李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第15章 悬索计算【圣才出品】
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(力 法)【圣才出品】
第7章力法7.1 复习笔记【知识框架】【重点难点归纳】一、超静定结构 超静定结构的定义 多余联系的描述超静定结构的概述 超静定结构类型:超静定梁、超静定桁架、超静定刚架等 求解超静定问题应考虑的条件:平衡条件、几何条件、物理条件 基本方法:力法(柔度法)、位移法(刚度法) 计算方法 其他演变方法:力矩分配法、混合法、矩阵位移法等 超静定次数的确定 超静定次数的定义力法的定义 确定方法力法的基本结构力法的基本概念 相关概念 力法的基本体系力法的基本方程力法的典型方程确定力法的基本体系建立力法典型方程力法的计算步骤 计算方程中的系数和自由项力法的求解步骤 解算典型方程求出多余未知力 力法的相关结论 由平衡条件或叠加法求得最后内力 对称结构的条件对称的类型:正对称、反对称对称性的利用 对称的特点未知力分组及荷载分组取一半结构计算:奇数跨对称刚架、偶数跨对称刚架 理论基础超静定结构的位移计算 方法步骤平衡条件的校核最后内力图的校核 位移条件的校核温度变化对超静定结构的影响温度变化时超静定结构的计算 温度变化时超静定结构内力分析支座位移对超静定结构的影响支座位移时超静定结构的计算 支座位移对超静定结构的影响拱轴线方程及截面变化规律弹性中心法计算无铰拱 无铰拱的力法计算的相关步骤及弹性中心法 无铰拱的一些结论两铰拱的相关概念和力法求解步骤两铰拱及系杆拱 系杆拱的相关概念和力法求解步骤系杆拱的其他情况及桁架拱的简单介绍外界变化的影响超静定的结构特性 内力的确定多余联系的影响 力法1.定义单靠平衡条件还不能确定全部反力和内力的结构,称为超静定结构,如图7-1-1(a)、7-1-2(b)所示。
图7-1-1图7-1-22.多余联系(1)定义在超静定结构(几何不变)中,对保持结构的几何不变性没有必要的联系称为多余联系。
(2)多余未知力多余联系中产生的力称为多余未知力,又称赘余力或冗力,如图7-1-1(b)、7-1-2(b)所示。
李廉锟《结构力学》(上册)章节题库(9-11章)【圣才出品】
图 9-4 2.如图 9-4 所示结构中,力矩分配系数 μAB=____。
【答案】μAB=0.75。
图 9-4
5 / 52
【解析】因为 SAB=3i,SAC=i,SAD=0。 3.用力矩分配法计算如图 9-5(a)所示结构,EI=常数,可得:MAB=____KN·m, MBA=____kN·m,MCA=____kN·m。
图 9-6
6 / 52
【答案】
【解析】本题可用剪力分配法计算。方法是柱顶加支杆,由载常数求得支杆反力为 ,
再反向作用于柱顶由剪力分配法求各柱分得剪力均为
。(但左柱总剪力不为此
值)最后弯矩图如图 9-7 中左图所示。
图 9-7
三、判断题
1.在力矩分配法中,杆端的转动刚度只与杆另一端的支承情况有关。( ) 【答案】错 【解析】除杆另一端的支承情况外,还与线刚度 i 有关。
4.为什么单跨对称刚架可以用无剪力分配?单跨不对称刚架直接用无剪力分配有什么 问题?
答:(1)单跨对称刚架可以用无剪力分配的原因 单跨对称刚架受任意荷载作用时,可将其荷载分解成对称和反对称两组。在对称荷载组 作用下,可用力矩分配法求解。在反对称荷载组作用下,取半边结构后,主柱变成有相对线 位移但剪力静定的杆,可用无剪力分配法求解。 (2)单跨不对称刚架直接用无剪力分配所存在的问题 单跨不对称刚架,不能取半边结构计算,也没有存在线位移但剪力静定的杆,故不能用 无剪力分配求解。
图 9-1
1 / 52
【答案】D 【解析】由于 A 点以右为静定部分,计算分配系数时只需考虑超静定部分即可。由于 转动刚度 SAC=4i,SAB=4i,SAD=0,故 μAB=1/2。 3.如图 9-2 所示结构中,当结点 B 作用外力偶 M 时,用力矩分配法计算 MBA 等于( )。 A.M/3 B.M/2 C.M/7 D.2M/5
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(平面体系的机动分析)
第2章 平面体系的机动分析2.1 复习笔记【知识框架】【重点难点归纳】一、体系1.几何不变体系几何不变体系是指在任意载荷作用时,若不考虑材料的变形,则其几何形状与位置均能 几何不变体系 平面体系的概述 常变体系几何可变体系 瞬变体系自由度 自由度定义自由度个数平面体系的计算自由度 联系的定义联系 联系的分类:链杆、单铰、复铰多余联系 一般体系 计算自由度 计算自由度的公式 铰结链杆体系 自由度与体系是否几何不变的关系 三刚片规则 几何不变体系的基本组成规则 二元体规则两刚片规则 瞬变体系 瞬变体系的定义 三刚片规则中,三个铰在同一直线上的体系 瞬变体系 几种常见的瞬变体系 二元体的两杆共线的体系两刚片规则中,三根链杆交于同一点,且互不平行两刚片规则中,三根链杆全平行无穷远点的性质三刚片体系中虚铰在无穷远处的情况 一铰无穷远两铰无穷远三铰无穷远几何构造与静定性的关系 静定体系:体系几何不变且无多余联系超静定体系:体系几何不变,而且有多余联系 平面体系的机动分析保持不变的体系。
