2016年普通高等学校招生全国统一考试模拟数学(理)试卷(二)(word版含解析)

合集下载

(完整word版)2016全国二卷理科数学高考真题及答案

(完整word版)2016全国二卷理科数学高考真题及答案

2016年全国高考理科数学试题全国卷2一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知z=(m+3)+(m –1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(–3,1) B .(–1,3) C .(1,+∞) D .(–∞,–3) 2、已知集合A={1,2,3},B={x|(x+1)(x –2)<0,x ∈Z},则A ∪B=( ) A .{1} B .{1,2} C .{0,1,2,3} D .{–1,0,1,2,3} 3、已知向量a =(1,m),b =(3,–2),且(a +b )⊥b ,则m=( ) A .–8 B .–6 C .6 D .8 4、圆x 2+y 2–2x –8y+13=0的圆心到直线ax+y –1=0的距离为1,则a=( ) A .–43 B .–34 C . 3 D .25、如下左1图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ) A .24 B .18 C .12 D .96、上左2图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π7、若将函数y=2sin2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为( ) A .x=kπ2–π6(k ∈Z) B .x=kπ2+π6(k ∈Z) C .x=kπ2–π12(k ∈Z) D .x=kπ2+π12(k ∈Z)8、中国古代有计算多项式值的秦九韶算法,上左3图是实现该算法的程序框图。

执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=( )A .7B .12C .17D .34 9、若cos(π4–α)=35,则sin2α= ( )A .7B .1C .–1D .–7中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n m B .2n m C .4m n D .2m n11、已知F 1、F 2是双曲线E :x 2a 2–y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32 C .3 D .212、已知函数f(x)(x ∈R)满足f(–x)=2–f(x),若函数y=x+1x 与y=f(x)图像的交点为(x 1,y 1),(x 2,y 2),...(x m ,y m ),则1()miii x y =+=∑( )A .0B .mC .2mD .4m 二、填空题:本大题共4小题,每小题5分13、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cosA=45,cosC=513,a=1,则b=___________. 14、α、β是两个平面,m ,n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β。

2016年高考全国卷2理科数学试题及答案

2016年高考全国卷2理科数学试题及答案

2016年普通高等学校招生全国统一考试理科数学试题及答案注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12 (k ∈Z )(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 35,则sin 2α=(A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A(B )32(C(D )2(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = .(14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

2016年高考全国卷2理科数学试题及答案

2016年高考全国卷2理科数学试题及答案

2016年普通高等学校招生全国统一考试理科数学试题及答案注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12 (k ∈Z )(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 35,则sin 2α=(A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A )2 (B )32(C )3 (D )2(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = .(14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

2016年高考理科数学全国卷2(含详细答案)

