cuprous oxide
液相法制备氧化亚铜的研究进展及应用郑琴_周迎梅_王翰玉_王苾菡_崔悦_吕开龙
22亚微米材料比表面积大使其在许多领域都有很好的应用前景。
氧化亚铜(Cu 2O)是一种环境友好的p型金属氧化物半导体,在室温下具有~2.17eV的直接带隙和独特的激子性质,定制的Cu 2O晶体结构因其实现各种功能的物理化学性质而吸引了人们的极大研究兴趣。
特别是在Cu 2O的参与下,在能量转换、催化剂、传感器和化学模板等领域取得了非常令人兴奋的进展强烈刺激了具有可控尺寸、形状、晶面、缺陷、掺杂剂和异质结构的Cu 2O的快速发展。
1 Cu 2O 的性质Cu 2O为一价铜的氧化物,因制备方法和获取的颗粒尺寸不同会有不同的颜色,通常为红色或橙黄色,有时为黄、橙、红或紫色。
Cu 2O几乎不溶于水,在酸性溶液中可歧化为二价铜和铜单质。
在室温干燥条件下,Cu 2O可以稳定存在,但在潮湿的空气中容易被氧化为氧化铜。
制备的中空结构的Cu 2O形状大多为球形,直径在亚微米范围。
2 Cu 2O 的制备方法2.1 溶剂热法溶剂热法是指将反应物质溶解在一定温度、压力的溶剂中并发生反应析出微纳米晶体的方法。
溶剂热法中所使用的溶剂可以是水或有机溶剂,以水作为溶剂,在一定的温度下合成得到微纳米材料的方法,又称为水热法。
王磊[1]以十六烷基三甲基溴化铵为模板,无水硫酸铜和葡萄糖溶解到水中,利用溶剂热法120℃下反应得到花球状结构微纳米氧化亚铜粒子。
孙晶晶[2]将乙酸铜溶于离子水,在聚乙烯吡咯烷酮辅助的条件下,反应温度为160℃下合成得到了六角锥状氧化亚铜纳米粒子。
该过程中聚乙烯吡咯烷酮的添加量对于形成的氧化亚铜形貌有决定性影响。
不添加聚乙烯吡咯烷酮,纳米粒子会形成表面均匀的球形。
随着聚乙烯吡咯烷酮的添加量增加,粒子形成金字塔形慢慢过渡到六角锥状。
聚乙烯吡咯烷酮对晶体形状的形成起到了调节的作用。
梁攀[3]采用水和有机溶剂(乙醇或乙二醇)结合的双溶剂体系,利用水热法合成得到了微米级不同形貌的氧化亚铜,原料乙酸铜和柠檬酸钠的配比对晶体形状有很大影响。
银负载纳米氧化亚铜沸石复合物的制备和抗菌性能
银负载纳米氧化亚铜沸石复合物的制备和抗菌性能夏卓英;梁桥发;郑明艺;曾国【摘要】以葡萄糖为还原剂,聚乙二醇PEG400为模板,采用液相还原法制备沸石-纳米氧化亚铜复合体,采用络合浸渍法制备不同载银量的银掺杂氧化亚铜沸石,考察银的负载量对物质结构和抗菌性能的影响.运用X射线衍射、SEM等方法对复合抗菌剂进行了分析表征,结果表明,不同掺银量的沸石/Cu2O样品除了有立方晶系Cu2O的衍射峰外,还出现了少量面心立方结构Ag的衍射峰;随着银掺杂量的提高,Cu2O粒径逐渐降低,而银纳米颗粒粒径有所增加;采用滤纸片法和倍数稀释法分别测定了抑菌环直径和抑菌剂的最小抑菌浓度,研究银掺杂氧化亚铜沸石抗菌性能.结果表明,载银量为1%、3%和3%+2%的银掺杂氧化亚铜沸石抗菌剂对大肠杆菌E.coli、金黄色葡萄球菌S.aureus和枯草芽孢杆菌B.subtilis均具有一定的抗菌性能,其中载银量为3%的银掺杂氧化亚铜沸石复合物的抗菌效果较强;载银量为3%的银掺杂氧化亚铜沸石复合物对E.coli的抑菌效果较明显,最小抑菌浓度MIC为7.2μg/mL,而对S.aureus和B.subtilis的最小抑菌浓度分别为24和18μg/mL.%Silver doped cuprous oxide/zeolite comp osites with different amount of silver loaded were synthesized through complexation impregnation method with glucose as the reductant and nano cuprous oxide/zeolite as car-rier,which were fabricated by a chemical coprecipitation method with glucose as the reductant and polyethylene glycol PEG400 as the template.Effects of doping content of silver on antibacterial properties and the structure of composites were investigated by using X-ray diffraction analysis and SEM method.The results show that the diffraction peaks of cubic Cu2O appeared on X-ray diffraction ofzeolite/rnCu2O samples with different silver doped amount,besides a few amount of the diffraction peaks of Ag with face centered cubic structure.The grain size of Cu2O decreased gradually,but the silver nano particle size increased with increasing loading amount of Ag.The diameter of bacteriostatic annulus and minimum inhibitory concentration (MIC)were determinated with filter paper method and multiple dilution method,by which the antimicrobial properties of cuprous oxide zeolite composite of different Ag doping amount were researched.The results show that silver loaded cuprous oxide/zeolite has certain antibacterial property for Staphylococcus aureus,Escherichia coli and Bacillus subtilis, in which the amount of silver loaded as 1%,3%,3%+2%,and when the amount of silver loaded is 3%,the antibacterial effect is strongest.The antibacterial effect of silver loaded cuprous oxide/zeolite with 3% of silver doping amount on Escherichia coli is more obvious,MI C of which is 7.2μg/mL,yet MIC of Staphylococcus au-reus and Bacillus subtilis are 24 and18μg/mL,respectively.【期刊名称】《功能材料》【年(卷),期】2017(048)012【总页数】6页(P12156-12161)【关键词】银掺杂氧化亚铜沸石;抗菌性能;枯草芽孢杆菌;金黄色葡萄球菌;大肠杆菌【作者】夏卓英;梁桥发;郑明艺;曾国【作者单位】闽南师范大学化学与环境学院,福建省现代分离分析科学与技术重点实验室,福建漳州 363000;闽南师范大学化学与环境学院,福建省现代分离分析科学与技术重点实验室,福建漳州 363000;闽南师范大学化学与环境学院,福建省现代分离分析科学与技术重点实验室,福建漳州 363000;闽南师范大学化学与环境学院,福建省现代分离分析科学与技术重点实验室,福建漳州 363000【正文语种】中文【中图分类】TB333;O614.122目前文献报道的载银氧化物有纳米SiO2、多孔SiO2、ZnO,Al2O3、TiO2和ZrO2等。
英文化学无机物名词构词规律
英文化学无机物名词构词规律以元素英文名为基准(部分例外),加前缀和后缀金属离子中,变价离子金属的金属单质后缀是-ium,正价是-ic,亚价是-ous。
不变价离子金属(碱金属、碱土金属和Al)的单质、离子后缀都是-ium。
如:单质钠 Sodium 钠离子 Sodium 单质铝Aluminium 铝离子 Aluminium 汞离子Mercuric 亚汞离子 Mercurous例外:铜的单质和离子正价用Copper,亚价用Cuprous。
铁的单质和离子正、亚价一般都用Iron,要区别它们就在非金属离子前加数量前缀,有时或是特殊情况才用Ferroferric或Ferroferrous。
如:三氧化二铁(氧化铁) Iron oxide;Iron trioxide,四氧化三铁 Ferroferric oxide;Ferroferrous oxide,氧化铜 Copper oxide,氧化亚铜 Cuprous oxide非金属阳离子不加后缀。
无氧酸:hydro--ic,非金属阴离子:-ide高价含氧酸:per--ic,酸根离子:per--ate正价含氧酸:-ic,酸根离子:-ate亚价含氧酸:-ous,酸根离子:-ite次价含氧酸:hypo--ous,酸根离子:hypo--ite酸式酸根离子:bi--ate酸名后加 acid,酸根离子不加。
铵根离子:Ammonium 过氧根离子:Peroxide氰根离子:Cyanide 氢氧根离子:Hydroxide有机酸根:甲酸根:Formate乙酸根:Acetate丙酸根:Propionate柠檬酸根:Citrate葡萄糖酸根:Gluconate阴离子的数量通常省略,在可能混淆时,用数量前缀:mono-,di-,tri-,tetra-,pent-,hex-,hept一, 二, 三, 四, 五,六,七有结晶水的 = 其无水物 + (数量前缀 + -ahydrate)如:五水硫酸铜 Copper Sulfate Pentahydrate示例:CO:carbon monoxide SO3:sulfur trioxide NaF:sodium fluoride FeSO4:iron sulfate Fe(NO3)3:ferric nitrate HClO4:perchloric acid NH4HCO3:ammonium bicarbonate Al(OH)3:aluminum hydroxideNa2O2:sodium peroxide 葡萄糖酸锌:zinc gluconate元素英文名见《元素英文词库》。
氧化亚铜微纳米结构的制备及光催化性能研究_包秘
a— 甘 氨 酸 ,S1;b— 苏 氨 酸 ,S2;c— 谷 氨 酸 ,S3;d— 苯 丙 氨 酸 ,S4 图 2 基于氨基酸为还原剂制备的 Cu2O 颗粒的 SEM 图
氨基酸具有配位能力, 在溶液中 Cu2+与氨基酸 的 N、O 原子通过配位键相互连结,形成具有共轭环 状结构的螯合物。 在 Cu(Ⅱ)离子转化为 Cu2O 的过 程中, 氨基酸的配位能力与还原能力是一对相互制 约的因素。 甘氨酸配位能力较强,在反应初始阶段主 要以 Cu2+—甘氨酸配合物的形式存在, 还原速度较 慢,即核生成速度慢,产物经过核生长过程后形成大 尺寸颗粒。 在本实验中, 甘氨酸的反应用量较大, Cu2+— 甘 氨 酸 配 合 物 在 反 应 过 程 中 一 直 保 持 较 高 浓 度。 配合物选择性吸附在晶核表面,促进了特定晶面 的生长和稳定,形成具有稳定晶面的多面体微晶(图 2a)。 苏氨酸分子中含有一个醇式羟基,配位能力较甘 氨酸弱,在反应中主要体现为强的还原能力,Cu(Ⅱ) 离子经快速还原形成大量纳米颗粒, 这些纳米颗粒 可以通过表面吸附的氨基酸分子间氢键相连接而形 成纳米组装结构(图 2b)。 谷氨酸分子内含有两个羧 酸基团,还原性弱,核生成速度慢,致使产物的尺寸 也较大;其配位能力受酸性影响而下降,所形成的配 合物在晶核表面的吸附量较低, 晶核生长过程受到 的外部限制作用少,形成了球形颗粒(图 2c)。 苯丙 氨酸分子中含有一个苯环,配位能力很弱,还原能力 也较弱,成核速度和核生长速度均较慢,产物主要为 球形颗粒,尺寸较小(图 2d)。 以上实验结果表明,氨 基酸还原剂对 Cu2O 微粒形貌具有调控作用。 2.3 微纳米结构 Cu2O 光催化 MB 溶液的研究
无机盐工业
第 45 卷 第 1 期
氧化亚铜形貌及尺寸的剪裁与调控
氧化亚铜形貌及尺寸的剪裁与调控金占双;刘佳雯;李中华【摘要】Glucose is used as reducing agent in the experiment, the morphology and size of the cuprous oxide can be tailored and controlled by changing the temperature of the precursor and the amount of the reducing agent. The morphology and structure of the samples were characterized by using scanning electron microscopy and X-ray diffraction. The experimental results show that the morphology and size of cuprous oxide can be affected by the fol-lowing two factors. One is the temperature of precursor, which plays a key role in the synthesis of cuprous oxide with different morphology. The other is the amount of reducing agent, which is very important for controlling the size of cuprous oxide. Furthermore, the amount of reducing agent can also affect the morphology of cuprous oxide at a certain temperature.%本实验用葡萄糖作为还原剂,通过改变前驱体的温度及还原剂的用量剪裁和调控出了不同形貌和尺寸的Cu2O,利用扫描电子显微镜(SEM)以及粉末X射线衍射(XRD)对样品的形貌和结构进行了表征。
氧化亚铜微晶的制备及形貌控制条件
四川理工学院毕业论文氧化亚铜微晶的制备及形貌控制条件研究学生:许可学号:07031010220专业:化学工程与工艺班级:工艺072班指导教师:刘勇四川理工学院材料与化学工程学院二O一一年六月氧化亚铜微晶的制备及形貌控制条件研究摘要本文采用葡萄糖还原法在碱性环境下制备氧化亚铜微晶。
通过单因素实验考察了温度、反应时间、摩尔配比、加入聚乙烯吡咯烷酮(PVP)的量、PH和微量离子等各因素对对氧化亚铜产率、粒径、形貌的影响。
并利用正交实验确定了氧化亚铜微晶综合形貌的较佳控制条件,其为:反应温度75℃,反应时间80分钟,摩尔配比1.0,加入PVP的量0.1g,反应体系PH=10。
关键词:氧化亚铜;葡萄糖;还原;形貌Producction of Cuprous Oxide Microcrystalline and the Study on the Controlling Conditions of Its MorphologyAbstractThis paper is mainly about how to produce cuprous oxide microcrystalline through glucose deoxidization method in alkaline environment. It tests the influence which the temperature, the reaction time, the Molar ratios, the amount of Polyethylene pyrrole (PVP), PH and the trace ion have on the comprehensive morphology of Cuprous oxide by single factor experiment. And it is confirmed by orthogonal experiment that what the better control condition of cuprous oxide microcrystalline comprehensive morphology is: reaction temperature is 75 ℃, the reaction time is 80 minutes, molar ratios is 1.0, the amount of the PVP is 0.1 g and the PH of the reaction system is 10.Key words:cuprous oxide; glucose ; deoxidization ; morphology目录摘要 (Ⅰ)Abstract (Ⅱ)目录 (Ⅲ)1绪论 (1)1.1氧化亚铜微晶的性质[1-5]及形貌 (1)1.2氧化亚铜微晶的制备方法 (3)1.2.1干法还原 (3)1.2.2电化学法 (4)1.2.3湿化学法 (5)1.3氧化亚铜的应用前景 (8)1.3.1在船舶防污涂料中的应用 (8)1.3.2在光催化剂中的应用 (8)1.4本文研究的内容和意义 (8)2实验部分 (10)2.1实验药品 (10)2.2实验仪器 (10)2.3实验工艺流程 (11)2.4单因素实验[39] (11)2.4.1反应物摩尔配比n对反应的影响实验 (12)2.4.2温度对反应的影响实验 (12)2.4.3反应时间对反应的影响实验 (12)2.4.4体系pH对反应的影响实验 (12)2.4.5加入PVP量对反应的影响实验 (13)2.4.6微量离子对反应的影响实验 (13)2.5正交实验[40] (13)3实验结果与讨论 (14)3.1单因素实验结果与分析 (14)3.1.1反应物摩尔配比n对反应的影响 (14)3.1.2温度对反应的影响 (15)3.1.3反应时间对反应的影响 (16)3.1.4体系pH对反应的影响 (17)3.1.5加入PVP量对反应的影响 (18)3.1.6微量离子对反应的影响 (19)3.2正交实验结果与分析 (20)4结论 (22)5参考文献 (23)6致谢 (26)1绪论1.1氧化亚铜微晶的性质[1-5]及形貌氧化亚铜微晶即氧化亚铜,其分子式为Cu2O,分子量为143.08,密度为6.0g/cm3,熔点为1235℃,英文名称为Cuprous Oxide或Copper(Ⅰ)Oxide。