2.几何可变体系(1)定义几何可变体系是指在很小的荷载作用下,即使不考虑材料的变形,会发生机械运动而不能保持原有的几何形状或位置的体系。
(2)分类①常变体系;②瞬变体系。
二、平面体系的计算自由度1.自由度(1)自由度定义自由度是指体系运动时所具有的独立运动方式数目,也就是体系运动时可以独立变化的几何参数数目,或者说确定体系位置所需的独立坐标数目。
(2)自由度个数①平面内的一个点的自由度为2;②平面内的一个刚体的自由度为3;③机械中常用的机构是沿特定的一种轨迹运动,具有一个自由度;④几何不变体系不能发生任何运动,其自由度应等于零;⑤凡自由度大于零的体系都是几何可变体系。
2.联系(1)联系的定义联系是指限制运动的装置,也称为约束。
一个联系是指能减少一个自由度的装置。
(2)联系的分类①链杆一根链杆为一个联系。
②铰a.单铰单铰是指联结两个刚片的一个铰。
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(静定拱)【圣才出品】
第4章 静定拱4.1 复习笔记【知识框架】【重点难点归纳】一、拱的基本概念1.拱的定义拱是指轴线(截面形心的连线)为曲线并且在竖向荷载作用下会产生水平反力的结构。
2.拱的分类(1)按铰点数①三铰拱;②两铰拱;③无铰拱。
拱的定义 按铰点数:三铰拱、两铰拱、无铰拱 拱的分类 按铰趾位置:平拱、斜拱拱的基本概念 拱的特点拱式结构消除推力对支撑结构影响的方法拱各部分的名称:拱轴线、拱趾、拱的跨度、起拱线、拱顶、拱高等 反力个数 支座反力的计算 计算方法 计算公式三铰拱的计算 反力值影响因素内力的计算:弯矩、剪力、轴力斜拱支座反力计算三铰拱的合理拱轴线 合理拱轴线的定义拱轴线的计算方法 静定拱图4-1-1(2)按铰趾位置①平拱平拱是指两拱趾在同一水平线上的拱。
②斜拱斜拱是指不在同一水平线上的拱。
3.拱的特点(1)优点①与梁相比,拱在竖向荷载作用下会产生水平反力。
推力的存在与否是区别拱与梁的主要标志。
②由于推力的存在,拱的弯矩常比跨度、荷载相同的梁的弯矩小得多,使得拱截面上的应力分布较为均匀。
③主要承受压力,可利用抗拉性能较差而抗压较强的材料如砖、石、混凝土等来建造,更能发挥材料的作用。
(2)缺点拱支座要承受水平推力,因而要求比梁具有更坚固的地基或支承结构(墙、柱、墩、台等)。
4.拱式结构拱式结构是指在竖向荷载作用下会产生水平反力的结构,也称为推力结构。
如三铰刚架、拱式桁架等。
5.消除推力对支撑结构影响的方法在拱的两支座间设置拉杆来代替支座承受水平推力,使其成为带拉杆的拱(图4-1-2(a))。
为了使拱下获得较大的净空,有时也将拉杆做成折线形的(图4-1-2(b))。
图4-1-26.拱的各部分名称(1)拱轴线拱轴线是指拱身各横截面形心的连线。
(2)拱趾拱趾是指拱的两端支座的位置。
(3)拱的跨度l拱的跨度是指两拱趾间的水平距离。
(4)起拱线起拱线是指两拱趾的连线称为起拱线。
(5)拱顶拱顶是指拱轴上距起拱线最远的一点。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解(12-15章)【圣才出品】
阶方阵)。
十、地震作用计算 ★★ 整节非考研初试重点,但为考研复试的考察重点,需重点掌握基本概念。地震作用的基 本概念见表 12-1-14。
表 12-1-14 地震作用的基本概念
十一、计算频率的近似法 ★★ 本节掌握集中质量位置选择的基本思路即可,其他的为非重点。具体内容见表 12-1-15。
表 12-1-15 计算频率的近似法
11 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
••
•
简写为 MY+cY+KY=F(t)。
式中,cij 为质点 j 处的运动速度引起质点 i 处的阻力系数;Fi(t)为作用在质点 i 处的
任意荷载;Y 为速度列向量;F(t)为任意荷载列向量(n×1 阶列矩阵);c 为阻尼矩阵(n×n
12 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
12.2 课后习题详解 复习思考题
1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么? 答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去 惯性力影响的荷载; 动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。 主要差别在于是否考虑惯性力的影响。
圣才电子书
第 12 章 结构动力学
十万种考研考证电子书、题库视频学习平台
12.1 复习笔记
【知识框架】
1 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
【重点难点归纳】 一、基本概念 ★★★ 1.动力载荷与静力载荷(见表 12-1-1)
图 12-1-1 (1)刚度系数与柔度系数(见表 12-1-5)
表 12-1-5 刚度系数与柔度系数
李廉锟《结构力学》(上册)配套题库【课后习题】(渐近法)【圣才出品】
