx =+⎧⎨=⎩的解为4,2.x y =-⎧⎨=-⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透,平时应加强这方面的练习与思考.举一反三:【变式】已知关于x 的一元二次方程()0312=-+--m x m x .(1)求证:不论m 取何值时,方程总有两个不相等的实数根.(2)若直线()31+-=x m y 与函数m x y +=2的图象的一个交点的横坐标为2,求关于x 的一元二次方程()0312=-+--m x m x 的解.【答案】(1)证明:()[]()3412----=∆m m124122+-+-=m m m 1362+-=m m ()432+-=m∵不论m 取何值时,()032≥-m ∴()0432>+-m ,即0>∆∴不论m 取何值时,方程总有两个不相等的实数根.. (2)将2=x 代入方程()0312=-+--m x m x ,得3=m再将3=m 代入,原方程化为022=-x x , 解得2,021==x x .2.已知: 关于x 的一元一次方程kx =x +2 ①的根为正实数,二次函数y =ax 2-bx +kc (c ≠0)的图象与x 轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k 的值;(2)求代数式akcab b kc +-22)(的值;(3)求证: 关于x 的一元二次方程ax 2-bx +c =0 ②必有两个不相等的实数根. 【思路点拨】(1)根据一元一次方程及根的条件,求k 的值; (2)把交点坐标代入二次函数的解析式求出值;(3)根据根的判别式和一元一次方程的根为正实数得出x 有两不相等的实数根. 【答案与解析】(1)解:由 kx =x +2,得(k -1) x =2.依题意 k -1≠0.∴ 12-=k x .∵ 方程的根为正整数,k 为整数, ∴ k -1=1或k -1=2. ∴ k 1= 2, k 2=3.(2)解:依题意,二次函数y=ax 2-bx+kc 的图象经过点(1,0), ∴ 0 =a-b+kc, kc = b-a .∴222222222a ab ab b a ab b a b a ab b a b akc ab b kc -+-+-=-+--=+-)()()(=.122-=--a ab aba(3)证明:方程②的判别式为 Δ=(-b)2-4ac= b 2-4ac.由a ≠0, c ≠0, 得ac ≠0.( i ) 若ac<0, 则-4ac>0. 故Δ=b 2-4ac>0. 此时方程②有两个不相等的实数根.( ii ) 证法一: 若ac>0, 由(2)知a-b+kc =0, 故 b=a+kc.Δ=b 2-4ac= (a+kc)2-4ac=a 2+2kac+(kc)2-4ac = a 2-2kac+(kc)2+4kac-4ac=(a-kc)2+4ac(k-1).∵ 方程kx=x+2的根为正实数, ∴ 方程(k-1) x=2的根为正实数.由 x>0, 2>0, 得 k-1>0. ∴ 4ac(k-1)>0.∵ (a-kc)2≥0,∴Δ=(a-kc)2+4ac(k-1)>0. 此时方程②有两个不相等的实数根. 证法二: 若ac>0,∵ 抛物线y=ax 2-bx+kc 与x 轴有交点,∴ Δ1=(-b)2-4akc =b 2-4akc ≥0. (b 2-4ac)-( b 2-4akc)=4ac(k-1).由证法一知 k-1>0,∴ b 2-4ac> b 2-4akc ≥0.∴ Δ= b 2-4ac>0. 此时方程②有两个不相等的实数根. 综上, 方程②有两个不相等的实数根. 【总结升华】方程与函数综合题. 中考所考知识点的综合与相互渗透. 举一反三:【变式】已知关于x 的一元二次方程0)2()1(22=+---m m x m x .(1)若x=-2是这个方程的一个根,求m 的值和方程的另一个根; (2)求证:对于任意实数m ,这个方程都有两个不相等的实数根. 【答案】(1)解:把x =-2代入方程,得0)2()2()1(24=+--⋅--m m m ,即022=-m m .解得01=m ,22=m .当0=m 时,原方程为022=+x x ,则方程的另一个根为0=x .当2=m 时,原方程为0822=+-x x ,则方程的另一个根为4=x . (2)证明:[][])2(4)1(22+-⨯---m m m 482+=m ,∵对于任意实数m ,02≥m , ∴0482>+m .∴对于任意实数m ,这个方程都有两个不相等的实数根.类型二、解不等式(组)3.(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【思路点拨】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【答案与解析】 解:,∵解不等式①得:x ≤1, 解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x ≤1. 在数轴上表示不等式组的解集为:【总结升华】注意解不等式组的解题步骤,在数轴上表示不等式组时,能根据不等式的解集找出不等式组的解集. 举一反三:【变式】(2014•泗县校级模拟)求不等式组的整数解,并在数轴上表示出来.【答案】 解:,由①得:x >﹣2, 由②得:x≤6,∴不等式组的解集是:﹣2<x≤6.∴整数解是:﹣1,0,1,2,3,4,5,6. 在数轴上表示出来为:.类型三、方程(组)与不等式(组)的综合应用4.如果关于x 的方程22124x m x x +=--的解也是不等式组12,22(3)8xx x x -⎧>-⎪⎨⎪-≤-⎩的一个解, 求m 的取值范围.【思路点拨】解方程求出x 的值(是用含有m 的式子表示的),再解不等式组求出x 的取值范围,最后方程的解与不等式组的解结合起来求m 的取值范围. 【答案与解析】解方程22124x mx x +=--,得x =-m-2. 因为24(4)x m m -=+,所以m ≠-4且m ≠0时,有240x -≠. 所以方程22124x mx x +=--的解为x =-m-2. 其中m ≠-4且m ≠0.解不等式组12,22(3)8,xx x x -⎧>-⎪⎨⎪-≤-⎩得x ≤-2.由题意,得-m-2≤-2,解得m ≥0.所以m 的取值范围是m >0.【总结升华】方程与不等式的综合题,是中考考查的重点之一. 