酸和盐的英文命名
or or or or or or
cuprous cupric stannous stannic mercurous mercuric
对于有变价的金属元素,除了可用前缀来表示以外,更 多采用 罗马数字来表示金属的氧化态,或用后缀-ous表示低价,-ic 表示高价。 如 FeO: iron(II) oxide 或 ferrous oxide Fe O : iron (III) oxide或ferric oxide 2 3 Cu O: 2 copper(I) oxide 或cuprous oxide
for example:
ClO3- chlorate IO3iodate
PO43- phosphate
SO42sulfate
NO3-
nitrate
CO32- carbonate
(2). Acid radicals for meta-salts (亚酸根 -ite )
Anion’s name = Central element’s root -
S-block Element
IA H Li Na K Rb Cs Fr
IIA Hydrogen Lithium Sodium Potassium Rubidium Cesium Francium Be Mg Ca Sr Ba Ra Beryllium Magnesium Calcium Strontium Barium Radium
非金属氢化物
除了水和氨气使用俗称water,ammonia以外,其它的非金属 氢化物都用系统名称,命名规则根据化学式的写法不同而有所不 同。 (1)对于卤族和氧族氢化物,H在化学式中写在前面,因此将其 看成与另一元素的二元化合物。 举例: HF hydrogen fluoride HCl hydrogen chloride HBr hydrogen bromide HI hydrogen iodide H2S hydrogen sulfide H2Se hydrogen selenide H2Te hydrogen telluride (2)对于其它族的非金属氢化物,H在化学式中写在后面,可加 后缀-ane,氮族还可加-ine 举例: PH3: phosphine或phosphane AsH3: arsine或 arsane SbH3: stibine或stibane BiH3: bismuthane CH4: methane SiH4: silane B2H6: diborane
最新化学专业英语化合物的命名
一 无机物的命名 (Inorganic compounds)
1 元素与单质的命名
“元素”和“单质”的英文意思都是“element”,有 时 为 了 区 别 , 在 强 调 “ 单 质 ” 时 可 用 “ free element”。因此,单质的英文名称与元素的英文名 称是一样的。下面给出的既是元素的名称,同时又 是单质的名称。
for example:
ClO3- Chlorate PO43- Phosphate SO42- Sulfate
IO3- Iodate NO3- Nitrate CO32- Carbonate
11
(2). Acid radicals for meta-salts (亚酸根 -ite )
Anion’s name = Central element’s root -ite
CuO: copper(II) oxide或cupric oxide
9
Naming nonmetal ions (anions)
1. Monatomic anions
Anion’s name = Element’s root -ide
For example:
Cl- Chloride
Br- Bromide I- Iodide S2- Sulfide
Iron(II) oxide (Ferrous
Iron(III) oxide (Ferric oxide) Ferroferric oxide Trilead tetroxide Sodium peroxide
15
2. Nonmetal oxide
Nonmetal oxide = n-Nonmetal element + n-oxide
全球氧化亚铜
全球氧化亚铜一、氧化亚铜的定义和性质1.1 定义氧化亚铜(Cuprous oxide)是一种化学式为Cu2O的化合物,也被称为亚铜酸盐。
它是一种红色固体,具有重要的应用价值。
1.2 性质•氧化亚铜是一种半导体材料,具有良好的电导性能。
•它具有优异的光学性质,能吸收可见光和近红外光,因此在光电器件中有广泛的应用。
•氧化亚铜具有抗菌、抗氧化和催化等特性,因此在医药和化工领域有重要的应用。
二、氧化亚铜的制备方法2.1 热分解法热分解法是制备氧化亚铜的常用方法之一。
将铜盐溶液加热,使其分解生成氧化亚铜。
2.2 水热法水热法是一种绿色环保的制备方法,通过在高温高压的条件下,将铜盐和还原剂反应生成氧化亚铜。
2.3 化学沉淀法化学沉淀法是一种简单易行的制备方法,通过将铜盐与沉淀剂反应,使氧化亚铜沉淀出来。
2.4 溶胶-凝胶法溶胶-凝胶法是一种制备高纯度氧化亚铜的方法,通过将铜盐与溶胶剂反应,形成凝胶后经过热处理得到氧化亚铜。
三、氧化亚铜的应用领域3.1 光电器件氧化亚铜具有良好的光学性能,能吸收可见光和近红外光,因此在光电器件中有广泛的应用。
例如太阳能电池、光敏器件等。
3.2 医药领域氧化亚铜具有抗菌和抗氧化等特性,可以用于医药领域。
它可以作为药物载体,用于缓释药物,提高药物的疗效。
3.3 化工领域氧化亚铜具有催化性能,可以用于化工领域的催化反应。
例如,在有机合成中,氧化亚铜可以作为催化剂,促进反应的进行。
3.4 污水处理氧化亚铜具有良好的吸附性能,可以用于污水处理。
它可以吸附污水中的有害物质,净化水质。
四、氧化亚铜的发展前景随着科技的进步和社会的发展,氧化亚铜的应用前景越来越广阔。
它在光电器件、医药、化工和环保等领域都有重要的应用。
未来,随着人们对节能环保和健康生活的需求增加,氧化亚铜的需求量将会进一步增加。
同时,科研人员也在不断努力,探索氧化亚铜在更多领域的应用,为人类社会的发展做出更大的贡献。
五、结论全球氧化亚铜是一种重要的化合物,具有半导体性质、良好的光学性能和抗菌、抗氧化等特性。
最新折射率表
材料名称(分子式) Acanthite (Silver Sulphide) Ag2S 硫化银 Acetal乙缩醛 Acetone 丙酮 Adipic Acid (CH2.CH2.COOH)2 脂肪酸 Agate Si02 玛瑕 Albite Na20.A1203.6Si02 钠长石 Albite (Feldspar) NaAlSi308 钠长石 Almandine (Garnet)石樹石 Alumina A1203 三氧化二铝 Alumina tri hydrate A12033H20 氢氧化铝 Aluminiumhmite) A10(0H)勃姆石 Aluminium Oxide A1203 三氧化二铝 (Corundum)金刚砂 Aluminium Silicate A1203.Si02 氧化硅、氧化铝混合物 Aluminium Stearate A1(C18H3502)3 硬脂酸铅 Aluminum Sulphate AI2(S04)3 硫酸铝 Ammonium Chloride NH4CI 氯化铵 Ammonium Sulphate NH4S04 硫酸铵 Ammonium Dihydrogen Phosphate (NH4)H2P206 磷酸二氢铵 Anatase (Titanium Dioxide) Ti02 二氣化钛(锐钛) Andesine (Feldspar) ([NaSi]0.7-0.5 [CaAl]0.3-0.5)AlSi208 中长石 Anglesitte (Lead Sulphate) PbS04 铅矾(硫酸铅) Anhydrite (Calcium Sulphate) CaS04 无水石膏(硫酸钙) Anhydrite (Gypsum) CaS04.2H20 石膏 Anhydrous Borax Na20.2B203 硼砂 Anorthite (Feldspar) CaA12Si208 钙长石 Anorthoclase (Feldspar) (Na,K)AlSi308 钠微斜长石(长石) Antimony Trioxide Sb203 三氧化二锑 (Nat. Semamontite) (Nat. Valentine) Antimony Vermilion Sb2S3 三硫化二梯 Aragonite (Calcium Carbonate) CaC03 文石(碳酸钙) Arsenic Sulphur Glass 砷玻璃 Arsenous Oxide As203 三氧化二砷
纳米氧化亚铜和氧化铜的肺细胞毒性差异及影响因素
生态毒理学报Asian Journal of Ecotoxicology第18卷第4期2023年8月V ol.18,No.4Aug.2023㊀㊀基金项目:湖南省重点研发计划项目(2023NK2029);湖南省本科生/研究生科研创新项目(S202110537040,CX20220694);国家自然科学基金青年项目(21906050)㊀㊀第一作者:汤蕾(2000 ),女,硕士研究生,研究方向为环境毒理学,E -mail:********************㊀㊀*通信作者(Corresponding author ),E -mail:***********************.cn ㊀㊀#共同通信作者(Co -corresponding author ),E -mail:***********************DOI:10.7524/AJE.1673-5897.20220805002汤蕾,李鑫,李昕畅,等.纳米氧化亚铜和氧化铜的肺细胞毒性差异及影响因素[J].生态毒理学报,2023,18(4):478-485Tang L,Li X,Li X C,et al.Different pulmonary cytotoxicity of nano -cuprous oxide and nano -copper oxide and influencing factors [J].Asian Journal of Ecotoxicology,2023,18(4):478-485(in Chinese)纳米氧化亚铜和氧化铜的肺细胞毒性差异及影响因素汤蕾,李鑫,李昕畅,罗琳#,曹林英*湖南农业大学资源环境学院,长沙410128收稿日期:2022-08-05㊀㊀录用日期:2022-11-07摘要:纳米农药的广泛应用将不可避免导致其重要成分(比如纳米氧化铜和纳米氧化亚铜)的环境残留㊂人体可通过灰尘吸入㊁饮水及农产品摄入等方式暴露于纳米氧化铜和纳米氧化亚铜㊂因此,阐明它们的健康危害具有重要意义㊂本研究我们首次对比研究了纳米氧化铜和纳米氧化亚铜的A549肺细胞毒性差异,并从氧化应激和线粒体损伤角度探讨了细胞毒性作用机制㊂实验结果表明纳米氧化铜和纳米氧化亚铜均具有显著的A549细胞毒性,观察到的最低效应浓度分别为20mg ㊃L -1和5mg ㊃L -1㊂纳米氧化亚铜表现出更强的细胞毒性作用,100mg ㊃L -1时细胞活性抑制率达到95%㊂活性氧实验结果表明纳米氧化铜和纳米氧化亚铜均可诱导活性氧生成,呈现时间与浓度依赖关系㊂纳米氧化亚铜的活性氧诱导作用明显强于纳米氧化铜,24h 最大诱导率分别为对照组的3.5倍和1.5倍㊂线粒体膜电位实验结果表明纳米氧化亚铜比纳米氧化铜具有更强的线粒体去极化作用,并呈剂量(1~100mg ㊃L -1)依赖关系,最大线粒体膜电位下降率分别为60%和20%㊂活性氧和线粒体膜电位的结果与细胞毒性的结果基本一致,提示了氧化应激和线粒体损伤可能是导致纳米氧化铜和纳米氧化亚铜细胞毒性的关键分子机制㊂本研究揭示了纳米氧化铜和纳米氧化亚铜的肺细胞毒性差异及潜在分子机制,可为纳米农药的健康风险评估及合理施用提供重要理论依据㊂关键词:纳米氧化铜;纳米氧化亚铜;肺细胞;细胞毒性;氧化应激;线粒体损伤文章编号:1673-5897(2023)4-478-08㊀㊀中图分类号:X171.5㊀㊀文献标识码:ADifferent Pulmonary Cytotoxicity of Nano-cuprous Oxide and Nano-copper Oxide and Influencing FactorsTang Lei,Li Xin,Li Xinchang,Luo Lin #,Cao Linying *College of Resources and Environment,Hunan Agricultural University,Changsha 410128,ChinaReceived 5August 2022㊀㊀accepted 7November 2022Abstract :The wide application of nano -pesticides leads to residues of its main components (such as nano -copper oxide and nano -cuprous oxide)in the environment inevitably.The human body can expose to nano -copper oxide and nano -cuprous oxide through inhaling dust,drinking water and ingesting agricultural products.Therefore,it is of great significance to elucidate their health hazards.In the present study,we firstly investigated the cytotoxicity vari -ation of nano -copper oxide and nano -cuprous oxide on A549cells as well as explored the cytotoxic mechanisms第4期汤蕾等:纳米氧化亚铜和氧化铜的肺细胞毒性差异及影响因素479㊀from the perspectives of oxidative stress and mitochondrial damage.Results showed that both nano-copper oxide and nano-cuprous oxide had significant cytotoxic effects on A549cells,with the lowest observed effective concen-trations of20mg㊃L-1and5mg㊃L-1,respectively.Nano-cuprous oxide exhibited stronger cytotoxic effects than nano-copper oxide with inhibition rate of cell viability reaching95%at100mg㊃L-1.The experimental results of reactive oxygen species showed that both nano-copper oxide and nano-cuprous oxide could induce the generation of reactive oxygen species in a time-dependent and