江苏省宜兴2016-2017学年八年级上期中数学试题及答案
江苏省无锡市宜兴市八年级(上)期中数学试卷
八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列四个图案中,不是轴对称图案的是()A. B. C. D.2.在25,2,1.414,113,-π3,3.252252225,0,3−9中,无理数有()A. 2个B. 3个C. 4个D. 5个3.等腰三角形的一个外角是100°,则它的顶角是()A. 20∘B. 80∘C. 20∘或80∘D. 40∘或80∘4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD5.若实数m、n满足等式|m-2|+n−4=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A. 12B. 10C. 8D. 66.如图,点A在以O为原点的数轴上,OA的长度为3,以OA为直角边,以长度是1的线段AB为另一直角边作Rt△OAB,若以O为圆心,OB为半径作圆,则圆与数轴交点表示的数为()A. 3.5B. 10C. ±22D. ±107.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为()A. 12B. 1C. 2D. 58.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=α,则∠ACB的度数为()A. 12αB. 90∘−12αC. 45∘D. α−45∘二、填空题(本大题共9小题,共22.0分)9.0.25的平方根是______,-64的立方根是______10.若一个正数的两个不同的平方根为2m-6与m+3,则这个正数为______.11.已知△ABC≌△DEF,∠A=70°,∠E=30°,则∠F的度数为______12.如图,在△ABC中,AD平分∠BAC交BC于点D,AB∥ED.若AC=5,CE=3,则DE=______.13.如图,DE是AB的垂直平分线.(1)已知AC=5cm,△ADC的周长为17cm,则BC的长______(2)若AD平分∠BAC,AD=AC,则∠C=______14.若直角三角形斜边上的高和中线长分别是3cm,4cm,则它的面积是______cm2.15.如图,数轴上点A表示的数为a,化简:a+a2−4a+4=______.16.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为______cm.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为______.三、计算题(本大题共1小题,共6.0分)18.求下列各式中的实数x的值(1)(2x-1)3=-8(2)3(x+2)2=12四、解答题(本大题共7小题,共48.0分)19.计算:(1)2-1+4−38+(2)0(2)(−5)2+327−(6)220.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是13的整数部分,求3a-b+c的平方根.21.(1)已知△ABC,利用直尺和圆规,在BC上作一点P,使BC=PA+PC(保留作图痕迹).(2)利用网格画出△DEF中,使DE=5,EF=10,FD=13(在图中标出字母).22.如图,点A、F、C、D在一条直线上,AB∥DE,AB=DE,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.23.如图,小巷左右两侧是竖着的墙,两墙相距2.2米.一架梯子斜靠在左墙时,梯子顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.梯长多少米?24.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=46°,求∠BDE的度数.25.已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD为AB边上的高.动点P从点A出发,沿着△ABC的三条边逆时针走一圈回到A点,速度为2cm/s,设运动时间为ts.(1)求CD的长;(2)t为何值时,△ACP为等腰三角形?(3)若M为BC上一动点,N为AB上一动点,是否存在M,N使得AM+MN的值最小?如果有请求出最小值,如果没有请说明理由.答案和解析1.【答案】B【解析】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.根据轴对称的概念对各选项分析判断利用排除法求解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:无理数有,-,这3个,故选:B.根据无理数的定义求解即可.此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.【答案】C【解析】解:当该外角与顶角相邻,则其顶角是80°;若该外角与底角相邻,则其底角是80°;根据三角形的内角和定理,得其顶角是20°.故选:C.此题要分情况考虑:当该外角与顶角相邻,则其顶角是80°;若该外角与底角相邻,则其底角是80°,根据三角形的内角和定理,得其顶角是20°.此类题一定要注意分两种情况进行讨论.熟练运用邻补角的定义以及三角形的内角和定理.4.【答案】D【解析】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.5.【答案】B【解析】解:∵|m-2|+=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.6.【答案】D【解析】解:如图所示:OB==,故以O为圆心,OB为半径作圆,则圆与数轴交点表示的数为:±.故选:D.直接利用勾股定理得出OB的长,再利用数轴得出圆与数轴交点表示的数.此题主要考查了实数与数轴以及勾股定理,得出BO的长是解题关键.7.【答案】C【解析】解:作DF⊥BC交BC的延长线于F,∵BC=5,△BCD的面积为5,∴DF=2,∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF=2,故选:C.作DF⊥BC交BC的延长线于F,根据三角形的面积公式求出DF的长,根据角平分线的性质定理求出DE的长.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.【答案】B【解析】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=,又∵∠AEB'=∠AOB'=90°,∴四边形AOB'E中,∠EB'O=180°-,∴∠ACB'=∠EB'O-∠COB'=180°--90°=90°-,∴∠ACB=∠ACB'=90°-,故选:B.连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°-∠BAD.本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB'E,解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.9.【答案】±0.5 -4【解析】解:0.25的平方根是±0.5,-64的立方根是-4,故答案为:±0.5,-4.根据平方根和立方根的定义求解可得.本题主要考查立方根与平方根,解题的关键是掌握立方根和平方根的定义.10.【答案】16【解析】解:∵一个正数的两个不同的平方根为2m-6与m+3,∴2m-6+m+3=0,m=1,∴2m-6=-4,∴这个正数为:(-4)2=16,故答案为:16根据题意得出方程,求出方程的解即可.本题考查了平方根的应用,注意:一个正数有两个平方根,它们互为相反数.11.【答案】80°【解析】解:∵△ABC≌△DEF,∴∠D=∠A=70°,∴∠F=180°-∠D-∠E=180°-30°-70°=80°,故答案为:80°根据全等三角形的性质求出∠D,根据三角形内角和定理计算即可.本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.12.【答案】2【解析】解:∵AD平分∠BAC交BC于点D,∴∠BAD=∠DAC,∵AB∥ED,∴∠BAD=∠ADE,∴∠DAE=∠ADE,∴AE=DE,∵AC=5,CE=3,∴AE=AC-EC=2,∴DE=2.根据“角平分线+平行线推出△ADE是等腰三角形(AE=DE”),即可解决问题;本题考查等腰三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握“角平分线+平行线推出等腰三角形”.13.【答案】12cm72°【解析】解:(1)∵DE垂直平分线线段AB,∴DA=DB,∵AD+CD+AC=17,AC=5,∴BD+CD+AC=17,∴BC+AC=17,∴BC=17-5=12cm,故答案为12cm.(2)设∠DAB=∠DAC=x,∵DA=DB,∴∠DBA=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵AD=AC,∴∠C=∠ADC=2x,∴5x=180°,∴x=36°,∴∠C=72°,故答案为72°.(1)根据线段的垂直平分线的性质,可得AD=BD,根据△ADC的周长=AD+CD+AC=BD+CD+AC=BC+AC,由AC的长即可解决问题;(2)设∠DAB=∠DAC=x,利用三角形内角和定理构建方程即可解决问题;本题考查线段的垂直平分线的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】12【解析】解:∵直角三角形斜边上的中线长是4cm,∴斜边=2×4=8cm,∵斜边上的高为3cm,∴它的面积是=×8×3=12cm2.故答案为:12.根据直角三角形斜边上的中线等于斜边的一半求出斜边,再利用三角形的面积公式列式计算即可得解.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.15.【答案】2【解析】解:由数轴可得:0<a<2,则a+=a+=a+(2-a)=2.故答案为:2.直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.此题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题关键.16.【答案】42【解析】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.根据将△ABC绕点B顺时针旋转60°,得到△BDE,可得△ABC≌△BDE,∠CBD=60°,BD=BC=12cm,从而得到△BCD为等边三角形,得到CD=BC=CD=12cm,在Rt△ACB中,利用勾股定理得到AB=13,所以△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD,即可解答.本题考查了旋转的性质,解决本题的关键是由旋转得到相等的边.17.【答案】32或3【解析】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.18.【答案】解:(1)∵(2x-1)3=-8,∴2x-1=-2,解得:x=-12;(2)∵3(x+2)2=12,∴(x+2)2=4,则x+2=±2,解得:x1=0,x2=-4.【解析】(1)先开立方,再解方程可得;(2)先将两边都除以3,再开平方,继而解方程可得.本题主要考查了立方根及平方根的定义和性质,注意一个数的立方根与原数的性质符号相同,一个正数的平方根有两个,它们互为相反数.19.【答案】解:(1)原式=12+2-2+1,=32;(2)原式=5+3-6,=2.【解析】(1)直接利用负指数幂的性质以及零指数幂的性质和立方根的性质分别化简得出答案;(2)直接利用二次根式的性质和立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是13的整数部分,∴c=3,∴3a-b+c=16,3a-b+c的平方根是±4.【解析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.此题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.21.【答案】解:(1)如图所示,点P即为所求.(2)如图所示,△DEF即为所求.【解析】(1)作AB的垂直平分线MN,与BC的交点即为所求;(2)根据勾股定理作图即可.本题主要考查作图-应用与设计作图,解题的关键是掌握线段中垂线的尺规作图及勾股定理.22.【答案】解:(1)∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF,又∵AB=DE,∴△ABC≌△DEF(SAS).(2)∵△ABC≌△DEF,∴∠BCA=∠EFD,∴BC∥EF.【解析】(1)根据SAS即可判断,△ABC≌△DEF(SAS);(2)利用全等三角形的性质即可证明;本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:设AC=x,则BC=2.2-x,由题意,∠DAC=∠EBC=90°,∴AC2+AD2=BC2+BE2,∴x2+2.42=(2.2-x)2+22,解得x=0.7,∴CD=2.5,答:梯长2.5米.【解析】设AC=x,则BC=2.2-x,依据勾股定理,即可得到方程x2+2.42=(2.2-x)2+22,即可得出梯子的长度.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.24.【答案】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∠A=∠BAE=BE∠AEC=∠BED,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED∴DE=CE∴∠EDC=∠C∵∠1=46°∴∠EDC=∠C=67°∵△AEC≌△BED∴∠BDE=∠C=67°【解析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.25.【答案】解:(1)∵AC=6cm,BC=8cm,AB=10cm,∴AC2+BC2=AB2,∴∠ACB=90°,∵CD为AB边上的高,∴AC•BC=AB•CD,∴CD=4.8cm;(2)①当点P在BC上时,∵∠ACB=90°,若△ACP为等腰三角形,只有AC=PC=6,∴t=122=6s,②当点P在AB上时,∵△ACP为等腰三角形,∴分三种情况:当AC=AP时,即10-(2t-6-8)=6,解得:t=9,当AC=CP=6时,即12[10-(2t-6-8)]=62−(245)2,解得:t=8.4,当AP=CP=10-(2t-6-8)时,即10-(2t-6-8)=5,解得:t=9.5,综上所述:t为6,8.4,9,9.5时,△ACP为等腰三角形;(3)如图作点A关于BC的对称点A′,过A′作A′N⊥AB于N,交BC于M,′则A′N就是AM+MN的最小值,∵CD⊥AB,∴CD∥A′N,∵AC=CA′,∴AD=DN,∴A′N=2CD=9.6,即AM+MN的最小值=9.6.【解析】(1)根据勾股定理的逆定理得到∠ACB=90°,然后由三角形的面积公式得到等积式,即可得到结果;(2)①当点P在BC上时,求得t==6s,②当点P在AB上时,分三种情况:当AC=AP时,即10-(2t-6-8)=6,求得t=9,当AC=CP=6时,即[10-(2t-6-8)]=,求得t=8.4,当AP=CP=10-(2t-6-8)时,即10-(2t-6-8)=5,求得t=9.5,(3)如图作点A关于BC的对称点A′,过A′作A′N⊥AB于N,交BC于M,′则A′N就是AM+MN的最小值,根据三角形的中位线即可得到结论.本题考查了轴对称-最短路线问题,勾股定理的逆定理,三角形的中位线的性质,等腰三角形的性质,正确的作出图形是解题的关键.。
苏科版2016-2017学年八年级(上)期中数学试卷 有答案
2016-2017学年八年级(上)期中数学试卷一、选择题1.4的平方根是( )A.2 B.C.±2 D.±2.在﹣0.101001,,,﹣,0中,无理数的个数是( )A.1个B.2个C.3个D.4个3.今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A.精确到百分位 B.精确到百位C.精确到十位D.精确到个位4.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,35.如果在实数范围内有意义,那么x的取值范围是( )A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣6.与点P(a2+1,﹣a2﹣2)在同一个象限内的点是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④ D.①③④8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.139.若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )A.a<0 B.a>0 C.a<2 D.a>210.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为( )A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1﹣1)C.(2n﹣1,2n﹣1+1)D.(2n﹣1﹣1,2n﹣1)二、填空题11.的平方根为__________.12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是__________.13.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2013的值为__________.14.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是__________(填写序号).15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=__________.16.过点(﹣1,﹣3)且与直线y=1﹣x平行的直线是__________.17.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为__________.18.如图所示,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,BD=2,将△ABC沿直线AD翻折,使点C落在AB边上的点E处.若点P是直线AD上的动点,则△PEB的周长的最小值是__________.三、解答题(共76分)19.计算或化简(1)()2﹣﹣(2)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|20.求下列各式中x的值:(1)(x﹣1)3﹣27=0;(2)(2x+1)2=.21.在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.24.已知点P(m,n)在第一象限,并且在一次函数y=2x﹣1的图象上,求实数m的取值范围.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.26.为发展旅游经济,“黄石国家矿山公园”对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m 人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1,y2与x之间的函数图象如图所示.(1)观察图象可知:a=__________;b=__________;m=__________;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?27.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB 为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.28.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.2016-2017学年八年级(上)期中数学试卷一、选择题1.4的平方根是( )A.2 B.C.±2 D.±【考点】平方根.【专题】计算题.【分析】原式利用平方根定义计算即可得到结果.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.在﹣0.101001,,,﹣,0中,无理数的个数是( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣共2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A.精确到百分位 B.精确到百位C.精确到十位D.精确到个位【考点】近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.【解答】解:数字6.01×104精确到百位;故选B.【点评】此题考查了近似数,对于用科学记数法表示的数,精确到哪一位是需要识记的内容.4.下列四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.5.如果在实数范围内有意义,那么x的取值范围是( )A.x≠﹣B.x<﹣C.x≥﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式有意义被开方数为非负数,即可得出x的取值范围.【解答】解:∵在实数范围内有意义,∴3x+2≥0,解得:x≥﹣.故选C.【点评】本题考查了二次根式有意义的条件,注意掌握二次根式有意义被开方数为非负数.6.与点P(a2+1,﹣a2﹣2)在同一个象限内的点是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)【考点】点的坐标.【分析】根据平方数非负数的性质求出点P的横坐标与纵坐标的正负情况,再根据各象限内点的坐标特征求出点P所在的象限,然后解答即可.【解答】解:∵a2≥0,∴a2+1≥1,﹣a2﹣2≤﹣2,∴点P在第四象限,(3,2),(﹣3,2)(﹣3,﹣2)(3,﹣2)中只有(3,﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④ D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为( )A.169 B.25 C.19 D.13【考点】勾股定理;完全平方公式.【分析】先求出四个直角三角形的面积,再根据再根据直角三角形的边长求解即可.【解答】解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选B.【点评】注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.9.若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是( )A.a<0 B.a>0 C.a<2 D.a>2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的图象y=(a﹣2)x+1,当a﹣2<0时,y随着x的增大而减小分析即可.【解答】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a﹣2)x+1图象上的不同的两个点,当x1>x2时,y1<y2,可得:a﹣2<0,解得:a<2.故选C.【点评】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k >0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.10.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为( )A.(2n﹣1,2n﹣1)B.(2n﹣1,2n﹣1﹣1)C.(2n﹣1,2n﹣1+1)D.(2n﹣1﹣1,2n﹣1)【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点B n﹣1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值.【解答】解:如图,∵点B1的坐标为(1,0),点B2的坐标为(3,0),∴OB1=1,OB2=3,则B1B2=2.∵△A1B1O是等腰直角三角形,∠A1OB1=90°,∴OA1=OB1=1.∴点A1的坐标是(0,1).同理,在等腰直角△A2B2B1中,∠A2B1B2=90°,A2B1=B1B2=2,则A2(1,2).∵点A1、A2均在一次函数y=kx+b的图象上,∴,解得,,∴该直线方程是y=x+1.∵点A3,B2的横坐标相同,都是3,∴当x=3时,y=4,即A3(3,4),则A3B2=4,∴B3(7,0).同理,B4(15,0),…B n(2n﹣1,0),∴当x=2n﹣1﹣1时,y=2n﹣1﹣1+1=2n﹣1,即点A n的坐标为(2n﹣1﹣1,2n﹣1).故选D.【点评】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点B n的坐标的规律.二、填空题11.的平方根为.【考点】平方根;算术平方根.【分析】先计根据平方根的定义直接求解即可.【解答】解:=3,3多的平方根为.故答案为:.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是5.【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【解答】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.【点评】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理根据2直角边求斜边是解题的关键.13.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2013的值为﹣1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,可得到x、y 的值,进而计算出答案.【解答】解:∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,∴(x+y)2013=﹣1,故答案为:﹣1.【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的变化规律.14.下列说法:①无限小数是无理数;②5的平方根是;③8的立方根是±2;④使代数式有意义的x的取值范围是x≥﹣1;⑤与数轴上的点一一对应的数是有理数.