2016年高考理科数学全国卷2(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。

2016年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科)解析版

2016年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科)解析版

本卷须知: 1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页. 2.答题前,考生务必将自己的XX 、XX 号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试完毕后,将本试题和答题卡一并交回.第一卷一.选择题:此题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值X 围是〔 〕 〔A 〕(31)-,〔B 〕(13)-,〔C 〕(1,)∞+〔D 〕(3)∞--, 【答案】A考点:复数的几何意义.【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i(a ,b ∈R )平面向量OZ .〔2〕集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,那么A B =〔 〕〔A 〕{1}〔B 〕{12},〔C 〕{0123},,,〔D 〕{10123}-,,,, 【答案】C 【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,应选C.考点:集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.〔3〕向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,那么m =〔 〕 〔A 〕-8 〔B 〕-6 〔C 〕6 〔D 〕8 【答案】D 【解析】试题分析:向量a b (4,m 2)+=-,由(a b)b +⊥得43(m 2)(2)0⨯+-⨯-=,解得m 8=,应选D. 考点:平面向量的坐标运算、数量积.【名师点睛】非零向量a =(x 1,y 1),b =(x 2,y 2):结论 几何表示 坐标表示模 |a |=a·a |a |=x 21+y 21夹角cos θ=a·b|a||b|cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥b 的充要条件a·b =0x 1x 2+y 1y 2=0〔4〕圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,那么a=〔 〕〔A 〕43-〔B 〕34-〔C 〕3〔D 〕2 【答案】A考点:圆的方程、点到直线的距离公式. 【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与半径长r 的大小关系来判断. 假设d >r ,那么直线与圆相离;假设d=r,那么直线与圆相切;假设d<r,那么直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.〔5〕如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,那么小明到老年公寓可以选择的最短路径条数为〔〕〔A〕24 〔B〕18 〔C〕12 〔D〕9【答案】B考点:计数原理、组合.【名师点睛】分类加法计数原理在使用时易无视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易无视每步中某一种方法只是完成这件事的一局部,而未完成这件事,步步之间是相关联的.〔6〕以下列图是由圆柱与圆锥组合而成的几何体的三视图,那么该几何体的外表积为〔 〕〔A 〕20π〔B 〕24π〔C 〕28π 〔D 〕32π 【答案】C 【解析】试题分析:由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为2324S ππ=⋅=,故该几何体的外表积为12328S S S S π=++=,应选C. 考点:三视图,空间几何体的体积. 【名师点睛】由三视图复原几何体的方法:〔7〕假设将函数2sin 2y x =的图像向左平移12π个单位长度,那么平移后图象的对称轴为〔 〕 〔A 〕()26k x k Z ππ=-∈ 〔B 〕()26k x k Z ππ=+∈ 〔C 〕()212k x k Z ππ=-∈ 〔D 〕()212k x k Z ππ=+∈ 【答案】B考点:三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.〔8〕中国古代有计算多项式值的秦九韶算法,以下列图是实现该算法的程序框图.执行该程序框图,假设输入的2,2x n ==,依次输入的a 为2,2,5,那么输出的s =〔 〕〔A 〕7 〔B 〕12 〔C 〕17 〔D 〕34 【答案】C考点:程序框图,直到型循环构造.【名师点睛】直到型循环构造:在执行了一次循环体后,对条件进展判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环构造:在每次执行循环体前,对条件进展判断,当条件满足时,执行循环体,否那么终止循环.〔9〕假设3cos()45πα-=,那么sin 2α=〔 〕 〔A 〕725 〔B 〕15〔C 〕15- 〔D 〕725-【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,应选D.考点:三角恒等变换.【名师点睛】三角函数的给值求值,关键是把待求角用角表示: (1)角为两个时,待求角一般表示为角的和或差.(2)角为一个时,待求角一般与角成“倍的关系〞或“互余互补〞关系.〔10〕从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,那么用随机模拟的方法得到的圆周率π的近似值为〔 〕〔A 〕4n m 〔B 〕2n m 〔C 〕4m n 〔D 〕2m n【答案】C 【解析】试题分析:利用几何概型,圆形的面积和正方形的面积比为224S R mS R nπ==圆正方形,所以4m n π=.选C.考点:几何概型.【名师点睛】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.〔11〕12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,那么E 的离心率为〔 〕〔A B 〕32〔C D 〕2 【答案】A考点:双曲线的性质.