举一反三:【高清课程名称:方程与不等式综合复习 高清ID 号: 405277 关联的位置名称(播放点名称):例1】【变式】如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .【答案】解不等式组得:34-22b a x +≤<,因为不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,所以4-20312a b =⎧⎪⎨+=⎪⎩ 解得21a b =⎧⎨=-⎩所以1a b +=.5. 某采摘农场计划种植B A 、两种草莓共6亩,根据表格信息,解答下列问题:(1)若该农场每年草莓全部被采摘的总收入为46000O 元,那么B A 、两种草莓各种多少亩? (2)若要求种植A 种草莓的亩数不少于种植B 种草莓的一半,那么种植A 种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多? 【思路点拨】(1)根据等量关系:总收入=A 地的亩数×年亩产量×采摘价格+B 地的亩数×年亩产量×采摘价格,列方程求解;项目 品种 A B 年亩产(单位:千克)1200 2000 采摘价格(单位:元/千克)6040(2)这是一道只有一个函数关系式的求最值问题,根据题意确定自变量的取值范围,由函数y 随x 的变化求出最大利润.【答案与解析】设该农场种植A 种草莓x 亩,B 种草莓)6(x -亩 依题意,得:460000)6(200040120060=-⨯+⨯x x 解得:5.2=x , 5.36=-x (2)由)6(21x x -≥,解得2≥x 设农场每年草莓全部被采摘的收入为y 元,则:4800008000)6(200040120060+-=-⨯+⨯=x x x y ∴当2=x 时,y 有最大值为464000答:(l)A 种草莓种植2.5亩, B 种草莓种植3.5亩.(2)若种植A 种草莓的亩数不少于种植B 种草莓的一半,那么种植A 种草莓2亩时,可使农场每年草莓全部被采摘的总收入最多.【总结升华】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值. 举一反三:【变式】某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果, 或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须 满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.(1)设用x 辆车装甲种苹果,y 辆车装乙种苹果,求y 与x 之间的函数关系式,并写 出自变量x 的取值范围;(2)若运送三种苹果所获利润的情况如下表所示:苹果品种甲 乙 丙 每吨苹果所获利润(万元)0.220.210.2设此次运输的利润为W (万元),问:如何安排车辆分配方案才能使运输利润W 最大,并求出最大利润.【答案】(1)∵ 81011(10)100x y x y ++--=,∴ y 与x 之间的函数关系式为 310y x =-+. ∵ y ≥1,解得x ≤3.∵ x ≥1,10x y --≥1,且x 是正整数,∴ 自变量x 的取值范围是x =1或x =2或x =3.(2)80.22100.2111(10)0.20.1421W x y x y x =⨯+⨯+--⨯=-+.因为W 随x 的增大而减小,所以x 取1时,可获得最大利润,此时20.86W =(万元).获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.类型四、用不等式(组)解决决策性问题6.为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A 、B 两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲 乙 A90盆 30盆 B 40盆 100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A 种造型的成本为1000元,搭配一个B 种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x 个A 种造型,则需要搭配(50-x)个B 种造型,由题意,得9040(50)3600,30100(50)2900,x x x x +-≤⎧⎨+-≤⎩解得30≤x ≤32. 所以x 的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A 种造型30个,B 种造型20个;A 种造型31个,B 种造型19个;A 种造型32个,B 种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题. 举一反三:【高清课程名称:方程与不等式综合复习 高清ID 号: 405277关联的位置名称(播放点名称):例4】【变式】某商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示:(1)按国家政策,购买“家电下乡”产品享受售价13%的政府补贴.若到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴?(2)为满足需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量的56. ①请你帮助该商场设计相应的进货方案;②用哪种方案商场获得利润最大?(利润=售价-进价),最大利润是多少?【答案】(1)(2420+1980)×13%=572(元)(2)①设冰箱采购x 台,则彩电采购(40-x )台,解不等式组得231821117x ≤≤,因为x 为整数,所以x =19、20、21, 方案一:冰箱购买19台,彩电购买21台,方案二:冰箱购买20台,彩电购买20台,方案一:冰箱购买21台,彩电购买19台.②设商场获得总利润为y 元,则y =(2420-2320)x +(1980-1900)(40-x )=20x +3200 ∵20>0,∴y 随x 的增大而增大,∴当x =21时,y 最大=20×21+3200=3620(元).。
初三数学中考第一轮复习⑵ 方程(组)与不等式(组)知识精讲
