有关太阳能跟踪器中英文翻译资料

合集下载

光伏系统中英文对照

光伏系统中英文对照

太阳能光伏系统专业词汇中英对照顺德中山大学太阳能研究院罗宇飞孙韵琳一、太阳电池相关词汇太阳电池solar cell将太阳辐射能直接转换成电能的器件单晶硅太阳电池single crystalline silicon solar cell以单晶硅为基体材料的太阳电池多晶硅太阳电池multi crystalline silicon solar cell以多晶硅为基体材料的太阳电池非晶硅太阳电池amorphous silicon solar cell用非晶硅材料及其合金制造的太阳电池。

薄膜太能能电池Thin-film solar cell用硅、硫化镉、砷化镓等薄膜为基体材料的太阳电池。

这些薄膜通常用辉光放电、化学气相淀积、溅射、真空蒸镀等方法制得。

多结太阳电池multijunction solar cell由多个p‐n 结形成的太阳电池。

化合物半导体太阳电池compound semiconductor solar cell用化合物半导体材料制成的太阳电池带硅太阳电池silicon ribbon solar cell用带状硅制造的太阳电池光电子photo-electron由光电效应产生的电子。

太阳电池的伏安特性曲线I-V characteristic curve of solar cell受光照的太阳电池,在一定的辐照度和温度以及不同的外电路负载下,流入的电流I 和电池端电压V 的关系曲线。

短路电流short-circuit current (Isc)在一定的温度和辐照度条件下,光伏发电器在端电压为零时的输出电流。

开路电压open-circuit voltage (Voc)在一定的温度和辐照度条件下,光伏发电器在空载(开路)情况下的端电压。

最大功率maximum power (Pm)在太阳电池的伏安特性曲线上,电流电压乘积的最大值。

最大功率点maximum power point在太阳电池的伏安特性曲线上对应最大功率的点,亦称最佳工作点。

NEW太阳能光伏组件系统生产术语中英文对照表

NEW太阳能光伏组件系统生产术语中英文对照表

由垂直和水平接地极组成的供发电厂、变电站使用的兼有泄流和均压作用的较大型的水平网状 接地装置
110kV 及以上电压等级变电所、装机容量在200MW 及以上火电厂和水电厂或者等效平面面积在 5000m2及以上的接地装置
photovoltaic array simulator
一种模拟光伏方阵静态和动态电流电压特性的功率源
铁心和绕组都浸入油中的变压器
16 干式变压器 17 中性点端子
dry-type transformer neutral terminal
铁心和绕组都不浸入绝缘液体中的变压器
对三相变压器或由单相变压器组成的三相组,指连接星形联接或曲折型联结公共点(中性点) 的端子,对单相变压器指连接网络中性点的端子
18 绕组
异常状态发生到光伏电站停止向电网送电的时间 光伏电站在系统异常发生脱网后,当电网电压和频率恢复正常并经过一个可调的延时时间后重 新并网 具备独立发电单元能力的光伏发电最小单元
能够模拟电网低电压跌落曲线的测试装置
能够模拟孤岛现象发生的测试装置
56 光伏电站 57 公共连接点PCC 58 光伏电站并网点 59 光伏电站送出线路 60 光伏电站有功功率 61 光伏电站无功功率 62 有功功率变化 63 低电压穿越 64 光伏并网逆变器 65 光伏汇流箱 66 电气间隙 67 爬电距离 68 并网接口 69 光伏系统功率因数 70 发电量 71 交流电 72 断路器 73 配电箱 74 电能表
23 消弧线圈
arc-suppression coil
24 互感器
instrument transformer
25 电压互感器 26 接地极
voltage transformer grounding electrode