concentration-dependent manner.The induction effect of nano-cuprous oxide on reactive oxygen species was significantly stronger than that of nano-copper oxide,with the maxi-mum induction rate of3.5-fold and1.5-fold compared to the ctrl group at24h.The experimental results of mito-chondrial membrane potential showed that nano-cuprous oxide had stronger activity on mitochondrial depolariza-tion than nano-copper oxide in a dose-dependent manner(1~100mg㊃L-1),with the maximum reduction rates of mitochondrial membrane potential reaching60%and20%,respectively.The results of reactive oxygen species and mitochondrial membrane potential were consistent with the results of cytotoxicity,indicating that oxidative stress and mitochondrial damage might be the key molecular mechanisms of cytotoxicity of nano-copper oxide and nano-cuprous oxide.This study revealed the different pulmonary cytotoxicity of nano-copper oxide and nano-cuprous oxide as well as the potential molecular mechanisms,which can provide important theoretical basis for the health risk assessment and rational application of nano-pesticides.Keywords:nano-copper oxide;nano-cuprous oxide;lung cell;cytotoxicity;oxidative stress;mitochondria damage㊀㊀目前,我国的农药利用率低㊁用量大,造成了农药残留量大及环境污染等问题㊂纳米技术在农业的可持续发展中显示出巨大的应用潜力,其中纳米农药可增加农药活性成分的稳定性,延长有效持续时间,有效改善农药利用率,从而减少农药的环境负荷,其在农业生产中的使用已备受关注㊂但是随着纳米农药的广泛使用,将不可避免地导致了它们在环境中的残留,甚至进入人体产生危害,因此,阐明它们的生态风险及环境健康危害具有重要意义[1-2]㊂纳米农药主要分为两大类:纳米材料作为载体包裹有机小分子农药活性成分;无机纳米农药㊂纳米氧化铜(CuO NPs)和纳米氧化亚铜(Cu2O NPs)是无机纳米农药的2种典型成分[1,3]㊂由于CuO NPs和Cu2O NPs具有很好的抗菌活性,对多种菌类有效,被列为推荐药剂在农业领域得到广泛应用[4-6],并且一些研究表明,Cu2O NPs的抗菌活性较CuO NPs更强[7-8]㊂纳米颗粒(nano-particles,NPs)进入人体最常见的途径是通过呼吸系统吸入,深入肺部,引起肺部氧化应激和炎症反应[9-10]㊂同时,NPs也可以通过肺泡或其他方式(如饮水㊁皮肤接触等)进入血液并影响其他器官[11]㊂与其他NPs类似,除了通过呼吸㊁饮水及皮肤暴露等方式以外,由于CuO NPs和Cu2O NPs在农业系统的广泛使用,通过农产品的摄入也是它们进入人体的重要途径㊂NPs对生物体的毒性机制主要是诱导氧化应激㊁炎症反应及DNA损伤等[9,12-13]㊂目前已有较多研究显示了CuO NPs 具有较强的细胞毒性作用㊂例如孙婷婷和蒋澄宇[14]通过比较CuO㊁Fe2O3㊁TiO2㊁SiO2等金属NPs对小鼠的肺部毒性作用,发现CuO NPs具有较强的毒性,可导致小鼠急性肺损伤,而其他几种金属NPs的作用较小;Fahmy和Cormier[15]对SiO2NPs㊁Fe2O3 NPs和CuO NPs进行比较研究,发现CuO NPs导致气管上皮Hep-2细胞活力出现显著的剂量依赖性下降,而其他NPs基本无细胞毒性作用,并且CuO NPs的细胞毒性作用与氧化损伤直接相关;Fu[16]的研究证明CuO NPs可以抑制HepG2细胞增殖,对细胞产生氧化损伤作用,其机制与ROS诱导线粒体介导的细胞凋亡途径有关㊂此外,也有研究表明CuO NPs对植物[17-18]㊁水生动物[19]及微生物[20-21]的毒性作用,并且与氧化应激有关㊂目前已有较多研究表明了CuO NPs的毒性作用,但对Cu2O NPs的研究非常缺乏㊂虽然有研究表明Cu2O NPs具有更强的抗菌活性,但其是否具有更强的非靶标毒性作用进而产生更严重的健康危害,需要进一步的毒理学评估㊂因此,本研究以A549人源肺细胞作为模型,对比研究了CuO NPs和Cu2O NPs的细胞毒性差异,并探讨了影响其毒性差异的潜在因素,有望为其环境健康风险评估及安全使用提供理论参考㊂480㊀生态毒理学报第18卷1㊀材料与方法(Materials and methods)1.1㊀实验材料与试剂人肺腺癌细胞A549㊁细胞培养基DMEM㊁PBS缓冲溶液购于武汉普诺赛生命科技有限公司;活性氧检测探针(DCFH-DA)㊁线粒体膜电位检测探针(Mito-Tracker Red CMXRos)购自碧云天生物技术有限公司;二甲基亚砜(DMSO,纯度为99%)和噻唑蓝(MTT,纯度>99%)购自上海麦克林生化科技有限公司;纳米氧化铜(CuO NPs,纯度>99.9%)和纳米氧化亚铜(Cu2O NPs,纯度>99.9%)购自北京中科科优科技有限公司,CuO NPs和Cu2O NPs暴露前采用细胞培养基配制,现配现用㊂1.2㊀仪器设备BB150-2TCS-L CO2培养箱(赛默飞世尔科技有限公司,美国);TECAN Spark20M酶标仪(帝肯集团有限公司,瑞士);FA004分析天平(上海舜宇恒平仪器有限公司,中国);ZEISS Sigma300型扫射电子显微镜(scanning electron microscope,SEM;蔡司,德国);FEI Tecnai F20透射电子显微镜(transmission electron microscope,TEM;FEI,美国);Malvern Zeta-sizer Nano ZS90型动态光散射仪(dynamic light scattering,DLS;马尔文,英国);AA-6880原子吸收仪(岛津,日本)㊂1.3㊀材料的表征将CuO NPs和Cu2O NPs分散在去离子水中,超声后得到悬浮液㊂采用德国ZEISS Sigma300 SEM和美国FEI Tecnai F20TEM拍摄NPs形貌㊂用纳米粒度Zeta电位仪测定Zeta电位,同时以动态光散射法测定水合粒径㊂1.4㊀细胞毒性检测A549细胞采用加入了100μg㊃mL-1链霉素㊁100U㊃mL-1青霉素和10%(VʒV)胎牛血清的完全培养基(普诺塞,武汉)在恒温恒湿培养箱(37ħ和5%(VʒV)CO2)中进行培养㊂在96孔板中每孔接种A549细胞(5ˑ104个),贴壁培养24h㊂暴露不同浓度(0.1~100mg㊃L-1)的CuO NPs和Cu2O NPs,继续培养24h㊂吸出染毒液,用PBS对细胞进行清洗2次㊂加入MTT溶液孵育3h,吸去探针,加入100μL DMSO,以溶解MTT的深紫色产物(甲瓒)㊂轻轻摇晃,用酶标仪,以690nm为参考波长,在490 nm的吸收度测定细胞活性㊂1.5㊀活性氧检测将A549细胞悬浮液(5ˑ104个,100μL)接种在96孔板中孵育24h㊂吸出培养基,加入10μmol∙L-1的DCFH-DA探针(100μL)孵化20min后吸出,用100μL PBS轻轻洗涤2次㊂将细胞暴露于不同浓度(1~100mg㊃L-1)的CuO NPs和Cu2O NPs㊂采用酶标仪检测荧光强度(激发波长485nm,发射波长535nm)㊂1.6㊀线粒体膜电位检测将A549细胞(5ˑ104个,100μL)接种在96孔板中孵育24h㊂吸出培养基,将细胞分别暴露于不同浓度(1~100mg㊃L-1)的CuO NPs和Cu2O NPs12 h㊂然后将含污染物的溶液吸出,分别加入100nmol ㊃L-1的线粒体膜电位探针,孵化20min,再将探针去除后,用PBS将细胞洗3次,最后加入100μL的PBS溶液用酶标仪检测荧光强度,设置激发波长为565nm,发射波长610nm㊂1.7㊀培养基中铜离子浓度检测将配好的20㊁40㊁50㊁100mg㊃L-1的CuO NPs和Cu2O NPs悬浊液加入到12孔板中,与细胞在相同条件下处理24h后,离心30min(12000r㊃min-1),取上清液㊂用火焰原子吸收光谱仪检测上清液中铜离子含量㊂1.8㊀统计学方法采用GraphPad Prism8和Excel进行实验数据处理和分析㊂所有的实验都进行3次重复,每个实验组都设置至少3个平行,用平均值ʃ标准差来表示试验的结果㊂*P<0.05表示处理组与对照组具有显著性差异㊂2㊀结果(Results)2.1㊀NPs的表征SEM和TEM图像显示CuO NPs和Cu2O NPs 呈不规则形状的颗粒(图1(a)~(d)),CuO NPs呈棒状,而Cu2O NPs呈球状㊂Zeta电位测定结果表明,CuO NPs的Zeta电位为(19.97ʃ5.98)mV,Cu2O NPs 的Zeta电位为(25.5ʃ6.55)mV㊂DLS结果显示CuONPs的水合粒径为403nm,Cu2O NPs的水合粒径为432nm(图1(e)和(f)),在水溶液中分散比较均匀,有部分团聚㊂2.2㊀CuO NPs和Cu2O NPs对A549细胞活性的影响如图2所示,无酚红DMEM配制的CuO NPs和Cu2O NPs呈均匀分散溶液,其中CuO NPs呈灰黑色,而Cu2O NPs呈浅黄色㊂如图3(a)所示,CuONPs和Cu2O NPs均对A549细胞产生了明显的毒第4期汤蕾等:纳米氧化亚铜和氧化铜的肺细胞毒性差异及影响因素481㊀图1㊀纳米氧化铜(CuO NPs )和纳米氧化亚铜(Cu 2O NPs )的形态及粒径表征注:(a)CuO NPs 的扫描电镜图;(b)Cu 2O NPs 的扫描电镜图;(c)CuO NPs 的透射电镜图;(d)Cu 2O NPs 的透射电镜图;(e)动态光散射测定CuO NPs 的水合半径;(f)动态光散射测定Cu 2O NPs 的水合半径㊂Fig.1㊀Morphology and particle size characterization of nano -copper oxide (CuO NPs)and nano -cuprous oxide (Cu 2O NPs)Note:(a)Scanning electron microscopy photograph of CuO NPs;(b)Scanning electron microscopy photograph of Cu 2O NPs;(c)Transmiss i on electron microscopy photograph of CuO NPs;(d)Transmission electron microscopy photograph of Cu 2O NPs;(e)Hydrated radius of CuO NPs determined by dynamic light scattering;(f)Hydrated radius of Cu 2O NPs determined by dynamic lightscattering.图2㊀纳米氧化铜(CuO NPs )和纳米氧化亚铜(Cu 2O NPs )的溶液Fig.2㊀Solution of nano -copper oxide (CuO NPs)and nano -cuprous oxide (Cu 2O NPs)482㊀生态毒理学报第18卷图3㊀纳米颗粒(NPs)(a)及铜离子(Cu2+)(b)对A549细胞的活性影响注:Ctrl组表示等量稀释纳米材料的培养基处理,*表示与对照组相比差异显著(P<0.05)㊂Fig.3㊀Effects of nanoparticles(NPs)(a)and copper ion(Cu2+)(b)on A549cell viability Note:Ctrl group represents treatment with equal volume medium used to dilute nanomaterials;*represents significant difference compared with the control(P<0.05).性,并且呈剂量依赖效应,观察到的最低效应浓度分别为20mg㊃L-1和5mg㊃L-1㊂并且不同浓度的细胞毒性对比也表明Cu2O NPs的A549细胞毒性效应明显强于CuO NPs㊂同时,考察了铜离子的细胞毒性以便作为对比㊂如图3(b)所示,A549细胞暴露在低浓度Cu2+溶液中时,活细胞数量与对照组相比有所增加,说明低浓度的Cu2+可以促进细胞增殖,这可能与Cu是人体生长的必需元素有关㊂当Cu2+浓度达到50mg㊃L-1时表现出细胞毒性作用,但是与CuO NPs和Cu2O NPs相比,Cu2+细胞毒性相对较小㊂2.3㊀CuO NPs和Cu2O NPs对A549细胞胞内活性氧生成的影响㊀㊀前面我们发现了CuO NPs和Cu2O NPs的肺细胞毒性差异,为了进一步探讨细胞毒性差异的分子机理,对两者诱导活性氧生成进行了测定㊂NPs在细胞中与细胞器的相互作用促进活性氧的产生是其产生细胞毒性作用的典型分子机制之一㊂由图4可知,CuO NPs和Cu2O NPs暴露A549肺细胞3㊁6㊁12及24h均可导致ROS过量生成,随着暴露时间增加明显出现了ROS的积累,并呈现剂量依赖关系㊂此外,Cu2O NPs诱导ROS生成效应明显强于CuO NPs㊂这一现象与它们的细胞毒性是一致的㊂因此,我们推断CuO NPs和Cu2O NPs的细胞毒性差异与两者诱导氧化应激效应有关㊂2.4㊀CuO NPs和Cu2O NPs对线粒体膜电位的影响NPs可以侵入细胞并粘附在线粒体膜上,从而破坏线粒体膜并导致其去极化㊂如图5所示,不同浓度CuO NPs㊁Cu2O NPs暴露A549细胞12h后,均可在ȡ40mg㊃L-1浓度下导致线粒体膜电位降低,导致线粒体去极化作用㊂同时,发现Cu2O NPs对肺细胞A549线粒体去极化作用明显大于CuO NPs,这与两者细胞毒性实验结果吻合㊂因此,CuONPs㊁Cu2O NPs的不同细胞毒性可能与两者对线粒体损伤程度不同也有一定关系㊂2.5㊀培养基中CuO NPs和Cu2O NPs释放的铜离子浓度㊀㊀金属离子的溶出是金属NPs产生细胞毒性的重要来源㊂CuO NPs和Cu2O NPs产生的细胞毒性差异也可能与它们溶出的铜离子浓度不同有关㊂因此,进一步对培养基中溶出的铜离子浓度进行了考察㊂但是由图6可知,CuO NPs和Cu2O NPs在培养基中释放的铜离子浓度没有明显差别,所释放的最大铜离子浓度均<16mg㊃L-1,说明两者的毒性差异可能并不是由于其在培养基中所释放的铜离子总量不同所导致㊂3㊀讨论(Discussion)随着农业纳米技术研发支出的迅速增加,中国有可能成为全球最大的纳米农药生产国和消费国㊂因此,纳米农药的调控和科学评价迫在眉睫㊂纳米材料通过呼吸进入肺部是其产生毒害作用的主要途径之一㊂本研究选用人源肺细胞A549作为细胞模型,以CuO NPs和Cu2O NPs为研究对象,首次对比第4期汤蕾等:纳米氧化亚铜和氧化铜的肺细胞毒性差异及影响因素483㊀图4㊀纳米氧化铜(CuO NPs )和纳米氧化亚铜(Cu 2O NPs )对A549细胞活性氧(ROS )生成的影响(不同暴露时间)注:(a)3h ;(b)6h ;(c)12h ;(d)24h ;Ctrl 组表示等量稀释纳米材料的培养基处理㊂Fig.4㊀Effects of nano -copper oxide (CuO NPs)and nano -cuprous oxide (Cu 2O NPs)on reactive oxygen species (ROS)generation in A549cells (different exposure time)Note:(a)3h;(b)6h;(c)12h;(d)24h;Ctrl group represents treatment with equal volume medium used to dilutenanomaterials.