初三数学中考第一轮复习⑵方程(组)与不等式(组)华东师大版【本讲教育信息】一. 教学内容:中考第一轮复习⑵方程(组)与不等式(组)二. 重点、难点扫描:1. 一元一次方程、二元一次方程(组)、一元二次方程的定义、方程的解的概念;2. 一元一次方程、二元一次方程(组)、一元二次方程的解法;3. 一元一次方程、二元一次方程(组)、一元二次方程的简单应用;4. 可化为一元一次方程的分式方程及简单应用;5. 不等式的性质;6. 一元一次不等式(组)的概念;一元一次不等式(组)的解集的概念;7. 一元一次不等式(组)的解法与应用。
三. 知识梳理:(一)一元一次方程1. 会对方程进行适当的变形解一元一次方程解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一是方程两边不能乘(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2. 正确理解方程的解的定义,并能应用等式性质巧解考题方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3. 正确列一元一次方程解应用题列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
4. 可化为一元一次方程的分式方程的应用会根据具体情景列出分式方程,并会求解,注意验根这一步不可少。
(二)一元二次方程1. 灵活运用四种解法解一元二次方程一元二次方程的一般形式:ax2+bx+c=0(a≠0)四种解法:直接开平方法,因式分解法,配方法,公式法。
公式法:x(b2-4ac≥0)注意:掌握一元二次方程求根公式的推导;主要数学方法有:配方法,换元法,“消元”与“降次”。
2. 一元二次方程的应用解应用题的关键是把握题意,找准等量关系,列出方程。
中考数学冲刺班复习资料 代数部分第五章 不等式及不等式组
中考数学冲刺班复习资料 代数部分第五章 不等式及不等式组一、基础知识:一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b (2)a – b=0⇔a=b (3)a –b <0⇔a <b 4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)。
三、不等式(组)的类型及解法 1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
二、例题讲解类型一:不等式的基本性质例1:1)如果b a <,那么下列不等式中成立的是( )A 、11-<-b aB 、b a -<-C 、33ba > D 、bc ac < 2)若不等式a x a ->-1)1(的解集为1-<x ,则a 的取值范围是 类型二:一元一次不等式的解 例2:解不等式 :312-≥x x类型三:一元一次不等式组的解例3:解不等式组()⎪⎩⎪⎨⎧-≥+>+3122423x x x x 的自然数解类型四:一元一次不等式(组)解的应用例4:1)不等式64-x ≥157-x 的正整数解是 . 2)不等式-1≤x 23-<6的所有整数解的和是 。
中考数学第一轮复习_方程与不等式
中考数学第一轮复习_方程与不等式xx年xx月xx日CATALOGUE 目录•方程部分•不等式部分•函数与图像•综合题型与解题技巧01方程部分方程的定义方程的分类方程的解一元方程、二元方程、多元方程等。
使方程左右两边相等的未知数的值。
03方程的基本概念02 01表示等量关系的数学表达式。
利用代数运算求解未知数的值。
代数法利用几何意义求解未知数的值。
几何法将实际问题转化为数学问题,通过求解方程得到答案。
实际应用法方程的解法方程的应用代数方程的应用解决诸如计算、比较大小、求解未知数等问题。
几何方程的应用解决诸如求面积、周长、角度等问题。
实际应用问题的解决利用方程解决诸如行程、工程、购物等问题。
02不等式部分用不等号连接两个代数式,表示它们之间的关系。
不等式的概念与性质不等式的定义不等式具有一些基本的性质,例如传递性、加法单调性等。
不等式的性质解集是使不等式成立的x的取值范围。
不等式的解集1一元一次不等式23只含有一个未知数,并且未知数的次数是1的不等式。
定义去分母、去括号、移项、合并同类项、系数化为1。
解题步骤注意不等式的符号,以及在移项时要注意变号。
注意事项解题步骤求出方程的根,再根据不等式的符号确定解集。
定义只含有一个未知数,并且未知数的最高次数是2的不等式。
注意事项注意二次项系数为0时,不等式变为一次不等式,需要另外讨论。
一元二次不等式03函数与图像函数是定义在非空数集之间的对应关系,通常表示为y=f(x),其中x为自变量,y为因变量。
定义函数的定义域函数的值域定义函数f(x)的全体实数x 的集合称为函数的定义域。
定义在函数f(x)的定义域内,与自变量x相对应的函数值的集合称为函数的值域。
03函数的基本概念0201函数可以通过图像来表示,图像上每个点表示函数的一个取值和对应的自变量的值。
性质包括单调性、奇偶性、周期性等。
单调性指函数在某区间内随着x的增大,y值要么增大,要么减小;奇偶性指函数对于定义域内的任意x,都有f(-x)=-f(x)的关系;周期性指函数存在一个不为零的常数T,使得对于定义域内的任意x,都有f(x+T)=f(x)。
2020届初三数学中考复习《方程和不等式》复习建议 课件(共17张PPT)
03 2019年考题
7.用不等式a>b,ab>0, 1 1 中的两个不等式作为题设,
ab
余下的一个不等式作为结论组成一个命题,组成真命题的个
数为( )
A.0
B.1
C.2
D.3
{解析}本题考查了不等式的基本性质及真命题的判定.
{分值}2
{考点:不等式的性质、命题}
14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个
6.不等式(组) (1)了解不等式的意义;理解不等式的基本性质. (2)能解数字系数的一元一次不等式(组),并 能在数轴上表示出一元一次不等式的解集,会 用数轴确定由两个一元一次不等式组成的不等 式组的解集;能根据具体问题中的数量关系列 出一元一次不等式,解决简单的问题.
7.运用方程与不等式的有关内容解决有关问题.
{考点:一元一次不等式组的应用}
从近三年来中考试题来不难看出,直接考查 方程与不等式的题型有填空题、选择题、解 答题,在综合题中也有考察.所以对于方程与 不等式的知识的复习,关健在于落实基本概 念和基本知识。在对应用题的复习时一方面 要弄清题目中的已知、未知以及它们之间的 关系;另一方面要弄清基本关系量及变式, 还要善于找出其中的相等关系式,还可以使 用图表等多种方式来帮助分析问题.