其中正确的是②④(填写序号).【考点】无理数;平方根;立方根;实数与数轴;二次根式有意义的条件.【专题】推理填空题.【分析】根据无理数的定义判断即可;根据平方根、立方根的定义求出,即可判断②③;根据二次根式的定义即可判断④;根据实数与数轴上的点能建立一一对应,即可判断⑤.【解答】解:无限循环小数是有理数,∴①错误;5的平方根是±,∴②正确;8的立方根是2,∴③错误;要使有意义,必须x+1≥0,即x≥﹣1,∴④正确;与数轴上的点一一对应的数是实数,∴⑤错误;故答案为:②④.【点评】本题考查了无理数、平方根、立方根、实数与数轴、二次根式有意义的条件等知识点的应用,能熟练地运用进行说理是解此题的关键.15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=2.【考点】坐标与图形变化-平移.【专题】计算题;压轴题.【分析】根据平移前后的坐标变化,得到平移方向,从而求出a、b的值.【解答】解:∵A(1,0)转化为A1(2,a)横坐标增加了1,B(0,2)转化为B1(b,3)纵坐标增加了1,则a=0+1=1,b=0+1=1,故a+b=1+1=2.故答案为:2.【点评】本题考查了坐标与图形的变化﹣﹣﹣平移,找到坐标的变化规律是解题的关键.16.过点(﹣1,﹣3)且与直线y=1﹣x平行的直线是y=﹣x+2.【考点】两条直线相交或平行问题.【专题】计算题.【分析】设所求直线解析式为y=kx+b,根据两直线平行的问题得到k=﹣1,然后把点(﹣1,3)代入y=﹣x+b中计算出b的值,从而得到所求直线解析式.【解答】解:设所求直线解析式为y=kx+b,∵直线y=kx+b与直线y=1﹣x平行,∴k=﹣1,把点(﹣1,3)代入y=﹣x+b得1+b=3,解得b=2,∴所求直线解析式为y=﹣x+2.故答案为y=﹣x+2.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.17.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为x>﹣.【考点】一次函数与一元一次不等式.【分析】首先将点A的坐标代入正比例函数中求得m的值,然后结合图象直接写出不等式的解集即可.【解答】解:∵函数y=﹣2x经过点A(m,3),∴﹣2m=3,解得:m=﹣,则关于x的不等式kx+b+2x>0可以变形为kx+b>﹣2x,由图象得:kx+b>﹣2x的解集为x>﹣,故答案为:x>﹣.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是求得m的值,然后利用数形结合的方法确定不等式的解集.18.如图所示,在Rt△ABC中,∠C=90°,∠ABC=60°,点D是BC边上的点,BD=2,将△ABC沿直线AD翻折,使点C落在AB边上的点E处.若点P是直线AD上的动点,则△PEB的周长的最小值是3+.【考点】翻折变换(折叠问题).【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP 的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC 和BE长,代入求出即可.【解答】解:如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴CD=DE=,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠BAC=30°,∴∠B=60°,∵DE=,∴BE=1,即BC=2+,∴△PEB的周长的最小值是BC+BE=2++1=3+.故答案为:3+.【点评】本题考查了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.三、解答题(共76分)19.计算或化简(1)()2﹣﹣(2)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式第一项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=﹣2﹣+1﹣2+=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下列各式中x的值:(1)(x﹣1)3﹣27=0;(2)(2x+1)2=.【考点】立方根;平方根.【分析】(1)先整理成x3=a的形式,再直接开立方解方程即可;(2)直接开平方法解方程即可.【解答】解(1)(x﹣1)3﹣27=0,(x﹣1)3=27,x﹣1=3,x=4;(2)(2x+1)2=,2x+1=4,或2x+1=﹣4,x1=,x2=﹣.【点评】此题主要考查了利用立方根和平方根的性质解方程.要灵活运用使计算简便.21.在△ABC中,AB、BC、AC三边的长分别为、、,(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形ABC的面积.【考点】勾股定理.【专题】作图题.【分析】(1)根据题意画出图形即可;(2)根据三角形的面积=正方形的面积﹣三个角上三角形的面积即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=3×3﹣×1×2﹣×1×3﹣×2×3=9﹣1﹣﹣3=.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.【考点】平方根;立方根;估算无理数的大小.【分析】首先根据平方根与立方根的概念可得2a﹣1与3a+b﹣9的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案.【解答】解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【点评】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)把(2,a)代入正比例函数解析式即可得到a的值;(2)把(﹣1,﹣5)、(2,1)代入y=kx+b中可得关于k、b的方程组,然后解方程组求出k、b即可;(3)先利用描点法画哈图象,再求出两直线与y轴的交点坐标,然后根据三角形面积公式求解.【解答】解:(1)把(2,a)代入y=x得a=1;(2)把(﹣1,﹣5)、(2,1)代入y=kx+b得,解得,所以一次函数解析式为y=2x﹣3;(3)如图,直线y=2x﹣3与y轴的交点坐标为(0,﹣3),直线y=x与y轴的交点为原点,这两条直线与y轴围成的三角形的面积=×3×2=3.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.24.已知点P(m,n)在第一象限,并且在一次函数y=2x﹣1的图象上,求实数m的取值范围.【考点】一次函数图象上点的坐标特征.【分析】根据第一象限的特点和一次函数的点的坐标解答即可.【解答】解:把x=m,y=n代入一次函数的解析式可得:n=2m﹣1,因为点P在第一象限,可得:,解得:m>0.5.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.【考点】全等三角形的判定与性质;勾股定理.【专题】证明题.【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【解答】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.26.为发展旅游经济,“黄石国家矿山公园”对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m 人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1,y2与x之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?【考点】一次函数的应用.【分析】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值,由图可求m的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解解即可.【解答】解:(1)∵=0.6,∴非节假日打6折,a=6,∵=0.8,∴节假日打8折,b=8,由图可知,10人以上开始打折,所以,m=10;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,300),∴10k1=300,∴k1=30,∴y1=30x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,500),∴10k1=500,∴k1=50,∴y1=50x,x>10时,设y2=kx+b,∵函数图象经过点(10,500)和,∴,∴,∴y2=40x+100;∴y2=;(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,50n+30(50﹣n)=1900,解得n=20(不符合题意舍去),当n>10时,40n+100+30(50﹣n)=1900,解得n=30,∴50﹣n=50﹣30=20,答:A团有30人,B团有20人.故答案为:a=6;b=8;m=10.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.27.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB 为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.【考点】一次函数综合题.【专题】综合题.【分析】(1)对于直线解析式,分别令x=0与y=0求出对应y与x的值,确定出A与B的坐标,得到OA与OB的长,利用勾股定理求出AB的长即可;(2)过D作DE垂直于x轴,过C作CF垂直于y轴,根据四边形ABCD的正方形,得到四条边相等,四个角为直角,利用同角的余角相等得到三个角相等,利用AAS得到三角形EDA,三角形AOB以及三角形BFC全等,利用全等三角形的对应边相等得到DE=OA=BF=4,AE=OB=CF=2,进而求出OE与OF的长,即可确定出D与C的坐标;(3)找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,设直线DB′解析式为y=kx+b,把D与B′坐标代入求出k与b 的值,确定出直线DB′解析式,令y=0求出x的值,确定出此时M的坐标即可.【解答】解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键.28.如图,在平面直角坐标系中,O是坐标原点,点A坐标为(2,0),点B坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC垂直于x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA=4时,求点P的坐标;(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)①利用待定系数法求解即可,②由①知点P坐标为(a,﹣a+3),可求出点Q坐标,再利用S△QOA=×|OA|×|﹣a+3|求出a的值,即可得出点P的坐标.(2)分两种情况①当∠QAC=90°且AQ=AC时,QA∥y轴,②,当∠AQC=90°且QA=QC 时,过点Q作QH⊥x轴于点H,分别求解即可.【解答】解:(1)①设直线AB的函数表达式为:y=kx+b(k≠0),将A(2,0),B(0,3)代入得,解得,所以直线AB的函数表达式为y=﹣x+3,②由①知点P坐标为(a,﹣a+3),∴点Q坐标为(﹣a,﹣a+3),。
【苏科版】2016-2017学年八年级数学上期中试题(含答案)
2016/2017学年度第一学期期中考试试卷八年级数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是(▲ )A.清华大学 B.北京大学 C.中国人民大学 D.浙江大学2.如图,已知AB=AD,添加下列一个条件后,仍无法判定△ABC≌△ADC的是(▲ )A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°3.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是(▲ )A.SSS B.SAS C.SSA D.ASA4.根据下列已知条件,能唯一画出△ABC的是(▲ )A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6(第2题)(第3题)(第5题)5.等腰三角形的周长为13 cm,其中一边长为3 cm.则该等腰三角形的底长为(▲ )A.3 cm或5 cm B.3 cm或7 cm C.3 cm D.5 cm6.如果a、b、c是一个直角三角形的三边,则a:b:c可以等于(▲ )A.1:2:4 B.2:3:4 C.3:4:7 D.5:12:13 7.如图,在△ABC中,∠ABC=45°,F是高AD和高BE的交点,若FD=4,AF=2.则线段BC的长度为(▲ )A.6 B.8 C.10 D.128.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为(▲ )A.36 B.9 C.6 D.18(第7题)(第8题)二、填空题(本大题共10小题,每小题3分,共30分)9.如图,△OAD≌△OBC,且OA=2,OC=6,则BD= ▲ .10.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=25°,则∠2的度数为▲ .(第9题)(第10题)(第11题)(第12题)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=▲ .12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是▲ .(填上一个条件即可)13.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是▲ .14.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E、D,BD=CF,BE=CD.若∠AFD=140°,则∠EDF=▲ .15.如图,∠BAC =100°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ = ▲ .(第13题) (第14题) (第15题) (第16题)16.如图,AB //CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =1,则AB 与CD之间的距离等于 ▲ .17.一个直角三角形的两边长分别为3、4,则它的第三条边的平方是 ▲ .18.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为 ▲ .乙甲D 1ACB ABE DE 1CO(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤) 19.(8分)如图,△ABC 与△C B A '''关于直线l 对称,若∠A =76°,∠C '=48°.求∠B 的度数.20.(8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内再涂黑4个小正方形,使它们成为轴对称图形.21.(8分)如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =36°.求∠BAC ,∠C 的度数.22.(8分)如图,△ABC 中,AB =AC ,两条角平分线BD 、CE 相交于点O .(1)证明:△ABD ≌△ACE ; (2)证明:OB =OC .23.(10分)如图,AD ∥ BC ,∠ A =90°,以点B 为圆心、BC 长为半径作弧,交射线AD 于点E ,连接BE ,过点C 作CF ⊥BE ,垂足为F .求证:AB =FC .FEDCBADEOCBA24.(10分)如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D.求AD,BD的长25.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为14 cm,AC=6 cm,求DC长.26.(10分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以BP为底的等腰三角形?27.(12分)如图,△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,BE交AC于F,AD交CE于H,连接FH.(1)求证:△ACD≌△BCE;(2)求证:AH=BF;(3)求证:△CFH为等边三角形.28.(12分)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在DC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:<Ⅰ>如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.<Ⅱ>如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,<Ⅰ>中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.2016/2017学年度第一学期期中考试试卷八年级数学答题纸二、填空题(共10小题,每题3分,共30分)三、解答题19.(8分)20.(8分)21.(8分)22.(8分)DEOCBA23.(10分)FE DCBA24.(10分)25.(10分)26.(10分)2016/2017学年度第一学期期中考试八年级数学答案一、选择题B C D C C D C A二、填空题9.4 10.70°11.50°12.BE=CE(或∠BAE=∠CAE,或∠ABE=∠ACE)13.914.50°15.20°16.2 17.25或7 18.10 三、解答题19.56°20.略 21.72°;54° 22.略23.略24.12,16 25.35°,4 26.5,6 27.略28.(1)AF=BD.证明如下:∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质).同理知,DC=CF,∠DCF=60°.∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF.在△BCD和△ACF中,∵BC=AC,∠BCD=∠ACF,DC=CF,∴△BCD≌△ACF(SAS).∴BD=AF(全等三角形的对应边相等).(2)AF=BD仍然成立.通过证明△BCD≌△ACF,即可证明AF=BD.(3)<Ⅰ>AF+BF′=AB.证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF.同理△BCF′≌△ACD(SAS),则BF′=AD.∴AF+BF′=BD+AD=AB.<Ⅱ> <Ⅰ>中的结论不成立,新的结论是AF=AB+BF′.证明如下:在△BCF′和△ACD中,∵BC=AC,∠BC F′=∠ACD,F′C=DC,∴△BCF′≌△ACD(SAS).∴BF′=AD(全等三角形的对应边相等).又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.。
宜兴市XX中学2016-2017学年八年级上期中数学试卷含答案解析
于点 D,M 是 AD 上的动点,连结 BM、MN,则 BM+MN 的最小值是 .
三、解答题:(本大题共 7 大题,共 50 分)
21.(8 分)求下列各式中的 x.
3.下列图形中对称轴最多的是( )
A.圆 B.正方形 C.角 D.线段
4.等腰三角形有一个内角为 80°,则它的顶角为( )
A.80° B.20° C.80°或 20° D.不能确定
5.在 Rt△ABC 中,∠C=90°,点 D 为斜边 AB 上的中点,CD=3,那么 AB 为( )
(1)x2=81;
(2)16x2﹣25=0.
22.(6 分)已知 2a﹣1 的平方根为±3,3a+b﹣1 的算术平方根为 4,求 a+2b 的平方根.
23.(6 分)如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.
26.(8 分)如图,△ABC 中,AB=BC,BE⊥AC 于点 E,AD⊥BC 于点 D,∠
BAD=45°,AD 与 BE 交于点 F,连接 CF.
(1)求证:BF=2AE;
(2)若 CD= ,求 AD 的长.
17.在△ABC 中,三边长分别为 8、15、17,那么△ABC 的面积为 .
18.如图,OC 是∠AOB 的平分线,PD⊥DA,垂足为 D,PD=2,则点 P 到 OB 的距离
是 .
A.1.5 B.6 C.3 D.12
6.下列各数中没有平方根的是( )
A. B. C.|﹣2| D.0
7.如图,在 Rt△ABC 中,∠ACB=90°,AC=5cm,BC=12cm,其中斜边上的高为
( )
作射线 AP 交边 BC 于点 D,若 CD=4,AB=15,则△ABD 的面积是( )
【真卷】2016-2017年江苏省无锡市宜兴市周铁学区八年级(上)数学期中试卷带答案
2016-2017学年江苏省无锡市宜兴市周铁学区八年级(上)期中数学试卷一.选择题(本大题共8小题,每题3分,共24分.)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3.00分)已知等腰三角形的一边等于3,一边等于6,则它的周长为()A.12 B.12或15 C.15 D.15或183.(3.00分)在﹣,,,0.3030030003,﹣,3.14中,无理数的个数是()A.2个 B.3个 C.4个 D.5个4.(3.00分)将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.1,,B.,,C.6,8,10 D.5,12,135.(3.00分)下列各组数中,互为相反数的一组是()A.﹣|﹣2|与B.﹣4与﹣C.﹣与D.﹣与﹣6.(3.00分)如图,已知,AC∥BD,AB∥CD,AD与BC交于点O,AE⊥BC于点E,DF⊥BC于点F,那么图中全等的三角形有()A.5对 B.6对 C.7对 D.8对7.(3.00分)正方形ABCD所在平面内有一点P,使△PAB、△PBC、△PCD、△PDA都是等腰三角形,那么具有这样性质的点P共有()A.5个 B.7个 C.8个 D.9个8.(3.00分)如图,直角三角形纸片ABC中AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;设P n D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交﹣1于点P n(n>2),则AP6的长为()A.B.C.D.二.填空题(本大题共11小题,每空2分,共26分.)9.(6.00分)4的算术平方根是,﹣27的立方根是,|﹣|=.10.(2.00分)2012年中秋、国庆黄金周无锡市的旅游总入约为5176900000元,此数精确到亿位的近似数为元.11.(2.00分)若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于.12.(2.00分)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个)13.(2.00分)等腰三角形的一个外角是60°,则它的顶角的度数是.14.(2.00分)如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,∠CAD:∠DAB=1:2,则∠B的度数为.15.(2.00分)如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.16.(2.00分)已知△ABC的三边长a、b、c满足+|b﹣|+(c﹣2)2=0,则△ABC一定是三角形.17.(2.00分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.18.(2.00分)如图,圆柱形容器中,高为18cm,底面周长为24cm,在容器内壁离容器底部4cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).19.(2.00分)如图,已知△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①图中只有2对全等三角形②AE=CF;③△EPF是等腰直角三角形;④S=S△ABC;四边形AEPF⑤EF的最小值为.上述结论始终正确的有(填序号).三、解答题(本大题共50分,20题6分、21题6分、22题6分,23题4分,24题5分、25题5分,26题8分,27题10分,请在答题卡指定区域内作答,解答时应写出必要的文字说明或演算步骤)20.(6.00分)计算:(1)+﹣()2(2)+|1﹣|﹣+(﹣)2.21.(6.00分)解方程(1)8x3+125=0(2)64(x+1)2﹣25=0.22.(6.00分)如图,在8×8的正方形网格中,已知△ABC的三个顶点在格点上,(1)画出△ABC关于直线l的对称图形△A1B1C1;(2)△ABC直角三角形(填“是”或“不是”);(3)△A1B1C1的面积是.23.(4.00分)如图,a、b、c分别是数轴上点A、B、C所对应的实数,试化简:+|a﹣c|+.24.(5.00分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=CE.求证:GF=GC.25.(5.00分)已知:如图,在△ABC中,D是BC上的点,AD=AB,E、F分别是AC、BD的中点,AC=6.求EF的长.26.(8.00分)把一张长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,求:(1)DF的长;(2)重叠部分△DEF的面积.27.(10.00分)如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段(2)已知S△ABCBA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.2016-2017学年江苏省无锡市宜兴市周铁学区八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共8小题,每题3分,共24分.)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3.00分)已知等腰三角形的一边等于3,一边等于6,则它的周长为()A.12 B.12或15 C.15 D.15或18【解答】解:当3为腰,6为底时,∵3+3=6,∴不能构成三角形;当腰为6时,∵3+6>6,∴能构成三角形,∴等腰三角形的周长为:6+6+3=15,故选:C.3.