太阳能专业术语翻译

太阳能专业术语翻译

光伏发电板(电池) (Cell-photovoltaic)太阳能发电板中最小的组件.光伏发电系统平衡(BOS or Balance of System - photovoltaic) 光伏发电系统除发电板矩阵以外的部分. 例如开关, 控制仪表, 电力温控设备, 矩阵的支撑结构, 储电组件等等.光伏矩阵或发电板阵(Array - photovoltaic) 太阳能发电板串联或并联连接在一起形成矩阵.阻流二极管(Blocking Diode)用来防止反向电流, 在发电板阵中, 阻流二极管用来防止电流流向一个或数个失效或有遮影的发电板(或一连串的太阳能发电板) 上. 在夜间或低电流出的期间, 防止电流从蓄电池流向光伏发电板矩阵."旁路二极管(Bypass Diode)是与光伏发电板并联的二极管. 用来在光电板被遮影或出故障时提供另外的电流通路.充电显示器(表) (Charge Monitor/Meter) 用以测量电流安培量的装置, 安培表.充电调节器(Charge Regulator)"用来控制蓄电池充电速度和/或充电状态的装置, 连接于光伏发电板矩阵和蓄电池组之间. 它的主要作用是防止蓄电池被光伏发电板过度充电, 同时监控光伏发电矩阵和/或蓄电池的电压."组件(Components)指用于建立太阳能电源系统所需的其他装置.交直流转换器(Converter) 将交流电转换成直流电的装置.晶体状(Crystalline)具有三维的重复的原子结构.直流电(DC)"两种电流的形态之一, 常见于使用电池的物件中, 如收音机, 汽车, 手提电脑, 手机等等."无序结构(Disordered)减小并消除晶格的局限性. 提供新的自由度, 从而可在多维空间中放置其他元素. 使它们以前所未有的方式互相作用. 这种技术应用多种元素以及复合材料它们在位置, 移动及成分上的不规则可消除结构的局限性, 因而产生新的局部规则环境. 而这些新的局部环境决定了这些材料的物理性质, 电子性质以及化学性质. 因此使得合成具有新颍机理的新型材料成为可能.电网连接- 光伏发电(Grid-Connected - photovoltaic) 是一种由光伏发电板阵向电网提供电力的光伏发电系统. 这些系统可由供电公司或个别楼宇来运作.直流交流转换器(Inverter)用来将直流电转换成交流电的装置.千瓦(Kilowatt)1000 瓦特, 一个灯泡通常使用40 至100 瓦特的电力.百万瓦特(Megawatt)1,000,000 瓦特光伏发电板(Module - photovoltaic) 光伏电池以串联方式连在一起组成发电板.奥佛电子(Ovonic)[以S. R. 奥佛辛斯基(联合太阳能公司创始人)及电子的组合命名] - 用来描述我们独有的材料, 产品和技术的术语.奥佛辛斯基效应(Ovshinsky effect) 一种特别的玻璃状薄膜在极小电压的作用下从一种非导体转变成一种半导体的效应..并联连接(Parallel Connection)一种发电板连接方法. 这种连接法使电压保持相同, 但电流成倍数增加峰值输出功能(Peak Power)持续一段时间(通常是10 到30 秒)的最大能量输出.光伏(Photovoltaic - PV)光能到电能的直接转换.光伏发电板(电池) (Photovoltaic Cell) 经过特殊处理可将太阳能辐射转换成电力的半导体材料.卷到卷工序(Roll-to-Roll Process) 将整卷的基件连续地转变成整卷的产品的工序.串联连接(Series Connection)电流不变电压倍增的连接方式.太阳能(Solar)来自太阳的能量.太阳能收集器(Solar Collectors)用以捕获来自太阳的光能或热能的装置. 太阳收集器用于太阳能热水器系统中(常见于住家), 而光伏能收集器则是用于太阳能电力系统.太阳能加热(Solar Heating) 利用来自太阳的热能发电的技术或系统. 太阳能收集器用于太阳能热水器系统中(常见于住家), 而光伏能收集器则是用于太阳能电力系统中太阳能发电模块或太阳能发电板(Solar Module or Solar Panel) 一些由太阳能发电板单元所组成的太阳能发电板板块.稳定能量转换效率(Stabilized Energy Conversion Efficiency) 长期的电力输出与光能输入比例.系统, 平衡系统(Systems; Balance of Systems)"太阳能电力系统包括了光伏发电板矩阵和其它的部件. 这些部件可使这些太阳能发电板得以应用在需要可控直流电或交流电的住家和商业设施中. 用于太阳能电力系统的其它部件包括:接线和短路装置, 充电调压器,逆变器, 仪表和接地部件."薄膜(Thin-Film)在基片上形成的很薄的材料层.瓦特(Watts)用电压乘以电流的值来衡量的电力度.MWpMWp 的具体解释:M 是兆瓦,1MW 是1000KW ,WP 是太阳能电池的瓦数,是指在1000W/ 平方光照下的太阳能电池输出功率,与实际太阳光照照强度有区别.伏特(Volts)电动势能单位•能促使一安培的电流通过一欧姆的电阻•电压(Voltage)电势的量. 电压表(Voltage Meter)用以测量电压的装置.屋顶光伏屯源系统Rt K)f-UK>untedPVpciwersystern独立家庭电源系统Off- gi idhi)int?p<>ivei systt*i TI小述太阳能发屯系统Resident L4JtlureuPVp<jw or ay stem光伏建筑一体化BIPVproducts太阳能境电在1 芒馆、学校中的应用Appl icat ionsof solarPV 1 nhote 1 sandschc ml a移动信号塔太阳能发电猥胃So larPVp< iwersystemsformobi 1 ecomiitur] i cations i gnalstat i ons移动通f方垒汨T工放汕电源PVpt用systpnisf<>rGS\fljnsesttil ioils小型并网光伏社站sjna】lon^gridPVpowerstation人平井网光伙i|l?[S liirg&i en]-^ridPVp(i'WPrstci t iori乡tft公路太阳能路灯灼应用Solarstreet 1 ightsforrura 1 roadsA L R I 能建设新农村工程Solarprojec tssfornowvil Iagos城rfl A阳能庭院灯的応ffl SolargardenL ight sforci t ies乡镇太阳能庭院灯的应用So 1 ar gar de n 1 i gh t s f or town s郊区太阳能冲坪灯工程Sol ar 1 awn 1 i gh t s f<)r suburbs太阳能交通";弓灯匸程Installationof solar trafficsigns成乡风光互补路灯丈例WindanclI^hybridstre?!! ights卜区风光互补系统WindandPVhybridpowersysteinsforresidentialareas入力发屯系统的应用Windgeneratingsysterns人阳能方血专业术语「I1英文对照诠脅[原文地址]比伏发电板(电池)(Cell-photovoltaic)太阳能发屯板屮最小的组件.光伏发电系统平衡(BOS or Balance of System 一photovoltaic)光伏发屯系统除发电板矩阵以外的部分.例如开关,控制仪丧,电力温控设备,矩P 芟撑结构,储电组件等等.此伏矩阵或发电板阵(Array - photovoltaic)太阳能发电板串联或并联连接在一起形成矩阵.目流二极管(Blocking Diode)您影的发电板(或一连小的太阳能发电板)上.在夜间或低电流出的期间,防止电流》社池流向光伏发电板矩阵・"旁路二极管(Bypass Diode)足与光伏发电板并联的二极管・用來在光电板被遮影或川故障时捉供刃外的电流通学充电显示器(表)(Charge Monitor/Meter'用以测量屯流安培量的装置,安培表.充电调节器(Charge Regulator)"川來悴制薔电池充电速度利/或充电状态的装置,连接于光伏发电板矩阵和蒂电池彳nJ.它的主要作用足防止需电池被光伏发电板过度充屯,同时监拧光伏发屯矩阵和/或他的电压・"组件(Components)指用于建立太阳能电源系统所需的戏他装置.交直流转换器(Converter)将交流电转换成直流电的装買.晶体状(Crystalline)具有三维的重复的原子结构.直流电(DC)"两种电流的形态Z- 常见于使用电池的物件中,如收音机,汽车,手提电脑,T无序结构(Disordered)减小并消除晶格的局限性.提供新的自山度,从而可在多维空间屮放置戏他兀素・{ 门以丽所未冇的力武互相作用.这种技术应用多种兀素以及复介材科.它们在位胃,I 及成分I】的不规则诃消除姑构的局限性,因而产生新的局部规则环境.而这此新的局* 竟决定了这些材料的物理性质,电了性质以及化学性质.冈此使得合成具冇新颍机理G 型材料成为可能.电网连接-光伏发电(Grid-Connected - photovoltaic)是一种由光伏发电板阵向电网捉供电力的光伏发电系统.这映系统可曲供电公司或彳 *宇来运作.I直流交流转换器(Inverter)用来将恵流电转换成交流电的装置.千瓦(Kilowatt)1000瓦特,一个灯泡通常使用40至100瓦恃的屯力.13■万瓦特(Megawatt)1, 000, 000 瓦特光伏发电板(Module - photovoltaic)光伏电池以串联方式连在一起组成发电板,奧佛电了(Ovonic)[以S. R•奥佛辛斯基(联合太阳能公司创始人)及电子的组合命名]-用來描述我们勺材料,产品和技术的术语.奥佛辛斯基效应(Ovshinsky effect)一种特别的玻璃状薄膜在极小电压的作用卜从一种非导体转变成一种半导体的效应… |并联连接(Parallel Connection)一种发电板连接力法.这种连接法使电爪保持相同,但电流成倍数增加峰值输出功能(Peak Power)持续一段时间(通常是10到30秒)的敲大能量输出.光伏(Photovoltaic PV)光能到电能的宜接转换.光伏发电板(电池)(Photovoltaic Cell)经过特殊处理可将太阳能辐射转换成电力的半导体材料.卷到卷工序(Roll-to-Roll P roe ess)将整卷的基件连续地转变成整卷的产品的工序.巾联连接(Series Connection)电流不变电压倍增的连接方式.太阳能(Solar)米自太阳的能量.太阳能收集器(Solar Collectors)用以捕快來自太阳的光能或热能的装胃.人阳收集器用于K阳能热水器系统小(常贝「家人1ft]光伏能收集器则是用于太阳能电力系统.I太阳能加热(Solar Heating)利用來自人阳的热能发电的技术或系统.太阳能收集器用丁太阳能热水器系统小(常七家),血光伏能收集器则是用于太阳能电力系统中太阳能发屯模块或太阳能发屯板(Solar Module or Solar Panel)一些山太阳能发电板单元所组成的太阳能发电板板块.稳定能量转换效率(Stabilized Energy Conversion Efficiency)长期的电力输出与光能输入比例.系统,平衡系统(Systems; Balance of Systems)"人阳能电力系统包括了光伏发电板矩阵和其它的部件.这些部件可使这些太阳能发写以应用在需喪吋控玄流电或殳流电的住家和商业设施川・用于太阳能电力系统的!代乍但括:接线和短路装置,充电调圧器•逆变器,仪表和接地部件・"薄膜(Thin-Film)在基片上形成的很鞠的材料层.瓦特(Watts)用电压乘以电流的值來衡量的电力度.MWpMWp的具体解释:M是兆瓦,1MV是1000KW , WP是太阳能电池的瓦数,是指在1000W/平!«卜的太阳能电池输出功率,与实际太阳光照照戲度冇区別•伏特(Volts)电动势能单位.能促使一安培的电流通过一欧姆的屯阻.屯压(Vol tage)电势的•量.电压表(Vo 1 tage Me ter)用以测虽电压的装置.甸立国的太阳能屯池专业英语Ampere的缩写,安培amorph silicon的缩写,含氢的,非结晶性硅.absorption,吸收.ibsorption of the photons:光吸收;为能量大于禁带宽度的光子入射时.太阳电池内r能量从价带迁到导____________________________________________________;卜产生电子——空穴对的作用.称为光吸收•\b s or p t i on scoef f i c i en t,吸收系数,吸收强度.C,交流电.k安培小时.\cceptor,接收者,在半导体中可以接收一个电了.\lternating current,交流电•简称“交流.-般扌旨人小和力向随时I可作周期性变化衣或电流.它的最基木的形式是正弦屯流.我国交流电供电的标准频率规定为50赫兹,交流电随时间变化农可以是多种多样的。

新能源中英文对照

新能源中英文对照

英文缩写中文Photovoltaic PV光伏Rooftop屋顶Solar parks 太阳能电站MPPMPP-Tracking MPP跟踪器MPP algorithm MPP算法Maximum Power Point Tracking Tchnology MPPT最大功率点跟踪技术Low Voltage Ride Through LVRT低电压穿越Topology拓扑Single-phase string invertersTransformerless string invertersThree-phase string inverters三相组串式逆变器natural convection cooling自然对流冷却Central Inverter集中型逆变器insulated gate bi-polar transistors IGBT绝缘栅双极型晶体管Static Var Generator SVG静止无功发生器Static Var Compensator SVC静止无功补偿器anti-islanding functionality防孤岛效应integrated data-logger集成数据采集器Distortion factor THD畸变率Emitted interface发射干扰Interference immunity抗干扰性photoelectric effect光电效应Max. efficiency最大效率European efficiency欧洲效率internal consumption in night operation夜间自耗电internal overvoltage protection内部过电压保护太阳能电池PV Module光伏组件solar cell module太阳能电池组件photovoltaic modules string光伏组件串photovoltaic (PV) power unit 光伏发电单元(单元发电模块)PV array光伏方阵(光伏阵列)photovoltaic(PV) power generation system光伏发电系统photovoltaic(PV) power station光伏发电站radial connection辐射式连接tapped connection T接式连接tracking system跟踪系统single-axis tracking system单轴跟踪系统double-axis tracking system双轴跟踪系统collector line集电线路point of common coupling(PCC)公共连接点point of coupling (POC)并网点单相组串式逆变器islanding孤岛现象intentional islanding计划性孤岛现象unintentional islanding非计划性孤岛现象Anti-islanding防孤岛peak sunshine house峰值日照系数low voltage ride through低电压穿越annual peak sunshine hours of PV station光伏发电站年峰值日照系数direct normal irradiance(DNI)法向直接辐射照度capacity of installation安装容量watts peak峰瓦solar time真太阳时type of protection防护等级(IP)protocol协议infeed starting at 发电起始值备注SVG的基本原理就是将自换相桥式电路通过电抗器或者直接并联在电网上,适当地调节桥式电路交流侧输出电压的相位和幅值,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态无功补偿的太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二级管。