直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积
为
.
5 1
图1
图2
图3
{解析}本题考查了正方形和菱形的性质,根据所拼图形得到直角三角形 两直角边的关系是解题的关键.
设每个直角三角形较长直角边为a,较短直角边为b,则
a a
b b
5, 1
,
解得
a=3, b 2
中考数学一轮复习-数-方程与不等式
第二讲——方程与不等式一、知识结构框架二、概念复习1、方程 (1)定义① 方程:含有未知数的等式叫做方程.② 方程的解:能使方程两边相等的未知数的值叫做方程的解. ③ 等式的性质:1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. (2)一元一次方程① 概念:一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a是未知数x 的系数,b 是常数项.② 一元一次方程解法的一般步骤:整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解). ③ 列一元一次方程解应用题:1)步骤:审题——设未知数——找等量关系——列方程——解方程——答. 2)常用公式:1°行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; 2°工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; 3°比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;4°顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 5°商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;6°周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.(3)一元二次方程① 概念:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一般形式为 )0(02≠=++a c bx ax ,其中,a 叫做二次项系数;b 叫做一次项系数;c 叫做常数项.② 一元二次方程的解法1)直接开平方法:适用于解形如b a x =+2)(的一元二次方程.2)配方法:其理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.3)公式法:利用求根公式求解,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:4)因式分解法:利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法. ③ 一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做方程的根的判别式,通常用“∆”来表示,即ac b 42-=∆.④ 一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么abx x -=+21,a c x x =21.(4)分式方程① 定义:分母里含有未知数的方程叫做分式方程. ② 解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是: 1)去分母,方程两边都乘以最简公分母; 2)解所得的整式方程;3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.③ 分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.如:21,240)x b ac =-≥,,注意点:解分式方程时,求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值围,可能产生增根.(5)二元一次方程(组) ① 概念1)二元一次方程:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b ≠0).2)二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3)二元一次方程组:两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4)二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. ② 二元一次方程组的解法 1)代入消元法;2)加减消元法. ③ 解三元一次方程(组) 同解二元一次方程(组) ④ 消元思想将未知数的个数由多化少,逐一解决的想法,叫做消元思想,这是中学非常重要的数学思想,如题:已知 a ,b 满足 ab =1,求 1a 2+1+1b 2+1=2、不等式(组) (1)不等式① 不等式的概念:用不等号表示不等关系的式子,叫做不等式.② 不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式. ③ 不等式基本性质1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;015)1(2)1(2=----x x x x 1)1(3)1(222=+-+x x x x 031)1(21122=-+++++x x x x2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变; 3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变. (2)一元一次不等式 ① 一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.② 一元一次不等式的解法:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.(3)一元一次不等式组① 一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集. ② 求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集. ③ 一元一次不等式组的解法1)分别求出不等式组中各个不等式的解集;2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集. (4)解简单的一元二次不等式运用“同号得正,异号得负”的乘积性质求解。
标题:初中数学教材知识点——代数方程与不等式
标题:初中数学教材知识点——代数方程与不等式一、知识点介绍代数方程与不等式是初中数学中的重要内容,通过学习代数方程与不等式,学生可以掌握解方程和不等式的基本方法,培养数学思维和解决问题的能力。
初中数学教材中涉及的代数方程与不等式种类繁多,包括一次方程、二次方程、绝对值方程、一次不等式、二次不等式等。
通过深入学习这些知识,学生可以提高数学解题的能力,为高中甚至大学数学的学习奠定坚实基础。
二、详细介绍1. 一次方程一次方程是最基础的代数方程,其形式为ax + b = 0。
学生需要掌握解一次方程的基本方法,包括整数系数一次方程的解法、含分数系数一次方程的解法等。
示例题目1:解方程3x + 5 = 20。
示例题目2:解方程2(x + 3) - 5(x - 2) = 10。
2. 二次方程二次方程是一个较复杂的代数方程,其形式为ax^2 + bx + c = 0。
学生需要掌握解二次方程的基本方法,包括因式分解法、配方法、求根公式法等。
示例题目1:解方程x^2 - 4x - 5 = 0。
示例题目2:解方程2x^2 + 5x - 3 = 0。
3. 绝对值方程绝对值方程是具有绝对值符号的方程,其形式为|ax + b| = c。
学生需要熟练掌握解绝对值方程的方法,包括分情况讨论法、代数法等。
示例题目1:解方程|2x - 3| = 7。
示例题目2:解方程|3x + 4| = |x - 2|。
4. 一次不等式一次不等式是一个含有不等号的代数式,其形式为ax + b > c 或ax + b < c。
学生需要掌握解一次不等式的基本方法,包括求解过程的正误判断、绝对值不等式的解法等。
示例题目1:求解不等式2x + 5 < 15。
示例题目2:求解不等式3x - 4 > 7x - 2。
5. 二次不等式二次不等式是一个含有二次项的不等式,其形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0。
中考数学 第一部分 第二章 方程与不等式 第1讲一元一次方程和二元一次方程组(第1课时)
解一元一次方 (1)去分母;(2)去括号;(3)移项; 程的步骤 (4)合并同类项;(5)系数化为 1
二元一次方程 (1)___代__入___消元法; 组的解法 (2)__加__减____消元法
方程(组)的 实际应用
列方程(组)解 (1)审题;(2)设未知数;(3)列方程 应用题的 (组);(4)解方程(组);(5)检验; 一般步骤 (6)作答
第二章 方程与不等式
第1讲 方程与方程组
第1课时 一元一次方程和二元一次方程组
1.能够根据具体问题中的数量关系列出方程,体会方程是 刻画现实世界数量关系的有效模型.