(3.00分)在﹣,,,0.3030030003,﹣,3.14中,无理数的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:无理数有:﹣,,共有2个.故选:A.4.(3.00分)将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.1,,B.,,C.6,8,10 D.5,12,13【解答】解:∵12+()2=()2,∴1,,能组成直角三角形;∵()2+()2≠()2,∴,,不能组成直角三角形;∵62+82=102,∴6,8,10能组成直角三角形;∵52+122=132,∴5,12,13能组成直角三角形.故选:B.5.(3.00分)下列各组数中,互为相反数的一组是()A.﹣|﹣2|与B.﹣4与﹣C.﹣与D.﹣与﹣【解答】解:因为﹣|﹣2|=﹣2,,所以﹣|﹣2|与相等;因为﹣=﹣4,所以﹣4与﹣相等;因为﹣与只有符号不同,所以它们是互为相反数;因为﹣=﹣2,所以﹣与相等.故选:C.6.(3.00分)如图,已知,AC∥BD,AB∥CD,AD与BC交于点O,AE⊥BC于点E,DF⊥BC于点F,那么图中全等的三角形有()A.5对 B.6对 C.7对 D.8对【解答】解:AB∥CD,AC∥BD,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有:△ACE≌△DBF,△AEO≌△DFO,△ACO≌△DBF,△AOB≌△DOC,△AEB≌△DFC,△ACB≌△DBC,△ACD≌△DBA,共有7对,故选:C.7.(3.00分)正方形ABCD所在平面内有一点P,使△PAB、△PBC、△PCD、△PDA都是等腰三角形,那么具有这样性质的点P共有()A.5个 B.7个 C.8个 D.9个【解答】解:具有这样性质的点P共有9个,如图所示,①两对角线的交点是一个;②以正方形四个顶点为圆心,以边长为半径画圆,在正方形里面有4个交点,在外部也有4个交点,则一共是4+4+1=9个;故选:D.8.(3.00分)如图,直角三角形纸片ABC中AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;设P n D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交﹣1于点P n(n>2),则AP6的长为()A.B.C.D.【解答】解:由题意得,AD=BC=,AD1=AD﹣DD1=,AD2=,、AD n=,∵AP n=AD n,∴AP1=,AP2=,、,AP n=,∴AP6=,故选:B.二.填空题(本大题共11小题,每空2分,共26分.)9.(6.00分)4的算术平方根是2,﹣27的立方根是﹣3,|﹣|=.【解答】解:因为22=4,所以4的算术平方根是2;因为(﹣3)3=﹣27,所以﹣27的立方根是﹣3;因为,所以||=.故答案为:2,﹣3,.10.(2.00分)2012年中秋、国庆黄金周无锡市的旅游总入约为5176900000元,此数精确到亿位的近似数为 5.2×109元.【解答】解:此数精确到亿位的近似数为 5.2×109元,故答案为:5.2×109.11.(2.00分)若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于9.【解答】解:∵一正数的两个平方根分别是2a﹣1与2a+5,∴2a﹣1+2a+5=0,解得a=﹣1,∴2a﹣1=﹣2﹣1=﹣3,∴这个正数等于(﹣3)2=9.故答案为:9.12.(2.00分)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)【解答】解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).13.(2.00分)等腰三角形的一个外角是60°,则它的顶角的度数是120°.【解答】解:等腰三角形一个外角为60°,那相邻的内角为120°,三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以120°只可能是顶角.故答案为:120°.14.(2.00分)如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,∠CAD:∠DAB=1:2,则∠B的度数为36°.【解答】解:∵D是线段AB垂直平分线上的点,∴AD=BD,∴△DAB是等腰三角形,∠B=∠DAB,∵∠CAD:∠DAB=1:2,∴设∠DAC=x,则∠B=∠DAB=2x,∴x+2x+2x=90°,∴x=18°,即∠B=36°,故答案为:36°.15.(2.00分)如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有4个.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.16.(2.00分)已知△ABC的三边长a、b、c满足+|b﹣|+(c﹣2)2=0,则△ABC一定是直角三角形.【解答】解:∵△ABC的三边长a、b、c满足+|b﹣|+(c﹣2)2=0,∴a=1,b=,c=2,∵12+()2=22,∴△ABC是直角三角形,故答案为直角.17.(2.00分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是31.5.【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,=S△OBC+S△OAC+S△OAB∴S△ABC=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.18.(2.00分)如图,圆柱形容器中,高为18cm,底面周长为24cm,在容器内壁离容器底部4cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为0.2m(容器厚度忽略不计).【解答】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC 于F,则A′B即为最短距离.∵高为18cm,底面周长为24cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,∴A′D=12cm,BD=16cm,∴在直角△A′DB中,A′B==20(cm).故答案是:0.219.(2.00分)如图,已知△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①图中只有2对全等三角形②AE=CF;③△EPF是等腰直角三角形;④S=S△ABC;四边形AEPF⑤EF的最小值为.上述结论始终正确的有②③④⑤(填序号).【解答】解:∵AB=AC=2,∠BAC=90°,∴∠B=∠C=45°,∵点P是BC的中点,∴∠BAP=∠CAP=45°,∵∠EPF=90°,∴∠BPE+∠EPA=90°,∴∠BPE=∠APF,∠EPA=∠FPC,在△BPE和△APF中,,∴△BPE≌△APF,∴△EPA≌△FPC,△APC≌△APB,有3对全等三角形,①错误;∵△EPA≌△FPC,∴AE=CF,②;∵△BPE≌△APF,∴PE=PF,又∠EPF=90°,∴△EPF是等腰直角三角形,③正确;∵△BPE≌△APF,=S△ABP=S△ABC,④正确;∴S四边形AEPF由②知,△EPF是等腰直角三角形,则EF=EP.当EP⊥AB时,EP去最小值,=AB=.故⑤正确,此时EP=AB,则EF最小值故答案为:②③④⑤.三、解答题(本大题共50分,20题6分、21题6分、22题6分,23题4分,24题5分、25题5分,26题8分,27题10分,请在答题卡指定区域内作答,解答时应写出必要的文字说明或演算步骤)20.(6.00分)计算:(1)+﹣()2(2)+|1﹣|﹣+(﹣)2.【解答】解:(1)原式=﹣2﹣3=﹣;(2)原式=6+﹣1+2+5=12+.21.(6.00分)解方程(1)8x3+125=0(2)64(x+1)2﹣25=0.【解答】解:(1)方程整理得:x3=﹣,解得:x=﹣;(2)方程整理得:(x+1)2=,开方得:x+1=±,解得:x1=﹣,x1=﹣.22.(6.00分)如图,在8×8的正方形网格中,已知△ABC的三个顶点在格点上,(1)画出△ABC关于直线l的对称图形△A1B1C1;(2)△ABC不是直角三角形(填“是”或“不是”);(3)△A1B1C1的面积是 3.5.【解答】解:(1)△A1B1C1如图所示;(2)由图可知∠ACB>90°,所以,△ABC不是直角三角形;(3)△A1B1C1的面积=2×4﹣×1×4﹣×1×2﹣×1×3,=8﹣2﹣1﹣1.5,=8﹣4.5,=3.5.故答案为:不是;3.5.23.(4.00分)如图,a、b、c分别是数轴上点A、B、C所对应的实数,试化简:+|a﹣c|+.【解答】解:根据题意得:b<a<0<c,∴a﹣c<0,则原式=|b|+c﹣a+a+b=﹣b+c﹣a+a+b=c.24.(5.00分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=CE.求证:GF=GC.【解答】证明:∵AB⊥BE∴∠B=90°∵DE⊥BE∴∠E=90°∵BF=CE∴BF+CF=CE+CF即:CB=EF在Rt△ABC和Rt△DEF中∴Rt△ABC≌Rt△DEF(HL)∴∠ACB=∠DFE∴GF=CG25.(5.00分)已知:如图,在△ABC中,D是BC上的点,AD=AB,E、F分别是AC、BD的中点,AC=6.求EF的长.【解答】解:连接AF.∵AB=AD,F是BD的中点,∴AF⊥BD,又∵E是AC的中点,∴EF=AC(直角三角形斜边上的中线等于斜边的一半)∵AC=6,∴EF=3.故答案为:3.26.(8.00分)把一张长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,求:(1)DF的长;(2)重叠部分△DEF的面积.【解答】解:(1)设DF=x,由折叠可知BF=DF=x,∴FC=BC﹣BF=5﹣x,∵四边形ABCD为长方形,∴DC=AB=3,∠C=90°,AD∥BC,在Rt△DCF中,∠C=90°,DF2=DC2+FC2x2=32+(5﹣x)2x=3.4,∴DF=3.4cm;(2)作FH⊥AD于点H,则FH=AB=3,由折叠可知,∠EFB=∠EFD,∵AD∥BC,∴∠DEF=∠EFB,∴∠EFD=∠DEF,∴ED=DF=3.4,S△DEF=×DE×FH=×3.4×3=5.1.27.(10.00分)如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段(2)已知S△ABCBA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.【解答】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC==5x,∴AB=AC,∴△ABC是等腰三角形;=×5x×4x=40cm2,而x>0,(2)解:S△ABC∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t﹣4,过点E做EF垂直AB于F,因为ED=EA,所以DF=AF=AD=3,在Rt△AEF中,EF=4;因为BM=t,BF=7,所以FM=t﹣7则在Rt△EFM中,(t﹣4)2﹣(t﹣7)2=42,∴t=.综上所述,符合要求的t值为9或10或.。
苏科版2016—2017学年度第一学期八年级数学期中试卷含答案
(1)若CE⊥BD于E,①∠ECD=0;
②求证:BD=2EC;
(2)如图,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△CPF,其中∠F=90°,点Q为∠FPC与∠PFC的角平分线的交点.当点P运动时,点Q是否一定在射线BD上?若在,请证明,若不在;请说明理由.
11、近似 数3.20×106精确到万
位
12、如图,则小正方形的面积S=
13、若a< <b,且a,b为连续正整数,则b2﹣a2=
14、实数 、 在数轴上的位置如图所示,
化简: =
15、已知 ,则 =
16、等腰三角形的一腰上的高与另一腰的夹角是40°,则它的顶角是
17、如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB,AC=8cm,AE=4cm,则DE的长是
∵4x+2y+1的立方根是1,
∴4x+2y+1=1,
∴y=﹣4,(2分)
4x﹣2y=4×2﹣2×(﹣4)=16,
∴4x﹣2y的平方根是±4.(4分)
22、∵AE=AC,AD平分∠BAC
∴AD垂直平分CE(三线合一)
∴CD=ED(2分)
∴∠DEC=∠DCE(3分)
∵EF∥BC
∴∠FEC=∠DCE
∴∠DEC=∠FEC
(2)求AB的长
(2)若点P是AC上的一个动点,则△BDP周长的最小值=
27、在△ABC中,AB=8,BC=10,AC=6,动点P从点C出发,沿着CB运动,速度为每秒2个单位,到达点B时运动停止,设运动时间为t秒,请解答下列问题:(本题8分)
(1)求BC上的高;
2016-2017学年上学期八年级数学期中考试答案
解:
∵∠B=30°
(2)在 Rt△ODE 和 Rt△OCE 中
O A
C
AB=DE
第 18 题
B =E 图
……6 分
解:证明:∵△ABC 为等边三角形.
∴AB=AC,∠BAC=∠ACB=60°,
OE=OE
DE=CE
∴Rt△ODE≌Rt△OCE(HL) ……8 分
∴OD=OC,即 O 在线段 CD 的垂直平分线上,……10 分
又∵ED=EC,即E在线段CD的垂直平分线上,……11分
∴OE是CD的垂直平分线。 ……12分
(或用等腰三角形的三线合一即证明△OCD或△EDC为等腰三角形(9分),再说明OE是
顶角平分线(10分),最后说明OE是CD的垂直平分线(12分),再或者设OE与CD交于点
F,证明△ODF≌△OCF(10分)再说明OE是CD的垂直平分线(12分))
第Ⅱ卷(本卷满分50分)
D
∴ED=EC ……4分
∴∠ECD=∠Eห้องสมุดไป่ตู้C(等边对等角) ……6分 E
14. 5 ;15. 1.5 ;16. α/22016 。
三、解答题(共 102 分)
17.(10 分)
解:连接 BE,
A F
∵AD 是△ABC 的外角平分线,
第 20 题图
∴∠DAE= EAC=55°.
21.(12分)
证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB, B
∴ AOE =∠BAO+∠ABO
∴ AOE + 1=90° 1
B DH C
(2)答:PQ= BP.
2017年江苏省无锡市宜兴市新街八年级上学期期中数学试卷与解析答案
2016-2017学年江苏省无锡市宜兴市新街八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的.)1.(4.00分)±4是16的()A.平方根B.算术平方根C.相反数D.绝对值2.(4.00分)在实数,π,,﹣,0.6,3.141141114…(第1个4之后,每两个4之间依次多1个1)中,无理数有()A.0个 B.1个 C.2个 D.3个3.(4.00分)计算6a3÷(﹣2a)的结果是()A.﹣3a2B.﹣3a3C.3a2D.3a4.(4.00分)下列等式从左到右的变形是因式分解的是()A.6x2y2=xy•6xy B.2x2﹣8x﹣5=2x(x﹣4)﹣5C.x2+3x﹣4=(x﹣1)(x+4)D.x2+1=x(x+)5.(4.00分)李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x2(2x ﹣[]+1)=﹣6x3+6x2y﹣3x2,那么“[]”里应当是()A.﹣y B.﹣2y C.2y D.2xy6.(4.00分)下列算式能用平方差公式计算的是()A.(2m+n)(2n﹣m)B.(﹣m﹣n)(﹣m+n)C.(3m﹣n)(﹣3m+n)D.(﹣m﹣n)(m+n)7.(4.00分)下列四个算式:①(a+b)2=a2+b2,②(a﹣b)2=a2﹣2ab﹣b2,③(ab)2=ab2,④(﹣a3)2=﹣a6中,计算正确的个数是()A.0个 B.1个 C.2个 D.3个8.(4.00分)设M=(x﹣4)(x﹣6),N=(x﹣3)(x﹣7),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定9.(4.00分)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④10.(4.00分)如果x2﹣mx+36是一个完全平方式,则m的值为()A.6 B.12 C.±6 D.±1211.(4.00分)已知实数x、y满足:x2﹣6x++9=0,那么的值为()A.139 B.140 C.﹣139 D.﹣14012.(4.00分)已知m+n=1,mn=﹣1,那么m3+n3的值为()A.3 B.4 C.5 D.6二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在题中的横线上.)13.(4.00分)计算:x2•x=.14.(4.00分)因式分解:2a2﹣2=.15.(4.00分)面积为(2ax2﹣ax)平方米的长方形土地一边长是ax米,则另一边的长是米.16.(4.00分)如图是一个按某种规律排列的数阵:根据数阵的规律,第n行第一个数是.(用含n的代数式表示).三、解答题(本大题共6个题,共56分)17.(4.00分)(1)计算下列各式的值.﹣=;=.(2)计算:+﹣﹣|﹣1|.(3)已知9x2﹣4=0,求x的值.18.(4.00分)计算(1)(﹣3a2)•(2ab);(2)(﹣5x3)2+4x3•x3.19.(4.00分)计算(1)3a2•(2a2﹣1)﹣6a4;(2)(6x2y4﹣3xy3﹣y2)÷(﹣y2);(3)(2x﹣1)(4x2+2x+1).20.(6.00分)先化简,再求值:(x+4y)2﹣(x+2y)(x﹣2y)﹣20y2,其中x=﹣4,y=.21.(8.00分)阅读材料:例分解因式x2+6x﹣7.解:原式=x2+2x×3+32﹣32﹣7=(x2+2x×3+32)﹣32﹣7=(x+3)2﹣42=(x+3+4)(x+3﹣4)=(x+7)(x﹣1).上述例子用到了“在式子变形中,先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫配方法”.请根据这种方法解答下列问题:分解因式:(1)a2﹣6a﹣16;(2)4a2﹣16ab+15b2.22.(10.00分)先观察、验证,再解答后面的问题:1=(1×2﹣0×1),2=(2×3﹣1×2),3=(3×4﹣2×3),…,n=[n(n+1)﹣(n﹣1)n].把上面的n个等式左右两边分别相加,得1+2+3+…+n=n(n+1),其中n为正整数.这样的方法叫叠加法.类比这种方法,有:1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3),3×4=(3×4×5﹣2×3×4),将这三个等式左右两边分别相加,得:1×2+2×3+3×4=×3×4×5=20.解答下列问题:(1)填空:①1×2+2×3+…+10×11=;②1×2+2×3+…+n(n+1)=;(2)计算:1×3+3×5+5×7+…+(2n﹣1)(2n+1),其中n为正整数,结果用n 的多项式表示;(3)证明:12+22+32+…+n2=n(n+1)(2n+1),其中n为正整数.2016-2017学年江苏省无锡市宜兴市新街八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的.)1.(4.00分)±4是16的()A.平方根B.算术平方根C.相反数D.绝对值【解答】解:16的平方根是±4故选:A.2.(4.00分)在实数,π,,﹣,0.6,3.141141114…(第1个4之后,每两个4之间依次多1个1)中,无理数有()A.0个 B.1个 C.2个 D.3个【解答】解:,π,3.141141114…(第1个4之后,每两个4之间依次多1个1)是无理数,故选:D.3.(4.00分)计算6a3÷(﹣2a)的结果是()A.﹣3a2B.﹣3a3C.3a2D.3a【解答】解:原式=﹣3a2,故选:A.4.(4.00分)下列等式从左到右的变形是因式分解的是()A.6x2y2=xy•6xy B.2x2﹣8x﹣5=2x(x﹣4)﹣5C.x2+3x﹣4=(x﹣1)(x+4)D.x2+1=x(x+)【解答】解:A、左边不是多项式的形式,不符合题意;B、右边结果不是积的形式,不符合题意;C、x2+3x﹣4=(x﹣1)(x+4)是因式分解,符合题意;D、右边不是几个整式的积的形式,不符合题意.故选:C.5.(4.00分)李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x2(2x ﹣[]+1)=﹣6x3+6x2y﹣3x2,那么“[]”里应当是()A.﹣y B.﹣2y C.2y D.2xy【解答】解:根据题意得:(﹣6x3+6x2y﹣3x2)÷(﹣3x2)﹣2x﹣1=2x﹣2y+1﹣2x﹣1=﹣2y,故选:B.6.(4.00分)下列算式能用平方差公式计算的是()A.(2m+n)(2n﹣m)B.(﹣m﹣n)(﹣m+n)C.(3m﹣n)(﹣3m+n)D.(﹣m﹣n)(m+n)【解答】解:A、两项既不相同,也不互为相反数,故选项错误;B、(﹣m﹣n)(﹣m+n)=﹣(n+m)(n﹣m),两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,能用平方差公式计算,故选项正确;C、两个多项式两项都互为相反数,故选项错误.D、两个多项式两项都是相同的项,故选项错误;故选:B.7.(4.00分)下列四个算式:①(a+b)2=a2+b2,②(a﹣b)2=a2﹣2ab﹣b2,③(ab)2=ab2,④(﹣a3)2=﹣a6中,计算正确的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:①(a+b)2=a2+2ab+b2,错误②(a﹣b)2=a2﹣2ab+b2,错误③(ab)2=a2b2,错误④(﹣a3)2=a6错误,故选:A.8.(4.00分)设M=(x﹣4)(x﹣6),N=(x﹣3)(x﹣7),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定【解答】解:M=(x﹣4)(x﹣6)=x2﹣10x+24,N=(x﹣3)(x﹣7)=x2﹣10x+21,M﹣N=(x2﹣10x+24)﹣(x2﹣10x+21)=3,则M>N.故选:B.9.(4.00分)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④【解答】解:表示该长方形面积的多项式①(2a+b)(m+n)正确;②2a(m+n)+b(m+n)正确;③m(2a+b)+n(2a+b)正确;④2am+2an+bm+bn正确.故选:D.10.(4.00分)如果x2﹣mx+36是一个完全平方式,则m的值为()A.6 B.12 C.±6 D.±12【解答】解:∵x2﹣mx+36是一个完全平方式,∴m=±12.故选:D.11.(4.00分)已知实数x、y满足:x2﹣6x++9=0,那么的值为()A.139 B.140 C.﹣139 D.﹣140【解答】解:∵x2﹣6x++9=0,∴(x﹣3)2+=0,∵(x﹣3)2≥0,≥0,∴x=3,y=17,∴==140,故选:B.12.(4.00分)已知m+n=1,mn=﹣1,那么m3+n3的值为()A.3 B.4 C.5 D.6【解答】解:把m+n=1两边平方得:(m+n)2=m2+n2+2mn=1,将mn=﹣1代入得:m2+n2=3,则原式=(m+n)(m2+n2﹣mn)=4,故选:B.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在题中的横线上.)13.(4.00分)计算:x2•x=x3.【解答】解:原式=x3,故答案为:x314.(4.00分)因式分解:2a2﹣2=2(a+1)(a﹣1).【解答】解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).15.(4.00分)面积为(2ax2﹣ax)平方米的长方形土地一边长是ax米,则另一边的长是(2x﹣1)米.【解答】解:另一边的长为:(2ax2﹣ax)÷ax=2x﹣1故答案为(2x﹣1)16.(4.00分)如图是一个按某种规律排列的数阵:根据数阵的规律,第n行第一个数是.(用含n的代数式表示).【解答】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行第1个数是n(n﹣1)+1=n2﹣n+1,所以,第n(n是整数,且n≥3)行第1个数是.故答案为:.三、解答题(本大题共6个题,共56分)17.(4.00分)(1)计算下列各式的值.﹣=﹣;=5.(2)计算:+﹣﹣|﹣1|.(3)已知9x2﹣4=0,求x的值.【解答】解:(1)﹣=﹣;;故答案为:﹣,5;(2)原式=3+2﹣(﹣3)﹣1=3+2+3﹣1=7;(2)因为9x2﹣4=0,即9x2=4,x2=,所以x=.答:x的值是.18.(4.00分)计算(1)(﹣3a2)•(2ab);(2)(﹣5x3)2+4x3•x3.【解答】解:(1)(﹣3a2)•(2ab)=﹣6a3b;(2)(﹣5x3)2+4x3•x3=25x6+4x6=29x6.19.(4.00分)计算(1)3a2•(2a2﹣1)﹣6a4;(2)(6x2y4﹣3xy3﹣y2)÷(﹣y2);(3)(2x﹣1)(4x2+2x+1).【解答】解:(1)3a2•(2a2﹣1)﹣6a4;=6a4﹣3a2﹣6a4=﹣3a2;(2)(6x2y4﹣3xy3﹣y2)÷(﹣y2);=﹣18x2y2+9xy+1;(3)(2x﹣1)(4x2+2x+1).=8x3+4x2+2x﹣4x2﹣2x﹣1=8x3﹣120.(6.00分)先化简,再求值:(x+4y)2﹣(x+2y)(x﹣2y)﹣20y2,其中x=﹣4,y=.【解答】解:原式=(x2+8xy+16y2)﹣(x2﹣4y2)﹣20y2 =x2+8xy+16y2﹣x2+4y2﹣20y2=8xy,当x=﹣4,y=,∴原式=8×(﹣4)×=﹣1621.(8.00分)阅读材料:例分解因式x2+6x﹣7.解:原式=x2+2x×3+32﹣32﹣7=(x2+2x×3+32)﹣32﹣7=(x+3)2﹣42=(x+3+4)(x+3﹣4)=(x+7)(x﹣1).上述例子用到了“在式子变形中,先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫配方法”.请根据这种方法解答下列问题:分解因式:(1)a2﹣6a﹣16;(2)4a2﹣16ab+15b2.【解答】解:(1)原式=(x﹣8)(x+2);(2)原式=(2a﹣3b)(2a﹣5b).22.(10.00分)先观察、验证,再解答后面的问题:1=(1×2﹣0×1),2=(2×3﹣1×2),3=(3×4﹣2×3),…,n=[n(n+1)﹣(n﹣1)n].把上面的n个等式左右两边分别相加,得1+2+3+…+n=n(n+1),其中n为正整数.这样的方法叫叠加法.类比这种方法,有:1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3),3×4=(3×4×5﹣2×3×4),将这三个等式左右两边分别相加,得:1×2+2×3+3×4=×3×4×5=20.解答下列问题:(1)填空:①1×2+2×3+…+10×11=440;②1×2+2×3+…+n(n+1)=;(2)计算:1×3+3×5+5×7+…+(2n﹣1)(2n+1),其中n为正整数,结果用n 的多项式表示;(3)证明:12+22+32+…+n2=n(n+1)(2n+1),其中n为正整数.【解答】解:(1)①1×2+2×3+…+10×11=×10×11×12=110×4=440;②∵1×2+2×3=×2×3×4=8,1×2+2×3+3×4=×3×4×5=20,1×2+2×3+3×4+4×5=×4×5×6=40,…∴1×2+2×3+…+n(n+1)=n(n+1)(n+2),故答案为:①440;②n(n+1)(n+2);(2)∵1×3=(2×1﹣1)(2×1+1)=4×12﹣1,3×5=(2×2﹣1)(2×2+1)=4×22﹣1,5×7=(2×3﹣1)(2×3+1)=4×32﹣1,…1×3+3×5+5×7+…+(2n﹣1)(2n+1),=4×12﹣1+4×22﹣1+4×32﹣1+…+4×n2﹣1,=4×(12+22+32+…+n2)﹣n,=4×n(n+1)(2n+1)﹣n,=n(n+1)(2n+1)﹣n;(3)∵(n+1)3﹣n3=3n2+3n+1,∴当n=1时,23﹣13=3×12+3×1+1,当n=2时,33﹣23=3×22+3×2+1,当n=3时,43﹣33=3×32+3×3+1, …当n=n 时,(n +1)3﹣n 3=3n 2+3n +1,把以下的n 个等式相加得:(n +1)3﹣1=3(12+22+32+…+n 2)+3(1+2+3+…+n )+n , 所以,3(12+22+32+…+n 2)=(n +1)3﹣(n +1)﹣3×,即:12+22+32+…+n 2=n (n +1)(2n +1).赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。