第9章 渐近法复习思考题1.什么是劲度系数(转动刚度)?什么是分配系数?为什么一刚结点处各杆端的分配系数之和等于1?答:(1)劲度系数(转动刚度)的定义杆端的劲度系数是指当杆件的近端转动单位角时,在该近端产生的弯矩。
(2)分配系数的定义分配系数是指结点某一杆端的劲度系数与该结点处所有杆端的劲度系数的比值。
(3)一刚结点处各杆端的分配系数之和等于1的原因因为分配系数的计算公式111jj j S S μ=∑,在刚节点处各杆端分配系数之和应为111j j S Sμ==∑∑2.单跨超静定梁的劲度系数和传递系数与杆件的线刚度有何关系?答:单跨超静定梁的劲度系数不仅与杆件线刚度EI i l=相关,而且与杆件另一端(又称远端)的支承情况有关;传递系数与杆件的线刚度无关,只与远端支承形式有关。
3.图9-1所示三个单跨梁,仅B 端约束不同。
它们的劲度系数S AB 和传递系数C AB 是否相同,为什么?图9-1答:不考虑杆件轴向变形,(a)、(b)、(c)三个图的劲度系数均相同,即S AB=4i,其中i为杆件的线刚度;(a)、(b)、(c)三个图的传递系数均相同,即C AB=0.5。
因为虽然B 端约束表面上形式各异,但在不考虑杆件轴向变形的条件下,(a)、(b)、(c)三个图在B 端的最终约束效果上均可以当成固定端来处理。
4.什么是不平衡力矩?如何计算不平衡力矩?为什么要将它反号才能进行分配?答:(1)不平衡力矩的定义不平衡力矩是指在附加约束结点处各固端弯矩所不能平衡的差额。
(2)其计算值等于汇交于该结点处的各杆端固端弯矩的代数和。
(3)用反号进行分配才能平衡掉附加约束结点处产生的不平衡力矩,满足平衡条件,与该结点未加约束时的受力状态吻合。
5.什么叫传递弯矩和传递系数?答:(1)传递弯矩的定义传递弯矩是指将各近端的分配弯矩以传递系数的比例传到各远端,即近端的分配弯矩与传递系数的乘积。
(2)传递系数的定义传递系数是指当杆件近端有转角时,远端弯矩与近端弯矩的比值。
龙驭球《结构力学Ⅱ》(第3版)课后习题-第十五章至第十八章【圣才出品】
解:采用刚度法求解
图 15-3
2 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台
由振动控制方程,
由
可得,1 49,2 245,3 588
三
层
刚
架
的
自
振
频
率
为
即三层刚架的主振型为
Y(1) (0.333,0.667,1.000)T Y(2) (0.667,0.667,1.000)T
图 15-7 解:(1)图中为静定结构,所以采用柔度法,先求柔度系数。 施加单位位移,得到弯矩图 15-8 如下
9 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 15-8
图乘得到, 1P
3FPl3 24EI
,
2P
FPl3 32EI
11
3l3 24EI
, 22
l3 48EI
,
12
21
l3 32EI
(2)计算 D 值
16EI ml 3
m1 2
,
m2 2
m
16EI ml 3
16EI l3
3m
16EI ml 3
48EI l3
10 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台
(3)计算位移幅值 (4)计算惯性力 (5)叠加做弯矩图,如图 15-8(d)所示 15-9 图示桁架,杆分布质量不计,各杆 EA 为常数,质量上作用竖向简谐荷载
1 m
2
21I1 (22
) I1 12 I2
1 m
2
)I2
1 P 2 P
0 0
解得 I1 0.16F , I2 0.66F
李廉锟《结构力学》(第6版)笔记及课后习题(含考研真题)详解-力法(圣才出品)
表 7-1-8 超静定结构位移的计算
七、最后内力图的校核(见表 7-1-9) ★★★ 超静定结构计算较为繁琐,大量运用数字与符号,因而极容易出错,通过校核能够有效
10 / 99
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.什么是力法的基本结构和基本体系?它们在计算中起什么作用?基本体系与原结构 有何异同?
答:(1)基本结构和基本体系的定义 ①力法的基本结构是指将原超静定结构中的多余联系去掉后所得到的静定结构; ②基本体系是指基本结构在原有荷载和多余未知力共同作用下的体系。 (2)基本结构和基本体系在计算中的作用 ①力法的基本方程中系数和自由项的求解以及最终结构内力和反力的计算均是在基本 结构上进行的; ②基本体系是在建立力法的基本方程时,方程右端数值确定的关键,也即位移协调条件。 (3)基本体系与原结构异同点 ①不同点:基本体系用未知力代替了原结构的约束; ②相同点:基本体系与原结构最后的变形相同,这也是建立力法典型方程的位移条件。
答:(1)荷载作用下,超静定结构的内力只与各杆的刚度相对值有关,而与其刚度绝 对值无关。
14 / 99
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)当计算支座移动的超静定结构时,把移动的支座视为多余约束,那么典型方程的 右端就不为零,此时需要根据多余约束处已知的位移条件建立典型方程。
6.超静定结构的内力在什么情况下只与各杆刚度的相对大小有关?什么情况下与各杆 刚度的绝对大小有关?