太阳能跟踪系统毕业论文外文翻译

太阳能跟踪系统毕业论文外文翻译

Solar Tracking SystemSolar tracking system is thermal and photovoltaic power generation process, the most optimal use of sunlight, to improve the photoelectric conversion efficiency of the mechanical system and the electronic control unit, comprising: a motor (DC, stepper, servo, planetarygear motor, motor plunger ), worm, sensor systems and so on.In the solar photovoltaic applications: Keep solar panels facing the sun at any time, so that at any time the vertical rays of sunlight illuminated solar panels power plant, the use of solar tracking system can significantly improve the power generation efficiency of solar photovoltaic modules.Due to the Earth's rotation, a fixed location relative to a particular solar photovoltaic systems, four seasons a year, every day the rising sun, the sun's illumination angle changes all the time, effectively guaranteed solar panels can always being right Solar power generation efficiency will reach the best condition. Currently the world's universal solar tracking systems need to put such information to calculate latitude and longitude points for each day of the year at different times where the angle of the sun will be a year in the position of the sun every moment stores PLC, microcontroller or computer software in calculating the fixed locations have to rely on the position of the sun at each moment in order to achievetracking. Uses the theory of computer data, needs to Earth coordinates regional data and settings, once installed, it inconvenient to move or dismantle, finished on each move must be recalculated parameter setting data and adjust various parameters; principle, circuit, technology, equipment is very complexMiscellaneous, non-professionals can not easily operate. Hebei, a solar photovoltaic power generation companies exclusively developed with world-leading level, do not calculate the position of the sun around the data, free software, not afraid cloudy, thunderstorms, cloudy and other inclement weather, has been the default system device saver, dustproof effect strong wind resistance, easy to use, low cost, anytime, anywhere on your mobile device can accurately track the sun's intelligent solar tracking system. The solar tracking system in the company's first-generation tracker technology based on integrated use of a variety of environments around the situation, the solar tracking system was fully upgraded and improved, so that the solar tracking system has become all-weather, full-featured, Super energy saving, intelligent solar tracking system. The solar tracking system has a normal (good weather conditions) under the Japanese track status and harsh climatic conditions and the state of the system of self-protection equipment to protect themselves from the normal state automatically and quickly converted to the Japanese track three cases.Adds a GPS positioning system, the solar tracking system is the first fully computer software without spatial orientation of the sun tracker, a leading international level, it is possible without geographical, weather conditions and external conditions, can be -50 ℃to 70 ℃ambient temperature range of normal use; tracking precision can reach ± 0.001 °, to maximize solar tracking accuracy, the perfect track to achieve timely and maximize solar energy utilization. The solar tracking system can be widely used in various types of equipment requires the use of solar tracking where the solar tracking system, affordable, stable performance, reasonable structure, precise tracking, easy to use. The installation of a solar tracking system solar power systems installed in high-speed car, train, and communications emergency vehicles, special military vehicles, warships or ships, and whether the system is running to where and how to turn around, turn the solar tracking system equipment requirements to ensure the site is tracking the sun! The solar tracking control technology with our own intellectual property rights belonging to national invention patent product, patent application number: 200610146201.8, has mass production.The solar tracking system has four operating state:1 Normal (good weather conditions) under the Japanese track status;2 intermittent tracking. If there is a period of time of day is cloudy or cloudy or inclement weather, the system will be screened out asunsuitable track, the entire system will be in a suspended state. Until light and track conditions are suitable, the system will be a fast-track instruction, so that roughly aligned with the sun tracker. , The program will conduct another set of signal acquisition and processing, complete the fine tracking;3 automatic back. Sunset, the system will automatically enter the sleep state, and automatically return to the position of the rising sun. The next day and then automatically enters a new round of running.4 inclement weather state protection: When the environment is not suitable for such factors as wind or precipitation system work, tracker will automatically stop working, and the whole big system receiving surface state and the ground plane parallel or vertical to prevent the system being to destruction.The solar tracking system main application areas:(1) a flat photovoltaic photovoltaic field and 500 times the CPV systems;(2) the field of solar thermal parabolic track (such as solar cookers, solar heating temperature, solar thermal and chemical);(3) solar trough collector;(4) solar thermal power tower and so on.太阳能跟踪系统太阳能跟踪系统是光热和光伏发电过程中,最优化太阳光使用,达到提高光电转换效率的机械及电控单元系统,包括:电机(直流、步进、伺服、行星减速电机、推杆电机等)、涡轮蜗杆、传感器系统等等。

翻译

翻译

第一周段落翻译--2011级1班徐婷原文:CC2005SC巡日装置问世以前曾有过不少研制,但始终没有形成实用产品,其主要原因是采用通用原理研制的向日追踪装置本身电能消耗很大(如:通用型执行器仅电机耗能最低就达90瓦,控制器也需几十瓦),向日追踪太阳能电池板多发电能很大部分被向日追踪装置本身消耗了,失去了实用价值。

例如某国内开发的向日追踪装置,根据其资料介绍,向日追踪装置消耗的电能占增加发电量的41.7%。

而且从经济角度计算,该向日追踪装置的造价远远超过增加相同发电量的太阳能电池板的价格,失去了实用性。

译文定稿:Many other researches had been made before CC2005SC solar trackers came into being, anyhow they ended with no practical products. It is mainly because the huge electrical energy consumption the device itself leads to as is based on general principles. (for example, the general actuator produces at least 90 watts only in motor consumption and the controller also needs tens of watts.). The multiple power of the solar-tracking solar panel is mostly used by the device itself, which cause the loss of its practical value. For instance,according to the introduction of a domestic-made solar trackers, the electrical energy it consume accounts for 41.7% of additional generating capacity. Besides, from economic angle, it costs far more than the price of solar panel added the same generating capacity, without any practicability.译文初稿:Many other researches had been made before CC2005SC solar trackers came into being, but ended with no practical products. It is mainly because the device itself which is based on general principles leads to huge electrical energy consume (for example, the general actuator has at least 90 watts only in motor consumption and the controller also needs tens of watts.). The multiple power of the solar-tracking solar panel is mostly used by the device itself, thus, it has lose its practical value. For instance,according to the introduction of a domestic-made solar trackers, the electrical energy it consumes accounts for 41.7% of additional generating capacity. Besides, from economic angle, it costs far more than the price of solar panel added the same generating capacity, without any practicability.译后记专业文体的翻译确实比一般的文体翻译要略显难度,不过,我个人认为,只要熟悉某一领域,倒是比文学翻译来的简单。

太阳能行业专业术语中英文对照汇总

太阳能行业专业术语中英文对照汇总

太阳能电池行业英语词汇A,Ampere的缩写, 安培a-Si:H, amorphous silicon的缩写, 含氢的, 非结晶性硅.Absorption, 吸收.Absorption of the photons:光吸收;当能量大于禁带宽度的光子入射时,太阳电池内的电子能量从价带迁到导带,产生电子——空穴对的作用,称为光吸收。

Absorptions coefficient, 吸收系数, 吸收强度.AC, 交流电.Ah, 安培小时.Acceptor, 接收者, 在半导体中可以接收一个电子.Alternating current, 交流电,简称“交流. 一般指大小和方向随时间作周期性变化的电压或电流. 它的最基本的形式是正弦电流. 我国交流电供电的标准频率规定为50赫兹。

交流电随时间变化的形式可以是多种多样的。

不同变化形式的交流电其应用范围和产生的效果也是不同的。

以正弦交流电应用最为广泛,且其他非正弦交流电一般都可以经过数学处理后,化成为正弦交流电的迭加。

AM, air mass的缩写, 空气质量.直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。

当大气压力P=1.013巴,天空无云时,海平面处的大气质量为1。

amorphous silicon solar cell:非晶硅太阳电池(a—si太阳电池)用非晶硅材料及其合金制造的太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a—si太阳电池。

Angle of inclination, 倾斜角,即电池板和水平方向的夹角,0-90度之间。

Anode, 阳极, 正极.BBack Surface Field, 缩写BSF, 在晶体太阳能电池板背部附加的电子层, 来提高电流值. Bandbreak, 在半导体中, 价带和导带之间的空隙,对于半导体的吸收特性有重要意义. Becquerel, Alexandre-Edmond, 法国物理学家, 在1839年发现了电池板效应.BSF, back surface field的缩写.Bypass-Diode, 与太阳能电池并联的二极管, 当一个太阳能电池被挡住, 其他太阳能电池产生的电流可以从它处通过.CCadmium-Tellurium, 缩写CdTe; 位于II/VI位的半导体, 带空隙值为1,45eV, 有很好的吸收性, 应用于超薄太阳能电池板, 或者是连接半导体.Cathode, 阴极,或负极,是在电池板电解液里的带负电的电极,是电池板电解液里带电粒子和导线里导电电子的过渡点。

太阳能中英文对照资料(docX页)

太阳能中英文对照资料(docX页)

1 主题内容与适用范围本标准规定了太阳能热利用中一部分关于天文与辐射的术语。

本标准适用于太阳能热利用中对太阳辐射的研究与测量。

2 引用标准GB 3102.6 光及有关电磁辐射的量和单位GB 4270 热工图形符号与文字代号3 天文3.1 天球celestial sphere为研究天体的位置和运动而辅设的一个半径为无限长的假想球体。