图5㊀纳米氧化铜(CuO NPs )和纳米氧化亚铜(Cu 2O NPs )对A549细胞线粒体膜电位(MMP )的影响注:Ctrl 组表示等量稀释纳米材料的培养基处理,*表示与对照组相比差异显著(P <0.05)㊂Fig.5㊀Effects of nano -copper oxide (CuO NPs)and nano -cuprous oxide (Cu 2O NPs)on mitochondrialmembrane potential (MMP)of A549cellsNote:Ctrl group represents treatment with equal volume medium used to dilute nanomaterials;*represents significantdifference compared with the control (P <0.05).图6㊀纳米氧化铜(CuO NPs )和纳米氧化亚铜(Cu 2O NPs )在细胞培养基中铜离子的释放Fig.6㊀Copper ions release from nano -copperoxide (CuO NPs)and nano -cuprous oxide (Cu 2O NPs)in cell culture medium研究两者的肺细胞毒性差异,并从氧化应激和线粒体损伤等角度探索两者导致细胞毒性差异的潜在分子机制,并对比了游离态铜离子的影响㊂484㊀生态毒理学报第18卷本研究发现纳米农药中2种主要成分CuO NPs 和Cu 2O NPs 具有明显的肺细胞毒性作用㊂尤其是高浓度的CuO NPs 和Cu 2O NPs(ȡ50mg ㊃L -1)表现出极高的毒性,细胞存活率急剧下降㊂Cu 2O NPs 和CuO NPs 短期染毒造成A549细胞毒性的临界浓度约为5mg ㊃L -1和20mg ㊃L -1㊂Cu 2O NPs 可在比CuO NPs 浓度低得多的情况下对细胞产生毒性,说明Cu 2O NPs 比CuO NPs 毒性更大㊂其中CuO NPs 的研究结果与文献报道的细胞毒性效应结果基本一致[14-16]㊂同时,我们首次发现Cu 2O NPs 的细胞毒性作用较CuO NPs 明显更强,其毒性效应值得更多关注㊂氧化损伤是NPs 产生细胞毒性的公认分子机制之一[9,12-13]㊂因此,首先探讨了CuO NPs 和Cu 2ONPs 的细胞毒性差异是否与氧化应激诱导能力不同有关㊂通过ROS 检测,发现CuO NPs 和Cu 2O NPs 均能诱导ROS 的过量生成,并呈剂量依赖关系㊂但是Cu 2O NPs 的ROS 诱导效应明显强于CuO NPs ㊂由此,我们推断Cu 2O NPs 具有更强的细胞毒性作用很可能与其氧化损伤能力更强有关㊂ROS 的大量积累使得细胞处于氧化应激状态,可导致DNA 等生物大分子氧化损伤,进而导致细胞损伤和死亡㊂线粒体是ROS 生成的主要场所,而NPs 导致线粒体等细胞器的损伤也是其产生细胞毒性效应的主要分子机制[22]㊂因此,进一步探讨了CuO NPs 和Cu 2O NPs 对线粒体的损伤效应㊂CuO NPs 和Cu 2O NPs 均能以剂量依赖的方式导致A549细胞线粒体膜电位的降低㊂CuO NPs 和Cu 2O NPs 可通过诱导线粒体去极化作用,进而导致细胞凋亡,这也是两者产生细胞毒性的原因之一㊂同时,发现Cu 2O NPs 诱导A549细胞线粒体去极化的作用明显强于CuO NPs ,这很可能也是Cu 2O NPs 具有更强细胞毒性作用的重要原因㊂影响金属NPs 毒性的主要因素有尺寸㊁形貌㊁组分㊁氧化态以及释放的重金属含量等[22-23]㊂从SEM 可以看到Cu 2O NPs 更接近球形,而CuO NPs呈棒状,两者形貌差异可能进一步影响它们进入细胞的量㊂一般来说,NPs 粒径越小,细胞毒性越大㊂从水合粒径来看,Cu 2O NPs 与CuO NPs 没有很大差别,这可能不是导致毒性差异的主要原因㊂金属NPs 毒性与游离态铜离子的关系并无确切结论,仍存在一定争议㊂本研究的结果显示Cu 2O NPs 与CuO NPs 在细胞培养基中所释放的游离态铜离子浓度并无显著差别,并且均低于16mg ㊃L -1,在该浓度范围,铜离子并无显著细胞毒性㊂但是纳米颗粒进入细胞后颗粒表面的金属离子以及胞内溶解释放的铜离子的性质和毒性如何尚不清楚㊂此外,水和粒径检测表明我们所采用的纳米颗粒在水溶液中的水合半径达到400nm ,可能通过胞噬作用摄取进入细胞然后再次溶解产生毒性作用[24]㊂因此,后续工作需重点考察纳米颗粒进入细胞后的状态以及胞内游离态铜离子的浓度及价态,对于阐明两者毒性差异的影响因素非常关键㊂综上所述,所研究的Cu 2O NPs 对A549细胞毒性作用远大于CuO NPs ,并且与氧化应激和线粒体功能损伤有关,但是具体是何种因素导致两者毒性差异仍需进一步深入探究㊂通信作者简介:曹林英(1988 ),女,博士,副教授,主要研究方向为环境毒理学㊂共同通信作者简介:罗琳(1969 ),男,博士,教授,主要研究方向为污染处理处置与生态学㊂参考文献(References ):[1]㊀Li L,Xu Z L,Kah M,et al.Nanopesticides:A compre -hensive assessment of environmental risk is needed before widespread agricultural application [J ].Environmental Science &Technology,2019,53(14):7923-7924[2]㊀Usman M,Farooq M,Wakeel A,et al.Nanotechnology inagriculture:Current status,challenges and future opportu -nities [J].The Science of the Total Environment,2020,721:137778[3]㊀Kumar S,Nehra M,Dilbaghi N,et al.Nano -based smartpesticide formulations:Emerging opportunities for agri -culture [J].Journal of Controlled Release:Official Journal of the Controlled Release Society,2019,294:131-153[4]㊀谢婷,谭辉.无机铜氧化物在农药领域的应用专利技术综述[J].科技创新与应用,2019(19):23-24[5]㊀陈朗,姜辉,周艳明,等.纳米农药的环境安全性浅析[J].农药科学与管理,2018,39(5):30-38Chen L,Jiang H,Zhou Y M,et al.A brief analysis on the environmental safety of nano -enabled pesticides [J].Pesti -cide Science and Administration,2018,39(5):30-38(in Chinese)[6]㊀范文宏,刘通,史志伟,等.立方体和八面体微/纳米氧化亚铜对大型水蚤(Daphnia magna )的氧化胁迫和生理损伤[J].生态毒理学报,2016,11(5):40-48Fan W H,Liu T,Shi Z W,et al.Oxidative stress and第4期汤蕾等:纳米氧化亚铜和氧化铜的肺细胞毒性差异及影响因素485㊀physiological damage of cubic and octahedral Cu2O mi-cro/nanocrystals to Daphnia magna[J].Asian Journal ofEcotoxicology,2016,11(5):40-48(in Chinese)[7]㊀Gurianov Y,Nakonechny F,Albo Y,et al.Antibacterialcomposites of cuprous oxide nanoparticles and polyethy-lene[J].International Journal of Molecular Sciences,2019,20(2):439[8]㊀Rodríguez-Llamazares S,Mondaca M A,Badilla C,et al.PVC/copper oxide composites and their effect on bacterialadherence[J].Journal of the Chilean Chemical Society,2012,57(2):1163-1165[9]㊀Oberdörster G,Oberdörster E,Oberdörster J.Nanotoxicol-ogy:An emerging discipline evolving from studies of ul-trafine particles[J].Environmental Health Perspectives,2005,113(7):823-839[10]㊀Weichenthal S,Dufresne A,Infante-Rivard C.Indoor ul-trafine particles and childhood asthma:Exploring a poten-tial public health concern[J].Indoor Air,2007,17(2):81-91[11]㊀Jain A,Ranjan S,Dasgupta N,et al.Nanomaterials infood and agriculture:An overview on their safety con-cerns and regulatory issues[J].Critical Reviews in FoodScience and Nutrition,2018,58(2):297-317[12]㊀Manke A,Wang L Y,Rojanasakul Y.Mechanisms of nan-oparticle-induced oxidative stress and toxicity[J].BioMedResearch International,2013,2013:942916[13]㊀Bhabra G,Sood A,Fisher B,et al.Nanoparticles cancause DNA damage across a cellular barrier[J].NatureNanotechnology,2009,4(12):876-883[14]㊀孙婷婷,蒋澄宇.纳米氧化铜导致小鼠急性肺损伤[J].基础医学与临床,2012,32(4):386-389Sun T T,Jiang C Y.Copper oxide nanoparticles induce a-cute pulmonary injury in mice[J].Basic&Clinical Medi-cine,2012,32(4):386-389(in Chinese)[15]㊀Fahmy B,Cormier S A.Copper oxide nanoparticles in-duce oxidative stress and cytotoxicity in airway epithelialcells[J].Toxicology in Vitro,2009,23(7):1365-1371 [16]㊀Fu X.Oxidative stress induced by CuO nanoparticles(CuO NPs)to human hepatocarcinoma(HepG2)cells[J].Journal of Cancer Therapy,2015,6(10):889-895 [17]㊀Zhao L J,Ortiz C,Adeleye A S,et al.Metabolomics todetect response of lettuce(Lactuca sativa)to Cu(OH)2 nanopesticides:Oxidative stress response and detoxifica-tion mechanisms[J].Environmental Science&Technolo-gy,2016,50(17):9697-9707[18]㊀王淑玲,张玉喜,刘汉柱,等.氧化铜纳米颗粒对水稻幼苗根系代谢毒性的研究[J].环境科学,2014,35(5):1968-1973Wang S L,Zhang Y X,Liu H Z,et al.Phytotoxicity ofcopper oxide nanoparticles to metabolic activity in theroots of rice[J].Environmental Science,2014,35(5):1968-1973(in Chinese)[19]㊀Vignardi C P,Muller E B,Tran K,et al.Conventional andnano-copper pesticides are equally toxic to the estuarineamphipod Leptocheirus plumulosus[J].Aquatic Toxicolo-gy,2020,224:105481[20]㊀Zhang X X,Xu Z L,Qian X T,et al.Assessing the im-pacts of Cu(OH)2nanopesticide and ionic copper on the soil enzyme activity and bacterial community[J].Journalof Agricultural and Food Chemistry,2020,68(11):3372-3381[21]㊀Carley L N,Panchagavi R,Song X,et al.Long-termeffects of copper nanopesticides on soil and sedimentcommunity diversity in two outdoor mesocosm experi-ments[J].Environmental Science&Technology,2020,54(14):8878-8889[22]㊀Sengul A B,Asmatulu E.Toxicity of metal and metal ox-ide nanoparticles:A review[J].Environmental ChemistryLetters,2020,18(5):1659-1683[23]㊀García-Torra V,Cano A,Espina M,et al.State of the arton toxicological mechanisms of metal and metal oxidenanoparticles and strategies to reduce toxicological risks[J].Toxics,2021,9(8):195[24]㊀Manzanares D,Ceña V.Endocytosis:The nanoparticleand submicron nanocompounds gateway into the cell[J].Pharmaceutics,2020,12(4):371Ң。
氧化铜安全技术特性表
熔点℃
1232
沸点℃
低于沸点在1800℃分解
溶解性
不溶于水
稳定性
稳定
外观性状
黄色、红色或棕色晶体粉末
燃爆特性
闪点,℃
——
爆炸极限
——%
引燃温度,℃
ቤተ መጻሕፍቲ ባይዱ——
最大爆炸压力,MPa
——
火灾危险类别
——
爆炸危险组别/类别
——
危险特性
本品不可燃。
灭火剂种类
任何灭火剂
毒性及健康危害
急性毒性
LD50(mg/kg,大鼠经口)
食入:漱口,大量饮水,给予医疗护理。
泄漏处理
将泄漏物清扫进有盖容器中。如果适当,首先润湿防止扬尘。小心收集残余物,然后转移到安全场所。(特别个人防护用具:适用于有害颗粒物的P2过滤呼吸器)。
储存
运输注意事项
储运方面物特殊要求。
——
LC50(mg/m3,大鼠吸入)
——
健康危害
车间卫生标准:中国MAC(mg/m3)
1(铜粉末和烟云)
0.2(铜烟雾)
该物质刺激眼睛和呼吸道。新形成的氧化铜烟雾或粉尘可能引起头痛、咳嗽、出汗、恶心和高烧。吸入烟雾可能造成金属烟雾热,金属烟雾热症状常常接触以后经过4至12小时才变得明显。引起咳嗽、咽喉痛、有金属气味。如果被食入,可引起腹部疼痛、腹泻、恶心、呕吐、有金属气味,该物质可能对肾和肝有影响。影响可能推迟显现。皮肤接触导致皮肤干燥。眼睛接触发红、疼痛。
长期或反复接触的影响:反复或长期与皮肤接触可能引起皮炎。
防护处理
局部排气通风或呼吸防护,戴安全护目镜,或眼睛防护结合呼吸防护。工作时不得进食、饮水或吸烟。
急救措施
氧化亚铜pdf卡片编号
氧化亚铜pdf卡片编号
氧化亚铜(Cuprous Oxide)的PDF卡片编号是由国际粉末衍射联合会(International Centre for Diffraction Data,简称ICDD)提供的一套唯一的数字标识,用于识别和检索物质的粉末X射线衍射(PXRD)图谱。
这些编号通常与ICDD出版的“粉末衍射文件” (Powder Diffraction File,PDF)数据库中的数据条目相对应。