降低错误率,保证计算结果的正确性。各阶段校核内容见表 7-1-9。 表 7-1-9 最后内力图的校核
八、支座移动和温度改变时超静定结构的计算(见表 7-1-10) ★★
(NEW)李廉锟《结构力学》(第5版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】
目 录第一部分 名校考研真题第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第二部分 课后习题第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第三部分 章节题库第12章 结构动力学第13章 结构弹性稳定第14章 结构的极限荷载第15章 悬索计算第四部分 模拟试题李廉锟《结构力学》(第5版)(下册)配套模拟试题及详解第一部分 名校考研真题第12章 结构动力学一、填空题1.设直杆的轴向变形不计,则图12-1所示体系的质量矩阵[M]=]______。
[西南交通大学2007研【答案】【解析】首先判断结构有两个动力自由度:最右端m1的竖向自由度和水平方向上的自由度。
竖向自由度对应的质点的质量为m1,水平自由度对应的质点的质量为2m1,故该结构的质量矩阵为。
2.如图12-2所示结构的动力自由度为______(不计杆件质量)。
[中南大学2003研]图12-2二、选择题1.如图12-3所示结构,不计阻尼与杆件质量,若要发生共振,θ应等于( )。
[天津大学2005研]A .B .3【答案】一个自由质点的动力自由度为两个(不考虑转动自由度),本题所示结构中有三个质点,第一层的两个质点只有一个水平自由度,第二层的质点有水平和竖向两个自由度,故一共有三个动力自由度。
【解析】C .D.图12-3【解析】当体系的自振频率与外部激励荷载的频率相同时,体系发生共振。
首先求该结构的自振频率,设m 处的位移为u (t ),质量m 处的惯性力向下为,质量3m 处的惯性力向下,弹性力向上为,向左端铰支座处取矩,列运动方程为:。
所以体系的自振频率为。
2.如图12-4所示体系(不计阻尼)的稳态最大动位移y max =4Pl 3/9EI ,则最大的动力弯矩为( )。
[浙江大学2007研]A .7Pl/3 B .4Pl/3C .Pl D .Pl/3B【答案】图12-4【解析】在质点m 处的静位移为:,则动力放大系数R d =;最大静力弯矩为Pl ,故最大动力弯矩为。
李廉锟《结构力学》(下册)笔记和课后习题(含考研真题)详解(结构弹性稳定)【圣才出品】
圣才电子书
b.F>Fcr
十万种考研考证电子书、题库视频学习平台
如图 13-1-2(b)所示,当 F 达到临界值 Fcr(比上述中心受压直杆的临界荷载小)时,
即使荷载丌增加甚至减小,挠度仍继续增加。
②特征
平衡形式并丌发生质变,变形按原有形式迅速增长,使结构丧失承载能力。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 13 章 结构弹性稳定
13.1 复习笔记
【知识框架】
结构失稳形式 第一类失稳(分支点失稳)
结构失稳概述
第二类失稳(极值点失稳)
临界荷载的确定
结构稳定的自由度
静力法的描述
用静力法确定临界荷载 单自由度结构的丼例
多自由度结构的丼例
当 φ≠0 时,φ 不 F 的数值仍是一一对应的(图 13-1-3(c)中的曲线 AC)。 ③近似处理 若丌涉及失稳后的位秱计算而只要求临界荷载的数值。则可采用近似方程求解。 3.多自由度结构 对于具有 n 个自由度的结构 (1)对新的平衡形式列出 n 个平衡方程,它们是关于 n 个独立参数(丌全为 0)的齐次 方程; (2)由系数行列式 D=0 建立稳定方程; (3)求解稳定方程的 n 个特征荷载,其最小值便为临界荷载。
图 13-1-3 (1)平衡条件
Flsinφ-kφ=0 当位秱很微小时,sinφ=φ,式(13-1)可近似写为
(Fl-k)φ=0 (2)平衡二重性 ①对于原有的平衡形式,φ=0,上式成立; ②对于新的平衡形式,φ≠0,因而 φ 的系数应等于零,即
5 / 61
(13-1) (13-2)
圣才电子书
4 / 61
圣才电子书 十万种考研考证电子书、题库视频学习平台
李廉锟《结构力学》(上册)课后习题详解(1-4章)【圣才出品】
第1章绪论复习思考题1.结构力学的研究对象和具体任务是什么?答:(1)结构力学的研究对象结构力学研究的主要对象是杆系结构。
(2)结构力学的具体任务①研究结构在荷载等因素作用下的内力和位移的计算。
在此基础上,即可利用后续相关专业课程知识进行结构设计或结构验算;②研究结构的稳定计算,以及动力荷载作用下结构的动力反应;③研究结构的组成规则和合理形式等问题。
2.什么是荷载?结构主要承受哪些荷载?如何区分静力荷载和动力荷载?答:(1)荷载的定义荷载是指作用在结构上的主动力。
(2)荷载的分类①按作用时间分为:恒载和活载。
②按荷载的作用位置是否变化分为:固定荷载和移动荷载。
③按荷载对结构所产生的动力效应大小分为:静力荷载和动力荷载。
(3)静力荷载和动力荷载的主要区别荷载是否使结构产生不可忽略的加速度,即是否可以略去惯性力的影响。
若可忽略加速度(惯性力),则为静荷载;若不可忽略加速度(惯性力),则为动荷载。