其中心按需要可设在观测点、地心、日心或银心等。

天体的位置即指沿天球中心至该天体方向在球面上的投影。

3.2 天轴celestial axis天球的自转轴。

它通过天球中心并平行于地球自转轴。

3.3 天极celestial pole天轴与天球相交的两个交点的统称。

3.4 北天极celestial north pole北半天球上的天极。

3.5 南天极celestial south pole南半天球上的天极。

3.6 天顶zenith观测点铅垂线向上延长与天球相交的交点。

3.7 天底nadir观测点铅垂线向下延长与天球相交的交点。

3.8 天赤道celestial equator通过天球中心并垂直于天轴的平面与天球相交的大圆。

3.9 天球子午圈celestial meridian天球上通过天顶和天极的大圆。

同义词天球子午线3.10 时圈hour circle天球上通过两天极的任一大圆。

同义词赤经圈right ascension circle3.11 地平面horizontal plane地球表面观测点以铅垂线为法线的切平面。

3.12 地平圈horizontal circle通过天球中心并垂直于天顶-天底连线的平面与天球相交的大圆。

同义词地平线horizon3.13 地平经圈vertical circle天球上通过天顶和天底的任一大圆。

3.14 角距离angular distance天球大圆上任意两点所对应的圆心角。

3.15 天球坐标系celestial coordinate system为确定天体在天球上的投影位置和运动而引入的球面坐标系。

太阳能光伏系统术语中英参照

太阳能光伏系统术语中英参照

太阳能路灯——太阳能光伏系统术语(中英参照)1、太阳能光伏能源系统 solar photovoltaic energy system 指利用太阳能电池的光生伏特效应,将太阳能辐射能直接转换成电能的发电系统。

2、大气质量AM(Air Mass)太阳光通过大气层的路径长度,简称AM,外层空间为AM 0,阳光垂直照射地球时为AM1(相当春/秋分分阳光垂直照射于赤道上之光谱),太阳电池标准测试条件为AM 1.5(相当春/秋分阳光照射于南/北纬约48.2度上之光谱)。

3、日照强度(Irradiance)单位面积内日射功率,一般以W/㎡或mW/c㎡为单位,AM 0之日照强度超过1300W/㎡,太阳电池标准测试条件为1000W/㎡(相当于100mW/c㎡)。

4、日射量(Radiation)单位面积于单位时间内日射总能量,一般以百万焦尔/年.平方米(MJ/Y.㎡)或百万焦尔/月.平方米(MJ/M.㎡),1焦尔为1瓦特功率于1秒钟累积能量(1J=1W.s)。

5、太阳能电池(Solar Cell)具有光伏效应(Photovoltaic Effect)将光(Photo)转换成电(Voltaic)的组件,又称为光伏电池(PV Cell),太阳能电池产生的电皆为直流电。

6、太阳光电(Photovoltaic)简称PV(photo=light光线,voltaics=electricity电力),由于这种电力方式不会产生氮氧化物,以及对人体有害的气体与辐射性废弃物,被称为「清净发电技术」。

PV System,则是将太阳光能转换成电能整套系统,称为太阳光电系统或光伏系统,依分类有独立型、并联型与混合型。

7、 PV模板(PV Module)将多只太阳电池串联提升电压,并以坚固外材封装以利应用,又称为模块(PV Pannel或PV Module)。

8、 PV组列(PV String)将模板多片串联成一列,组列的目的在提高电压,将10片模板电压20伏特5安培串联成组列,组列电压即有200伏特、电流为5安培。

外文翻译

外文翻译

译文:利用模块技术分析太阳跟踪器的性能作者:菲利普英恩霍文,吉奥吉奥,戴维,施帕贝尔,菲利普英恩霍文,欧洲学院的博尔扎诺可再生能源研究所高级研究员,意大利德卢索大街1博尔扎诺39100,电子邮件:philip.ingenhoven@。

吉奥吉奥,欧洲学院的博尔扎诺可再生能源研究所初级研究员,意大利德卢索大街1博尔扎诺39100。

戴维,欧洲学院的博尔扎诺可再生能源研究所高级研究员,意大利德卢索大街1博尔扎诺39100。

施帕贝尔,工作于欧洲学院的博尔扎诺可再生能源研究所,为该机构负责人,意大利德卢索大街1博尔扎诺39100。

摘要本设计的目的是比较不同的太阳能电池组件的性能。

将单轴和双轴跟踪器分别安装在一个固定的倾斜架(30°)跟踪器。

这项研究的数据是从一个724千瓦的多技术的试验场博尔扎诺在意大利阿尔卑斯山机场(位置ca.46.46n,11.33 E)获取的,其中欧洲科学院博尔扎诺为监视员。

采用多晶硅(Si)和内在的薄层的异质结的测试技术,。

我们比较了这两种技术在不同的安装系统,各个系统的能量输出及性能比较。

根据阴影分析了在山区环境损失的测定。

并进一步分析了跟踪误差。

即由于高的风速,阴影位置由于单轴跟踪器引起的,在双轴跟踪移动到一个安全位置,确定这些问题,有助于最大限度地提高跟踪性能。

因此,首先如何最大能量收获,然后是一个成本效益分析的基础上进行成本的降低和评估能源价格,并与固定装置进行比较。

1引言太阳跟踪器系统的广泛应用,最大限度地提高了光伏发电站在能源生产中的使用。

这主要是使用太阳能电池板与太阳光线垂直,获取最大功率的太阳能。

跟踪器的性能可在参考文献[ 1 ]中审查找到。

太阳跟踪许多的研究在生产中已经证实了有很大的促进作用。

太阳跟踪的主要方式是单轴和双轴跟踪,其他全面的总结跟踪的几何形状,可在参考文献[ 2 ]和文献[ 3 ]中找到,一般跟踪器的性能主要根据方位有关。

参考文献[ 1 ]分析了根据地理位置,在理论性能上设计了一个增强10–100%的跟踪器,并考虑了损耗。

外文翻译、中英文翻译、外文文献翻译#太阳能汽车通信工具的人工神经网络最大能量点的跟踪仪

外文翻译、中英文翻译、外文文献翻译#太阳能汽车通信工具的人工神经网络最大能量点的跟踪仪

附录A太阳能汽车通信工具的人工神经网络最大能量点的跟踪仪摘要:本文提出的是一台太阳能汽车的人工神经网络最大力量的跟踪仪器(MPPT)。

MPPT 是根据一台高效率的升压变频器和绝缘阀双极晶体管(IGBT) 电源开关为基础的。

MPPT的参考电压是以梯度下降动量算法通过人工神经网络获得(ANN)。

跟踪的算法是通过更改变频器的任务周期,以便使PV 模块电压等于对应的MPPT 在所有指定的日射能量、温度, 和负荷状态下的电压。

为快速的回应, 系统被实施使用数字信号处理器(DSP) 。

整个系统的稳定性是通过一种固有的积分导数调节控制器按比例经过包括改进按比例进行改善的,并且这种调节器也被使用在观察参考电压和控制电压的高低。

调节控制器, 以ANN 提供的信息为依据, 形成升压变频器的工作周期。

被获得的大量能量被使用在太阳能汽车的充电锂离子电池上。

实验和模拟结果表示, 提出的计划是高效率的。

关键词: 人工神经网络; 最大能量点跟踪仪(MPPT); 光致电压模块; 数字信号处理器; 太阳能汽车通信工具。

简介光致电压的(PV) 生成获取增加的重要性作为可延续能源。

太阳能的不受欢迎得到了迅速的更改, 通常发生在一个连续通信工具上, 由于树荫从、大厦、大树, 和多云等情况的出现,在常规PV 系统有困难的回应迅速差异是由于树荫产生的。

PV 系统主要缺点是, 最初安装费用是相当地高并且能量转换效率(从12% 到29%) 是相对比较低的。

此外, 在许多情况下, PV 系统要求一台动力调节器(直流电直流电或直流电交流电的交换器) 为负荷界面。

所以, 整个系统费用能被猛烈地减少,通过使用高效率的动力调节器, 譬如最大能量点跟踪仪(MPPT), 提取和维护峰值功率从PV 模块既使当上述不赞同的条件发生。

各种各样的最大能量跟踪仪的方法,已经被考虑了在PV 力量应用中[1-12 ] 。

在小山之中攀登的方式[1-5 ],扰乱和观察跟踪最大能量点(MPP) 由增加或一再减少输出电压在PV 模块的MPP 上。

光伏系统术语中英文对照表

光伏系统术语中英文对照表

序号术语对照英文注释1施工组织设计construction organization plan以施工项目为对象编制的,用以指导施工的技术、经济和组织管理的综合性文件。

2光伏建筑附加-BAPV building attached photovoltaics 指将太阳能光伏电池组件附着在建筑物上,引出端经过控制器、逆变器与公用电网相连接,形成户用并网光伏系统。

亦称光伏建筑附加。

3光伏建筑一体化-BIPV building Integrated photovoltaics 指将太阳能光伏电池组件集成到建筑物上,同时承担建筑结构功能和光伏发电功能;引出端经过控制器、逆变器与公用电网相连接,从而形成户用并网光伏系统。

亦称光伏建筑一体化4并网光伏电站grid-connected PV power station指接入公用电网(输电网或配电网)运行的光伏电站。

5光伏组件PV module指具有封装及内部联接的,能单独提供直流电的输出,最小不可分割的光伏电池组合装置。

6光伏阵列PV array 指由若干个光伏电池组件或光伏电池板在机械和电气上按一定方式组装在一起并且有固定的支撑结构而构成的直流发电单元,地基、太阳跟踪器、温度控制器等类似的部件不包括在阵列中7汇流箱combining manifolds 指在太阳能光伏发电工程中,将一定数量规格相同的光伏组件串联起来,组成一个个光伏串列,然后再将若干个光伏串列并联汇流后接入的装置。