2016-2017学年苏科版第一学期八年级(上)期中数学试卷及答案
2016-2017学年八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是( ) A.B.C.D.2.在平面直角坐标系中,点P(2,﹣5)关于x轴对称的点是( )A.(2,5)B.(2,﹣5)C.(﹣2,5)D.(﹣2,﹣5)3.等腰三角形的一个角为50°,则它的底角为( )A.50°B.65°C.50°或65°D.80°4.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为( )A.60°B.75°C.90°D.95°5.下面是某同学在一次测验中的计算:①3a+2b=5ab ②4m2n﹣5mn3=﹣m3n ③3x3(﹣2x2)=﹣6x5④4a3b÷(﹣2a2b)=﹣2a ⑤(a3)2=a5⑥(﹣a)3÷(﹣a)=﹣a2,其中正确的个数是( ) A.1个B.2个C.3个D.4个6.下列各式能用完全平方公式进行分解因式的是( )A.x2+1 B.x2+2x﹣1 C.x2+x+1 D.x2+4x+47.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A.2m+3 B.2m+6 C.m+3 D.m+68.△ABC的三边长分别a,b,c,且a+2ab=c+2bc,则△ABC是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.和三角形三个顶点的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点10.如图,在△ABC中,BD⊥AC,BD=AC,以BC为底边作等腰直角△BEC,连接AE 并延长交BD于F点,下列结论:①△AEC≌△DEB;②AE⊥DE;③DE=DC;④S△AEB=S△CDE.其中正确的有( )个.A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.计算:(﹣a2)3=__________.12.()2+π0=__________.13.等腰三角形中,已知两边的长分别是9和5,则周长为__________.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________度.15.如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC于点M、N.则△BCM的周长为__________.16.已知a+=3,则a2+的值是__________.17.已知10m=2,10n=3,则103m+2n=__________.18.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是__________.三、解答题(共96分)19.(16分)计算(1)a3b2c÷a2b(2)(﹣x3)2•(﹣x2)3(3)(﹣4x﹣3y)2(4)(x+2y﹣3)(x﹣2y+3)20.用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.21.先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.22.(24分)因式分解(1)x2﹣9;(2)2a(x﹣y)﹣3b(y﹣x)(3)b3﹣4b2+4b(4)(x+y)2+2(x+y)+1.(5)(m2+n2)2﹣4m2n2(6)a2﹣2ab+b2﹣1.23.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于x轴对称的图形△DEF(A、B、C的对应点分别是D、E、F).(2)求四边形ABED的面积.24.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.25.已知:如图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.证明:OE⊥AB.26.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,(1)求证:△BCE≌△ACD;(2)求证:△CHF为等边三角形.27.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.2016-2017学年八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、B、D都是轴对称图形;C、不是轴对称图形.故选:C.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.在平面直角坐标系中,点P(2,﹣5)关于x轴对称的点是( )A.(2,5)B.(2,﹣5)C.(﹣2,5)D.(﹣2,﹣5)【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(2,﹣5)关于x轴对称的点是:(2,5).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.3.等腰三角形的一个角为50°,则它的底角为( )A.50°B.65°C.50°或65°D.80°【考点】等腰三角形的性质;三角形内角和定理.【专题】分类讨论.【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要分50°的角是顶角或底角两种情况分别进行求解.【解答】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故选C.【点评】此题主要考查了三角形的内角和定理及等腰三角形的性质,若题目中没有明确顶角或底角的度数,解题时要注意分情况进行讨论.4.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为( )A.60°B.75°C.90°D.95°【考点】翻折变换(折叠问题).【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等.【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5.下面是某同学在一次测验中的计算:①3a+2b=5ab ②4m2n﹣5mn3=﹣m3n ③3x3(﹣2x2)=﹣6x5④4a3b÷(﹣2a2b)=﹣2a ⑤(a3)2=a5⑥(﹣a)3÷(﹣a)=﹣a2,其中正确的个数是( ) A.1个B.2个C.3个D.4个【考点】整式的混合运算.【分析】根据合并同类项的法则,单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的乘法的性质,对各选项计算后利用排除法求解.【解答】解:①,②不是同类项,不能合并,故本选项错误;③3x3(﹣2x2)=﹣6x5,正确;④4a3b÷(﹣2a2b)=﹣2a,正确;⑤应为(a3)2=a6,故本选项错误;⑥应为(﹣a)3(﹣a)=a4,故本选项错误;所以③④两项正确.故选B.【点评】本题考查了整式的混合运算,注意掌握各运算法则.6.下列各式能用完全平方公式进行分解因式的是( )A.x2+1 B.x2+2x﹣1 C.x2+x+1 D.x2+4x+4【考点】因式分解-运用公式法.【专题】因式分解.【分析】完全平方公式是:a2±2ab+b2=(a±b)2由此可见选项A、B、C都不能用完全平方公式进行分解因式,只有D选项可以.【解答】解:根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A、B、C都不能用完全平方公式进行分解因式,D、x2+4x+4=(x+2)2.故选D【点评】本题主要考查完全平方公式的判断和应用:应用完全平方公式分解因式.7.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A.2m+3 B.2m+6 C.m+3 D.m+6【考点】整式的混合运算.【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积剩余部分的面积可以求出,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【解答】解:依题意得剩余部分为(m+3)2﹣m2=m2+6m+9﹣m2=6m+9,而拼成的矩形一边长为3,∴另一边长是(6m+9)÷3=2m+3.故选A.【点评】本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.8.△ABC的三边长分别a,b,c,且a+2ab=c+2bc,则△ABC是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【考点】等腰三角形的判定.【分析】对已知条件进行化简后得到a=c,根据等腰三角形的概念,判定△ABC是等腰三角形.【解答】解:整理a+2ab=c+2bc得,(a﹣c)(1+2b)=0,∴a=c,b=﹣(舍去),∴△ABC是等腰三角形.故选B.【点评】本题考查了等腰三角形的判定;由a+2ab=c+2bc得到a=c是本题的关键.9.和三角形三个顶点的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【考点】线段垂直平分线的性质.【分析】三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.【解答】解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选D.【点评】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.此点称为外心,也是这个三角形外接圆的圆心.),难度一般.10.如图,在△ABC中,BD⊥AC,BD=AC,以BC为底边作等腰直角△BEC,连接AE 并延长交B D于F点,下列结论:①△AEC≌△DEB;②AE⊥DE;③DE=DC;④S△AEB=S△CDE.其中正确的有( )个.A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;等腰直角三角形.【分析】①易证∠DBE=∠ACE,即可求证:△AEC≌△DEB;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③不能求证;④根据②结论和AE=DE,即可求得E是AF中点,即可求得S△AEB=S△BFE,再证△BFE≌△CDE即可解题.【解答】解:①∵∠DGC=∠CBG+∠GCB=∠CBG+45°,∠DGC+∠ACE=90°,∴∠CBG+∠ACE=45°,∵∠CBG+∠DBE=45°,∴∠DBE=∠ACE,∵在△AEC和△DEB中,,∴△AEC≌△DEB,(SAS);故①正确;②∵△AEC≌△DEB,∴∠AEC=∠DEB,∵∠AEC=∠AED+∠CED,∠DEB=∠BEC+∠CED,∴∠AED=∠BEC=90°,∴AE⊥DE;故②正确;③不能求证;④∵AE=DE,AE⊥DE,∴E为RT△ADF斜边AF上中点,∠DAF=∠DFE=ADE=45°.∴AE=EF=DE,AD=DF,∴S△AEB=S△BFE,∵AC=BD,∴BF=CD,∵在△BFE和△CDE中,,∴△BFE≌△CDE,(SAS),∴S△CDE=S△BFE,;∴S△AEB=S△CDE,故④正确;故选C.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.二、填空题(每题3分,共24分)11.计算:(﹣a2)3=﹣a6.【考点】幂的乘方与积的乘方.【分析】先确定符号,再根据幂的乘方,底数不变指数相乘计算即可.【解答】解:(﹣a2)3=﹣a2×3=﹣a6.故填﹣a6.【点评】本题考查幂的乘方的性质,熟练掌握运算性质是解题的关键,计算时要注意符号.12.()2+π0=1.【考点】零指数幂;有理数的乘方.【分析】根据乘方的意义可得()2=,再根据a0=1(a≠0)可得π0=1,进而可得答案.【解答】解:原式=+1=1.故答案为:1.【点评】此题主要考查了零次幂,以及有理数的乘方,关键是掌握a0=1(a≠0).13.等腰三角形中,已知两边的长分别是9和5,则周长为19或23.【考点】等腰三角形的性质;三角形三边关系.【分析】分9是底和腰两种情况进行讨论,利用三角形的三边关系来判断,再计算其周长即可.【解答】解:当边长为9的边为底时,三角形的三边长为:9、5、5,满足三角形的三边关系,此时其周长为19;当边长为9的边为腰时,三角形的三边长为:9、9、5,满足三角形的三边关系,此时其周长为23.故答案为:19或23.【点评】本题主要考查等腰三角形的性质和三角形的三边关系,注意分两种情况进行讨论是解题的关键.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=25度.【考点】三角形的外角性质;三角形内角和定理.【专题】压轴题.【分析】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.由AB=AD=DC可得∠DAC=∠C,易求解.【解答】解:∵∠BAD=80°,AB=AD=DC,∴∠ABD=∠ADB=50°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=130°,又∵AD=DC,∴∠C=∠DAC=(180°﹣∠ADC)=25°,∴∠C=25°.【点评】此类题目考查学生分析各角之间关系的能力,运用所学的三角形知识点求解.15.如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC于点M、N.则△BCM的周长为14.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质,得AM=CM,则△BCM的周长即为AB+BC的值.【解答】解:∵AC的垂直平分线MN交AB、AC于点M、N,∴AM=CM.∴△BCM的周长=BC+BM+CM=BC+AB=14.【点评】此题主要是线段垂直平分线的性质的运用.16.已知a+=3,则a2+的值是7.【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.【点评】本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.17.已知10m=2,10n=3,则103m+2n=72.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂相乘的逆运算和幂的乘方的逆运算法则计算.【解答】解:103m+2n=103m102n=(10m)3(10n)2=23•32=8×9=72.故答案为:72.【点评】本题利用了同底数幂相乘的性质的逆运算和幂的乘方的性质的逆运算.同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.18.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是2.【考点】轴对称-最短路线问题;正方形的性质.【专题】压轴题.【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【解答】解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,故答案为:2.【点评】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称﹣最短路线问题,根据题意作出辅助线是解答此题的关键.三、解答题(共96分)19.(16分)计算(1)a3b2c÷a2b(2)(﹣x3)2•(﹣x2)3(3)(﹣4x﹣3y)2(4)(x+2y﹣3)(x﹣2y+3)【考点】整式的混合运算.【分析】(1)根据单项式除以单项式法则进行计算即可;(2)先算乘方,再算乘法即可;(3)根据完全平方公式进行计算即可;(4)先变形,再根据平方差公式进行计算,最后根据完全平方公式进行计算即可.【解答】解:(1)a3b2c÷a2b=abc;(2)(﹣x3)2•(﹣x2)3=x6•(﹣x6)=﹣x12;(3)(﹣4x﹣3y)2=16x2+24xy+9y2;(4)(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.【点评】本题考查了整式的混合运算的应用,能熟记运算法则是解此题的关键,注意:运算顺序.20.用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.【考点】幂的乘方与积的乘方;平方差公式.【分析】(1)由积的乘方与同底数幂的乘法的逆运算,可得(﹣0.25)11×(﹣4)12=[(﹣0.25)×(﹣4)]11×(﹣4),继而求得答案;(2)由平方差公式可得:2014×2016==20152﹣1,继而求得答案.【解答】解:(1)(﹣0.25)11×(﹣4)12=[(﹣0.25)×(﹣4)]11×(﹣4)=1×(﹣4)=﹣4;(2)20152﹣2014×2016=20152﹣×=20152﹣=20152﹣20152+1=1.【点评】此题考查了积的乘方与同底数幂的乘法以及平方差公式.注意掌握公式的逆运算是关键.21.先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.【考点】整式的混合运算—化简求值;平方差公式.【专题】计算题.【分析】先去括号,再合并,最后把a、b的值代入计算即可.【解答】解:原式=b2﹣2ab+4a2﹣b2=2a(2a﹣b),当a=2,b=1时,原式=2×2×(2×2﹣1)=12.【点评】本题考查了整式的化简求值,解题的关键是掌握多项式除以单项式的法则、去括号、合并同类项.22.(24分)因式分解(1)x2﹣9;(2)2a(x﹣y)﹣3b(y﹣x)(3)b3﹣4b2+4b(4)(x+y)2+2(x+y)+1.(5)(m2+n2)2﹣4m2n2(6)a2﹣2ab+b2﹣1.【考点】提公因式法与公式法的综合运用;因式分解-分组分解法.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式法,可得答案;(3)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(4)根据完全平方公式,可得答案;(5)根据平方差公式,可得完全平方公式,根据完全平方公式,可得答案;(6)根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:(1)原式=(x+3)(x﹣3);(2)原式=2a(x﹣y)+3b(x﹣y)=(x﹣y)(2a+3b);(3)原式=b(b2﹣4b+4)=b(b﹣2)2;(4)原式=[(x+y)+1]2=(x+y+1)2;(5)原式=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2;(6)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.23.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于x轴对称的图形△DEF(A、B、C的对应点分别是D、E、F).(2)求四边形ABED的面积.【考点】作图-轴对称变换.【分析】(1)利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)利用梯形的面积公式求出即可.【解答】解:(1)如图所示:△DEF即为所求;(2)四边形ABED的面积为:×(6+2)×1=4.【点评】此题主要考查了轴对称变换以及梯形面积求法,得出对应点位置是解题关键.24.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.【考点】等腰三角形的判定与性质;平行线的性质;等腰三角形的判定.【专题】证明题;压轴题.【分析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,同位角相等可得∠1=∠B,两直线平行,内错角相等可得∠2=∠C,从而得到∠B=∠C,然后根据等角对等边即可得证.【解答】证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.【点评】本题考查了等腰三角形的判定,平行线的性质,是基础题,熟记性质是解题的关键.25.已知:如图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.证明:OE⊥AB.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据题意可证明△BAC≌△ABD,则OA=OB,再由点E是AB的中点,根据等腰三角形的性质可得出OE⊥AB.【解答】证明:在△BAC和△ABD中,∴△BAC≌△ABD.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.【点评】本题考查了全等三角形的判定和性质,以及等腰三角形三线合一的性质.26.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,(1)求证:△BCE≌△ACD;(2)求证:△CHF为等边三角形.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】(1)根据等边三角形性质得出AC=BC,CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根据SAS推出两三角形全等即可;(2)由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.【解答】证明:(1)∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,…在△BCE和△ACD中,,∴△BCE≌△ACD (SAS);(2)由(1)知△BCE≌△ACD,则∠CBF=∠CAH,BC=AC又∵△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,∴∠ACH=180°﹣∠ACB﹣∠HCD=60°=∠BCF,在△BCF和△ACH中,,∴△BCF≌△ACH (ASA),∴CF=CH,又∵∠FCH=60°,∴△CHF为等边三角形.【点评】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.27.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.【考点】等腰直角三角形;全等三角形的判定与性质.【专题】压轴题;动点型.【分析】(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;(2)利用S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y与x之间的函数关系式;(3)依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF=S△BDE从而得到S△EDF=S△EAF+S△ADB即可确定两个变量之间的函数关系式.【解答】(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45°∴AD=BD=DC∵AE=CF∴△AED≌△CFD(SAS)(2)解:依题意有:FC=AE=x,∵△AED≌△CFD∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9∴∴;(3)解:依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135°∴△ADF≌△BDE∴S△ADF=S△BDE∴S△EDF=S△EAF+S△ADB=∴.【点评】本题考查了等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然不是很多但难度较大.。
【真卷】2016-2017年江苏省无锡市宜兴实验中学八年级(上)数学期中试卷带答案