3.什么是结构的计算简图?如何确定结构的计算简图?答:(1)计算简图的定义结构的计算简图是指略去次要因素,用一个简化图形来代替实际结构的图形。
(2)确定计算简图的方法①杆件的简化,常以其轴线代表。
②支座和结点的简化。
③荷载的简化,常简化为集中荷载及线分布荷载。
④体系的简化,将空间结构简化为平面结构。
4.结构的计算简图中有哪些常用的支座和结点?答:结构的计算简图中常用的支座和结点分别有:(1)常用的支座:活动铰支座、固定铰支座、固定支座、滑动支座。
(2)常用的结点:铰结点、刚结点、组合结点。
5.哪些结构属于杆系结构?它们有哪些受力特征?答:(1)杆系结构的定义杆系结构是指长度远大于其他两个尺度(即截面的高度和宽度)的杆件组成的结构。
杆系结构包括:梁、拱、刚架、桁架、组合结构、悬索结构。
(2)各种杆系结构的受力特征①梁。
梁是一种受弯杆件,其轴线通常为直线,当荷载垂直于梁轴线时,横截面上的内力只有弯矩和剪力,没有轴力。
李廉锟《结构力学》(下册)笔记和课后习题(含考研真题)详解(结构的极限荷载)
第14章 结构的极限荷载14.1 复习笔记【知识框架】结构分析方法 弹性分析方法 塑性分析方法的基本概念 塑性分析方法 塑性分析中力学性能的简化 塑性分析的注意事项塑性铰 塑性铰的定义 塑性铰与普通铰的区别 极限弯矩、塑性铰、破坏机构与静定梁的计算 极限弯矩的定义及求法 破坏机构超静定梁的特点 静定梁的极限荷载计算 单跨超静定梁的极限荷载 静力法求极限荷载极限荷载的计算 机动法求极限荷载 比例加载的定义 机构条件 结构处于极限状态时满足的条件 内力局限条件 比例加载时有关极限荷载的几个定理 破坏荷载与接受荷载 平衡条件 极小定理 比例加载时有关极限荷载的几个定理 极大定理结构的极限荷载穷举法的描述唯一性定理计算极限荷载的穷举法和试算法试算法的描述穷举法的计算步骤试算法的计算步骤连续梁的可能破坏机构形式连续梁的极限荷载计算方法连续梁的极限荷载的计算计算步骤刚架的可能破坏机构形式刚架的极限荷载计算方法刚架的极限荷载的计算计算步骤矩阵位移法求刚架极限荷载的概念【重点难点归纳】一、塑性分析方法的基本概念1.结构分析方法(1)弹性分析方法①定义弹性分析方法是指以结构在弹性阶段的最大应力达到极限应力作为结构破坏的标志的结构分析方法,又称为许用应力法。
②强度条件式中,σmax为结构的实际最大应力;[σ]为材料的许用应力;σu为材料的极限应力,对于脆性材料为其强度极限σb,对于塑性材料则为其屈服极限σs;k是安全因数。
③优点结构在设计荷载作用下,大多数仍处于弹性阶段,因此弹性分析对于研究结构的实际工作状态及其性能仍是很重要的。
④缺点按许用应力法以个别截面的局部应力来衡量整个结构的承载能力是不够经济合理的,而且以确定许用应力的安全因数k也不能反映整个结构的强度储备。
(2)塑性分析方法①定义塑性分析方法是指以结构进入塑性阶段并最后丧失承载能力时的极限状态作为结构破坏的标志的结构分析方法。
②极限载荷极限荷载是指结构在极限状态时所能承受的荷载。
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(渐近法)【圣才出品】
第9章 渐近法9.1 复习笔记【知识框架】【重点难点归纳】 一、力矩分配法 1.定义 (1)劲度系数当杆件AB (图9-1-1)的A 端(又称近端)转动单位角时,A 端的弯矩称为该杆端的劲度系数,用表示。
它标志着该杆端抵抗转动能力的大小,故又称为转动刚度,其值不仅与杆件的线刚度有关,而且与杆件另一端(又称远端)的支承情况有关。
(2)传递系数当A 端转动时,B 端也产生一定的弯矩,将B 端弯矩与A 端弯矩之比称为由A 端向B力矩分配法的相关定义 劲度系数渐进法的概述 传递系数 力矩分配法的基本原理及举例分析应用力矩分配法计算无侧移刚架和连续梁 适用的对象无剪力分配法的举例分析 无剪力分配法 无剪力分配法的定义 无剪力分配法解多层无侧移刚架无剪力分配法应用于有侧移刚架 适用对象剪力分配法的举例分析 剪力分配法 剪力分配法的定义 剪力分配法的其他情况 剪力分配法的实用举例渐进法端的传递系数,用来表示,即。
图9-1-1等截面直杆的劲度系数和传递系数见表9-1-1。
当B端为自由或为一根轴向支承链杆时,A端转动时杆件将毫无抵抗,其劲度系数为零。
表9-1-1 等截面直杆的劲度系数和传递系数2.应用(单个结点转角)力矩分配法其结点角位移、杆端力的符号规定均与位移法相同,非常适用于连续梁和无结点线位移刚架的计算。
(1)举例①原结构如图9-1-2(a)所示刚架。
②典型方程只有一个基本未知量即结点转角,其典型方程为:。
图9-1-2③绘出M p、M1图如图9-1-2(b)、(c)所示。
④求自由项a.求(9-1)式中,为结点固定时附加刚臂上的反力偶,可称为刚臂反力偶,它等于汇交于结点1的各杆端固端弯矩的代数和,即各固端弯矩所不能平衡的差额,故又称结点上的不平衡力矩。
b.求(9-2)式中,为汇交于结点1的各杆端劲度系数的总和。
⑤解典型方程⑥最终弯矩图按叠加法计算各杆端的最后弯矩a.近端弯矩各杆汇交于结点1的一端为近端,另一端为远端。
李廉锟《结构力学》(第6版)章节题库-第一章至第三章【圣才出品】