8逆变器grid-connected inverter 指将光伏阵列的直流电转化为交流电,同时又具备各种保护功能并在满足特定的条件下能够实现自动并网的装置。

9光伏支架PV support bracket指太阳能光伏发电系统中为了摆放、安装、固定光伏电池面板而设计的特殊支架。

10调试debugging 指设备在安装过程中及安装结束后、移交生产前,按设计和设备技术文件规定进行调整、整定和一系列试验工作的总称。

太阳能跟踪系统:太阳能电池有效利用外文翻译

太阳能跟踪系统:太阳能电池有效利用外文翻译

Solar Tracking System: More Efficient Use ofSolar PanelsAbstract--This paper shows the potential system benefits of simple tracking solar system using a stepper motor and light sensor. This method is increasing power collection efficiency by developing a device that tracks the sun to keep the panel at a right angle to its rays. A solar tracking system is designed, implemented and experimentally tested. The design details and the experimental results are shown.Keywords--Renewable Energy, Power OptimizationⅠ.IntroductionExtracting useable electricity from the sun was made possible by the discovery of the photoelectric mechanism and subsequent development of the solar cell a semi-conductive material that converts visible light into a direct current. By using solar arrays, a series of solar cells electrically connected, a DC voltage is generated which can be physically used on a load. Solar arrays or panels are being used increasingly as efficiencies reach higher levels, and are especially popular in remote areas where placement of electricity lines is not economically viable.This alternative power source is continuously achieving greater popularity especially since the realisation of fossil fuel's shortcomings. Renewable energy in the form of electricity has been in use to some degree as long as 75 or 100 years ago. Sources such as Solar, Wind, Hydro and Geo- thermal have all been utilised with varying levels of success. The most widely used are hydro and wind power, with solar power being moderately used worldwide. This can be attributed to the relatively high cost of solar cells and their lowconversion efficiency. Solar power is being heavily researched, and solar energy costs have now reached within a few cents per kW/h of other forms of electricity generation, and will drop further with new technologies such as titanium-oxide cells. With a peak laboratory efficiency of 32% and average efficiency of 15-20%, it is necessary to recover as much energy as possible from a solar power system.This includes reducing inverter losses, storage losses, and light gathering losses. Light gathering is dependent on the angle of incidence of the light source providing power (i.e. the sun) to the solar cell's surface, and the closer to perpendicular, the greater the power. If a flat solar panel is mounted on level ground, it is obvious that over the course of the day the90in the morning and the evening. At such sunlight will have an angle of incidence close to 0an angle, the light gathering ability of the cell is essentially zero, resulting in no output. As the day progresses to midday, the angle of incidence approaches 00, causing an steady increase in power until at the point where the light incident on the panel is completely perpendicular, and maximum power is achieved.As the day continues toward dusk, the reverse happens, and the increasing angle causes the power to decrease again toward minimum again.From this background, we see the need to maintain the maximum power output from the panel by maintaining an angle of incidence as close to 00as possible. By tilting the solar panel to continuously face the sun, this can be achieved. This process of sensing and following the position of the sun is known as Solar Tracking. It was resolved that real-time tracking would be necessary to follow the sun effectively, so that no external data would be required in operation.2.The sensing element and signal processingMany different methods have been proposed and used to track the position of the sun. The simplest of all uses an LDR- a Light Dependent Resistor to detect light intensity changes on the surface of the resistor. Other methods, such as that published by Jeff Damm in Home Power, use two phototransistors covered with a small plate to act as a shield to sunlight, as shown in Fig. 1.Fig.1 Alternative solar tracking methodWhen morning arrives, the tracker is in state A from the previous day. The left phototransistor is turned on, causing a signal to turn the motor continuously until the shadow from the plate returns the tracker to state B. As the day slowly progresses, state C is reached shortly, turning on the right phototransistor. The motor turns until state B is reached again, and the cycle continues until the end of the day, or until the minimum detectable light level is reached.The problem with a design like have a narrow range of sensitivity, this is that phototransistors once in a circuit under set bias conditions. they have been set up It was because of this fact that solar cells themselves were chosen to be the sensing devices. They provide an excellent mechanism in light intensity detection- because they are sensitive to varying light and provide a near-linear voltage range that can be used to an advantage in determining the present declination or angle to the sun. As a result, A simple triangular set-up was proposed, with the two solar cells facing opposite directions, as shown in Fig. 2.Fig.2 Set-up of solar reference cellsIn its rest position, the solar cells both receive an equal amount of sunlight, as the angle of incidence, although not 900, is equal in both cases as seen in Fig. 3.Fig.3Solar reference cells at rest positionIt can be seen in Fig. 4 that as the sun moves in the sky, assuming that the solar tracker has not yet moved, the angle of incidence of light to the reference panels will cause more light to fall on one cell than the other.Fig.4 Solar reference cells at a significant angle to the sun This will obviously cause a voltage difference, where the cell that is facing the sun will have higher potential than the other. This phenomenon will result in a detectable signal at each cell, which can be processed by a suitable circuit.3.A prototype solar trackerThe final stage involved coupling the circuitry to the motor and mounting it onto the bracket. The final product is seen complete in Fig. 5.Fig.5 A prototype solar trackerIt has a Solarex 9W solar array made of polycrystalline silicon mounted on the flanges, which was borrowed from the tech officers.Quite simply having two test subjects carried out testing. The first scenario involved removing the panel from the tracker and laying it in a flat orientation. The output was connected to a load that would dissipate 9W that would match the panel's rating 9W at 12V corresponds to a current of 0.75A, so by Ohm's law; a load resistance was calculated as being 16Ω. A 15Ω50W resistor was the closest value found and was connected to the panel. The tracking device still requires power, but a 12V battery that is connected in a charging arrangement with the solar panel supplies it. The voltage across and current through the load was monitored using two separate multimeters, and was recorded every half- hour on a clear day into an Excel spreadsheet. The readings were taken on a span of days that possessed similar conditions including no cloud cover. The readings are shown below in a graph generated by Excel in Fig. 6.Fig.6 Experimental resulte of power increase for tracked panel It is possible to calculate a percentage increase and an average increase by writing the appropriate calculations in excel. It was found that in this case, the fixed panel provided an average of 39% of its 9W, or 3.51W, calculated over a 12- hour period. By contrast, the tracked solar panel achieved an overall 71 % output, or 6.3W over the same time frame. Atthe earlier and later hours, the power increase over the fixed panel reached up to 400%.This amounts to an average 30% increase in power simply by maintaining the solar panel as perpendicular as possible to the sun. To ensure that power was not being wasted, the device itself was also monitored for current drawn to power itself. When the device was at rest, an ammeter was placed in series with the battery. The total current at 12V was measured as only 4mA, which corresponded to a power dissipation of 48mW under no load.4. DiscussionA solar tracker was proposed, designed and constructed. The final design was successful, in that it achieved an overall power collection efficiency increase from only 39% for a fixed panel to over 70% for the same panel on the tracking device. In terms of real value, this means that the overall cost of a system can be reduced significantly, considering that much more power can be supplied by the solar array coupled to a solar tracking device. By extracting more power from the same solar panel, the cost per watt is decreased, thereby rendering solar power much more cost-effective than previously achieved using fixed solar panels.The high outlay in a solar tracking system has been a factor that discouraged tracking as a means of increasing overall solar efficiency. Many commercial units cost in excess of US $2000 for a unit that can track the sun while bearing a panel of considerable weight. The device presented in this thesis is capable of supporting a load of at least 8 kg, the average weight of a 75 W solar panel, owing to its simple construction and the high torque capabilities of the motor. The parts used for this device were also extremely low-cost, with the total value using parts found from scrap sources being a total of about A $ 30, including all electronic components and solar reference cells. The geared support was removed from an old securitycamera, the stepping motor from an old printer, and all other parts, excluding the 9W solar panel, were sourced from various scrap items. However, if all these parts would have to be purchased, the cost would be projected at no more than A$ 100.A single axis tracker such as the one made offers a great power increase over a fixed solar panel, but a two-axis tracker would provide more power still. This could be a subject for further development.Solar tracking is by far the easiest method to increase overall efficiency of a solar power system for use by domestic or commercial users. By utilising this simple design, it is possible for an individual to construct the device themselves.5. ConclusionA solar tracker is designed employing the new principle of using small solar cells to function as self-adjusting light sensors, providing a variable indication of their relative angle to the sun by detecting their voltage output. By using this method, the solar tracker was successful in maintaining a solar array at a sufficiently perpendicular angle to the sun. The power increase gained over a fixed horizontal array was in excess of 30%.6.References⑴Fahrenburch, A and Bube, R. 1983, Fundamentals of solar cells, AcademicPress, New York.⑵Partain, L.D.1995,Sollar Cells and their applications, John Wiley& ,Sons. New York.⑶ E Weise, R Klockner, R Kniel, Ma Sheng Hong, Qin Jian Ping, "Remote PowerSupply Using Wind and Solar energy-a Sino-German Technical Cooperation Project", Beijing International Conference on Wind Energy, Beijing, 1995.⑷Wichert B, Lawrance W, Friese T, First Experiences with a Novel Predictive ControlStrategy for PV-Diesel Hybrid Energy Systems, 1999.⑸Duryea S, Syed I, Lawrence W, An Automated Battery Management System forPhotovoltaic Systems, International Journal of Renewable Energy Engineering, V ol I, No 2, Aug 1999.⑹Twidell J, Weir J, Renewable Energy Systems,⑺Chapmanand Hall, 1994 Centre for Resources and Environmental Studies,ANU,Sustainable, Energy Systems Pathways for Australian Energy Reforms, Cambridge University Press, 1994.⑻Damm, J. Issue #17, June/July 1990. An active solar tracking system, HomeBrewMagazine.太阳能跟踪系统:太阳能电池有效利用摘要-文章介绍了使用步进电机和光传感器跟踪太阳的简单方法潜在的好处,用此方法可以提高功率、效率,高级装置可以跟踪太阳以保持部分光线垂直照射,并有太阳能跟踪系统的设计,实施和实验测试、细节的设计和实验结果。