2.经历估计方程解的过程. 3.掌握等式的基本性质. 4.会解一元一次方程. 5.掌握代入消元法和加减消元法,能解二元一次方程组. 6.能根据具体问题的实际意义,检验方程的解是否合理.
知识点
内容
等式的基 本性质
(1)若 a=b,则 a±m=b±m(m 为代数式);
(2)m 为实数,若 a=b,则 am=bm,ma =mb (m≠0) 使方程左右两边相等的未知数的值
方程的解 叫做方程的解
关于方程的 基本概念
解方程
求方程解的过程 只含有一个未知数,并且未知数的次
一元一次方程 数是 1,系数不为 0,这样的方程叫 做一元一次方程
把 x=5 代入①,得 5-y=4.解得 y=1.
则方程组的解为xy= =51, .
2.(2013 年广东)解方程组:x2=x+y+y=1, 8.
解:x2=x+y+y=1, 8.
① ②
将①代入②,得 2(y+1)+y=8.去括号,得 2y+2+y=8.
解得 y=2.
将 y=2 代入①,得 x=2+1=3.
中考总复习:方程与不等式综合复习--知识讲解(基础)
中考总复习:方程与不等式综合复习—知识讲解(基础)责编:常春芳【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:221,24(40)2b b ac x b ac a-±-=-≥(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么abx x -=+21,a c x x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是: ①去分母,方程两边都乘以最简公分母; ②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; (2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变; (3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法 解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1. 4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集. 求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集. (2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集. 要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.【典型例题】类型一、方程的综合运用1.如图所示,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得,关于,y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是________.【思路点拨】两图象的交点就是方程组的解. 【答案】4,2x y =-⎧⎨=-⎩【解析】由图象可知y =ax+b 与y =kx 的交点P 的坐标为(-4,-2),所以二元一次方程组,y ax b y kx=+⎧⎨=⎩的解为4,2.x y =-⎧⎨=-⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透,平时应加强这方面的练习与思考.举一反三:【变式】已知关于x 的一元二次方程()0312=-+--m x m x .(1)求证:不论m 取何值时,方程总有两个不相等的实数根.(2)若直线()31+-=x m y 与函数m x y +=2的图象的一个交点的横坐标为2,求关于x 的一元二次方程()0312=-+--m x m x 的解.【答案】(1)证明:()[]()3412----=∆m m124122+-+-=m m m 1362+-=m m ()432+-=m∵不论m 取何值时,()032≥-m ∴()0432>+-m ,即0>∆∴不论m 取何值时,方程总有两个不相等的实数根..(2)将2=x 代入方程()0312=-+--m x m x ,得3=m再将3=m 代入,原方程化为022=-x x ,解得2,021==x x .2.已知: 关于x 的一元一次方程kx =x +2 ①的根为正实数,二次函数y =ax 2-bx +kc (c ≠0)的图象与x 轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k 的值;(2)求代数式akcabb kc +-22)(的值;(3)求证: 关于x 的一元二次方程ax 2-bx +c =0 ②必有两个不相等的实数根. 【思路点拨】(1)根据一元一次方程及根的条件,求k 的值; (2)把交点坐标代入二次函数的解析式求出值;(3)根据根的判别式和一元一次方程的根为正实数得出x 有两不相等的实数根. 【答案与解析】(1)解:由 kx =x +2,得(k -1) x =2.依题意 k -1≠0.∴ 12-=k x .∵ 方程的根为正整数,k 为整数, ∴ k -1=1或k -1=2. ∴ k 1= 2, k 2=3.(2)解:依题意,二次函数y=ax 2-bx+kc 的图象经过点(1,0), ∴ 0 =a-b+kc, kc = b-a .∴222222222a ab ab b a ab b a b a ab b a b akc ab b kc -+-+-=-+--=+-)()()(=.122-=--a ab aba (3)证明:方程②的判别式为 Δ=(-b)2-4ac= b 2-4ac.由a ≠0, c ≠0, 得ac ≠0.( i ) 若ac<0, 则-4ac>0. 故Δ=b 2-4ac>0. 此时方程②有两个不相等的实数根.( ii ) 证法一: 若ac>0, 由(2)知a-b+kc =0, 故 b=a+kc.Δ=b 2-4ac= (a+kc)2-4ac=a 2+2kac+(kc)2-4ac = a 2-2kac+(kc)2+4kac-4ac=(a-kc)2+4ac(k-1).∵ 方程kx=x+2的根为正实数, ∴ 方程(k-1) x=2的根为正实数.由 x>0, 2>0, 得 k-1>0. ∴ 4ac(k-1)>0.∵ (a-kc)2≥0,∴Δ=(a-kc)2+4ac(k-1)>0. 此时方程②有两个不相等的实数根. 证法二: 若ac>0,∵ 抛物线y=ax 2-bx+kc 与x 轴有交点,∴ Δ1=(-b)2-4akc =b 2-4akc ≥0. (b 2-4ac)-( b 2-4akc)=4ac(k-1).由证法一知 k-1>0,∴ b 2-4ac> b 2-4akc ≥0.∴ Δ= b 2-4ac>0. 此时方程②有两个不相等的实数根. 综上, 方程②有两个不相等的实数根. 【总结升华】方程与函数综合题. 中考所考知识点的综合与相互渗透. 举一反三:【变式】已知关于x 的一元二次方程0)2()1(22=+---m m x m x .(1)若x=-2是这个方程的一个根,求m 的值和方程的另一个根; (2)求证:对于任意实数m ,这个方程都有两个不相等的实数根. 