2016-2017学年江苏省无锡市宜兴实验中学八年级(上)期中数学试卷一、选择题(本大题共有10小题,每题3分,共计24分)1.(3.00分)下列图形中,是轴对称图形的个数是()A.1 B.2 C.3 D.42.(3.00分)在下列实数中,无理数是()A.B.C.2+πD.3.(3.00分)下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数一定是1C.﹣2是4的平方根D.的算术平方根是44.(3.00分)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合,若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.45.(3.00分)如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是()A.1个 B.2个 C.3个 D.4个6.(3.00分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠C=∠B B.a=,b=,c=C.(b+a)(b﹣a)=c2D.∠A:∠B:∠C=5:3:27.(3.00分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个8.(3.00分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为()A.B.C.1 D.二、填空题(本大题共8空,每空2分,共计20分)9.(2.00分)已知等腰三角形的两条边长分别为3和7,那么它的周长等于.10.(2.00分)由四舍五入法得到的近似数1.10×104,它是精确到位.11.(2.00分)若实数m,n满足(m﹣1)2+=0,则(m+n)5=.12.如图,△OAD≌△OBC,且∠O=60°,∠C=20°,则∠OAD=°.13.(2.00分)已知一个直角三角形两直角边长分别是6和8,则斜边上的高的长度是.14.(2.00分)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为.15.(2.00分)如图,已知△ABC中,AB=AC,AB边上的垂直平分线DE交AC于点E,D为垂足,若∠ABE:∠EBC=2:1,则∠A=.16.(2.00分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为64和42,则△EDF的面积为.17.(4.00分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF 的周长为(用含a的式子表示).18.(2.00分)在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体.一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A 相对的顶点B处吃食物,那么它需要爬行的最短路径的长是分米.三、解答题(本大题共8小题,共56分.)19.(6.00分)计算:(1)(2)﹣+(1﹣)0﹣||20.(6.00分)求x的值:(1)(x﹣1)2=9(2)(x﹣2)3=﹣27.21.(6.00分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.22.(4.00分)如图要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求:(1)到公园两个出入口A、C的距离相等;(2)到公园两边围墙AB、AD的距离相等.请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)23.(8.00分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.24.(6.00分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,求CD.25.(10.00分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值26.(10.00分)阅读材料:正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.数学老师给小明同学出了一道题:在正方形网格(每个小正方形边长为1)中画出格点△ABC,AB、BC、AC三边的长分别为、、,求这个三角形的面积.(1)思路梳理小明同学的做法是:由勾股定理,得于是画出线段AB、BC、AC,从而画出△ABC,如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.我们可以求得△ABC的面积为:.这种方法叫做构图法.(2)类比引申若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出△DEF的面积为.(3)解决问题小明又碰到了这么一个问题,如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明结论.请帮小明完成这个问题.(4)联想拓展如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE 的面积分别为13m2、25m2、36m2,请综合(1)、(2)、(3)的方法和结论,求到六边形花坛ABCDEF的面积是m2.(不写过程,直接写结果)2016-2017学年江苏省无锡市宜兴实验中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每题3分,共计24分)1.(3.00分)下列图形中,是轴对称图形的个数是()A.1 B.2 C.3 D.4【解答】解:第一个图形、第三个图形是轴对称图形,共2个.故选:B.2.(3.00分)在下列实数中,无理数是()A.B.C.2+πD.【解答】解:=2,=4,无理数为2+π.故选:C.3.(3.00分)下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数一定是1C.﹣2是4的平方根D.的算术平方根是4【解答】解:A、9的立方根为,错误;B、算术平方根等于本身的数是0和1,错误;C、﹣2是4的平方根,正确;D、=4,4的算术平方根为2,错误,故选:C.4.(3.00分)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合,若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.4【解答】解:∵将△ABC沿BD翻折后,点A恰好与点C重合,∴△ABD≌△CBD,∴∠ADB=∠CDB=90°,在Rt△BCD中,BD===4.故选:D.5.(3.00分)如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵△ABC≌△AEF,AB=AE,∠B=∠E,∴EF=BC,∠EAF=∠BAC,(故③正确)∴∠EAB+∠BAF=∠FAC+∠BAF,即∠EAB=∠FAC,(故④正确)AC与AE不是对应边,不能求出二者相等,也不能求出∠FAB=∠EAB,故①、②错误;故选:B.6.(3.00分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠C=∠B B.a=,b=,c=C.(b+a)(b﹣a)=c2D.∠A:∠B:∠C=5:3:2【解答】A、∵∠A+∠C=∠B,∴∠B=90°,故是直角三角形,正确;B、∵()2+()2≠()2,故不能判定是直角三角形;C、∵(b+a)(b﹣a)=c2,∴b2﹣a2=c2,即a2+c2=b2,故是直角三角形,正确;D、∵∠A:∠B:∠C=5:3:2,∴∠A=×180°=90°,故是直角三角形,正确.故选:B.7.(3.00分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.8.(3.00分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为()A.B.C.1 D.【解答】解:设Q是AB的中点,连接DQ,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵AB=AC=4,O为AC中点,∴AQ=AO,在△AQD和△AOE中,,∴△AQD≌△AOE(SAS),∴QD=OE,∵点D在直线BC上运动,∴当QD⊥BC时,QD最小,∵△ABC是等腰直角三角形,∴∠B=45°,∵QD⊥BC,∴△QBD是等腰直角三角形,∴QD=QB,∵QB=AB=2,∴QD=,∴线段OE的最小值是为.故选:D.二、填空题(本大题共8空,每空2分,共计20分)9.(2.00分)已知等腰三角形的两条边长分别为3和7,那么它的周长等于17.【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.10.(2.00分)由四舍五入法得到的近似数1.10×104,它是精确到百位.【解答】解:近似数1.10×104,它是精确到百位.故答案为百.11.(2.00分)若实数m,n满足(m﹣1)2+=0,则(m+n)5=﹣1.【解答】解:由题意知,m,n满足(m﹣1)2+=0,∴m=1,n=﹣2,∴(m+n)5=(1﹣2)5=﹣1.故答案为:﹣1.12.如图,△OAD≌△OBC,且∠O=60°,∠C=20°,则∠OAD=100°.【解答】解:∵∠O=60°,∠C=20°,∴∠OBC=180°﹣60°﹣20°=100°,∵△OAD≌△OBC,∴∠OAD=∠OBC=100°,故答案为:100.13.(2.00分)已知一个直角三角形两直角边长分别是6和8,则斜边上的高的长度是 4.8.【解答】解:根据勾股定理,斜边长为=10,根据面积相等,设斜边上的高为x,则×6×8=10x,解得,x=4.8;故答案是:4.8.14.(2.00分)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为4.【解答】解:∵∠ABC=45°,AD⊥BC,∴BD=AD,∵∠CAD+∠AFE=90°,∠CAD+∠C=90°,∠AFE=∠BFD,∴∠AFE=∠C,∵∠AFE=∠BFD∴∠C=∠BFD在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=4,故答案为4.15.(2.00分)如图,已知△ABC中,AB=AC,AB边上的垂直平分线DE交AC于点E,D为垂足,若∠ABE:∠EBC=2:1,则∠A=45°.【解答】解:∵AB=AC,∴∠ABC=∠C,∵E在线段AB的垂直平分线上,∴EA=EB,∴∠ABE=∠A=2∠EBC,∴∠ABC=∠ABE+∠EBC=∠A+∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2(∠A+∠A)=180°,∴∠A=45°,故答案为:45°.16.(2.00分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为64和42,则△EDF的面积为11.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△ADF和Rt△ADH中,,∴Rt△ADF≌Rt△ADH(HL),∴S Rt=S Rt△ADH,△ADF在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),=S Rt△DGH,∴S Rt△DEF∵△ADG和△AED的面积分别为64和42,=64﹣S Rt△DGH,∴42+S Rt△DEF∴S Rt=11.△DEF故答案为11.17.(4.00分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF 的周长为3a(用含a的式子表示).【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.18.(2.00分)在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体.一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A 相对的顶点B处吃食物,那么它需要爬行的最短路径的长是13分米.【解答】解:如图所示,AB==13(分米).答:它需要爬行的最短路径的长是13分米.三、解答题(本大题共8小题,共56分.)19.(6.00分)计算:(1)(2)﹣+(1﹣)0﹣||【解答】解:(1)原式=4﹣9﹣4=﹣9;(2)原式=﹣+1﹣2+=﹣1.20.(6.00分)求x的值:(1)(x﹣1)2=9(2)(x﹣2)3=﹣27.【解答】解:(1)(x﹣1)2=9x﹣1=±3,x=4或﹣2;(2)(x﹣2)3=﹣27.x﹣2=﹣3x=﹣1.21.(6.00分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣12=﹣8,解得:b=4;(2)a+b=5,a+b的平方根为.22.(4.00分)如图要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求:(1)到公园两个出入口A、C的距离相等;(2)到公园两边围墙AB、AD的距离相等.请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)【解答】解:如图,点P即为所求.23.(8.00分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AB=CD;(2)∵△ABE≌△CDF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴AB=BE,∴△ABE是等腰三角形,∴∠D=.24.(6.00分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,求CD.【解答】解:∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.25.(10.00分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值【解答】解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=|t﹣4|cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(t﹣4)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.26.(10.00分)阅读材料:正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.数学老师给小明同学出了一道题:在正方形网格(每个小正方形边长为1)中画出格点△ABC,AB、BC、AC三边的长分别为、、,求这个三角形的面积.(1)思路梳理小明同学的做法是:由勾股定理,得于是画出线段AB、BC、AC,从而画出△ABC,如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.我们可以求得△ABC的面积为: 3.5.这种方法叫做构图法.(2)类比引申若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出△DEF的面积为3.(3)解决问题小明又碰到了这么一个问题,如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明结论.请帮小明完成这个问题.(4)联想拓展如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE 的面积分别为13m2、25m2、36m2,请综合(1)、(2)、(3)的方法和结论,求到六边形花坛ABCDEF的面积是110m2.(不写过程,直接写结果)【解答】解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3=9﹣1﹣1.5﹣3=9﹣5.5=3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4=8﹣1﹣2﹣2=8﹣5=3;(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∴∠PAE+∠BAG=180°﹣90°=90°,又∵∠AEP+∠PAE=90°,∴∠BAG=∠AEP,在△ABG和△EAP中,,∴△ABG≌△EAP(AAS),同理可证,△ACG≌△FAQ,∴EP=AG=FQ;(4)如图4,过R作RH⊥PQ于H,设RH=h,在Rt△PRH中,PH==,在Rt△RQH中,QH==,∴PQ=+=6,两边平方得,25﹣h2=36﹣12+13﹣h2,整理得,=2,解得h=3,=×6×3=9,∴S△PQR∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110m2.故答案为:(1)3.5;(2)3;(4)110.。
2016-2017年江苏省无锡市宜兴市丁蜀学区八年级上学期期中数学试卷及参考答案
2016-2017学年江苏省无锡市宜兴市丁蜀学区八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3.00分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(3.00分)如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组()A.3,4,5 B.5,12,13 C.12,15,25 D.,,13.(3.00分)下列各组图形中,一定是全等图形的是()A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个斜边相等的直角三角形D.两个周长相等的圆4.(3.00分)已知等腰三角形的周长为15cm,一边长为7cm,则该等腰三角形的底边长为()A.5 cm B.3cm或5 cm C.3 cm D.1 cm或7 cm5.(3.00分)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)6.(3.00分)如图,∠AOB的平分线上一点P到OA的距离为5,Q是OB上任意一点,则()A.PQ≥5 B.PQ>5 C.PQ≤5 D.PQ<57.(3.00分)如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A.72 B.90 C.108 D.1448.(3.00分)如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A.6 cm B.8 cmC.10 cm D.12 cm二、填空题(每小题2分,共20分)9.(2.00分)已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是cm.10.(2.00分)等腰三角形底边上的高线长5cm,则这个等腰三角形顶角的角平分线长cm.11.(2.00分)若直角三角形斜边长为6cm,则斜边上的中线长为cm.12.(2.00分)某直角三角形三条边的平方和为800,则这个直角三角形的斜边长为.13.(2.00分)如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=°.14.(2.00分)如图为某楼梯的侧面,测得楼梯的斜长AB为5米,高BC为3米,计划在楼梯表面铺地毯,地毯的长度至少需要米.15.(2.00分)如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.16.(2.00分)已知∠AOB=30°,点P在∠AOB内部且OP=4,P1与P关于OB对称,P2与P关于OA对称,则P1P2=.17.(2.00分)小河两岸边各有一棵树,分别高30尺和20尺,两树的距离是50尺,每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见水面上游出一条鱼,它们立刻飞去抓鱼,速度相同,并且同时到达目标.则这条鱼出现的地方离开比较高的树的树根距离为尺.18.(2.00分)如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是.三、解答题(共56分)19.(6.00分)如图:线段AD与BC相交于点O,且AC=BD,AD=BC.求证:(1)△ADC≌△BCD.(2)CO=DO.20.(6.00分)如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E.(1)若∠A=40°,求∠DCB的度数.(2)若AE=4,△DCB的周长为13,求△ABC的周长.21.(6.00分)已知,如图,四边形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.试求:(1)AC的长;(2)四边形ABCD的面积.22.(8.00分)(1)如图,在“4×4”正方形网格中,已有2个小正方形被涂黑.请你分别在下面2张图中再若干个空白的小正方形涂黑,使得涂黑的图形成为轴对称图形.(图(1)要求只有1条对称轴,图(2)要求只有2条对称轴).(2)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在备用图中画出4个这样的△DEF.23.(6.00分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,若AC=5,BC=12.求点D到AB的距离.24.(6.00分)如图,牧童在A处放牛,其家在C处,A、C到河岸L的距离分别为AB=2km,CD=4km且,BD=8km.(1)牧童从A处将牛牵到河边P处饮水后再回到家C,试确定P在何处,所走路程最短?请在图中画出饮水的位置(保留作图痕迹),不必说明理由.(2)求出(1)中的最短路程.25.(8.00分)如图,四边形ABCD,AD∥BC,∠B=90°,AD=6,AB=4,BC=9.(1)求CD的长为.(2)点P从点B出发,以每秒1个单位的速度沿着边BC向点C运动,连接DP.设点P运动的时间为t秒,则当t为何值时,△PDC为等腰三角形?26.(10.00分)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了相同的方法进行解决:将△ABD沿AD所在的直线对折得到△ADF(如图2);请证明小敏的发现的是正确的.2016-2017学年江苏省无锡市宜兴市丁蜀学区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3.00分)下列交通标志图案是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.(3.00分)如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组()A.3,4,5 B.5,12,13 C.12,15,25 D.,,1【解答】解:A、∵32+42=52,∴此三角形是直角三角形,不合题意;B、52+122=132,∴此三角形是直角三角形,不合题意;C、122+152≠252,∴此三角形不是直角三角形,符合题意;D、()2+()2=12,∴此三角形是直角三角形,不合题意.故选:C.3.(3.00分)下列各组图形中,一定是全等图形的是()A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个斜边相等的直角三角形D.两个周长相等的圆【解答】解:A、两个周长相等的等腰三角形,不一定全等,故此选项错误;B、两个面积相等的长方形,不一定全等,故此选项错误;C、两个斜边相等的直角三角形,不一定全等,故此选项错误;D、两个周长相等的圆,半径一定相等,故两圆一定全等,故此选项正确.故选:D.4.(3.00分)已知等腰三角形的周长为15cm,一边长为7cm,则该等腰三角形的底边长为()A.5 cm B.3cm或5 cm C.3 cm D.1 cm或7 cm【解答】解:由题意知,应分两种情况:(1)当腰长为7cm时,则另一腰也为7cm,底边为15﹣2×7=1cm,∵0<1<7+7,∴边长分别为7cm,7cm,1cm,能构成三角形;(2)当底边长为7cm时,腰的长=(15﹣7)÷2=4cm,∵0<7<4+4,∴边长为4cm,4cm,7cm,能构成三角形.故选:D.5.(3.00分)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)【解答】解:①、中作∠B的角平分线即可;③、过A点作BC的垂线即可;④、中以A为顶点AB为一边在三角形内部作一个72度的角即可;只有②选项不能被一条直线分成两个小等腰三角形.故选:B.6.(3.00分)如图,∠AOB的平分线上一点P到OA的距离为5,Q是OB上任意一点,则()A.PQ≥5 B.PQ>5 C.PQ≤5 D.PQ<5【解答】解:作PC⊥OB于C,∵∠AOB的平分线上一点P到OA的距离为5,则P到OB的距离为PC=5,因为Q是OB上任一点,则PQ≥5,故选:A.7.(3.00分)如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A.72 B.90 C.108 D.144【解答】解:由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,∴△ABD≌△C′DB,∴∠C′BD=∠ADB,∴EB=DE,在△ABE和△C′DE中,,∴△ABE≌△C′DE(AAS),∴AE=C′E,设AE=C′E=xcm,则有ED=AD﹣AE=(24﹣x)cm,在Rt△ABE中,根据勾股定理得:AB2+AE2=BE2,即122+x2=(24﹣x)2,解得:x=9,∴AE=9cm,ED=15cm,=ED•AB=×15×12=90(cm2).则S△BED故选:B.8.(3.00分)如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A.6 cm B.8 cmC.10 cm D.12 cm【解答】解:在侧面展开图中,AC的长等于底面圆周长的一半,即×2π×=6(cm),∵BC=8cm,AC=6cm,∴根据勾股定理得:AB==10(cm),∴要爬行的最短路程是10cm.故选:C.二、填空题(每小题2分,共20分)9.(2.00分)已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是15cm.【解答】解:若3cm是腰长,则三角形的三边分别为3cm,3cm,6cm,∵3+3=6,∴不能组成三角形,若3cm是底边,则三角形的三边分别为3cm,6cm,6cm,能组成三角形,周长=3+6+6=15cm,综上所述,这个等腰三角形的周长是15cm.故答案为:15.10.(2.00分)等腰三角形底边上的高线长5cm,则这个等腰三角形顶角的角平分线长5cm.【解答】解:∵等腰三角形底边上的高线长5cm,∴这个等腰三角形顶角的角平分线长5cm.故答案为:5.11.(2.00分)若直角三角形斜边长为6cm,则斜边上的中线长为3cm.【解答】解:∵直角三角形斜边长为6cm,∴斜边上的中线长=×6=3(cm),故答案为:3.12.(2.00分)某直角三角形三条边的平方和为800,则这个直角三角形的斜边长为20.【解答】解:∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为800,则斜边的平方为三边平方和的一半,即斜边的平方为,=400,∴斜边长==20,故答案为20.13.