第2部分章节题库第1章绪论一、简答题1.什么是结构的计算简图?为什么要将实际结构简化为计算简图?答:(1)计算简图的定义在进行结构的力学分析时,常用一个简化的图形代替实际结构,这个简化的图形称为结构的计算简图。
(2)将实际结构简化为计算简图的原因因为结构的实际工作状况是非常复杂的,要严格按照实际情况进行力学分析是不可能的,也是不必要的。
因此,计算前要将实际结构进行简化,保留实际结构的主要受力和变形性能,略去次要因素便于计算,成为计算简图。
实际结构的分析是在结构的计算简图中进行的。
2.计算简图的选择原则是什么?答:计算简图的选择原则:(1)能反映结构的主要受力和变形性能。
必须从实际结构的材料、构造及连接方式出发,由它们对杆件可能提供的约束,来反映实际结构的主要受力和变形特征,使计算结果与实际结构情况足够接近。
(2)略去细节,便于计算。
略去实际结构的次要因素(次要连接和内力),尽量简化,便于计算。
3.为什么有些框架结点可简化为刚结点,而有些只能简化为铰结点?答:(1)有些框架结点可简化为刚结点的原因有些框架结点连接的各杆间无相对移动和转动,同时,结点能承受和传递力矩,故可简化为刚结点,例如钢筋混凝土现浇框架结点为整体浇注在一起。
(2)有些框架结点只能简化为铰结点有些框架结点限制彼此间的相对线位移,但对转动的抵抗能力较弱,常忽略对转动的限制作用,而视为可相互转动,故只能视为铰结点,例如厂房排架柱柱顶与屋架端结点。
二、分析计算题1.作出如图1-1所示的某实验室拱式屋架的计算简图。
图1-1解:拱式屋架的计算简图如图1-2所示。
图1-2拱式屋架的计算简图2.作出如图1-3所示的某公路钢筋混凝土桥的计算简图。
图1-3钢筋混凝土公路桥解:钢筋混凝土公路桥的计算简图如图1-4所示。
图1-4钢筋混凝土公路桥的计算简图第2章平面体系的机动分析一、填空题1.如图2-1所示体系计算自由度W为______,是______多余约束的几何______体系。
李廉锟《结构力学》(上册)配套题库【课后习题】(平面体系的机动分析)【圣才出品】
第2章平面体系的机动分析复习思考题1.为什么计算自由度W≤0的体系不一定就是几何不变的?试举例说明。
答:因为W≤0只是体系为几何不变的必要条件并非充分条件。
一个体系尽管联系数目足够多甚至还有多余,但约束布置不当,体系便仍是几何可变的。
如图2-1所示。
图2-12.什么是刚片?什么是链杆?链杆能否作为刚片?刚片能否当作链杆?答:(1)刚片的定义刚片是指在平面体系中,由于不考虑材料的变形,可以看作刚体的一根杆件或已判明是几何不变的部分。
(2)链杆的定义链杆是指能使体系减少一个自由度的联结装置(约束)。
(3)链杆可以看作刚片。
一根链杆是几何不变的,在结构分析中可看做刚片。
(4)刚片不一定能看作链杆。
将刚片看作链杆后,结构可能无法保持几何不变。
3.何谓单铰、复铰、虚铰?体系中的任何两根链杆是否都相当于在其交点处的一个虚铰?答:(1)单铰、复铰、虚铰的定义分别是①单铰是指联结两个刚片的一个铰。
②复铰是指同时联结两个以上刚片的一个铰。
③虚铰是指联结两个刚片的两根链杆延长线的交点处的位置随链杆的转动而改变的铰。
(2)体系中不是任何两根链杆都相当于在其交点处的一个虚铰。
因为虚铰的位置随链杆的转动而改变,一般的实铰则没有这个特征,所以不是任何两根链杆都相当于虚铰。
4.试述几何不变体系的三个基本组成规则,为什么说它们实质上只是同一个规则?答:(1)几何不变体系的三个基本组成规则①三刚片规则三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
②二元体规则在一个刚片上增加一个二元体,仍为几何不变体系,而且没有多余联系。
③两刚片规则两个刚片用一个铰和一根不通过此铰的链杆相联或两个刚片用三根不全平行也不交于同一点的链杆相联,为几何不变体系,而且没有多余联系。
(2)基本组成规则都可以看作三刚片规则因为链杆可以看作刚片,例如二元体规则中,二元体的两根链杆均可以看作刚片,即相当于三刚片规则。
同理,两刚片规则中链杆仍然可以看作一个刚片。
李廉锟《结构力学》(第6版)笔记和课后习题(含考研真题)详解
李廉锟《结构力学》(第6版)笔记和课后习题(含考研真题)详解复习笔记【知识框架】节选自识库学习网,如需转载请注明出处【重点难点归纳】一、结构力学的研究对象和任务(见表1-1-1)★★表1-1-1结构力学的研究对象和任务二、荷载的分类(见表1-1-2)★★★荷载是指作用在结构上的主动力。
表1-1-2荷载的分类三、支座和结点的类型★★★★1支座支座是指把结构与基础联系起来的装置,见表1-1-3。
表1-1-3支座的类型2结点结点是指结构中杆件相互联结的位置,见表1-1-4。
表1-1-4结点的类型四、结构的分类★★★1按几何特征分类(见表1-1-5)表1-1-5结构按几何特征分类2按受力特性分类(见表1-1-6)考研真题汇编第1章绪论本章暂未编选名校考研真题。
【更多考研专业课真题可转识库学习网】第2章平面体系的机动分析一、填空题1在平面体系中,联结______的铰称为单铰,联结______的铰称为复铰。
[哈尔滨工业大学2007研]【答案】两个刚片;两个以上的刚片查看答案【解析】根据定义,单铰是指联结两个刚片的一个铰;复铰是指同时联结两个以上刚片的一个铰。