【答案】(1)解:把x =-2代入方程,得0)2()2()1(24=+--⋅--m m m ,即022=-m m .解得01=m ,22=m .当0=m 时,原方程为022=+x x ,则方程的另一个根为0=x .当2=m 时,原方程为0822=+-x x ,则方程的另一个根为4=x . (2)证明:[][])2(4)1(22+-⨯---m m m 482+=m ,∵对于任意实数m ,02≥m , ∴0482>+m . ∴对于任意实数m ,这个方程都有两个不相等的实数根.类型二、解不等式(组)3.(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【思路点拨】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【答案与解析】 解:,∵解不等式①得:x ≤1, 解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x ≤1. 在数轴上表示不等式组的解集为:【总结升华】注意解不等式组的解题步骤,在数轴上表示不等式组时,能根据不等式的解集找出不等式组的解集. 举一反三:【变式】(2014•泗县校级模拟)求不等式组的整数解,并在数轴上表示出来.【答案】 解:,由①得:x >﹣2, 由②得:x≤6,∴不等式组的解集是:﹣2<x≤6.∴整数解是:﹣1,0,1,2,3,4,5,6. 在数轴上表示出来为:.类型三、方程(组)与不等式(组)的综合应用4.如果关于x 的方程22124x m x x +=--的解也是不等式组12,22(3)8xx x x -⎧>-⎪⎨⎪-≤-⎩的一个解, 求m 的取值范围.【思路点拨】解方程求出x 的值(是用含有m 的式子表示的),再解不等式组求出x 的取值范围,最后方程的解与不等式组的解结合起来求m 的取值范围. 【答案与解析】解方程22124x m x x +=--,得x =-m-2. 因为24(4)x m m -=+,所以m ≠-4且m ≠0时,有240x -≠. 所以方程22124x m x x +=--的解为x =-m-2. 其中m ≠-4且m ≠0.解不等式组12,22(3)8,xx x x -⎧>-⎪⎨⎪-≤-⎩得x ≤-2.由题意,得-m-2≤-2,解得m ≥0.所以m 的取值范围是m >0.【总结升华】方程与不等式的综合题,是中考考查的重点之一. 举一反三:【高清课程名称:方程与不等式综合复习 高清ID 号: 405277 关联的位置名称(播放点名称):例1】【变式】如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .【答案】解不等式组得:34-22b a x +≤<,因为不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,所以4-20312a b =⎧⎪⎨+=⎪⎩ 解得21a b =⎧⎨=-⎩所以1a b +=.5. 某采摘农场计划种植B A 、两种草莓共6亩,根据表格信息,解答下列问题:(1)若该农场每年草莓全部被采摘的总收入为46000O 元,那么B A 、两种草莓各种多少亩?(2)若要求种植A 种草莓的亩数不少于种植B 种草莓的一半,那么种植A 种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多? 【思路点拨】(1)根据等量关系:总收入=A 地的亩数×年亩产量×采摘价格+B 地的亩数×年亩产量×采摘价格,列方程求解;(2)这是一道只有一个函数关系式的求最值问题,根据题意确定自变量的取值范围,由函数y 随x 的变化求出最大利润.【答案与解析】设该农场种植A 种草莓x 亩,B 种草莓)6(x -亩 依题意,得:460000)6(200040120060=-⨯+⨯x x 解得:5.2=x , 5.36=-x (2)由)6(21x x -≥,解得2≥x 设农场每年草莓全部被采摘的收入为y 元,则:4800008000)6(200040120060+-=-⨯+⨯=x x x y ∴当2=x 时,y 有最大值为464000答:(l)A 种草莓种植2.5亩, B 种草莓种植3.5亩.(2)若种植A 种草莓的亩数不少于种植B 种草莓的一半,那么种植A 种草莓2亩时,可使农场每年草莓全部被采摘的总收入最多.【总结升华】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值. 举一反三:【变式】某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.(1)设用x 辆车装甲种苹果,y 辆车装乙种苹果,求y 与x 之间的函数关系式,并写 出自变量x 的取值范围;(2)若运送三种苹果所获利润的情况如下表所示:苹果品种甲 乙 丙 每吨苹果所获利润(万元)0.220.210.2项目 品种 A B 年亩产(单位:千克)1200 2000 采摘价格(单位:元/千克)6040设此次运输的利润为W (万元),问:如何安排车辆分配方案才能使运输利润W 最大,并求出最大利润.【答案】(1)∵ 81011(10)100x y x y ++--=,∴ y 与x 之间的函数关系式为 310y x =-+.∵ y ≥1,解得x ≤3.∵ x ≥1,10x y --≥1,且x 是正整数,∴ 自变量x 的取值范围是x =1或x =2或x =3.(2)80.22100.2111(10)0.20.1421W x y x y x =⨯+⨯+--⨯=-+.因为W 随x 的增大而减小,所以x 取1时,可获得最大利润,此时20.86W =(万元).获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.类型四、用不等式(组)解决决策性问题6.为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A 、B 两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲 乙 A90盆 30盆 B 40盆 100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A 种造型的成本为1000元,搭配一个B 种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x 个A 种造型,则需要搭配(50-x)个B 种造型,由题意,得9040(50)3600,30100(50)2900,x x x x +-≤⎧⎨+-≤⎩解得30≤x ≤32. 所以x 的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A 种造型30个,B 种造型20个;A 种造型31个,B 种造型19个;A 种造型32个,B 种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.