(2.00分)如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=112°.【解答】解:∵△OAD≌△OBC,∴∠C=∠D=20°,在△AOD中,∠CAE=∠D+∠O=20°+72°=92°,在△ACE中,∠AEB=∠C+∠CAE=20°+92°=112°.故答案为:112.14.(2.00分)如图为某楼梯的侧面,测得楼梯的斜长AB为5米,高BC为3米,计划在楼梯表面铺地毯,地毯的长度至少需要7米.【解答】解:在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,∴AC==4米,∴AC+BC=3+4=7米.故答案为:7.15.(2.00分)如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB).【解答】解:增加一个条件:∠C=∠E,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等.(答案不唯一).故填:∠C=∠E.16.(2.00分)已知∠AOB=30°,点P在∠AOB内部且OP=4,P1与P关于OB对称,P2与P关于OA对称,则P1P2=4.【解答】解:如图,连接OP,∵P1与P关于OB对称,P2与P关于OA对称,∴OP1=OP,OP=OP2,∠BOP=∠BOP1,∠AOP=∠AOP2,∴OP1=OP2,∠P1OP2=∠BOP+∠BOP1+∠AOP+∠AOP2=2∠BOP+2∠AOP=2∠AOB,∵∠AOB=30°,∴∠P1OP2=60°,∴△P1OP2是等边三角形.∵OP=4,∴P1P2=4,故答案为:4.17.(2.00分)小河两岸边各有一棵树,分别高30尺和20尺,两树的距离是50尺,每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见水面上游出一条鱼,它们立刻飞去抓鱼,速度相同,并且同时到达目标.则这条鱼出现的地方离开比较高的树的树根距离为20尺.【解答】解:由题意得:AB=20尺,DC=30尺,BC=50尺,设EC为x,则BE为(50﹣x),在Rt△ABE中,AE2=AB2+BE2=202+(50﹣x)2,在Rt△DEC中,DE2=DC2+EC2=302+x2,又∵AE=DE,∴x2+302=(50﹣x)2+202,解得:x=20,即这条鱼出现的地方离比较高的树的树根距离为20尺.故答案为:20.18.(2.00分)如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是9.6.【解答】解:如图,过点A作AE⊥BC,垂足为E,过点B作BD⊥AC,垂足为D.∵AC=AC,AE⊥BC,∴BE=EC=6,在Rt△AEB中,==8,由三角形的面积公式可知:,即:,∴BD=9.6.故答案为:9.6.三、解答题(共56分)19.(6.00分)如图:线段AD与BC相交于点O,且AC=BD,AD=BC.求证:(1)△ADC≌△BCD.(2)CO=DO.【解答】证明:(1)在△ADC和△BCD中,,∴△ADC≌△BCD(SSS);(2)∵△ADC≌△BCD,∴∠ADC=∠BCD,∴在△OCD中,OC=OD.20.(6.00分)如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E.(1)若∠A=40°,求∠DCB的度数.(2)若AE=4,△DCB的周长为13,求△ABC的周长.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB==70°,∵DE垂直平分AC,∴DA=DC,∴在△DAC中,∠DCA=∠A=40°,∴∠DCB=∠ACB﹣∠ACD=30°;(2)∵DE垂直平分AC,∴DA=DC,EC=EA=4,∴AC=2AE=8,∴△ABC的周长为:AC+BC+BD+DA=8+BC+BD+DC=8+13=21.21.(6.00分)已知,如图,四边形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.试求:(1)AC的长;(2)四边形ABCD的面积.【解答】解:(1)∵∠B=90°,∴AC==15.(2分)(2)∵AC2+AD2=CD2,∴∠CAD=90°,(4分)∴四边形ABCD面积==114.(6分)22.(8.00分)(1)如图,在“4×4”正方形网格中,已有2个小正方形被涂黑.请你分别在下面2张图中再若干个空白的小正方形涂黑,使得涂黑的图形成为轴对称图形.(图(1)要求只有1条对称轴,图(2)要求只有2条对称轴).(2)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在备用图中画出4个这样的△DEF.【解答】解:(1)如图.;(2)如图..23.(6.00分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,若AC=5,BC=12.求点D到AB的距离.【解答】解:如图,过点D作DE⊥AB于E,∵AC=5,BC=12,∴AB==13,∵∠C=90°,AD是∠BAC的角平分线,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AE=AC=5,BE=AB﹣AE=13﹣5=8,设DE=x,则BD=12﹣x,在Rt△BDE中,DE2+BE2=BD2,∴x2+82=(12﹣x)2,解得x=.答:点D到AB的距离是.24.(6.00分)如图,牧童在A处放牛,其家在C处,A、C到河岸L的距离分别为AB=2km,CD=4km且,BD=8km.(1)牧童从A处将牛牵到河边P处饮水后再回到家C,试确定P在何处,所走路程最短?请在图中画出饮水的位置(保留作图痕迹),不必说明理由.(2)求出(1)中的最短路程.【解答】解:(1)如图,点P即为所求点;(2)由作图可得最短路程为A′C的距离,过A′作A′E⊥CD,交CD的延长线于E,∵AB=2km,CD=4km且,BD=8km,∴DE=A′B=AB=2km,A′E=BD=8km,CE=2+4=6km,∴A′C===10km.25.(8.00分)如图,四边形ABCD,AD∥BC,∠B=90°,AD=6,AB=4,BC=9.(1)求CD的长为5.(2)点P从点B出发,以每秒1个单位的速度沿着边BC向点C运动,连接DP.设点P运动的时间为t秒,则当t为何值时,△PDC为等腰三角形?【解答】解:(1)过点D作DE⊥BC,垂足为E,∵AD∥BC,∠B=90°,∴四边形ABED是矩形,∴BE=AD=6,DE=AB=4,∴CE=BC﹣BE=9﹣6=3,在Rt△DCE中,CD===5.故答案为:5;(2)过点D作DE⊥BC,垂足为E,由题意得PC=9﹣t,PE=6﹣t.当CD=CP时,5=9﹣t,解得t=4;当CD=PD时,E为PC中点,∴6﹣t=3,∴t=3;当PD=PC时,PD2=PC2,∴(6﹣t)2+42=(9﹣t)2,解得t=.故t的值为t=3或4或.26.(10.00分)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了相同的方法进行解决:将△ABD沿AD所在的直线对折得到△ADF(如图2);请证明小敏的发现的是正确的.【解答】解:(1)证明:∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∵∠BAD=∠FAD,由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,∴△AEF≌△AEC(SAS),∴CE=FE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
江苏省宜兴外国语学校2016-2017学年八年级上期中考试数学试题含答案
宜兴外国语学校2016~2017学年度第一学期八年级数学期中考试卷2016.11一、填空题(本大题共8小题,每小题3分,共24分)1.在以下四个银行标志中,属于轴对称图形的是————————————( )2.若二次根式2-x 有意义,则x 的取值范围是————————————( ) A .2>x B .2<x C .2≥x D .2≤x3.下列四组数中,不能作为直角三角形三边长度的是——————————( )A .a =7,b =24,c =25B .a =1.5,b =2,c =2.5C .a =23 ,b =2,c =54D .a =15,b =8,c =174.若等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为( ) A .7cm B .3cm C .7cm 或3cm D .5cm5.如图,已知点A 、D 、C 、F 在同一直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加的一个条件是—————————————————————————( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF6.如图,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =12,DF=2,AC=3,则AB 的长是————————————————————————( )A .2B .4C .7D .97.如图,王大伯家屋后有一块长12m 、宽8m 的长方形空地,他在以较长边BC 为直径的半圆内种菜,他家养的一只羊平时拴在A 处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过—————————————————————————————————( )A .3mB .4mC .5mD .6m8.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),请观察图案,指出以下关系式中不正确的是———————————————————————( )A .x 2+y 2=49B .x -y =2C .2xy +4=49D .x +y =9二、填空题(本大题共10小题,每题2分,共20分) 9. 16的平方根是 .10.用四舍五入法对162520取近似数,162520(精确到千位)≈ . 11.在Rt △ABC 中,∠C=90°,AC=3,AB=4,则BC = .12.若等腰三角形的一个内角为30°,则这个等腰三角形的顶角的度数为 .13.若a-3 +(b+2)2=0,则a+b=__________.14.如图,在△ABC中,AB=AC=9cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.若BC=6cm,则△BCE的周长是__________ cm.15.如图,在△ABC中,AB=AC,点D在BC上,且AD=BD,∠ADB=100°,则∠DAC的度数为.16.如图,△ABC是等边三角形,BD为中线,延长BC至点E,使CE=CD,连接DE,则∠BDE= . 17.我国古代数学中有一道数学题:如图,有一棵枯树直立在地上,树高20尺,粗3尺,有一根藤条从树根处缠绕而上,缠绕5周到达树顶,则这条树藤有尺.(注:枯树可以看成圆柱;树粗3尺,指的是圆柱底面周长为3尺)18.如图,正方形ABCD的边长为4,将长为4的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为 .三、解答题(本大题共8小题,共56分)19.(本题满分8分)(1)计算:(-3)2+|1- 2 |-(π-1)0;(2)解方程:3x2﹣75=0.20.(本题满分6分)已知3x+1的平方根为±2,2y-1的立方根为3,求2x+y的平方根.21.(本题满分6分)如图,在△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22.(本题满分6分)如图,在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.23.(本题满分6分)中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA ⊥OB ,OA =45海里,OB =15海里,钓鱼岛位于O 点,我国海监船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向钓鱼岛所在地点O ,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船. (1)请用直尺和圆规作出C 处的位置; (2)求我国海监船行驶的航程BC 的长.24.(本题满分8分)小王剪了两张直角三角形纸片,进行了如下的操作: (1)如图1,将Rt △ABC 沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE ,若AC=6cm ,BC=8cm ,求CD 的长.(2)如图2,小王拿出另一张Rt △ABC 纸片,将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,若AC=6cm ,BC=8cm ,求CD 的长25.(本题满分6分)(1)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图1正方形网格(每个小正方形边长为1)中画出格点△ABC ,使AB=AC=5,BC=10(2)在△ABC 中, AB 、BC 、AC 三边的长分别为 5 、10 、13 ,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图2所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.这种方法叫做构图法.... ①△ABC 的面积为: .②若△DEF 三边的长分别为 5 、8 、17 ,请在图3的正方形网格中画出相应的△DEF ,并利用构图..法.求出它的面积为_____________.BO A26.(本题满分10分)如图,△ABC中,AB=5cm,BC=3cm,AC=4cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设出发的时间为t秒(1)请判断△ABC的形状,说明理由.(2)当t= 时,△BCP是以BC为腰的等腰三角形.(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,P、Q两点之间的距离为 5 ?(备用图)宜兴外国语学校2016~2017学年度第一学期八年级数学期中考试卷参考答案2016.11一、填空题(本大题共8小题,每小题3分,共24分)1.C,2.D,3.C,4.B,5.B,6.D,7.B,8.D二、填空题(本大题共10小题,每题2分,共20分)9.±410.1.62×10511.712.30°或120°13.114.1515.60°16.120°17.2518.16-4π三、解答题(本大题共8小题,共56分)19.(1)1+ 2 ,(2)x=±520.x=1,y=14,2x+y的平方根为±421.略22.解:∵等边△ABC∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴∠DEC=60°,∴∠DEC=∠EDC=∠ACB=60°,∴△DEC是等边三角形,∴DE=CE=CD∵CD=2,∴DE=CE=2,∵EF⊥DE,∴∠DEF=90°,又∵∠EDC=∠DEC=60°,∴∠F=∠CEF=30°,∴CF=CE=2,∴DF=CF+CD=4∵∠DEF=90°,DE=2,DF=4,∴EF=16-4 =1223.解:(1)作图(略)(2)由题意得,BC=AC,设BC=x,则OC=45-x,∵OA⊥OB,∴∠AOB=90°,∴152+(45-x)2=x2,∴x=25∴我国海监船行驶的航程BC的长为25海里24.解:(1)由折叠可知,AD=BD,设CD=x,则AD=BD=8-x,∵∠C=90°,AC=6,∴62+x2=(8-x)2,∴x= 7 4∴CD= 7 4(2)在Rt△ABC中,AC=6,BC=8,∴AB=36+64 =10,由折叠可知,AE=AC=6,CD=ED,∠ADE=∠C=90°,∴BE=10-6=4,设CD=x,则DE=x,BD=8-x,∴x2+42=(8-x)2,∴x= 3,∴CD= 325.(1)作图(略);(2)①4;②作图(略),326.解:(1)∵AB=5,BC=3,AC=4∴AC2+BC2= AB2∴△ABC是直角三角形(2)t=1.5或2.7或3或3.25(3)①点P在AC上,点Q在BC上运动时(0≤t≤2)(2t)2+t2=5,t=1②点P、Q均在AB上运动,且点P在点Q的左侧(3≤t<4)12-3t= 5 ,t= 12- 53③点P、Q均在AB上运动,且点P在点Q的右侧(4<t≤4.5)3 t-12= 5 ,t= 12+ 53∵t= 12+ 53>4.5,∴不成立,舍去。
宜兴市XX中学2016学年八年级上期中数学试卷(2)含答案解析 (1)
2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.105.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+10.若x、y为实数,,则4y﹣3x是.二、填空题11.16的平方根是,=.12.等腰三角形一个角为50°,则此等腰三角形顶角为.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=,这个正数是.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=cm.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为cm.18.若,且ab<0,则a+b=.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是cm.20.若,则b c+a的值为.三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 【考点】二次根式的性质与化简.【分析】直接利用二次根式的定义以及二次根式的性质分别化简求出答案.【解答】解:A、,无意义,故此选项错误;B、=12,故此选项错误;C、=7,故此选项错误;D、(﹣)2=2,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等【考点】等腰三角形的性质;全等三角形的判定.【分析】由等腰三角形的性质得出A不正确、D正确;由全等三角形的判定方法得出B、C 不正确;即可得出结果.【解答】解:∵等腰三角形的底边上的高、底边上的中线、顶角平分线互相重合,∴A不正确;∵顶角相等的两个等腰三角形相似,不一定全等,∴B不正确;∵面积相等的两个三角形不一定全等,∴C不正确;∵等腰三角形的两个底角相等,∴D正确;故选D.【点评】本题考查了等腰三角形的性质、全等三角形的判定方法;熟练掌握等腰三角形的性质和全等三角形的判定方法是解决问题的关键.3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.10【考点】线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得到AB=BD,∠D=∠DAB,由三角形内角与外角的关系得到∠ABC的度数,再根据直角三角形的性质求解即可.【解答】解:∵B点在AD的垂直平分线上,∠D=15°,∴AB=BD,∠D=∠DAB=15°,∴∠ABC=∠D+∠DAB=30°,∴AB=2AC,∵AC=4,∴AB=8,∵AB=BD,∴BD=8.故选C.【点评】本题考查的是线段垂直平分线的性质及三角形内角与外角的关系,熟知线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.5.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【考点】线段垂直平分线的性质.【分析】利用线段的垂直平分线的性质计算.通过已知条件由∠B=90°,∠BAE=10°⇒∠AEB,∠AEB=∠EAC+∠C=2∠C.【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.【点评】此题主要考查线段的垂直平分线的性质、直角三角形的两锐角互余、三角形的一个外角等于它不相邻的两个内角和.6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE【考点】角平分线的性质;平行线的性质;等腰三角形的判定与性质.【分析】根据三角形的角平分线相交于一点,根据角平分线上的点到角的两边的距离相等,角平分线的定义,平行线的性质对各选项分析判断后利用排除法求解.【解答】解:A、∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC正确,故本选项错误;B、I为△ABC角平分线的交点,I到三边的距离相等正确,故本选项错误;C、AI与DI的大小无法判断,故本选项正确;D、∵BI,CI分别是∠ABC和∠ACB的平分线,∴∠DBI=∠CBI,∠ECI=∠BCI,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠BCI,∴∠DBI=∠DIB,∠ECI=∠EIC,∴BD=DI,CE=EI,∴DE=DI+EI=BD+CE,即DE=BD+CE正确,故本选项错误.故选C.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定,熟记三角形的角平分线相交于一点,角平分线上的点到角的两边的距离相等的解题的关键.8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°【考点】等边三角形的性质.【分析】根据等边三角形的性质可得∠A=∠B=60°,又因为AM=BN,AB=AB,所以△AMB ≌△BNA,从而得到∠NAB=∠MBA=60°﹣∠MBC=35°,则∠MON=∠AOB=180°﹣2×35°=110°.【解答】解:∵△ABC是等边三角形∴∠A=∠B=60°∵AM=BN,AB=AB∴△AMB≌△BNA∴∠NAB=∠MBA=60°﹣∠MBC=35°∴∠AOB=180°﹣2×35°=110°∵∠MON=∠AOB∴∠MON=110°故选A.【点评】考查了等腰三角形的性质,根据等边三角形的性质,结合全等三角形求解.9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+【考点】平面展开-最短路径问题.【分析】根据已知得出蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是如图BM的长度,进而利用勾股定理求出即可.【解答】解:∵蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,∴蚂蚁爬行的最短距离是如图BM的长度,∵无盖的正方体盒子的棱长为2,BC的中点为M,∴A1B=2+2=4,A1M=1,∴BM==.故选B.【点评】此题主要考查了平面展开﹣最短路径问题,利用图形得出最短路径为BM是解题关键.10.若x、y为实数,,则4y﹣3x是6.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x2﹣4≥0且4﹣x2≥0,根据分式有意义的条件可得x﹣2≠0,再解不等式即可.【解答】解:由题意得:x2﹣4≥0且4﹣x2≥0,x﹣2≠0,解得:x=﹣2,则y=0,4y﹣3x=6,故答案为:6.【点评】此题主要考查了二次根式有意义和分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二次根式中的被开方数是非负数.二、填空题11.16的平方根是±4,= 1.2.【考点】算术平方根;平方根.【分析】一个正数的平方根有两个,它们互为相反数;算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵(±4)2=16,∴16的平方根是±4;=1.2.【点评】此题主要考查了平方根与算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为90.【考点】勾股定理.【分析】连续自然数,两数的差是1,较大的是斜边,根据勾股定理就可解得.【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故答案为:90.【点评】本题综合考查了勾股定理,解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.【考点】平方根.【分析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=6.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可.【解答】解:∵|x﹣1|+(y﹣2)2+=0,∴x﹣1=0,y﹣2=0,z﹣3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=3cm.【考点】角平分线的性质.【分析】要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.【解答】解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故答案为:3【点评】此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为5cm.【考点】含30度角的直角三角形.【分析】根据比例设∠A、∠B、∠C分别为k、2k、3k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=60°,∠C=90°,∵最长边为10cm,∴最短边长=×10=5cm.故答案为:5.【点评】本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.18.若,且ab<0,则a+b=﹣1.【考点】算术平方根.【分析】直接利用绝对值的性质以及二次根式的性质进而得出a,b的值,即可得出答案.【解答】解:∵|a|=5,=2,∴a=±5,b=4,∵ab<0,∴a=﹣5,b=4,∴a+b=﹣1.故答案为:﹣1.【点评】此题主要考查了绝对值的性质以及二次根式的性质,正确把握相关性质是解题关键.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是5cm.【考点】勾股定理.【分析】先根据面积求出三角形另一边的长,再根据勾股定理求出直角三角形斜边长即可.【解答】解:∵该长方形的一边长为3cm,面积为12cm2,∴另一边长为4cm,∴对角线长==5cm.【点评】此题主要涉及的知识点:长方形的面积公式和勾股定理的应用.20.若,则b c+a的值为﹣3.【考点】二次根式有意义的条件;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据二次根式的意义,被开方数是非负数.