太阳能电池板照射角自动跟踪系统设计论文(含中英文翻译资料)

太阳能电池板照射角自动跟踪系统设计论文(含中英文翻译资料)

太原理工大学毕业设计(论文)任务书第2页第3页目录摘要 ...........................................................................................................................................................- 1 - 一、概述....................................................................................................................................................- 3 -(一)能源与环保............................................................................................................................- 3 -1.能源短缺................................................................................................................................- 3 -2.环境污染................................................................................................................................- 3 -3.温室效应................................................................................................................................- 3 -(二)太阳能的特点........................................................................................................................- 4 - (三)国内外太阳能应用的现状....................................................................................................- 5 - (四)几种主要的太阳能发电装置................................................................................................- 6 -1.塔式太阳能发电系统............................................................................................................- 6 -2.聚光光伏发电系统................................................................................................................- 7 -3.碟式太阳能发电系统............................................................................................................- 8 -(五)太阳能跟踪技术现状..........................................................................................................- 10 - (八)本章小结..............................................................................................................................- 22 - 二、跟踪系统的设计构想及框架..........................................................................................................- 23 -(一)跟踪系统的设计要求..........................................................................................................- 23 - (二)跟踪系统的组成..................................................................................................................- 23 -1.太阳能采集装置..................................................................................................................- 24 -2.转向机构..............................................................................................................................- 24 -3.控制部分..............................................................................................................................- 25 -4.贮能装置..............................................................................................................................- 25 -5.逆变器..................................................................................................................................- 25 -6.控制器..................................................................................................................................- 26 -(三)太阳照射规律....................................................................................................................- 26 -1.地球围绕太阳的运行规律..................................................................................................- 26 -2.太阳高度角和方位角的确定..............................................................................................- 27 -(三)本章小结..............................................................................................................................- 30 - 三、机械部分的设计..............................................................................................................................- 31 -(一)整体框架的设计..................................................................................................................- 31 - (二)减速装置的选型..................................................................................................................- 32 - (三)驱动电机的选型..................................................................................................................- 33 - (四)本章小结..............................................................................................................................- 34 - 四、控制部分的设计..............................................................................................................................- 36 -(一)控制器..................................................................................................................................- 36 -1.匹配系统..............................................................................................................................- 36 -2.并联调节器..........................................................................................................................- 38 -3.串联调节器..........................................................................................................................- 39 -(二)单片机的选型......................................................................................................................- 40 -1.结构框图:............................................................................................................................- 40 -2.AT89C51的引脚...................................................................................................................- 41 -(四)步进电机驱动芯片的选型..................................................................................................- 47 - (五)整体电路图的设计..............................................................................................................- 50 - (六)本章小结..............................................................................................................................- 50 - 五程序部分的设计................................................................................................................................- 51 - (一)流程图设计..........................................................................................................................- 51 - (二)程序设计..............................................................................................................................- 53 - (三)本章小结..............................................................................................................................- 57 - 结论与展望..............................................................................................................................................- 58 - 参考文献..................................................................................................................................................- 59 - 致谢 .........................................................................................................................................................- 60 - 外文文献..................................................................................................................................................- 61 - (一)原文......................................................................................................................................- 61 - (二)翻译......................................................................................................................................- 66 -摘要随着以常规能源为基础的能源结构随着资源的不断耗用将越来越适应可持续发展的需要,包括太阳能在内的可再生资源将会越来越受到人们的重视。

适用于太阳能热水器的太阳能跟踪器文献翻译讲解

适用于太阳能热水器的太阳能跟踪器文献翻译讲解

适用于太阳能热水器的太阳能跟踪器摘要利用太阳能来加热水,已经不是一个新的想法了。

数百年前,黑色烤漆水箱就被用来作为一种简单的太阳能热水器在一些国家被尝试。

太阳能热水器技术,在过去的一个世纪得到了极大的提升。

今天,有超过30万平方米的太阳能集热器安装在全球各地。

不计其数的现代太阳能热水器,在诸多国家使用,如中国,印度,德国,日本,澳大利亚和希腊。

事实上,在一些国家,法律要求任何新的住宅建筑项目都必须安装太阳能热水器。

现在的任务是设计一个新的跟踪装置,使太阳能电池板能够最佳地跟踪一天中太阳光方向的变化。

实施这种跟踪,可以大大提高太阳能电池板工作效率,并且使太阳能电池板用来提供给智能家居生活。

本文验证了太阳能跟踪器样机的设计和建造过程,这期间积累的经验和遇见的问题也将使我们继续这一项目的研究。

1引言改变太阳能电池板的角度,这样能使太阳能电池板充分利用太阳能。

这是通过旋转面板始终垂直于太阳的入射角实现的。

初步测试后,这个过程可以提高太阳能发电系统50 %的工作效率。

这些测试结果说明这是一个很有吸引力的研究,加强了现有的太阳能发电系统。

其目标是建立一个跟踪机,完成太阳能跟踪,并实现最高的效率。

其终极目标是本项目要符合成本效益,那也就是说随着时间的推移将大大降低发展跟踪机的成本。

除了上述功能目标,智能家居还为我们的项目提出了以下的其他目标:必须不依靠外部电源(自我维持),必须美观,而且还要能防水。

我们设计的太阳能跟踪器包括三个组成部分:框架,传感器和驱动系统。

每个都被仔细的审查和检测,实行跟踪。

先前的太阳能跟踪小组设计的框架是一个铝棱柱形框架。

它采用了一种“格式”设计,并且旋转轴在中间,与方形电池板底部相连的是一个用来支撑集热板的平台。

该框架本身有一个角度,此角度的度数由小组对当地实际情况调查而定,其旋转的轨道是系统随太阳从东到西转动,这一过程在白天进行。

该传感器系统设计采用了两个小型太阳能电池板作为跟踪机的采集板。

光伏系统中英文对照

光伏系统中英文对照

光伏系统中英文对照太阳能光伏系统专业词汇中英对照顺德中山大学太阳能研究院罗宇飞孙韵琳一、太阳电池相关词汇太阳电池olarcell将太阳辐射能直接转换成电能的器件单晶硅太阳电池inglecrytallineiliconolarcell以单晶硅为基体材料的太阳电池多晶硅太阳电池multicrytallineiliconolarcell以多晶硅为基体材料的太阳电池非晶硅太阳电池amorphouiliconolarcell用非晶硅材料及其合金制造的太阳电池。

薄膜太能能电池Thin-filmolarcell用硅、硫化镉、砷化镓等薄膜为基体材料的太阳电池。

这些薄膜通常用辉光放电、化学气相淀积、溅射、真空蒸镀等方法制得。

多结太阳电池multijunctionolarcell由多个p‐n结形成的太阳电池。

用化合物半导体材料制成的太阳电池带硅太阳电池iliconribbonolarcell用带状硅制造的太阳电池光电子photo-electron由光电效应产生的电子。

太阳电池的伏安特性曲线I-Vcharacteriticcurveofolarcell受光照的太阳电池,在一定的辐照度和温度以及不同的外电路负载下,流入的电流I和电池端电压V的关系曲线。

短路电流hort-circuitcurrent(Ic)在一定的温度和辐照度条件下,光伏发电器在端电压为零时的输出电流。

开路电压open-circuitvoltage(Voc)在一定的温度和辐照度条件下,光伏发电器在空载(开路)情况下的端电压。

最大功率ma某imumpower(Pm)在太阳电池的伏安特性曲线上,电流电压乘积的最大值。

最大功率点ma某imumpowerpoint在太阳电池的伏安特性曲线上对应最大功率的点,亦称最佳工作点。

最佳工作点电压optimumoperatingvoltage(Vn)太阳电池伏安特性曲线上最大功率点所对应的电压。

最佳工作点电流optimumoperatingcurrent(In)太阳电池伏安特性曲线上最大功率点所对应的电流。

最新太阳能专业术语的英文翻译精品资料

最新太阳能专业术语的英文翻译精品资料

太阳电池 solar cell通常是指将太阳光能直接转换成电能的一种器件。

硅太阳电池silicon solar cell硅太阳电池是以硅为基体材料的太阳电池。

单晶硅太阳电池single crystalline silicon solar cell单晶硅太阳电池是以单晶硅为基体材料的太阳电池。

非晶硅太阳电池(a—si太阳电池)amorphous silicon solar cell 用非晶硅材料及其合金制造的太阳电池称为非晶硅太阳电池,亦称无定形硅太阳电池,简称a—si太阳电池。