氧化亚铜的PDF卡片编号是ICDD为该化合物的X射线衍射模式分配的唯一标识符。
这个编号可以用于在ICDD的PDF数据库中查找氧化亚铜的衍射数据,这些数据包括了衍射峰的位置、强度等信息,对于材料科学家和工程师来说,这些信息是非常重要的,因为它们可以帮助他们识别样品中的相和纯度。
如果需要找到氧化亚铜的PDF卡片编号,可以通过访问ICDD的网站或使用他们的PDF-4+软件来搜索。
通常,可以在ICDD的网站上通过输入化学式Cu2O或者物质名称“cuprous oxide”来找到相应的PDF卡片。
一旦找到了氧化亚铜的PDF卡片编号,就可以查看详细的衍射数据,这些数据可以用于比对实验得到的X射线衍射图谱,以确认样品中是否含有氧化亚铜以及它的纯度和结晶情况。
氧化铜化学表达
氧化铜化学表达
Cuprous Oxide(氧化铜)
一、性质:
1. 外观:氧化铜的外观为黑色的粉末。
2. 熔点:熔点很低,只有1327℃。
3. 硬度:软硬度适中,3-4级。
4. 含氧量:含氧量极高,大约为80%。
二、分子结构:
氧化铜主要由铜原子和氧原子共同组成,其分子结构如下:Cu2O。
三、形成机理:
1. 氧化铜主要是由于铜锌等金属元素与氧化或氧化气体反应而形成。
2. 在氧化铜生成过程中,铜与氧反应时,氧原子将强行补充到铜原子结构中,形成Cu2O分子结构。
四、用途:
1. 氧化铜的苯甲醛催化剂可以用于新能源、重大社会实用性催化反应。
2. 氧化铜可用于高效精细化工、印染、精细无机催化剂和耐酸性涂料中。
3. 氧化铜也可用于染料行业,制造染料、保护染色品等。
4. 氧化铜也可用于气体检测中,检测有毒气体的状态。
5. 氧化铜也是电子产品行业中,生产电子产品的重要原料。
Cu2O光催化剂综述
Cu2O光催化剂综述闫全青;张飞龙;罗鹏飞;束敏;李春雷【摘要】Degradation mechanism of cuprous oxide photocatalysis was reviewed.Band gap, utilization of photogenerated carrier and solution pH were main factors affecting the photocatalytic process of cuprous oxide.Doping, loading noble metal, carbon material modification and composite semiconductor could effectirely improve photocatalytic performance.%介绍Cu2O光催化降解机理, 禁带宽度, 光生载流子利用率和溶液pH影响Cu2O光催化降解活性, 通过掺杂, 负载贵金属, 碳材料修饰和半导体复合可提高Cu2O光催化性能.【期刊名称】《工业催化》【年(卷),期】2018(026)012【总页数】6页(P16-21)【关键词】催化化学;氧化亚铜;降解;改性【作者】闫全青;张飞龙;罗鹏飞;束敏;李春雷【作者单位】兰州理工大学石油化工学院,甘肃兰州 730050;兰州理工大学石油化工学院,甘肃兰州 730050;兰州理工大学石油化工学院,甘肃兰州 730050;兰州理工大学石油化工学院,甘肃兰州 730050;兰州理工大学石油化工学院,甘肃兰州730050【正文语种】中文【中图分类】TQ034;O644随着人们对环境问题的重视,寻找最佳催化剂治理各类污染物仍存在挑战。
伴随光催化研究的持续,TiO2[1]、Cu2O[2]、ZnO[3]、WO3[4],Bi2WO6[5]和钛酸铋[6]等新型、环境友好的光催化剂成为研究热点。
氧化亚铜特点
氧化亚铜特点
氧化亚铜(Cuprous oxide,Cu2O)是铜的一种氧化物,具有以下特点:
1.颜色:氧化亚铜呈现红色或橙红色,是一种具有吸引力的
颜色。
2.结晶结构:氧化亚铜呈现为等离子长方体晶体结构。
它的
晶格参数相对稳定,可以通过X射线衍射等方法进行精确
测量。
3.导电性:氧化亚铜是一种半导体材料,具有较高的电导率。
它可以在一定范围的温度和能带结构下表现出p型半导体
的特性。
4.光学性质:氧化亚铜对红外光有较好的透明性,并且对可
见光有较强的吸收能力。
因此,它常用于光学器件和太阳
能电池等领域。
5.高热稳定性:氧化亚铜在高温下具有很好的热稳定性,可
以在500摄氏度以上的温度下保持结构稳定性。
6.反应活性:氧化亚铜在一些化学反应中作为催化剂使用,
在有机合成和电化学反应中具有一定的催化活性。
7.毒性:氧化亚铜对人体相对低毒,但长期暴露或吸入大量
粉尘可能对健康造成不良影响。
氧化亚铜由于其独特的电学和光学性质,被广泛应用于太阳能电池、传感器、光学器件和催化剂等领域。
它的特点也使得它
在电子学、材料科学和能源领域具有重要的研究和应用价值。
美国食品添加剂汇总
美国食品添加剂汇总的食品用着色剂的种类及其使用规定。
具体规定如下:§免除产品证书的食品用着色剂混合物中的稀释剂( Diluents in color additive mixtures for food use exempt from certification )§食品着色剂胭脂树橙提取物( Annatto extract )§食品着色剂虾青素( Astaxanthin )§食品着色剂虾青素dimethyldisuccinate ( Astaxanthin dimethyldisuccinate )§食品着色剂脱水甜菜(甜菜粉) ( Dehydrated beets ( beet powder ))§食品着色剂群青色( Ultramarine blue )§食品着色剂斑蝥黄( Canthaxanthin )§食品着色剂焦糖色( Caramel )§食品着色剂β -阿朴-8′ -胡萝卜醛(β -Apo-8 ′-carotenal )§食品着色剂β -胡萝卜素(β -Carotene )§食品着色剂胭脂虫提取物;胭脂红( Cochineal extract; carmine )§食品着色剂叶绿酸铜钠( Sodium copper chlorophyllin )§食品着色剂烘烤的部分脱脂煮棉子粉( Toasted partially defatted cooked cottonseed flour )§食品着色剂葡萄糖酸亚铁( Ferrous gluconate )§食品着色剂乳酸亚铁( Ferrous lactate )§食品着色剂葡萄色素提取物( Grape color extract )§食品着色剂葡萄皮提取物 (脱糖葡萄花青素) ( Grape skin extract ( enocianina ))§食品着色剂红球藻属海藻粉( Haematococcus algae meal ) §食品着色剂合成氧化铁( Synthetic iron oxide )§食品着色剂水果汁( Fruit juice )§食品着色剂蔬菜汁( Vegetable juice )§食品着色剂藻类干粉( Dried algae meal )§食品着色剂万寿菊粉和提取物( Tagetes ( Aztec marigold ) meal and extract )§食品着色剂胡萝卜油( Carrot oil )§食品着色剂玉米胚乳油( Corn endosperm oil )§食品着色剂红辣椒粉( Paprika )§食品着色剂红辣椒油树脂( Paprika oleoresin )§食品着色剂云母钛珠光颜料( Mica-based pearlescent pigments )§食品着色剂副球菌颜料( Paracoccus pigment )§食品着色剂红发夫酵母( Phaffia yeast )§食品着色剂核黄素( Riboflavin )§食品着色剂藏红花( Saffron )§食品着色剂二氧化钛( Titanium dioxide )§食品着色剂番茄红素提取液和浓缩剂 ( Tomato lycopene extract; tomato lycopene concentrate )§食品着色剂姜黄( Turmeric ) §食品着色剂姜黄油树脂( Turmeric oleoresin ) 已证实属于一般公认为安全( GRAS)的可直接加入食品中的物质种类如下:A 分部总则§已证实属一般公认为安全的( GRAS)可直接加入食品中的物质( Substances added directly to human food affirmed as generally recognized as safe ( GRAS))A 分部已证实属于GRAS的特定物质名单§食品添加剂乙酸( Acetic acid )§食品添加剂乌头酸( Aconitic acid )§食品添加剂已二酸( Adipic acid )§食品添加剂海藻酸( Alginic acid )§食品添加剂α -淀粉酶制剂,得自嗜热脂肪芽孢杆菌 ( &;-Amylase enzyme preparation from Bacillus stearothermophilus )§食品添加剂苯甲酸( Benzoic acid)§食品添加剂菠萝蛋白酶( Bromelain )§食品添加剂辛酸( Caprylic acid )§食品添加剂糖酶和蛋白酶的混合酶制剂( Mixed carbohydrase and protease enzyme product )§食品添加剂柠檬酸( Citric acid )§ (牛肝的)过氧化氢酶( Catalase ( bovine liver ))§食品添加剂乳酸( Lactic acid)§食品添加剂酶改性卵磷脂( Enzyme-modified lecithin )§食品添加剂亚油酸( Linoleic acid )§食品添加剂苹果酸( Malic acid )§食品添加剂酒石酸氢钾( Potassium acid tartrate )§食品添加剂丙酸( Propionic acid )§食品添加剂硬脂酸( Stearic acid)§食品添加剂琥珀酸( Succinic acid)§食品添加剂硫酸( Sulfuric acid )§食品添加剂单宁酸( Tannic acid)§食品添加剂酒石酸( Tartaric acid)§食品添加剂双乙酰酒石酸单、双甘油酯( Diacetyl tartaric acid esters of mono- and diglycerides )§食品添加剂琼脂( Agar-agar)§食品添加剂褐藻( Brown algae )§食品添加剂红藻( Red algae)§食品添加剂海藻酸铵( Ammonium alginate )§食品添加剂碳酸氢铵( Ammonium bicarbonate )§食品添加剂碳酸铵( Ammonium carbonate )§食品添加剂氯化铵( Ammonium chloride )§食品添加剂氢氧化铵( Ammonium hydroxide )§食品添加剂柠檬酸二铵( Ammonium citrate, dibasic )§食品添加剂磷酸二氢铵( Ammonium phosphate, monobasic )§食品添加剂磷酸氢二铵( Ammonium phosphate, dibasic )§食品添加剂硫酸铵( Ammonium sulfate )§细菌产生的糖酶制剂( Bacterially-derived carbohydrase enzyme preparation )§细菌产生的蛋白酶制剂( Bacterially-derived protease enzyme preparation )§食品添加剂膨润土( Bentonite )§ 食品添加剂过氧化苯甲酰( Benzoyl peroxide ) § 食品添加剂正丁烷和异丁烷( n-Butane and iso-butane ) § 食品添加剂乙酸钙( Calcium acetate ) § 食品添加剂海藻酸钙( Calcium alginate ) § 食品添加剂碳酸钙( Calcium carbonate ) §食品添加剂氯化钙( Calcium chloride ) § 食品添加剂柠檬酸钙( Calcium citrate ) § 食品添加剂葡萄糖酸钙( Calcium gluconate ) § 食品添加剂甘油磷酸钙( Calcium glycerophosphate ) § 食品添加剂氢氧化钙( Calcium hydroxide )§ 食品添加剂碘酸钙( Calcium iodate ) §食品添加剂乳酸钙( Calcium lactate ) §食品添加剂氧化钙( Calcium oxide ) § 食品添加剂泛酸钙( Calcium pantothenate ) § 食品添加剂丙酸钙( Calcium propionate ) § 食品添加剂硬脂酸钙( Calcium stearate )§食品添加剂硫酸钙( Calcium sulfate ) § 食品添加剂二氧化碳( Carbon dioxide ) § 食品添加剂β -胡萝卜素( Beta-carotene ) § 长枝木霉属产生的纤维素酶制剂( Cellulase enzyme preparation derived from Trichoderma longibrachiatum )§ 食品添加剂丁香及其衍生物( Clove and its derivatives ) § 食品添加剂可可脂替代品( Cocoa butter substitute ) § 食品添加剂葡糖糖酸铜( Copper gluconate )§食品添加剂玉米须和玉米须浸提物( Corn silk and corn silk extract )§食品添加剂碘化亚铜( Cuprous iodide )§食品添加剂L-半胱氨酸( L-Cysteine)§食品添加剂L-半胱氨酸盐酸盐( L-Cysteine monohydrochloride )§食品添加剂糊精( Dextrin )§食品添加剂双乙酰( Diacetyl )§食品添加剂莳萝及其衍生物( Dill and its derivatives )§食品添加剂酶改性脂肪( Enzyme-modified fats )§食品添加剂乙醇( Ethyl alcohol )§食品添加剂甲酸乙酯( Ethyl formate )§食品添加剂柠檬酸铁铵( Ferric ammonium citrate )§食品添加剂氯化铁( Ferric chloride )§食品添加剂柠檬酸铁( Ferric citrate )§食品添加剂磷酸铁( Ferric phosphate )§食品添加剂焦磷酸铁( Ferric pyrophosphate )§食品添加剂硫酸铁( Ferric sulfate )§食品添加剂抗坏血酸亚铁( Ferrous ascorbate )§食品添加剂碳酸亚铁( Ferrous carbonate )§食品添加剂柠檬酸亚铁( Ferrous citrate )§食品添加剂富马酸亚铁( Ferrous fumarate )§食品添加剂葡萄糖酸亚铁( Ferrous gluconate )§食品添加剂硫酸亚铁( Ferrous sulfate )§食品添加剂无花果蛋白酶( Ficin )§食品添加剂大蒜及其衍生物( Garlic and its derivatives )§食品添加剂葡萄糖酸-δ -内酯( Glucono delta-lactone )§食品添加剂玉米麸质( Corn gluten )§食品添加剂小麦面筋( Wheat gluten )§食品添加剂单油酸甘油酯( Glyceryl monooleate )§食品添加剂单硬脂酸甘油酯( Glyceryl monostearate )§食品添加剂山嵛酸甘油酯( Glyceryl behenate )§食品添加剂棕榈酸硬脂酸甘油酯( Glyceryl palmitostearate )§食品添加剂阿拉伯胶( Acacia (gum arabic ))§食品添加剂印度树胶( Gum ghatti )§食品添加剂瓦尔豆胶( Guar gum )§食品添加剂槐豆胶( Locust ( carob) bean gum)§食品添加剂刺梧桐胶( Karaya gum ( sterculia gum ))§食品添加剂黄芪胶( Gum tragacanth )§食品添加剂氦( Helium )§食品添加剂过氧化氢( Hydrogen peroxide )§食品添加剂肌醇( Inositol )§食品添加剂不溶性葡萄糖异构酶制剂( Insoluble glucose isomerase enzyme preparations )§食品添加剂元素铁( Iron, elemental )§食品添加剂柠檬酸异丙酯( Isopropyl citrate )§食品添加剂拟热带假丝酵母产生的乳糖酶制剂( Lactase enzyme preparation from Candida pseudotropicalis )§食品添加剂乳酸克鲁维酵母产生的乳糖酶制剂( Lactase enzyme preparation from Kluyveromyces lactis )§食品添加剂卵磷脂( Lecithin )§食品添加剂甘草及其衍生物( Licorice and licorice derivatives )§食品添加剂重质碳酸钙( Ground limestone )§食品添加剂动物性脂肪酶( Animal lipase )§食品添加剂雪白根霉产生的脂肪酶制剂( Lipase enzyme preparation derived from Rhizopus niveus)§食品添加剂碳酸镁(Magnesium carbonate )§食品添加剂氯化镁(Magnesium chloride )§食品添加剂氢氧化镁(Magnesium hydroxide )§食品添加剂氧化镁(Magnesium oxide )§食品添加剂磷酸镁(Magnesium phosphate )§食品添加剂硬脂酸镁(Magnesium stearate )§食品添加剂硫酸镁(Magnesium sulfate )§食品添加剂麦芽( Malt )§食品添加剂麦芽糖糊精( Maltodextrin )§食品添加剂麦芽糖浆(麦芽提取物) ( Malt syrup (malt extract ))§食品添加剂氯化锰( Manganese chloride )§食品添加剂柠檬酸锰( Manganese citrate )§食品添加剂葡萄糖酸锰( Manganese gluconate )§食品添加剂硫酸锰( Manganese sulfate )§食品添加剂鲱鱼油( Menhaden oil )§食品防腐剂对羟基苯甲酸甲酯( Methylparaben )§食品添加剂微粒化蛋白质产品( Microparticulated protein product )§食品添加剂单-双甘油酯( Mono- and diglycerides )§食品添加剂单-双甘油酯的磷酸二氢钠衍生物( Monosodium phosphate derivatives of mono- and diglycerides )§食品添加剂烟酸( Niacin)§食品添加剂烟酰胺( Niacinamide )§食品添加剂镍( Nickel )§食品添加剂乳酸链球菌肽制剂( Nisin preparation )§食品添加剂氮( Nitrogen )§食品添加剂一氧化二氮( Nitrous oxide )§食品添加剂蛋白胨( Peptones)§食品添加剂菜子油( Rapeseed oil)§食品添加剂牛胆汁提取物( Ox bile extract )§食品添加剂臭氧( Ozone)§食品添加剂胰酶制剂( Pancreatin)§食品添加剂木瓜蛋白酶( Papain)§食品添加剂果胶( Pectins )§食品添加剂胃蛋白酶( Pepsin)§食品添加剂海藻酸钾( Potassium alginate)§食品添加剂碳酸氢钾( Potassium bicarbonate )§食品添加剂碳酸钾( Potassium carbonate )§食品添加剂氯化钾( Potassium chloride )§食品添加剂柠檬酸钾( Potassium citrate )§食品添加剂氢氧化钾( Potassium hydroxide )§食品添加剂碘化钾( Potassium iodide )§食品添加剂碘酸钾( Potassium iodate )§食品添加剂乳酸钾( Potassium lactate )§食品添加剂硫酸钾( Potassium sulfate)§食品添加剂丙烷( Propane)§食品添加剂没食子酸丙酯( Propyl gallate )§食品添加剂丙二醇( Propylene glycol )§食品防腐剂对羟基苯甲酸丙酯( Propylparaben )§食品添加剂盐酸吡哆醇( Pyridoxine hydrochloride )§食品添加剂凝乳和凝乳酶制剂 (Rennet ( animal-derived ) and chymosin preparation fermentation-derived ))§食品添加剂核黄素( Riboflavin )§食品添加剂核黄素5' -磷酸(钠)( Riboflavin –5′ -phosphate ( sodium ))§食品添加剂芸香( Rue)§食品添加剂芸香油( Oil of rue )§食品添加剂乳木果油( Sheanut oil )§食品添加剂乙酸钠(Sodium acetate )§食品添加剂海藻酸钠(Sodium alginate )§食品添加剂苯甲酸钠(Sodium benzoate )§食品添加剂碳酸氢钠(Sodium bicarbonate )§食品添加剂碳酸钠(Sodium carbonate )§食品添加剂柠檬酸钠(Sodium citrate )§食品添加剂双乙酸钠(Sodium diacetate )§食品添加剂氢氧化钠(Sodium hydroxide )§食品添加剂次磷酸钠(Sodium hypophosphite )§食品添加剂乳酸钠(Sodium lactate )§食品添加剂硅酸钠(Sodium metasilicate )§食品添加剂丙酸钠(Sodium propionate )§食品添加剂碳酸氢三钠( Sodium sesquicarbonate )§食品添加剂酒石酸钠(Sodium tartrate )§食品添加剂酒石酸钠钾( Sodium potassium tartrate )§食品添加剂硫代硫酸钠( Sodium thiosulfate )§食品添加剂山梨糖醇(Sorbitol )§食品添加剂氯化亚锡(无水和二水合) ( Stannous chloride ( anhydrous anddihydrated ))§食品添加剂发酵剂馏出液(Starter distillate )§食品添加剂柠檬酸硬脂酰酯(Stearyl citrate )§食品添加剂蔗糖(Sucrose)§食品添加剂玉米葡萄糖( Corn sugar)§食品添加剂转化糖( Invert sugar )§食品添加剂玉米糖浆( Corn syrup)§食品添加剂高果糖玉米糖浆( High fructose corn syrup )§食品添加剂盐酸硫胺素( Thiamine hydrochloride )§食品添加剂硫胺素( Thiamine mononitrate )§食品添加剂α -生育酚( alpha;-Tocopherols )§食品添加剂乙酸甘油酯( Triacetin )§食品添加剂三丁酸甘油酯( Tributyrin )§食品添加剂柠檬酸三乙酯( Triethyl citrate )§食品添加剂胰蛋白酶( Trypsin)§食品添加剂尿素( Urea)§产自发酵乳酸杆菌的脲酶制剂( Urease enzyme preparation from Lactobacillus fermentum )§食品添加剂维生素A( Vitamin A )§食品添加剂维生素B12(Vitamin B12)§食品添加剂维生素D( Vitamin D )§食品添加剂蜂蜡(黄色和白色) (Beeswax ( yellow and white ))§食品添加剂小烛树蜡( Candelilla wax)§食品添加剂巴西棕榈蜡( Carnauba wax )§食品添加剂乳清( Whey )§食品添加剂低乳糖乳清( Reduced lactose whey )§食品添加剂低矿物质乳清( Reduced minerals whey )§食品添加剂浓缩乳清蛋白( Whey protein concentrate )§食品添加剂面包酵母提取物( Bakers yeast extract )§食品添加剂玉米蛋白( Zein)§产自乳酸乳球菌的氨肽酶制剂该篇法规动态主要汇总了172 部分直接食品添加剂的使用规定。
氧化亚铜禁带宽度
氧化亚铜禁带宽度
氧化亚铜(Cuprous Oxide,化学式Cu2O)是一种半导体材料,其禁带宽度是指在电子能带结构中,价带(valence band)和导带(conduction band)之间的能量差距。
禁带宽度决定了材料的导电性质,而半导体材料的禁带宽度介于导体和绝缘体之间。
氧化亚铜的禁带宽度在不同文献中可能有略微差异,但一般情况下,它的禁带宽度约为1.2电子伏特(eV)至2.2电子伏特(eV)。
这个范围内的氧化亚铜被认为是一种直接带隙半导体。
直接带隙意味着电子在吸收或发射光子时,能量的变化与动量的变化没有相关性,使得氧化亚铜在一些光电器件中有潜在的应用价值。
需要注意的是,具体数值可能会受到实验条件和测量方法的影响,因此禁带宽度的值可能会在上述范围内有所变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reductionHonglei Xu a ,Xiangqing Li a ,*,Shi-zhao Kang a ,Lixia Qin a ,Guodong Li b ,Jin Mu b ,*aSchool of Chemical and Environmental Engineering,Shanghai Institute of Technology,100Haiquan Road,Shanghai 201418,China bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry,College of Chemistry,Jilin University,Changchun 130012,Chinaa r t i c l e i n f oArticle history:Received 27April 2014Received in revised form 22May 2014Accepted 25May 2014Available online 19June 2014Keywords:Graphene Co-catalystHydrogen evolution Visible light Charge separationa b s t r a c tCu 2O loaded reduced graphene oxide (Cu 2O/RGO)was prepared via a one-step in-situ reduction position and structure of the Cu 2O/RGO were characterized by X-ray diffraction,high resolution transmission electron microscope and X-ray photoelectron spectroscopy.With eosin Y (EY)and rose bengal (RB)as co-sensitizers,the activity of hydrogen evolution over the Cu 2O/RGO dramatically increased and achieved a maximum when the loading amount of Cu on the RGO was about 3wt.%.It exceeded that of RGO and Cu 2O by a factor of 7.3and 4.2at the same conditions,respectively.It could be even comparable to that of the Pt/RGO under the same reaction conditions.This work showed a possibility of utilizing Cu 2O as an alternative for noble metals (such as Pt)due to its low cost and high performance in photocatalytic hydrogen production.Copyright ©2014,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rightsreserved.IntroductionAs a new,clean fuel source,hydrogen energy has attracted great attention recently.Photocatalytic hydrogen production from water splitting is an attractive and challenging issue in the conversion of solar energy into chemical energy [1,2].Herein,it is vital to design and prepare a cheap and stable photocatalyst for photocatalytic hydrogen evolution.Graphene,which offers an excellent electron transport property and possesses an extremely high specific surface area,is desirable for use as a two-dimensional catalystsupport to provide adsorption and reaction sites and to suppress the recombination of photogenerated electron-hole pairs [3,4].The potential application of graphene-based photocatalysts to boost the efficiency of solar en-ergy conversion has been explored [5,6].Dye-sensitization is an effective route to enhance the visible response of the RGO-based catalysts [7,8].Unfortunately,even though the electrons can transfer from excited dye to RGO sheets,they may recombine with surface oxidized dye species if the trapped electrons are not quickly transferred.Therefore,it is important to accelerate the electron transfer on the*Corresponding authors .Tel.:þ862160873061;fax:þ862164253317.E-mail addresses:xqli@ (X.Li),mujin@ (J.Mu).Available online at ScienceDirectjournal homepage:/locate/hei n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 39(2014)11578e 11582/10.1016/j.ijhydene.2014.05.1560360-3199/Copyright ©2014,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rights reserved.surface of RGO in order to obtain higher photocatalytic efficiency.The graphene decorated with metal nanoparticles have been shown to exhibit enhanced electrocatalytic and photocatalytic performances[9].The graphene matrix is found to not only in-crease the active surface area and stability of the catalysts for the electrocatalytic reaction but also modulate the electronic struc-ture of support metal nanoparticles[10,11].For example,noble metal Pt nanoparticles immobilized on graphene sheets have displayed a high activity and stability in methanol and hydrogen fuel cells[10].In addition,as the co-catalysts,noble metals can not only promote the separation of photoexcited electrons and holes and serve as the active sites,but also improve the stability of the photocatalyst by timely consuming of the holes,which play an essential