则a﹣5≥0,5﹣a≥0,求得a的值,再根据非负数的性质,求得b,c的值,代入计算即可.【解答】解:∵a﹣5≥0,5﹣a≥0,∴a=5,∴+|2c﹣6|=0,∴b+2=0,2c﹣6=0,解得b=﹣2,c=3,∴b c+a=(﹣2)3+5=﹣8+5=﹣3,故答案为﹣3.【点评】本题考查了二次根式有意义的条件和非负数的性质,同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.【考点】解一元二次方程-直接开平方法.【分析】(1)先移项,然后开平方即可;(2)将(x﹣1)看作一个整体,然后开平方求出(x﹣1),继而再求x的值.【解答】解:(1)x2﹣25=0,x2=25,x1=﹣5,x2=﹣﹣5;(2)(x﹣1)2=16,x﹣1=±4,x1=﹣3,x2=5.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c (a,c同号且a≠0).22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.【考点】等边三角形的性质.【分析】【分析】因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,点D是AC的中点,则∠DBC=30°,再由题中条件求出∠E=30°,易得△DBE为等腰三角形,由等腰三角形的性质可证得结论.【解答】证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点D是AC的中点,∴∠DBC=∠ABC=30°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBE=∠E,∴△DBE为等腰三角形,∵DF⊥BE,∴BF=EF.【点评】本题考查了等边三角形的性质,掌握等腰三角形“三线合一”是解答此题的关键.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题中条件两角夹一边判定△ADC≌△ADB,得出AB=AC,进而亦可得出第二问的结论.【解答】证明:(1)∵∠BDE=∠CDE,∠BAE=∠CAE,∴∠ADB=∠ADC,又AD=AD,∴△ADC≌△ADB,∴AB=AC,(2)在△ABC中,AB=AC,∠BAE=∠CAE,∴AE⊥BC.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练掌握.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】求出AF=BE,根据平行线性质求出∠CFE=∠BED,根据AAS推出△ACF≌△BDE 即可.【解答】证明:∵CF∥DE,∴∠CFE=∠BED,∵AE=BF,∴AF=BE,∵∠C=∠B,在△ACF和△BDE中,∴△ACF≌△BDE(AAS),∴∠A=∠B,∴AC∥BD【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,解此题的关键是推出△ACF≌△BDE,注意:全等三角形的对应边相等,对应角相等.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.【考点】等腰三角形的性质;三角形三边关系.【分析】分三种情况求解后利用三角形的三边关系验证.【解答】解:若a=b,则5x﹣1=6﹣x,得x=,三边长分别为,,5,符合三角形三边关系;若a=c,则5x﹣1=4,得x=1,三角形的三边长为4,5,4,符合三角形三边关系;若b=c,则6﹣x=4,得x=2,三角形的三边长为9,4,4,不构成三角形;综上所述,符合要求的x值为或1;【点评】本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是分类讨论.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?【考点】勾股定理的应用.【分析】本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.【解答】解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.【点评】此题主要考查勾股定理的运用.关键是构造直角三角形,同时注意:时间=路程÷速度.27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.【考点】翻折变换(折叠问题).【分析】利用等腰直角三角形的性质得出BC的长,进而得出BH,DH的长,再利用勾股定理得出AE的长.【解答】解:作DH⊥AB于H,可得等腰Rt△DBH,由AB=4,可知BC=sin45°×AB=×4=2,于是BD=,BH=DH=×=1,设AE=DE=x,则EH=4﹣1﹣AE=3﹣x,在Rt△DEH中,(3﹣x)2+12=x2,解得:x=,故AE的长度为.【点评】此题主要考查了翻折变换以及勾股定理等知识,根据已知得出BH=DH的长是解题关键.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为14cm;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为35°;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.【考点】翻折变换(折叠问题).【分析】操作一利用对称找准相等的量:BD=AD,∠BAD=∠B,然后分别利用周长及三角形的内角和可求得答案;操作二利用折叠找着AC=AE,利用勾股定理列式求出AB,设CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案;【解答】解:操作一:(1)由折叠的性质可得AD=BD,∵△ACD的周长=AC+CD+AD,∴△ACD的周长=AC+CD+BD=AC+BC=8+6=14(cm);故填:14cm;(2)设∠CAD=4x,∠BAD=7x由题意得方程:7x+7x+4x=90,解之得x=5,所以∠B=35°;故填:35°;操作二:∵AC=9cm,BC=12cm,∴AB===15(cm),根据折叠性质可得AC=AE=9cm,∴BE=AB﹣AE=6cm,设CD=x,则BD=12﹣x,DE=x,在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2,解之得x=4.5,∴CD=4.5cm.【点评】本题考查了直角三角形中的勾股定理的应用及图形的翻折问题;解决翻折问题时一般要找着相等的量,然后结合有关的知识列出方程进行解答.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?【考点】四边形综合题.【分析】(1)设t秒后,△APE的面积为长方形面积的,根据题意得:△APE的面积=APAD=t×4=,从而求得t值;(2)当P运动到AB中点时AEP为直角三角形,此时角APE为直角,t=3;还有一种情况,当P运动到BC上时,角AEP为直角时利用相似三角形求得AP的长即可求得t值;(3))第一种情况,当P在AE垂直平分线上时,AP=EP;第二种情况,P运动到点B上时APE为等腰三角形,此时AE=EP,t=6;第三种情况,P在AB上,AP=PE;【解答】解:(1)设t秒后,△APE的面积为长方形面积的,根据题意得:AP=t,∴△APE的面积=APAD=t×4=,解得:t=4,∴4秒后,△APE的面积为长方形面积的;(2)显然当t=3时,PE⊥AB,∴△APE是直角三角形,当P在BC上时,△ADE∽△ECP,此时,解得:CP=,∴PB=BC﹣PC=4﹣=,∴t=6+=;(3)①当P在AE垂直平分线上时,AP=EP,过P作PQ⊥AE于Q,∵AD=4,DE=3,∴AE=5,∴AQ=2.5,由△AQP∽△EDA,得:,即:,解得:AP=,∴t=;.②当EA=EB时,AP=6,∴t=6,③当AE=AP时,∴t=5.∴当t=、5、6时,△APE是等腰三角形.【点评】本题考查了四边形的综合知识和动点问题,动点问题更是中考中的热点考题,有一定的难度,解题的关键是能够化动为静,利用等腰三角形的性质求解.。
2016—2017学年苏科版八年级上期中数学试题及答案
2016—2017学年度第一学期八年级数学期中测试试卷(考试用时:120分钟 ; 满分: 150分)一、选择题(共8小题,每小题3分,共24分.每小题只有一个真确答案)1.如下图是用纸折叠成的图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个2.如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为()A .2B .3C .5D .2.53. 到三角形三边距离相等的点是( )A .三角形三边垂直平分线的交点B .三角形有三条高的交点C .三角形三条角平分线的交点D .三角形三条中线的交点4. 等腰三角形的一个角是80°,则它的底角是( )A. 50°B. 80°C. 50°或80°D. 20°或80°5.下列说法错误的是( )A .33.1410⨯是精确到十位B .4.609万精确到万位C .近似数0.8和0.80表示的意义不同D .用科学记数法表示的数42.510⨯,其原数是250006. 在ABC ∆中,C B A ∠∠∠,,的对边分别记为c b a ,,,下列结论中不正确的是( )A 、如果CB A ∠=∠-∠,那么ABC ∆是直角三角形B 、如果222c b a -=,那么ABC ∆是直角三角形且 90=∠CC 、如果2:3:1::=∠∠∠C B A ,那么ABC ∆是直角三角形D 、如果25:16:9::222=c b a ,那么ABC ∆是直角三角形7.如图B 为原点,A 在-1上,线段BC 垂直于数轴,且BC 为一个单位长度,以A 为圆心,AC 长为半径画圆弧,与数轴相交于点D ,则点D 表示的数为( )A 、0.4B 、12-C 、22-D 、21-8. 如图,在ABC ∆中,有一点P 在直线AC 上移动,若5,6AB AC BC ===,则BP 的最第2题图小值为 ( )A 、4.8B 、5C 、4D 、24二、填空题(共10小题,每小题3分,共30分.)9.16的平方根是 ,10.角的对称轴是 .11.已知等腰三角形的一边长为3,另一边长为8,则它的周长是 .12.如图,已知△ABC ,BC=10,BC 边的垂直平分线交AB ,BC 于点E 、D .若△ACE 的周长为12,则△ABC 的周长为 .13. 实数b a ,在数轴上的位置如图所示,则()a b a ++2的化简结果为 。
宜兴市桃溪中学2016-2017年八年级上期中数学试卷含答案解析
2016-2017学年江苏省无锡市宜兴市桃溪中学八年级(上)期中数学试卷一.选择题(本大题共8小题,每题3分,共24分.)1.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个2.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17 B.20 C.22 D.17或223.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS4.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2 D.∠A=∠C﹣∠B5.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点 D.三边上高的交点6.如图,BD是∠ABC平分线,DE⊥AB于E,AB=36cm,BC=24cm,S△ABC=144cm2,则DE的长是()A.4.8cm B.4.5cm C.4cm D.2.4cm7.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有()A .2条B .3条C .4条D .5条8.如图所示,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连结A 2B 2…按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2016﹣θ2015的值为( )A .B .C .D .二.填空题(每空2分,共20分.)9.正方形是轴对称图形,它共有 条对称轴.10.16的平方根是 ;3的算术平方根是 .11.一个正数的平方根为﹣m ﹣3和2m ﹣3,则这个数为 .12.直角三角形的两直角边的长分别为6cm 、8cm ,则斜边上高的长是 cm .13.如图,∠1=∠2,要使△ABE ≌△ACE ,还需添加一个条件是(填上你认为适当的一个条件即可).14.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= °.16.如图,直线l是矩形ABCD的一条对称轴,点P是直线l上一点,且使得△PAB和△PBC均为等腰三角形,则满足条件的点P共有个.17.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF 翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.三.解答题(共7小题,共56分.解答需写出必要的文字说明或演算步骤)18.求出下列x的值.(1)4x2﹣9=0;(2)(x+1)2=16.19.作图题:(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC+PB的距离之和最小.20.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.21.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.22.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段B D上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.23.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.24.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A (2)已知S△ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.2016-2017学年江苏省无锡市宜兴市桃溪中学八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共8小题,每题3分,共24分.)1.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1,2,3个图形是轴对称图形,共3个.故选C.2.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17 B.20 C.22 D.17或22【考点】等腰三角形的性质;三角形三边关系.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选C.3.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】作图—基本作图;全等三角形的判定与性质.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.4.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2 D.∠A=∠C﹣∠B【考点】勾股定理的逆定理;三角形内角和定理.【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设a=5,b=12,c=13,此时a2+b2=132=c2,即a2+b2=c2,故△ABC是直角三角形;C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;D、由条件∠A=∠C﹣∠B,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;故选A.5.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点 D.三边上高的交点【考点】线段垂直平分线的性质.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:C.6.如图,BD是∠ABC平分线,DE⊥AB于E,AB=36cm,BC=24cm,S△ABC=144cm2,则DE的长是()A.4.8cm B.4.5cm C.4cm D.2.4cm【考点】角平分线的性质.【分析】过点D作DF⊥BC交BC的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△BCD列方程求解即可.【解答】解:如图,过点D作DF⊥BC交BC的延长线于F,∵BD是∠ABC平分线,DE⊥AB于E,∴DE=DF ,∵S △ABC =S △ABD +S △BCD ,AB=36cm ,BC=24cm ,∴×36×DE +×24×DF=144,即18DE +12DE=144,解得DE=4.8cm .故选A .7.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A .2条B .3条C .4条D .5条【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【解答】解:如图所示:能满足条件的线段有4条.故选:C .8.如图所示,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连结A 2B 2…按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2016﹣θ2015的值为( )A.B.C.D.【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等用α表示出∠A1B1O,再根据平角等于180°列式用α表示出θ1,再用θ1表示出θ2,并求出θ2﹣θ1,依此类推求出θ3﹣θ2,…,θ2013﹣θ2012,即可得解.【解答】解:∵OA1=OB1,∠AOB=α,∴∠A1B1O=,∴+θ1=180,整理得,θ1=,∵B1B2=B1A2,∠A2B1B2=θ1,∴∠A2B2B1=,∴+θ2=180°,整理得θ2==,∴θ2﹣θ1=﹣==,同理可求θ3==,∴θ3﹣θ2=﹣==,…,依此类推,θ2016﹣θ2015=.故选D.二.填空题(每空2分,共20分.)9.正方形是轴对称图形,它共有 4 条对称轴.【考点】轴对称图形.【分析】根据对称轴的定义,直接作出图形的对称轴即可.【解答】解:∵如图所示,正方形是轴对称图形,它共有4条对称轴.故答案为:4.10.16的平方根是±4 ;3的算术平方根是.【考点】算术平方根;平方根.【分析】根据如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根;如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根进行计算即可.【解答】解:16的平方根是±=±4,3的算术平方根是,故答案为:±4;.11.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为81 .【考点】平方根.【分析】根据一个正数的平方根互为相反数,即可得到一个关于x的方程,即可求得x,进而求得所求的正数.【解答】解:根据题意得:(﹣m﹣3)+(2m﹣3)=0,解得:m=6,则这个数是:(﹣3﹣6)2=81.故答案是:81.12.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是 4.8 cm.【考点】勾股定理.【分析】先根据勾股定理求出直角三角形的斜边,然后从直角三角形面积的两种求法入手,代入公式后计算即可.【解答】解:∵直角三角形两直角边分别为6cm,8cm,∴斜边长为=10cm.∵直角三角形面积=×一直角边长×另一直角边长=×斜边长×斜边的高,代入题中条件,即可得:斜边高=4.8cm.故答案为:4.8.13.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).【考点】全等三角形的判定.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).14.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为15 cm.【考点】平面展开-最短路径问题.【分析】过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【解答】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故答案为:15.15.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=45 °.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC===67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.16.如图,直线l是矩形ABCD的一条对称轴,点P是直线l上一点,且使得△PAB和△PBC均为等腰三角形,则满足条件的点P共有 5 个.【考点】等腰三角形的判定;矩形的性质.【分析】利用分类讨论的思想,此题共可找到5个符合条件的点:一是作AB或DC的垂直平分线交l于P;二是在长方形内部在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC .【解答】解:如图,作AB或DC的垂直平分线交l于P,如图,在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB,如图,在长方形外l上作点P,使AB=AP,DC=PD,同理,在长方形外l上作点P,使AP=AB,PD=DC,故答案为5.17.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE ⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,=AC•BC=AB•CE,∵S△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.三.解答题(共7小题,共56分.解答需写出必要的文字说明或演算步骤)18.求出下列x的值.(1)4x2﹣9=0;(2)(x+1)2=16.【考点】解一元二次方程-直接开平方法.【分析】(1)先把方程变形为x2=,然后利用直接开平方法解方程;(2)把方程两边开方得到x+1=±4,然后解两个一元一次方程即可.【解答】解:(1)x2=,x=±,所以x1=,x2=﹣;(2)x+1=±4,所以x1=3,x2=﹣5.19.作图题:(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC+PB的距离之和最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据图1中三角形的边长将图2中的图形分割即可;(2)①作出各点关于直线l的对称点,再顺次连接各点即可;②连接CB′交直线l于点P,则点P即为所求点.【解答】解:(1)如图2所示;(2)①如图3所示;②如图3,点P即为所求点.20.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)由于△ACB与△ECD都是等腰直角三角形,CD=CE,CB=CA,∠B=∠CAB=45°,∠ACB=∠ECD=90°,于是∠ACE+∠ACD=∠ACD+∠BCD,根据等式性质可得∠ACE=∠BCD,利用SAS可证△ACE≌△BCD,利用全等三角形的对应角相等即可解答;(2)根据△ACE≌△BCD,于是∠EAC=∠B=45°,AE=BD=24,易求∠EAD=90°,再利用勾股定理可求DE=26.【解答】解:(1)∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,∴∠ECA=∠DCB,∵△ACB和△ECD都是等腰三角形,∴EC=DC,AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠EAC=∠B.(2)∵△ACE≌△BCD,∴AE=BD=24,∵∠EAC=∠B=45°∴∠EAD=∠EAC+∠CAD=90°,∴在Rt△ADE中,DE2=EA2+AD2,∴DE2=102+242,∴DE=26.21.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.【考点】勾股定理的应用.【分析】(1)由题意得,我海监船与不明渔船行驶距离相等,即在OA上找到一点,使其到A点与B点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)连接BC,利用第(1)题中作图,可得BC=AC.在直角三角形BOC中,利用勾股定理列出方程122+(36﹣BC)2=BC2,解方程即可.【解答】解:(1)作AB的垂直平分线与OA交于点C;(2)连接BC,由作图可得:CD为AB的中垂线,则CB=CA.由题意可得:OC=36﹣CA=36﹣CB.∵OA⊥OB,∴在Rt△BOC中,BO2+OC2=BC2,即:122+(36﹣BC)2=BC2,解得BC=20.答:我国海监船行驶的航程BC的长为20海里.22.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段B D上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∵∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.23.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理.【分析】(1)先求出∠B=∠DCB,再证明DG∥BC,然后证出DG⊥AC,G是AC的中点.即可求出;(2)如图2所示:先证明AG=GH,再求出,然后证明△ADH∽△ACB,得出比例式,求出,即可求出.【解答】解:(1)∵∠ACB=90°,D是AB的中点,∴DC=DB=DA.∴∠B=∠DCB.又∵△ABC≌△FDE,∴∠FDE=∠B.∴∠FDE=∠DCB.∴DG∥BC.∴∠AGD=∠ACB=90°.∴DG⊥AC.又∵DC=DA,∴G是AC的中点.∴.∴.(2)如图2所示:∵△ABC≌△FDE,∴∠B=∠1.∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD,∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,∴点G为AH的中点;在Rt△ABC中,,∵D是AB中点,∴,在△ADH与△ACB中,∵∠A=∠A,∠ADH=∠ACB=90°,∴△ADH∽△ACB,∴,∴,∴.∴.24.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A (2)已知S△ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.【考点】勾股定理;等腰三角形的判定与性质.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=t﹣4;分别得出方程,解方程即可.【解答】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC==5x,∴AB=AC,∴△ABC是等腰三角形;=×5x×4x=40cm2,而x>0,(2)解:S△ABC∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t﹣4,则(t﹣4)2﹣(t﹣7)2=42,∴t=;综上所述,符合要求的t值为9或10或.2016年11月27日。