举一反三:【高清课程名称:方程与不等式综合复习 高清ID 号: 405277关联的位置名称(播放点名称):例4】【变式】某商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示:(1)按国家政策,购买“家电下乡”产品享受售价13%的政府补贴.若到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴?(2)为满足需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量 的56. ①请你帮助该商场设计相应的进货方案;②用哪种方案商场获得利润最大?(利润=售价-进价),最大利润是多少?【答案】(1)(2420+1980)×13%=572(元)(2)①设冰箱采购x 台,则彩电采购(40-x )台,解不等式组得231821117x ≤≤,因为x 为整数,所以x =19、20、21, 方案一:冰箱购买19台,彩电购买21台,方案二:冰箱购买20台,彩电购买20台,方案一:冰箱购买21台,彩电购买19台.②设商场获得总利润为y 元,则y =(2420-2320)x +(1980-1900)(40-x )=20x +3200∵20>0,∴y 随x 的增大而增大,∴当x =21时,y 最大=20×21+3200=3620(元).。
初三数学函数、方程、不等式综合知识精讲
初三数学函数、方程、不等式综合【本讲主要内容】函数、方程、不等式综合包括函数、方程、不等式之间的联系,以及综合应用函数、方程、不等式解数学题。
【知识掌握】【知识点精析】1. 二次函数、二次方程、二次不等式之间的联系若二次函数y ax bx c a =++≠20()中,令y =0,则得ax bx c a 200++=≠(),于是二次函数变成了二次方程。
令y ≠0,则得到ax bx c a 200++>≠()或ax bx c 20++<,于是二次函数变成了二次不等式。
2.a>0y y yO x O x O xa<0y y yO x O xO x【解题方法指导】例1. (2003年天津)已知抛物线y x x =--228,求证:该抛物线与x 轴一定有两个交点。
分析:可令y =0,变成一元二次方程,判断Δ是否大于0。
解:令y =0,得关于x 的方程x x 2280--=∆=--⨯⨯-=>()()24183602∴方程x x 2280--=有两个不相等的实数根即抛物线y x x =--228与x 轴一定有两个交点评析:此题的解法是将二次函数转化为一元二次方程,通过判断方程根的个数加以解决的。
此题也可以画出抛物线的图象作出判断。
例2. 已知:二次函数y x x =++265(1)问抛物线与x 轴是否有交点?(2)若有交点,什么情况下图象在x 轴上方,在x 轴下方,在x 轴上?分析:(1)可先将二次函数转化为二次方程,再用判别式判断;(2)可先求出一元二次方程的根,画出抛物线的示意图,然后结合图象作出判断。
解:(1)令y =0,得x x 2650++=∆=-⨯⨯=>64151602∴方程有两个不等实根即抛物线与x 轴有两个交点(2)解x x 2650++=()()x x ++=150∴=-=-x x 1215,y x x =++265的二次项系数>0∴抛物线开口向上,它的示意图如图所示y-5 -1 x∴当x x <->-51或时,它的图象在x 轴上方;当-<<-51x 时,它的图象在x 轴下方;当x x =-=-51或时,它的图象在x 轴上。
中考数学第一轮综合要点复习同步讲义:第4课方程与不等式
中考数学一轮复习第04 课 方程与不等式(一元一次不等式、不等式组)知识点:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<>>>>⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧不等式组的解集。
的公共部分,作为整个利用数轴求出这些解集个不等式的解集;分别求出不等式组中每解不等式组步骤:。
;;;)(法:不等式组解集的确定方式组的解集。
叫做这个一元一次不等几个不等式解集的组中解集:一元一次不等式。
叫做一元一次不等式组不等式组的几个不等式所组成的定义:含有相同未知数一元一次不等式组解法步骤:定义:一元一次不等式那么,公式表示:若,,不等号的方向不等式两边性质那么,公式表示:若,,不等号的方向不等式两边性质,那么公式表示:若,,不等号的方向不等式两边性质不等式的性质。
,小向大向圆圈;再确定方向:则是原点;不好喊边界点,若解集包含边界点,是界点。
体表示方法是先确定边上直观的表示出来,具以在注意:不等式的解集可解集。
的全体,叫做不等式的有未知数的不等式的解不等式的解集:一个含,叫做不等式的解。
成立的不等式的解:使不等式等式,常见的不等号有连接起来的式子叫做不不等式定义:用不等式)2()1()4()3()2(1,,,,0.3,0.2.1c b a c b a b a 同步练习:1.根据下图甲、乙所示,对a ,b,c 三种物体的重量判断不正确的是 ( )A.a<cB.a<bC.a>cD.b<c2.如果关于x 的不等式1)1(+>+a x a 的解集为1<x ,那么a 的取值范围是( ) A.a>0 B.a<0 C.a>-1 D.a<-13.已知方程组21321x y mx y m+=+⎧⎨+=-⎩的解满足0x y +<,则( )A.m >-1B.m >1C.m <-lD.m <1 4.已知关于x 的不等式52->+m x 的解集如图所示,则m 的值为( )A.1B.0C.-1D.-25.不等式组⎩⎨⎧-<++≤14242x x xx 的正整数解有( )A.1个B.2个C.3个D.4个 6.已知a ,b ,c 均为实数,若a >b ,c ≠0,下列结论不一定正确的是( )A.a +c >b +cB.c -a <c -bC.a c 2>b c2 D.a 2>ab >b 27.已知关于x ,y 的方程组⎩⎨⎧=--=+a y x a y x 343,其中﹣3≤a ≤1,给出下列结论:①⎩⎨⎧-==15y x 是方程组的解;②当a=-2时,x,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4-a 的解; ④若x ≤1,则1≤y ≤4.其中正确的是( )A.①②B.②③C.②③④D.①③④ 8.函数y =x 的取值范围是_____________9.若y x y y x y x >-->+,,那么(1)x +y>0;(2)y -x<0;(3)xy ≤0;(4)yx<0中,正确结论的序号为________。
中考数学第一轮综合要点复习同步讲义:第5课方程与不等式