role in the production of H2and O2[12].How-ever,noble metals are rare and expensive,which restrain their practical application.Therefore,replacing noble metals may be a promising method in clean and renewable energy issues.It is found that cheap transition metals or their oxides such as Cu species are rarely used as the cocatalysts in photocatalytic hydrogen production even though some Cu species have demonstrated high activity in heterogeneous catalysis[13,14].Herein,by means of a facile process,Cu2O loaded RGO nanocomposites are prepared.With EY and RB(ER)as co-sensitizers,activity of the Cu2O/RGO for photocatalytic hydrogen production from water is investigated under visible light.ExperimentalWith graphite oxide and CuCl2as the reactants,NaBH4as the reductant,various Cu2O/RGO composites were prepared via one-step in-situ chemical reduction method.In addition,2% Pt/RGO and3%Pt/RGO composites were also prepared under same conditions.The experimental details were described in the Supporting Information(SI).Results and discussionFig.1A shows the XRD patterns of the RGO and the composite. Compared to that of the RGO(Fig.1A(a)),some new peaks (Fig.1A(b))at2q¼36.3 ,42.3 ,61.3 and73.4 are observed and indexed to(111),(200),(220)and(311)crystalline planes of the cubic phase Cu2O(JCPDS No.05-0667),respectively[15].The sharp and strong peaks suggest high crystallization of the Cu2O in the composite.The peaks assigned to C,O and Cu elements are observed in the EDX spectrum of the composite(Fig.S1).The C peak is resulted from RGO,Cu peak is from Cu2O species,and O peak comes from Cu2O and RGO.The results of XRD and EDX confirm the existence of Cu2O on the RGO.Further,the intensity ratio of D band(1346.6cmÀ1)to G band(1587cmÀ1)(Fig.S2) enhances,which indicates the presence of unrepaired defects after reduction of graphene oxide.It is consistent with the literature reported[16,17].The TEM image shows some nano-particles evenly loaded onto the RGO sheets(Fig.1B).The size of the nanoparticles ranges from4to24nm,and is mostly10nm, as illustrated in Fig.1D.The absence of isolation and apparent aggregation of Cu species in the image reveals a strong inter-action between RGO and Cu2O.In addition,the obvious lattice fringe assigned to(111)and(200)crystalline planes of cubic Cu2O can be observed in the HRTEM image of the Cu2O/RGO (Fig.1C).It is in good agreement with the result of XRD(Fig.1A).To further identify the surface chemical composition and the valence state of copper species in the composite,theFig.1e(A)XRD patterns of the RGO(a)and Cu2O/RGO composite(b);TEM image(B),HRTEM image(C)and size distribution histograms(D)for the Cu2O/RGO.The loading amount of Cu in the RGO was3wt.%.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y39(2014)11578e1158211579survey X-ray photoelectron spectrum (XPS)and the high-resolution XPS spectrum of Cu 2p are displayed in Fig.2.The survey spectrum (Fig.2A)shows the peaks of Cu,O and C,which is consistent with the result of EDX.Furthermore,the Cu 2p3/2bank (Fig.2B)can be divided into two peaks with binding energy at 932.7eV and 934.5eV,respectively,which indicates that there exists two kinds of Cu on the surface of the composite [13,18,19].The binding energy at 932.7eV can be assigned to Cu þ,and the binding energy at 934.5eV and the weak shake-up satellite at 942eV e 947eV are attributed to Cu 2þ[13,18].As aforementioned,XRD analysis and TEM image reveal the existence of Cu 2O in the composite,and no char-acteristic diffraction peaks for CuO are found in the XRD pattern of the composite.However,the peaks of Cu 2þare detected on the surface of the composite according to XPS analysis.It is deduced that tiny amounts of Cu 2O on the sur-face could be oxidized to CuO when the surface was exposed in air with humidity [19].It is reasonable that these tiny CuO on the surface could be detected by XPS,but not by XRD because XPS is a surface technique while XRD is a bulk char-acterization technique.Recent studies on dye-sensitized photocatalysis indicate that the combination of two dyes results in an extended light response,ensuring the efficient utilization of incident light energy [20].Here,with ER as the cosensitizers,the hydrogen evolution activity of the composite photocatalysts is evalu-ated using triethanolamine (TEOA)as the sacrificial agent.It is observed that the amount of hydrogen evolved is approxi-mately linear with time (Fig.S3).Fig.3A shows the amount of hydrogen evolution over various Cu 2O/RGO photocatalysts,together with those over pure RGO,Cu 2O and Pt/RGO for a comparison.It is obvious that the introduction of Cu 2O has a great effect on hydrogen evolution activity of the RGO (Tiny amounts of CuO on the surface of the Cu 2O/RGO can be reduced by H 2evolved and should have little effect on the activity of Cu 2O/RGO photocatalysts).With increasing the loading amount of Cu on the RGO,the rate of hydrogen evo-lution over the Cu 2O/RGO is dramatically increased.When the2004006008001000AC u 2pO 1sC 1sC u 3pI n t e n s i t y (a .u .)Binding energy (eV)I n t e n s i t y (a .u .)Binding energy (eV)Fig.2e (A)XPS spectrum of the Cu 2O/RGO composite and (B)high resolution XPS spectrum of the Cu 2p.The loading amount of Cu in the RGO was 3wt.%.| Ζ″| (Ω)Ζ′Ω100200300400AC u 2OH 2)l o m μ(n o i t u l o v e 2%P t 3%P t 5%C u 4%C u 3%C u 2%C u 1%C u R G O Fig.3e (A)The amount of hydrogen evolved over ER sensitized various photocatalysts under visible light irradiation for 6h (l >420nm).Reaction conditions:the concentration of ER is 3.0£10¡4mol L ¡1(molar ratio of EY to RB was 1:1);the amount of photocatalyst was 10mg;80mL of 15%TEOA aqueous solution (pH 9,adjusted by dilute hydrochloric acid).(B)Nyquist plots of electrochemical impedance spectra (EIS)for RGO and Cu 2O/RGO electrodes (The loading amount of Cu in the RGO was 3wt.%).The EIS measurements were performed in 0.1mol L ¡1Na 2SO 4aqueous solution.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 39(2014)11578e 1158211580loading amount of Cu is3%,the H2evolution rate achieves a maximum(4.53mmol hÀ1gÀ1)and exceeds that of RGO (0.618mmol hÀ1gÀ1)and Cu2O(1.09mmol hÀ1gÀ1)by a factor of7.3and4.2at the same conditions,respectively.It is indi-cated that there exists synergy effect between Cu2O and RGO. The appearance of a maximum in activity with an optimum loading of co-catalyst has also been observed for those loaded other co-catalysts[21].It could be related with the amount of active sites,which can not only trap photogenerated electrons to promote the charge separation,but also provide hydrogen evolution sites[12,14].The decreased activity(loading beyond 3%Cu)may be due to the aggregation of Cu species on the RGO sheets(Fig.S4),which reduces the amount of active sites and promotes recombination between the photogenerated elec-trons and the oxidized dye on the surface of the Cu2O/RGO [8,14,22].Because of its high work function and low Fermi energy,Pt is usually used as an efficient co-catalyst and the active sites for hydrogen generation[23].For comparison,2wt.%and 3wt.