江苏省无锡市宜兴市宜城环科园教学联盟2016-2017学年八年级(上)期中数学试卷(解析版)
江苏省无锡市宜兴市宜城环科园教学联盟2016-2017学年八年级(上)期中数学试卷(解析版)一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列实数,,,,,0.1,﹣0.010010001,其中无理数有()A.2个B.3个C.4个D.5个3.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°5.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12 B.13 C.14 D.186.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.(b+c)(b﹣c)=a2D.a=,b=,c=7.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点8.在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,则底角∠B的大小为多少度?()A.20°B.60°或20°C.65°或25°D.60°9.有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的是()A.①②③ B.①②④ C.②③④ D.①③④10.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个二、填空题11.64的平方根是,的算术平方根是.12.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为;(2)在等腰△ABC中,∠A=40°,且AB=BC,则∠B=.13.直角三角形两条直角边的长分别为12和5,则斜边上的中线等于.14.已知直角三角形的两边的长分别是3和4,则第三边长为.15.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.①若△AEF的周长为10cm,则BC的长为cm.②若∠BAC=138°,则∠EAF=.16.如图,在△ABC中,AB=10,AC=8,O为△ABC角平分线的交点,若△ABO的面积为20,则△ACO的面积为.17.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三、解答题(本大题共8小题,共计54分.)19.(6分)计算:(1)2﹣1+﹣+()0(2)+﹣|2﹣|20.(6分)求下列各式中的实数x的值(1)(x﹣3)2=64(2)3(x+5)3=﹣8121.(4分)已知x,y,z满足于|x﹣y|++z2﹣z+=0,求x+y+z的立方根.22.(6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)23.(6分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.24.(8分)已知:长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重(长合,折痕EF交AD于E,交BC于F.请用直尺和圆规画出折痕EF,并求出△ABE的面积.方形的对边平行且相等,四个角都为直角)25.(8分)如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B 的路径运动,且速度为每秒1cm,设出发的时间为t秒.问t为何值时,△BCP为等腰三角形?26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD 为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.2016-2017学年江苏省无锡市宜兴市宜城环科园教学联盟八年级(上)期中数学试卷参考答案与试题解析一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列实数,,,,,0.1,﹣0.010010001,其中无理数有()A.2个B.3个C.4个D.5个【考点】无理数.【分析】由于所以初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(2015•六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.5.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为()A.12 B.13 C.14 D.18【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据平行线的性质得到∠EDB=∠DBC,∠FDC=∠DCB,根据角平分线的性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,于是得到ED=EB,FD=FC,即可得到结果.【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意证得△BDE与△CDF 是等腰三角形是解此题的关键.6.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.(b+c)(b﹣c)=a2D.a=,b=,c=【考点】勾股定理的逆定理;三角形内角和定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=180°=90°,故是直角三角形,正确;C、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,正确;D、设a=20k,b=15k,c=12k,∵(12k)2+(15k)2≠(20k)2,故不能判定是直角三角形.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【考点】角平分线的性质.【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵角平分线上的点到角两边的距离相等,∴凉亭的位置应选在△ABC三条角平分线的交点上.故选C.【点评】本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.8.在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,则底角∠B的大小为多少度?()A.20°B.60°或20°C.65°或25°D.60°【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】当△ABC为锐角三角形时,设AB的垂直平分线交线段AC于点D,交AB于点E,在Rt△ADE中可求得∠A,再由三角形内角和定理可求得∠B;当△ABC为钝角三角形时,设AB的垂直平分线交AB于点E,交直线AC于点D,则可求得△BAC的外角,再利用外角的性质可求得∠B,可求得答案.【解答】解:当△ABC为锐角三角形时,如图1,设AB的垂直平分线交线段AC于点D,交AB于点E,∵∠ADE=40°,DE⊥AB,∴∠A=90°﹣40°=50°,∵AB=AC,∴∠B=(180°﹣∠A)=65°;当△ABC为钝角三角形时,如图2,设AB的垂直平分线交AB于点E,交AC于点D,∵∠ADE=40°,DE⊥AB,∴∠DAB=50°,∵AB=AC,∴∠B=∠C,∵∠B+∠C=∠DAB,∴∠B=25°;综上可知∠B的度数为65°或25°,故选C.【点评】本题主要考查等腰三角形的性质及三角形内角和定理,分两种情况分别求得等腰三角形的顶角是解题的关键.9.有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的是()A.①②③ B.①②④ C.②③④ D.①③④【考点】立方根.【分析】①根据立方根的定义即可判定;②根据立方根的性质即可判定;③根据立方根的性质即可判定;④根据立方根的性质即可判定.【解答】解:①负数有立方根,故错误;②一个实数的立方根是正数、0、负数,故错误;③一个正数或负数的立方根与这个数同号,故正确;④如果一个数的立方根是这个数本身,那么这个数是±1或0,故错误.故选B.【点评】此题主要考查了立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.一个数的立方根是这个数本身,那么这个数是±1或0.10.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置.【解答】解:如图,AB==,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.【点评】本题考查了等腰三角形的判定,熟练掌握等腰三角形的判定定理是解题的关键.二、填空题11.64的平方根是±8,的算术平方根是.【考点】算术平方根;平方根.【分析】利用平方根的定义即可求出答案.【解答】解:故答案为:±8,;【点评】本题考查平方根与算术平方根,属于基础题型.12.(1)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为7;(2)在等腰△ABC中,∠A=40°,且AB=BC,则∠B=100°.【考点】等腰三角形的性质;三角形三边关系.【分析】(1)分3是底边和腰长两种情况讨论求解,再根据三角形的三边关系判断是否能组成三角形;(2)根据等边对等角可得∠A=∠C,然后根据三角形的内角和等于180°列式计算即可得解.【解答】解:(1)①若3是底边,则腰长为1,三角形的三边分别为3、1、1,∵1+1=2<3,∴不能组成三角形,②若3是腰长,则底边为1,三角形的三边分别为3、3、1,能组成三角形,周长=3+3+1=7,综上所述,此等腰三角形的周长为7;(2)∵AB=BC,∴∠A=∠C=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣40°=100°.故答案为:(1)7;(2)100°.【点评】本题考查了等腰三角形的性质,等边对等角的性质,三角形的内角和定理,难点在于分情况讨论.13.直角三角形两条直角边的长分别为12和5,则斜边上的中线等于 6.5.【考点】勾股定理;直角三角形斜边上的中线.【分析】利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.【解答】解:如图,在△ABC中,∠C=90°,AC=12,BC=5,则根据勾股定理知,AB==13,∵CD为斜边AB上的中线,∴CD=AB==6.5.故答案为:6.5.【点评】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.14.已知直角三角形的两边的长分别是3和4,则第三边长为5或.【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.15.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.①若△AEF的周长为10cm,则BC的长为10cm.②若∠BAC=138°,则∠EAF=96°.【考点】线段垂直平分线的性质;三角形内角和定理.【分析】①直接根据线段垂直平分线的性质即可得出结论;②先根据三角形内角和定理求出∠B+∠C的度数,进而可得出结论.【解答】解:①∵AB、AC的垂直平分线分别交BC于点E、F,∴AE=BE,AF=CF,∴BC=BE+EF+CF=AE+EF+AF=10cm.故答案为:10;②∵∠BAC=138°,∴∠B+∠C=180°﹣138°=42°.∵AE=BE,AF=CF,∴∠BAE+∠CAF=∠B+∠C=42°,∴∠EAF=∠BAC﹣(∠BAE+∠CAF)=138°﹣42°=96°.故答案为:96°.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.如图,在△ABC中,AB=10,AC=8,O为△ABC角平分线的交点,若△ABO的面积为20,则△ACO的面积为16.【考点】角平分线的性质.【分析】由角平分线的性质可得,点O到AB,BC,AC的距离相等,则△AOB、△BOC、△AOC面积的比实际为AB,BC,AC三边的比.【解答】解:∵点O是三条角平分线的交点,∴点O到AB,AC的距离相等,∴△AOB、△AOC面积的比=AB:AC=10:8=5:4.∵△ABO的面积为20,∴△ACO的面积为16.故答案为16.【点评】此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.17.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.【考点】等边三角形的判定与性质;全等三角形的判定与性质.【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故答案为:.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【考点】轴对称-最短路线问题.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出CN,根据对称性求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB 于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,AD=12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.【点评】本题考查了平面展开﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.三、解答题(本大题共8小题,共计54分.)19.计算:(1)2﹣1+﹣+()0(2)+﹣|2﹣|【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)2﹣1+﹣+()0=+2﹣2+1=;(2)+﹣|2﹣|=4﹣2﹣2+=.【点评】本题主要考查了实数的综合运算能力,是中考常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等相关知识.20.求下列各式中的实数x的值(1)(x﹣3)2=64(2)3(x+5)3=﹣81【考点】立方根;平方根.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:(1)由题意得:x﹣3=±8,∴x=11或﹣5;(2)由题意得:x+5=﹣3,∴x=﹣8.【点评】本题主要考查了立方根及平方根的定义和性质,注意一个数的立方根与原数的性质符号相同,一个正数的平方根有两个,它们互为相反数.21.已知x,y,z满足于|x﹣y|++z2﹣z+=0,求x+y+z的立方根.【考点】立方根;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据完全平方公式,可得非负数的和等于零,根据非负数的和为零,可得x,y、z 的值,根据有理数的加法,可得x+y+z,根据开方运算,可得答案.【解答】解:原式等价于|x﹣y|++(z﹣)2=0.得x﹣y=0,2y+z=0,z﹣=0.解得x=﹣,y=﹣,z=,x+y+z=0,0的立方根为0.【点评】本题考查了非负数的性质,利用非负数的性质得出x,y、z的值是解题关键.22.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)【考点】利用轴对称设计图案.【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:【点评】考查利用轴对称设计图案;选择不同的直线当对称轴是解决本题的突破点.23.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.24.已知:长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕EF交AD于E,交BC于F.请用直尺和圆规画出折痕EF,并求出△ABE的面积.(长方形的对边平行且相等,四个角都为直角)【考点】作图—复杂作图;矩形的性质;翻折变换(折叠问题).【分析】首先设BE=xcm,由折叠的性质可得:DE=BE=xcm,即可得AE=9﹣x(cm),然后在Rt△ABE中,由勾股定理BE2=AE2+AB2,可得方程x2=(9﹣x)2+32,解此方程即可求得DE的长,继而可得AE的长,则可求得△ABE的面积.【解答】解:连接BD,作BD的垂直平分线交AD于E,交BC于F,连接EF,则折痕EF即可得到;如图所示:∵四边形ABCD是长方形,∴∠A=90°,设BE=x,由折叠的性质可得:DE=BE=x,∴AE=AD﹣DE=9﹣x,在Rt△ABE中,BE2=AE2+AB2,∴x2=(9﹣x)2+32,解得:x=5,∴DE=BE=5,AE=9﹣x=4,=AB•AE=×3×4=6.∴S△ABE【点评】此题考查了作图﹣复杂作图、折叠的性质、长方形的性质以及勾股定理.第2小题有一定难度,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B 的路径运动,且速度为每秒1cm,设出发的时间为t秒.问t为何值时,△BCP为等腰三角形?【考点】等腰三角形的判定.【分析】先根据勾股定理计算出AC=4cm,然后分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上得t=3(s),若点P在AB上,则t=5.4s;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,如图,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=AB=,易得t=(s);当BP=BC=3时,△BCP为等腰三角形,则AP=AB﹣BP=2,易得t=6(s).【解答】解:∵∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当CP=CB时,△BCP为等腰三角形,若点P在CA上,t=3(s);若点P在AB上,CP=CB=3,作CH⊥AB于H,如图,CH=,在Rt△BCH中,BH=,则PB=2BH=,∴CA+AP=4+5﹣=5.4,此时t=5.4s;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,如图,则BD=CD,∴PD为△ABC的中位线,∴AP=BP,即AP=AB=,∴t=4+=(s);当BP=BC时,△BCP为等腰三角形,即BP=BC=3,∴AP=AB﹣BP=2,∴t=4+2=6(s),综上所述,t为3s或5s或6s或s时,△BCP为等腰三角形.【点评】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.也考查了勾股定理和分类讨论的思想.26.(10分)(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C 重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=90度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.【解答】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.【点评】本题考查三角形全等的判定,以及全等三角形的性质;两者综合运用,促进角与角相互转换,将未知角转化为已知角是关键.本题的亮点是由特例引出一般情况.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016—2017学年度第一学期半期测试题
八年级数学
(满分120分,120分钟完卷)
第Ⅰ卷(选择题 共48分)
一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的.)
1.±4是16的( ).
A .平方根
B .算术平方根
C .相反数
D .绝对值
2π,7
3, 0.618 ,3.141141114…(第1个4之后,每两个4之间依次多1个1)中,无理数有( ).
A .0个
B .1个
C .2个
D .3个
3.计算6a 3÷(—2a )的结果是( ).
A .—3a 2
B .-3a 3
C .3a 2
D .3a
4.下列等式从左到右的变形是因式分解的是( ).
A .6x 2y 2=xy ·6xy
B .2x 2-8x -5=2x (x -4)-5
C .x 2+3x -4=(x -1)(x +4)
D .211()x x x x
+=+
5.李老师给同学们出了一道单项式与多项式相乘的题目:-3x 2(2x -[ ]+1)=-6x 3+6x 2y -3x 2,那么“[ ]”里应当是( ).
A .-y
B .-2y
C .2y
D .2xy
6.下列算式能用平方差公式计算的是( ).
A .(2m +n )(2n -m )
B .(-m -n )(-m +n )
C .(3m -n )(-3m +n )
D .(-m -n )(m +n )
7.下列四个算式:①(a +b )2=a 2+b 2,②(a -b )2=a 2-2ab -b 2,③(ab )2=ab 2,④(-a 3)2=-a 6中,计算正确的个数是( ).
A .0个
B .1个
C .2个
D .3个
8.设M =(x -4)(x -6),N =(x -3)(x -7),则M 与N 的关系为( ).
A .M <N
B .M >N
C .M =N
D .不能确定
9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有( ). ①(2a +b )(m +n );
②2a (m +n )+b (m +n );
③m (2a +b )+n (2a +b );
④2am +2an +bm +bn .
A .①②
B .③④
C .①②③
D .①②③④
10.如果x 2-mx +36是一个完全平方式,则m 的值为( ).
A .6
B .12
C .±6
D .±12
11.已知实数x 、y 满足:x 2
-6x +9=0,那么22
2y x -的值为( ). A .139 B .140 C .-139 D .-140
12.已知1m n +=,1mn =-,那么m 3+n 3的值为( ).
A .3
B .4
C .5
D .6
第Ⅱ卷
二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在题中的横线上.)13.计算:x2·x=.
14.因式分解:2a2-2=.
15.面积为(2ax2-ax)平方米的长方形土地一边长是ax米,则另一边的长是米.16.下面是一个按某种规律排列的数阵:
根据数阵的规律,第n行第一个数是.(用含n的代数式表示).
三、解答题(本大题共6个题,共56分)
17.(本题满分12分,每小题4分)
(1)计算下列各式的值.=;=.
(21|.
(3)已知9x2-4=0,求x的值.
18.计算(本题满分8分,每小题4分)
(1)(-3a2)·(2ab);(2)(-5x3)2+4x3·x3.
19.计算(本题满分12分,每小题4分)
(1)3a2·(2a2-1)-6a4;(2)(6x2y4-3xy3-1
3
y2)÷(-
1
3
y2);
(3)(2x-1)(4x2+2x+1).
20.(本题满分6分)先化简,再求值:
(x +4y )2-(x +2y )(x -2y )-20y 2,其中x =-4,y =12
.
21.(本题满分8分)
阅读材料:
例 分解因式x 2+6x -7.
解:原式=x 2+2x ×3+32-32-7
=(x 2+2x ×3+32)-32-7
=(x +3)2-42
=(x +3+4)(x +3-4)
=(x +7)(x -1).
上述例子用到了“在式子变形中,先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫配方法”.请根据这种方法解答下列问题:
分解因式:(1)a 2-6a -16; (2)4a 2-16ab +15b 2.
22.(本题满分10分)先观察、验证,再解答后面的问题:
11(1201)2=⨯-⨯,12(2312)2=⨯-⨯,13(3423)2
=⨯-⨯,……, 1[(1)(1)]2
n n n n n =+--. 把上面的n 个等式左右两边分别相加,得)1(21321+=
+⋅⋅⋅+++n n n ,其中n 为正整数. 这样的方法叫叠加法.类比这种方法,有:)210321(3
121⨯⨯-⨯⨯=⨯, )321432(3
132⨯⨯-⨯⨯=⨯, )432543(3
143⨯⨯-⨯⨯=⨯, 将这三个等式左右两边分别相加,得:205433
1433221=⨯⨯⨯=⨯+⨯+⨯. 解答下列问题:
(1)填空:①12231011⨯+⨯+⋅⋅⋅+⨯= ;
②)1(3221++⋅⋅⋅+⨯+⨯n n = ;
(2)计算:1×3+3×5+5×7+…+(2n -1)(2n +1),其中n 为正整数,结果用n 的多项式表示;
(3)证明:22221123(1)(21)6
n n n n +++⋅⋅⋅+=
++,其中n 为正整数.
参考答案
1.A
2.D
3.A
4.C
5.C
6.B
7.A
8.B
9.D 10.D 11.B 12.B
13.x 3
14.2(a-1)(a+1)
15.2x-1 16.12+-n n
17.(1)74-;5(2)7;(3)3
2± 18.(1)-6a 3b ;(2)20x 6;
19.(1)-3a 2;(2)-18x 2y 2+9xy+1;(3)8x 3
-1
20.原式=8xy=-16.
21.(1)原式=(a-8)(a+2) (2)原式=(2a-5b)(2a-3b)
22.(1)440;)2)(1(31++n n n (2)略.(3)略.。