多晶硅太阳电池polycrystalline silicon solar cell多晶硅太阳电池是以多晶硅为基体材料的太阳电池。

聚光太阳电池组件photovoltaic concentrator module 系指组成聚光太阳电池,方阵的中间组合体,由聚光器、太阳电池、散热器、互连引线和壳体等组成。

电池温度cell temperature系指太阳电池中P-n结的温度。

太阳电池组件表面温度solar cell module surface temperature系指太阳电池组件背表面的温度。

大气质量(AM)Air Mass (AM)直射阳光光束透过大气层所通过的路程,以直射太阳光束从天顶到达海平面所通过的路程的倍数来表示。

太阳高度角 solar 太阳高度角 solar elevation angle太阳光线与观测点处水平面的夹角,称为该观测点的太阳高度角。

辐照度 irradiance系指照射到单位表面积上的辐射功率(W/m2)。

总辐照(总的太阳辐照)total irradiation (total insolation) 在一段规定的时间内,(根据具体情况而定为每小时,每天、每周、每月、每年)照射到某个倾斜表面的单位面积上的太阳辐照。

直射辐照度direct irradiance照射到单位面积上的,来自太阳圆盘及其周围对照射点所张的圆锥半顶角为8o的天空辐射功率。

外文翻译-太阳光线自动跟踪装置偏转机构设计

外文翻译-太阳光线自动跟踪装置偏转机构设计

本科毕业设计(论文) 外文翻译(附外文原文)学院:机械与控制工程学院课题名称:太阳光线自动跟踪装置偏转机构设计专业(方向):机械设计制造及其自动化(机械装备设计与制造) 班级:机械11-2班学生:钟军指导教师:邹自明日期: 2015年3月10日日晷太阳能跟踪设备的限制要求模拟王思懿,孙友红,王青岩,王庆华,魏明摘要:日晷太阳跟踪器是跟踪太阳并能促进阳光接收的太阳能电池板的效率的机器。

它的运转由风荷载的强烈影响。

以往的研究多集中在跟踪精度和跟踪方法,跟踪机器运行时风荷载的影响并没有引起足够的重视,使许多跟踪机器没有设计合理的基础上,这导致了不合理的设计和高昂的维护成本,并严重影响了跟踪机器的应用和普及。

使许多跟踪机器没有在这个基础上设计合理,这导致了不合理的设计和高昂的维护成本,并严重影响了跟踪机器的应用和普及。

因此,以16平方米的日晷太阳跟踪器作为研究对象,从风荷载的角度进行研究。

对16平方米日晷太阳能跟踪机器的模型开展一系列的计算流体动力学(CFD)分析。

首先,为了使CFD分析顺利进行,建立三维实体模型后,将模型简化,并对简化模型进行网格划分。

然后,在虚拟环境中,使模拟更接近真实的同时不会太复杂,以免模拟难以实现中,进行空气的流动自然的假设,合理设定分析的边界条件,选择适当的CFD分析求解器。

最后,将CFD分析的结果进行了分析和梳理,限制要求(即,力的条件极限的状况下),如最大负载和最大扭矩,用于进一步的有限元分析(FEA)和产品的优化设计。

本文提出一种有效的计算机仿真分析方法来设计和优化这种类型的太阳跟踪装置,这种方法可以大大缩短开发周期和成本。

关键词:日晷;跟踪器;风荷载;计算流体动力学(CFD);限制要求1 引言可持续发展的若干定义已经被提出和使用,包括最常见的一种在布伦特兰的报告中:“可持续发展既满足当代人的需求,又不损害后代人满足其需要的能力”。