2如图2-1所示体系为有______个多余约束的______体系。
[国防科技大学2007研]图2-1【答案】0;几何不变查看答案【解析】几何组成分析:将AED和DCF分别看作两个刚片,BE和BF可以分别看作两根链杆,再将大地看作一个刚片,此体系可看作通过两个虚铰和一个实铰(三个铰不共线)联结的;根据三刚片规则,可判断出该体系为无多余约束的几何不变体系。
3如图2-2所示体系为有______个多余约束的______体系。
[国防科技大学2004研]图2-2【答案】5;瞬变查看答案【解析】几何组成分析,分析上部结构:将4个组合节点全部变成铰接点,则减少4个多余约束;分析剩余结构,易知该剩余部分为有1个多余约束的几何不变体系,故上部结构为有5个多余约束的几何不变体系。
李廉锟《结构力学》(上册)配套题库【名校考研真题】(结构位移计算)【圣才出品】
第6章结构位移计算一、填空题1.互等定理只适用于______体系。
反力互等定理、位移互等定理是以______定理为基础导出的。
[哈尔滨工业大学2007研]【答案】线弹性;功的互等【解析】因为互等定理中采用的位移计算公式都是在线弹性假定下求出的,所以最终的功的互等定理、位移互等定理、反力互等定理以及位移反力互等定理皆只适用于线弹性结构。
其中反力互等定理、位移互等定理均是以功的互等定理导出的,是功的互等定理的特殊情况。
2.如图6-1所示结构,支座A顺时针转动了θ,支座E的弹簧刚度为k,则铰C左右截面的相对转角为______。
[浙江大学2006研]图6-1【答案】2θ【解析】在C左右两端施加一对单位力偶(),计算出A端的弯矩M A=2(逆时针),根据公式θθϕ2)2(=⨯--=-=∑A CC R 。
3.如图6-2所示结构中,杆AB 、BE 截面抗弯刚度为EI ,杆DC 的抗拉刚度为EA ,则D 结点的水平位移为______。
[西南交通大学2006研]图6-2【答案】()()23122P P EI a F a F a EI ⨯⨯⨯=→【解析】在B 点施加水平向右的单位集中力,分别作出结构在外荷载F P 和单位集中力下的弯矩图M P 和M 1,如图6-3所示。
进行图乘运算可得()→=⎪⎭⎫ ⎝⎛⨯⨯⨯=∆EI a F a F a a EI P P Cy 32211图6-34.如图6-4所示两图的图乘结果为______。
[湖南大学2007研]图6-4【答案】EIabl 4825【解析】根据图乘法的计算原则,需要分段进行图乘EIabl b la EI b la EI 482585324185321-=⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛⨯-5.如图6-5所示桁架各杆的EA 相同,AB 杆的转角大小为______,方向为______。
[国防科技大学2006研]图6-5【答案】P EA;顺时针 【解析】在AB 杆两端施加一对顺时针的集中力大小为1/a ,分别算出结构在外荷载P 和单位集中力下的各杆的轴力。
结构力学——第15章悬索计算
解:设抛物线悬索方程为
c 4 fx(l x) y x l l2 dy c 4 f 8 f 2 x dx l l
当两支座等高时
ds 16 f df 3l
8f 2 s l (1 2 ) 3l
f
16 f s 3l
垂度变化值大于悬索长度变化值
§15-4 悬索的变形协调方程及初态终态问题求解
2 c 2 c0 EA D D0 uR uL EAt 整理可得 FH FH0 2 2 EA 2 EA 2l FH FH0 2l l
式中
D F dx
0 2 S l 2 D0 FS0 dx 0 l
可解出FH FS0-初始状态相应简支梁的剪力 FS -最终状态相应简支梁的剪力
弦AB的直线方程
当AB为水平线时,c=0,有
y 4 fx(l x) l2
当索曲线方程确定后,索中各点的张力为
dy 1 dx
2
FT FH
当索较平坦时,如f/l≤0.1,可近似为
FT FH
§15-3 分布荷载作用下的单根悬索计算
(2) 沿索长度均布荷载q作用,如图。 将q转化为沿跨度方向的 等效均布荷载qy,由图得
悬索AB x=0 时,y=0 x=l 时,y=0
相应简支梁AB x=0 时,M=0 x=l 时,M=0
§15-3 分布荷载作用下的单根悬索计算
x=0 时,y=0 图a为两端支座高差为c的 悬索AB 悬索,在相应简支梁的一端加 x =l 时,y=c 上集中力偶矩FHc,y与M得到 x=0 时,M=0 相同的边界条件,即 相应简支梁AB x=l 时,M=FHc
由几何关系得
2 ds0 dx 2 dy0 1 (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15章 悬索计算
15.1
复习笔记【知识框架】
【重点难点归纳】
一、悬索的基本概念(见表15-1-1) ★★
表15-1-1 悬索的基本概念
二、悬索计算模型特点 ★★
在计算中可忽略自重影响,将各索段视为直线。
三、悬索体系的计算(见表15-1-2) ★★
表15-1-2 悬索体系的计算
15.2 课后习题详解
复习思考题
1.悬索的受力与变形有什么特点?为什么它的平衡方程要按其变形后的几何尺寸与位置来建立?