中考数学一轮复习第05课 方程与不等式(分式方程)知识点:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧増根:解分式方程步骤:定义:分式方程相同字母或因式:系数:分式的通分分式的加减法则:相同字母或因式:系数:分式的约分分式的乘除法则:分式的运算分式的符号法则:分式的基本性质:的条件:分式值为的条件:分式值为分式值为零的条件:分式无意义的条件:分式有意义的条件:定义:分式)3()2()1()2()1()2()1(1-1课堂同步:1.下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-;④m n m n m m---=-中,成立的是( ) A.①② B.③④ C.①③ D.②④2.下列各式中,可能取值为零的是( ) A.2211m m +- B.211m m -+ C.211m m +- D.211m m ++ 3.如果把分式xy y x 2+中的x 和y 都扩大10倍,那么分式的值( ) A.扩大10倍 B.缩小10倍 C.是原来的23 D.不变4,有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A.9001500= B.9001500= C.9001500= D.9001500=5.化简的结果是6.化简:=______________7.如果实数x 满足0322=-+x x ,那么代数式11)21(2+÷++x x x 的值为_ _. 8.某市在旧城改造过程中,需要整修一段全长2400m 的道路,为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .9.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.10.当x 取什么值时,下列分式有意义: (1)32-x x (2)141+-x x (3)422+x x (4)1212+-+x x x (5)4-x x (6)21102x x -+11.化简下列各分式: ⎪⎭⎫ ⎝⎛+-+÷+-1111222x x x xx 224422111m m m m m m -+-÷+---,其中x=212.解方程:(1)32121---=-x x x (2)2163524245--+=--x x x x13.已知:25)5)(2(14-++=+-+x B x A x x x 求A,B.1(1)(1)1m m -++2222222a b a b a ab b a b--÷+++a b a b a b b a +⋅+)2﹢﹣(14.已知:3511=+y x ,求yxy x y xy x +++-2232的值. 15.如果21<<x ,试化简x x --2|2|x x x x |||1|1+---.16.已知:432z y x ==,求22232zy x xz yz xy ++-+的值.17.已知:251=+x x ,求(1)221x x +;(2)1242++x x x 的值.18.已知分式方程21212-=---x k x x 的解为正数,求k 的取值范围.19.已知实数a 满足a 2+2a ﹣15=0,求12231211222+-++÷-+-+a a a a a a a 的值.25,可提前10 20.某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%天完成任务,问原计划日产多少台?21.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务.求原来每天装配的机器数.22.某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?23.某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的1.2倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.24.有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?25.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.26.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?27.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量.28.某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.29.学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?30.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?31.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?日期: 月 日 满分:100分 时间:20分钟 姓名: 得分:1.分式的值为0时,x 的值是( ) A.0 B.1 C.-1 D.-22.下列各式与yx y x +-相等的是( ) A.55+++-y x y x B.y x y x +-22 C.)()(222y x y x y x ≠-- D.2222y x y x +- 3.计算111---a a a 的结果为( ) A.11-+a a B.1--a a C.-1 D.1-a 4.计算:的结果是( ) A. B. C. D.5.已知,则的值是( ) A. B.- C.2 D.-26.化简)11()12(xx x x -÷--的结果是( ) A. B.x-1 C. D.7.计算 d d c c b b a 1112⨯÷⨯÷⨯÷ 的结果是( ) A.2a B.2222d c b a C.bcd a 2 D.其他结果 8.甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A.66602x x =-B.66602x x =-C.66602x x =+D.66602x x=+ 9.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天B.4天 C.3天 D.2天 10.已知114a b -=,则2227a ab b a b ab---+的值等于( ) A.6 B.-6 C.215 D.27- 11.如图,设)(乙图中阴影面积甲图中阴影面积0>>=b a k ,则有( ) A.k >2 B.1<k <2C. D. 12.设m >n >0,m 2+n 2=4mn ,则的值等于( ) A.32 B.3 C.6D.321+-x x 211(1)1m m m +÷⋅--221m m ---221m m -+-221m m --21m -2111=-b a ba ab -2121x 1x 1-x 1-x x22m n mn-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
ห้องสมุดไป่ตู้ 2
3
4
第一讲:方程与不等式综合
【 【七个考点+六大题型】 考 】
核心考点梳理:七个考点 核 考点梳理:七个考点 经典例题精讲:六大题型 板块 板块一:根式、分式、不等式、代数式夯实基础 根式 分式 不等式 代数式夯实基础 板块二:一元二次方程整数根问题四大常考题型 版块三:一元二次方程公共根问题 板块四: 元二次方程根与系数的关系问题 板块四:一元二次方程根与系数的关系问题 板块五:一元二次方程与锐角三角函数综合 板块六:一元二次方程与不等式综合