最近世界能源理事会的报告提出,就目前的实践状况,不做任何改变前提下,到2020年世界能源需求将比1990年的水平高出50-80%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录1Solar TrackerThe Solar Tracker team was formed in the fall of 2005 from five students in an ME design team, and a Smart House liaison. We continued the work of a previous solar tracker group. The task was to design a prototype tracking device to align solar panels optimally to the sun as it moves over the course of the day. The implementation of such a system dramatically increases the efficiency of solar panels used to power the Smart House. This report examines the process of designing and constructing the prototype, the experiences and problems encountered, and suggestions for continuing the project.1.IntroductionSolar tracking is the process of varying the angle of solar panels and collectors to take advantage of the full amount of the sun‟s energy. This is done by rotating panels to be perpendicular to the sun‟s angle of incidence. Initial tests in industry suggest that this process can increase the efficiency of a solar power system by up to 50%. Given those gains, it is an attractive way to enhance an existing solar power system. The goal is to build a rig that will accomplish the solar tracking and realize the maximum increase in efficiency. The ultimate goal is that the project will be cost effective – that is, the gains received by increased efficiency will more than offset the one time cost of developing the rig over time. In addition to the functional goals, the Smart House set forth the other following goals for our project: it must not draw external power (self-sustaining), it must be aesthetically pleasing, and it must be weatherproof.The design of our solar tracker consists of three components: the frame, the sensor, and the drive system. Each was carefully reviewed and tested, instituting changes and improvements along the design process. The frame for the tracker is an aluminum prismatic frame supplied by the previous solar tracking group. It utilizes an …A-frame‟ design with the rotating axle in the middle. Attached to the bottom of this square channel axle is the platform which will house the main solar collecting panels. The frame itself is at an angle to direct the panels toward the sun (along with the inclination of the roof). Its rotation tracks the sun from east to west during the day.The sensor design for the system uses two small solar panels that lie on the same plane as the collecting panels. These sensor panels have mirrors vertically attached between them so that, unless the mirror faces do not receive any sun, they are shading one of the panels, while the other is receiving full sunlight. Our sensor relies on this difference in light, which results in alarge impedance difference across the panels, to drive the motor in the proper direction until again, the mirrors are not seeing any sunlight, at which point both solar panels on the sensor receive equal sunlight and no power difference is seen.After evaluation of the previous direct drive system for the tracker, we designed a belt system that would be easier to maintain in the case of a failure. On one end of the frame is a motor that has the drive pulley attached to its output shaft. The motor rotates the drive belt which then rotates the pulley on the axle. This system is simple and easily disassembled. It is easy tointerchange motors as needed for further testing and also allows for optimization of the final gear ratio for response of the tracker.As with any design process there were several setbacks to our progress. The first and foremost was inclement weather which denied us of valuable testing time. Despite the setbacks, we believe this design and prototype to be a very valuable proof-of-principle. During our testing we have eliminated many of the repetitive problems with the motor and wiring so that future work on the project will go more smoothly. We also have achieved our goal of tracking the sun in a …hands-off‟ demo. We were able to have the tracker rotate under its own power to the angle of the sun and stop without any assistance. This was the main goal set forth to us by the Smart House so we believe our sensed motion prototype for solar tracking will be the foundation as they move forward in the future development and implementation of this technology to the house.2. Defining the ProblemThe project was to complete the “REV 2” design phase of the solar tracker to be used on the Smart House. While the team was comprised of members from the ME160 senior design course, the customer for this project was to be the Smart House organization. Jeff Schwane, a representative from the Smart House, was our liaison and communicated to our group the direction Smart House leadership wished us to proceed.At our first meeting with Jeff and Tom Rose, the following needs were identified:1.Track the sun during the daye no external power source3.Weather proof4.Cost effective power gain5.Must look good6.Solar panel versatile i.e. can fit different types of panelsWith these needs in hand, we constructed a Quality Function Deployment chart. This chart can be found in Appendix A. The QFD showed the major areas of concern might havebeen: number of panels/size of panels, internal power requirements, motor torque required.At our first meeting we were also able to set up our goals for the semester. Having a working prototype capable of tracking the sun was to be the main goal for the end of the semester, but we soon found that in order to accomplish this, we would be forced to omit portions of the design criteria in hopes they would be worked out later. This would result in the optimization of platform space on the roof to be irrelevant, with our goal being to have one platform track. It also led to the assumption that our base would not need to be tested for stability or required to be fastened to the roof. With an idea of where we were to begin, from scratch with the possibility of using the frame from the “REV 1” design, and an idea of where we were to finish, with a moving prototype, we constructed the Gantt chart that can be found in Appendix B. Our group planned to meet with Jeff once a week to make sure we were on track with the needs of the Smart House. Jeff would also meet with Tom Rose, the director of Smart House, at least once a week in order to keep everyone on the same page. With our goals in mind we embarked on the process of idea generation.3. Concepts and Research3.1 Tracking TypeOur group used a brainstorming approach to concept generation. We thought of ideas for different solar tracking devices, which proved difficult at times due to the existing frame and concept presented to us by Smart House. Other concepts were generated through research of pre-existing solar tracking devices. Originally our concept generation was geared towards creating a completely new solar tracker outside of the constraints of the previous structure given to us by Smart House. This initial brainstorming generated many concepts. The first one was a uni-axial tracking system that would track the sun east to west across the sky during the course of a day and return at the end of the day. This concept presented the advantage of simplicity and presented us with the option to use materials from the previous structure (which was also intended to be a uni-axial tracker) in construction. Another more complex concept was to track the sun bi-axially which would involve tracking the sun both east to west and throughout the seasons. The advantage of this concept was a more efficient harvesting of solar energy. The third concept was to only track throughout the seasons. This would provide small efficiency gains but nowhere near the gain provided by tracking east to west.The different structures we came up with to accomplish tracking motion included a rotating center axle with attached panels, hydraulic or motorized lifts which would move the main panel in the direction of the sun, and a robotic arm which would turn to face the sun. The clear efficiency gains coupled with the simplicity of design of the uni-axial tracking system and the existence of usable parts (i.e. motor and axle) for the rotating center axle structure, led us to thechoice of the East to West tracking, rotating center axle concept.3.2 StructureOnce the method of motion was chosen, it was necessary to generate concepts for the structural support of the axle. Support could be provided by the triangular prismatic structure which was attempted by the previous Smart House solar tracker group or through the use of columns which would support the axis on either side. While the prismatic structure presented the advantage of mobility and an existing frame, the columns would have provided us with ease of construction, simple geometric considerations, and ease of prospective mounting on the roof. Due to the heightened intensity of time considerations, the previous financial commitment to the prismatic structure by Smart House, and our limited budget, the presence of the pre-existing frame proved to be the most important factor in deciding on a structure. Due to these factors we decided to work within the frame which was provided to us from the previous Solar Tracker group.3.2 Tracking MotionOnce the structural support was finalized we needed to decide on a means to actualize this motion. We decided between sensed motion, which would sense the sun‟s position and move to follow it, and continuous clock type motion, which would track the sun based on its pre-determined position in the sky. We chose the concept of continuous motion based on its perceived accuracy and the existence of known timing technology. During the evaluation stage, however, we realized that continuous motion would prove difficult. One reason was the inability to draw constant voltage and current from the solar panels necessary to sustain consistent motion, resulting in the necessity for sensing the rotation position to compensate. Continuous motion also required nearly constant power throughout the day, which would require a mechanism to store power. Aside from these considerations, the implementation of a timing circuit and location sensing device seemed daunting. After consulting Dr. Rhett George, we decided on a device using two panels and shading for sensed motion.4. Analysis and Embodiment4.1 Structure GeometryThe geometry of the frame was created in order to allow the solar panels to absorb light efficiently. This was done by allowing rotation in the east-west direction for tracking the sun daily and a 36° inclination (Durham‟s latitude) towards the south. Because this frame was designed to be placed on a roof with a slope of 25°, the actual incline of the frame was made to be 11°.The geometry of the existing platform structure was modified. This was done in order to incorporate the results from the Clear Day Model supplied to us by Dr. Knight. This model led tothe conclusion that the platform should track to up to 60° in both directions of horizontal. Thus, the angle range of the frame had to be increased. The sides of the frame were brought in to increase the allowable angle of rotation, and they were brought in proportionally to maintain the inclination angle of 11°. Also, crosspieces were moved to the inside of the frame to allow greater rotation of the platform before it came into contact with the support structure.The panels used for sensing and powering rotation were placed on the plane of the platform. Mirrors were placed perpendicular to and in between the panels to shade one and amplify the other in order to produce a difference to power the motor. The sensing panels were placed outside the platform area to maintain the largest area possible for collecting panels. A third sensing panel was mounted nearly vertical and facing east to aid rotation back towards the sun in the morning. This panel was attached to the frame under the platform, so that during most of the day, it‟s shaded with minimal effects on sensed rotation.Minimizing the torques on the motor was a main concern in order to minimize the motor power needed. The platform designed for the placement of the collecting solar panels was placed under the rotational shaft so that the panels would be aligned with it the rotational axis. Since the main panels comprise the majority of the weight putting these in the plane of the rotational axis reduces torque on the shaft. The sensing panels were placed symmetrically about the axis of rotation in order to prevent additional torque on the motor. The third panel was attached to the frame instead of the platform or rotational shaft so as to also avoid any torque.4.2 MaterialsMaterials selection for most of the frame was simple because it had already been constructed. The mirrors used for the amplification and shading of the sensing panels were also already purchased and available for use. Additional parts for attachment of the panels and mirrors to the frame were taken from the scrap pieces available in the machine shop. In our selection of sensing panels, size and power needed to be balanced effectively. The panels were to be as small as possible in order to add minimal stress and weight to the frame but also needed to be powerful enough to power the rotation of the platform. Therefore, the most powerful of the intermediate sized panels available were selected. The panels purchased also appeared to be the most reliable of our options.4.3 Drive MechanismAfter designing a prototype and testing it, the motor purchased and used by the previous solar tracker group was slipping. It was removed, and the installation of a gear system with another simple motor was suggested and attempted. Professor Knight supplied some gears as well as some belts and pulleys. One end of the shaft was lathed so that one of the pulleys could be set on it, and spacers were bought so that a 6V motor we had available could power anotherpulley. These pulleys were to be connected by a belt. This motor demonstrated insufficient strength to turn the rotational shaft. The original motor, once detached, was taken apart and examined. Itappeared to be working again so a new pulley was purchased to fit it and was attached in the place of the 6V motor.5. Detailed Design5.1 FrameThe frame was designed from one inch square aluminum tubing, and a five foot long, two inch square tube for the axle. It is constructed with a rigid base and triangular prismatic frame with side supporting bars that provide stability. The end of the axle is attached to a system of pulleys which are driven by the motor. It is easily transported by removing the sides of the base and folding the structure.5.2 SensorOur sensing panels are bolted to the bottom of the main solar panel frame and braced underneath with half inch L-brackets. The mirrors are attached to the inside of the sensing panels and braced by L-brackets as well. The whole structure attaches easily to the main panel frame which is attached to the main axle using four 2-inch U-bolts. A third panel is bolted to the structure to return the main panels direction towards the horizon of sunrise.5.3 How the Sensor WorksOur sensor creates movement of the motor by shading one of the panels and amplifying the other when the system is not directly facing the sun. The two sensing panels are mounted parallel to the main panels symmetrically about the center axle with two mirrors in between them. The shading on one of the panels creates high impedance, while the amplified panel powers the motor. This happens until the panels receive the same amount of sunlight and balance each other out (i.e. when the sensing panels and main panels are facing the sun.). We initially attempted using a series configuration to take advantage of the voltage difference when one of the panels was shaded (Appendix C). This difference, however, was not large enough to drive the motor. We subsequently attempted a parallel configuration which would take advantage of the impedance of the shaded panel (Appendix C) and provide the current needed to drive the motor. Once the sensing mechanism has rotated from sunrise to sunset, the third panel, which is usually shaded, uses sunlight from the sunrise of the next day to power the motor to return the panels towards the direction of the sun.6. Prototype TestingInitial testing was done using just the sensing component and a 6V motor. The panels were tilted by hand to create shading and amplification. A series configuration of the sensing panels was initially tested and proved ineffective. Data acquisition showed a maximum of a 2Vdifference across the motor, which was insufficient to power it. Upon testing the panels individually, it was discovered that the open voltage across each individual panel would only vary between 21.5V and 19.5V when fully amplified and fully shaded, respectively. The current running through each panel, however, was seen to fluctuate between nearly 0 amps when shaded, up to 0.65 amps when fully amplified. Therefore, in order to take advantage of the increase in impedance of the solar panels due to shading, we chose to put our sensing panels in parallel with each other and the motor. Tests with this configuration turned the motor in one direction, stopped when the sensing panels were nearly perpendicular to the sun, and reversed direction as the panels rotated past perpendicular. We found the angle range necessary to stop the motor to be very small. It was also observed that the panels rotated to slightly past perpendicular when they ceased motion. This error may be due to a difference in the innate resistance in each individual sensing panel. When tested it was found that one panel had a resistance of 52 kΩ, and the other panel resistance was 53 kΩ. Other testing found the voltage and current provided by the sensing solar panels to the motor to be consistent at all points, excluding when the solar panels are directly facing the sun. Through testing it was concluded that resistance may need to be added to one of the panels to compensate for the differences in the internal resistances of the individual panels, and a voltage regulator needs to be added to decrease the voltage seen across the motor. The original motor was prone to failure as its slippage caused the breakdown of our initial prototype after testing. This led to the institution of the pulley and belt driven system which would allow for easier maintenance given motor failure or slippage. The success of our initial testing and prototype proved to us the efficacy of our solar tracker design.7. ConclusionThroughout this project we enlisted the support of multiple resources (i.e. ME and EE professors, previous Smart House teams). We learned early on that a clear problem definition was essential to efficient design and progress. We struggled initially as we tried to design a tracking device that was diffe rent from the previous solar tracker group‟s attempt, without fully weighing the size of their investment and the advantages of using the existing frame for our purposes. As we worked with the fixed frame construction from the previous group we learned that variability of design is key, especially when in the initial phases of prototyping. After many setbacks in testing of the solar panels, we learned that when working with solar panels, much time needs to be set aside for testing due to the unpredictability of the weather.The actual implementation of using the prototype in its intended location on the Smart House roof requires weather-proofing to protect the wiring and electrical connections from the elements, housing for the motor, a bracing system to attach the structure to the roof, and possible redesign to eliminate excess height and simplify overall geometry. The efficiency of the sensorsystem could be improved by widening the mirrors or by placing blinders along the sides of the panels to decrease the effects of reflected and refracted light incident on the shaded sensing panel.附录2太阳能跟踪器摘要太阳能跟踪队成立于2005年秋季,设计团队由五名队员组成,我们还负责与智能家居的联络工作。

相关文档
最新文档