答:(1)悬索的受力与变形各有如下特点:
①悬索受力:在荷载等外因作用下只产生轴向拉力,不产生弯矩、剪力和压力。
②悬索变形:几何形状的可变性,即几何形状随所受荷载不同而变化,位移与外荷载之间的关系呈非线性且变形较大。
(2)因为悬索的几何形状随所受荷载不同而变化,且变形量和位移比较大,由于应变产生的二阶微量不可以忽略,所以悬索的平衡方程要按其变形后的几何尺寸与位置来建立才准确。
2.集中荷载作用下悬索的计算与三铰拱的计算有何异同之处?
答:集中荷载作用下悬索的计算与三铰拱的计算的异同点:
(1)相同点
关于水平力的计算原理和形式两者相同,即都是以简化后的简支梁计算模型为基础。
(2)不同点
①三铰拱的水平反力计算时不需要分段,且数值等于铰点对应简支梁上的弯矩与拱高的比值;而悬索的水平力的计算需要根据具体形式分段,其数值等于该段内任一点对应的简支梁上的弯矩与该点到弦的距离的比值。
②拱中计算出的水平力为压力,而悬索中为拉力。
③三铰拱需要计算拱段的弯矩和剪力,而悬索结构不会产生剪力和弯矩。
3.悬索在沿跨度和索长度均布荷载作用下的变形和内力有什么特点?
答:(1)悬索在沿跨度均布荷载作用下:
①变形特点:变形曲线为二次抛物线,该抛物线方程由弦的直线方程和以弦为基线的悬索曲线方程组成;
②内力特点:当悬索较平坦时,索中的各点张力近似等于其内力的水平分量。
(2)悬索沿索长度均布荷载作用下:
①变形特点:变形曲线为较为复杂的悬链线;
②内力特点:悬索的张力与悬索的形状有关。
4.什么是悬索变形协调方程?它对悬索实际计算问题的求解有什么作用?
答:(1)悬索的变形协调方程是指一个悬索由初始状态过渡到最终状态时,反映内力与位移变化关系的方程。
(2)悬索的微分方程及其解虽然建立了某一特定状态的q、y与F H三者的关系,但是并未考虑状态的变化过程,因而无法解决实际计算问题,从数学的角度看,要求解y与F H两个未知量,只有一个平衡方程也是不够的,所以需要补充变形协调方程才能够求解悬索结构的内力和变形。
习题
15-1 试计算图示(如图15-2-1)悬索支反力和各索段内力。
假设各索段均为直线,索自重不计。
图15-2-1
解:由∑M E =0,即F Ay ×60-12×50-12×25-8×15=0,算出F Ay =17kN (↑);由∑F y =0,即F Ay -12-12-8+F Ey =0,得出F Ey =15kN (↑)。
然后可以算出水平支座反力
01735122524.6kN 12
C H M F
f ⨯-⨯===由力的平衡算出各索段内力,如图15-2-2所示。
图15-2-2
15-2 试计算图示(如图15-2-3)支承屋盖悬索的最大拉力。
(a )按悬链线计;(b )按抛物线计。
悬索自重为0.135kN/m 。
1.35
图15-2-3
解:由∑M A =0,F Cx ×6-(1.35+0.135)×20×10=0,得F Cx =49.5kN 。
(a )按悬索链线计算时,有如下计算结果
β=0.135×20/(2×49.5)=0.0273
60.027320ar sinh 0.02730.32294
sinh 0.0273α⎛⎫⨯ ⎪=+= ⎪ ⎪⎝⎭
()49.5249.5cosh cosh 366.667cosh 0.0030.1350.135y x x l βααα⎡⎤⎛⎫=--=-- ⎪⎢⎥⎝⎭⎣⎦
y′=-sinh (0.003x -α)
x =0,y′=y max
′=-sinh (-α)=0.328582
max 52.104kN
T F F ===,(注意:sinh 为双曲正弦函数,;cosh 为双曲余弦函数,sinh 2
x x e e x --=,。
)cosh 2
x x e
e x -+=ar sinh ln x x ⎡=⎣(b )按抛物线计算时,有如下计算结果。