%of Pt were,respectively,loaded on RGO with similar method(Figs.S5and S6).As shown in Fig.3A,the amount ofhydrogen produced by the3%Pt/RGO(or2%Pt/RGO)can almost match with that of the Cu2O/RGO under same condi-tions.The results indicate that the Cu2O can collect effectively the electrons coming from RGO and reduce the over potential in hydrogen production from water.It is evidenced by the result of Nyquist plots.As shown in Fig.3B,the semicircle becomes smaller after the introduction of Cu2O,which in-dicates a lower resistance for the charge transfer in the interface of the Cu2O and the RGO.It is profitable to prevent electrons and holes from recombining and improve the ac-tivity of hydrogen evolution[4].So Cu2O is a highly efficient co-catalyst for the RGO in dye-sensitized photocatalytic hydrogen evolution system.In addition,the strong interaction between ER and RGO is also important for RGO to accept and transfer the photogenerated electrons produced by ER (Fig.S7).With ER as the cosensitizers,the stability of the Cu2O/RGO photocatalyst is investigated.As shown in Fig.4,the rate of hydrogen generation is the maximum(4.53mmol hÀ1gÀ1)in thefirst run,and then declines slightly in the consecutive runs.The rate of hydrogen generation can still reach 2.43mmol hÀ1gÀ1after consecutive5runs,which is still higher than those of single RGO(0.618mmol hÀ1gÀ1)or Cu2O (1.09mmol hÀ1gÀ1).Due to the EY molecules having less heavy halogen substituents than RB,it is reasonable that the EY possess lower stability than that of RB and is responsible for slightly decreased stability observed in the cosensitized system[24].Moreover,it is really observed that rate of hydrogen generation declines evidently in the consecutive runs with EY as the sensitizer(Fig.S8).In addition,using monochromatic light at l¼520nm,the time courses of hydrogen evolution over ER cosensitized Cu2O/RGO photo-catalyst is measured(Fig.S9).According to the Eq.(1)(SI,1.4), the quantum yield of hydrogenðF H2Þcalculated is about4.4%. Consequently,an efficient and stable photocatalytic hydrogen evolution system is constructed on the ER cosensitized Cu2O/ RGO photocatalytic system.The work on influence factors of photocatalytic activity for the Cu2O/RGO is being undertaken in our lab and it will be reported elsewhere.ConclusionsIn summary,the noble metal-free Cu2O/RGO nanocomposite was prepared via one-step in-situ chemical reduction strat-egy.The activity of RGO was increased up to7.3times when loaded with only3wt.%Cu,and it was even comparable to that of Pt/RGO under same conditions.A small amount of Cu2O on RGO sheets can efficiently trap the accumulated electrons to promote the separation of electrons and holes pairs.Thus the photocatalytic activity of hydrogen production enhanced.The study clearly demonstrated that choosing cheap transition metal oxide to replace noble metal as the co-catalyst was a promising method for photocatalytic hydrogen production.It is anticipated to open a new possibility in the investigation of RGO-based composites and promote their practical application in clean and renewable energy issues.AcknowledgmentsThis work wasfinancially supported by the National Natural Science Foundation of China(No.21301118,No.21305092,No. 21371070and No.21071060),and the Top Disciplines Con-struction Foundation of Shanghai City(No.405ZK120017001 and No.405ZK120021001).Appendix A.Supplementary dataSupplementary data related to this article can be found at /10.1016/j.ijhydene.2014.05.156r e f e r e n c e s[1]Maeda K,Takata T,Hara M,Saito N,Inoue Y,Kobayashi H,et al.GaN:ZnO solid solution as a photocatalyst for visible-H2evolution(μmol)Time (h)Fig.4e Cycling measurements of hydrogen evolution through photocatalytic water reduction using the Cu2O/ RGO nanocomposite as the photocatalyst under visible light irradiation(l>420nm).Reaction conditions were same as those in Fig.3.The loading amount of Cu in the RGO was3wt.%.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y39(2014)11578e1158211581light-driven overall water splitting.J Am Chem Soc2005;127:8286e7.[2]Mor GK,Prakasam HE,Varghese OK,Shankar K,Grimes CA.Vertically oriented Ti-Fe-O nanotube allayfilms:toward auseful material architecture for solar spectrum waterphotoelectrolysis.Nano Lett2007;7:2356e64.[3]Xiang QJ,Yu JG,Jaroniec M.Graphene-based semiconductorphotocatalysts.Chem Soc Rev2012;41:782e96.[4]Zhang J,Yu JG,Jaroniec M,Gong JR.Noble metal-free reducedgraphene oxide-Zn x Cd1Àx S nanocomposite with enhancedsolar photocatalytic H2-production performance.Nano Lett 2012;12:4584e9.[5]Zhang N,Zhang YH,Xu YJ.Recent progress on graphene-based photocatalysts:current status and future perspectives.Nanoscale2012;4:5792e813.[6]Kamat PV.Graphene-based nanoassemblies for energyconversion.J Phys Chem Lett2011;2:242e51.[7]Min SX,Lu GX.Dye-sensitized reduced graphene oxidephotocatalysts for highly efficient visible-light-driven water reduction.J Phys Chem C2011;115:13938e45.[8]Min SX,Lu GX.Dye-cosensitized graphene/Pt photocatalystfor high efficient visible light hydrogen evolution.Int JHydrogen Energy2012;37:10564e74.[9]Choi SM,Seo MH,Kim HJ,Kim WB.Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation.Carbon 2011;49:904e9.[10]Yoo EJ,Okata T,Akita T,Kohyama M,Nakamura J,Honma I.Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface.Nano Lett2009;9:2255e9. [11]Xu C,Wang X,Zhu JW.Graphene-metal particlenanocomposites.J Phys Chem C2008;112:19841e5.[12]Yang JH,Wang D,Han HX,Li C.Roles of cocatalysts inphotocatalysis and photoelectrocatalysis.Acc Chem Res2013;46:1900e9.[13]Yu JG,Ran JR.Facile preparation and enhancedphotocatalytic H2-production activity of Cu(OH)2clustermodified TiO2.Energy Environ Sci2011;4:1364e71.[14]Foo WJ,Zhang C,Ho GW.Non-noble metal Cu-loaded TiO2for enhanced photocatalytic H2production.Nanoscale2013;5:759e64.[15]Xu FG,Deng M,Li GY,Chen SH,Wang L.Electrochemicalbehavior of cuprous oxide-reduced graphene oxidenanocomposites and their application in nonenzymatichydrogen peroxide sensing.Electrochim Acta2013;88:59e65.[16]Zhou Y,Bao QL,Tang LAL,Zhong YL,Loh KP.Hydrothermaldehydration for the“green”reduction of exfoliatedgrapheme oxide to graphene and demonstration of tunable optical limiting properties.Chem Mater2009;21:2950e6. [17]Shin HJ,Kim KK,Benayad A,Yoon SM,Park HK,Jung IS,et al.Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance.Adv Funct Mater2009;19:1987e92.[18]Saikova S,Vorobyev S,Likhatski M,Romanchenko A,Erenburg S,Trubina S,et al.X-ray photoelectron,Cu L3MM auger and X-ray absorption spectroscopic studies of Cunanoparticles produced in aqueous solutions:the effect of sample preparation techniques.Appl Surf Sci2012;258:8214e21.[19]Ai ZH,Zhang LZ,Lee SC,Ho WK.Interfacial hydrothermalsynthesis of Cu@Cu2O core e shell microspheres withenhanced visible-light-driven photocatalytic activity.J Phys Chem C2009;113:20896e902.[20]Hardin BE,Sellinger A,Moehl T,Humphry-Baker R,Moser JE,Wang P,et al.Energy and hole transfer between dyesattached to titania in cosensitized dye-sensitized solar cells.J Am Chem Soc2011;133:10662e7.[21]Hara M,Nunoshige J,Takata T,Kondo JN,Domen K.Unusualenhancement of H2evolution by Ru on TaON photocatalyst under visible light irradiation.Chem Commun2003:3000e1.[22]Lv XJ,Zhou SX,Zhang C,Chang HX,Chen Y,Fu WF.Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting.J Mater Chem2012;22:18542e9.[23]Shangguan WF,Yoshida A.Photocatalytic hydrogenevolution from water on nanocomposites incorporatingcadmium sulfide into the interlayer.J Phys Chem B2002;106:12227e30.[24]Shimidzu T,Iyoda T,Koide Y.An advanced visible-lightinduced water reduction with dye-sensitized semiconductor powder catalyst.J Am Chem Soc1985;107:35e41.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y39(2014)11578e11582 11582。