离心率.【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).〔12〕函数()()f x x ∈R 满足()2()f x f x -=-,假设函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅那么1()mi i i x y =+=∑〔 〕〔A 〕0 〔B 〕m 〔C 〕2m 〔D 〕4m 【答案】B考点:函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.第二卷本卷包括必考题和选考题两局部.第13 ~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13) ABC ∆的内角,,A B C 的对边分别为,,a b c ,假设4cos 5A =,5cos 13C =,1a =,那么b =. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为sin sin a bA B=,所以sin 21sin 13a Bb A ==. 考点:三角函数和差公式,正弦定理.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,那么考虑用正弦定理;以上特征都不明显时,那么要考虑两个定理都有可能用到.(14) ,αβ是两个平面,,m n 是两条直线,有以下四个命题: 〔1〕如果,,//m n m n αβ⊥⊥,那么αβ⊥. 〔2〕如果,//m n αα⊥,那么m n ⊥. 〔3〕如果//,m αβα⊂,那么//m β.〔4〕如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有. (填写所有正确命题的编号〕 【答案】②③④考点:空间中的线面关系.【名师点睛】求解此题应注意在空间中考虑线、面关系.〔15〕有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上一样的数字不是2〞,乙看了丙的卡片后说:“我与丙的卡片上一样的数字不是1〞,丙说:“我的卡片上的数字之和不是5〞,那么甲的卡片上的数字是. 【答案】1和3 【解析】试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 考点:逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎〞,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.〔16〕假设直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,那么b =. 【答案】1ln 2-考点:导数的几何意义.【名师点睛】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).注意:求曲线切线时,要分清在点P 处的切线与过P 点的切线的不同.三.解答题:解容许写出文字说明,证明过程或演算步骤.17.〔此题总分值12分〕n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.〔Ⅰ〕求111101b b b ,,;〔Ⅱ〕求数列{}n b 的前1 000项和.【答案】〔Ⅰ〕10b =,111b =,1012b =;〔Ⅱ〕1893. 【解析】试题分析:〔Ⅰ〕先用等差数列的求和公式求公差d ,从而求得通项n a ,再根据条件[]x 表示不超过x 的最大整数,求111101b b b ,,;〔Ⅱ〕对n 分类讨论,再用分段函数表示n b ,再求数列{}n b 的前1 000项和. 试题解析:〔Ⅰ〕设{}n a 的公差为d ,据有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =111101[lg1]0,[lg11]1,[lg101] 2.b b b ======考点:等差数列的的性质,前n 项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新〞为“旧〞;二是通过深入分析,多方联想,以“旧〞攻“新〞;三是创造性地运用数学思想方法,以“新〞制“新〞,应特别关注创新题型的切入点和生长点.18.〔此题总分值12分〕某险种的根本保费为a 〔单位:元〕,继续购置该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数 0 1234≥5保费0.85aa1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数 0 1 2 3 4 ≥5概率0.300.150.200.200.100.05〔Ⅰ〕求一续保人本年度的保费高于根本保费的概率;〔Ⅱ〕假设一续保人本年度的保费高于根本保费,求其保费比根本保费高出60%的概率; 〔Ⅲ〕求续保人本年度的平均保费与根本保费的比值. 【答案】〔Ⅰ〕0.55;〔Ⅱ〕;〔Ⅲ〕1.23. 【解析】试题分析:〔Ⅰ〕根据互斥事件的概率公式求一续保人本年度的保费高于根本保费的概率;〔Ⅱ〕一续保人本年度的保费高于根本保费,当且仅当一年内出险次数大于3,由条件概率公式求解;〔Ⅲ〕记续保人本年度的保费为X ,求X 的分布列,再根据期望公式求解.试题解析:〔Ⅰ〕设A 表示事件:“一续保人本年度的保费高于根本保费〞,那么事件A 发生当且仅当一年内出险次数大于1,故()0.20.20.10.050.55.P A =+++=〔Ⅱ〕设B 表示事件:“一续保人本年度的保费比根本保费高出60%〞,那么事件B 发生当且仅当一年内出险次数大于3,故()0.10.050.15.P B =+= 又()()P AB P B =,故()()0.153(|).()()0.5511P AB P B P B A P A P A ==== 因此所求概率为3.11考点:条件概率,随机变量的分布列、期望.【名师点睛】条件概率的求法:(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A ),求P (B |A );(2)根本领件法:当根本领件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的根本领件数n (A ),再在事件A 发生的条件下求事件B 包含的根本领件数n (AB ),得P (B |A )=n (AB )n (A ).求离散型随机变量均值的步骤:(1)理解随机变量X 的意义,写出X 可能取得的全部值;(2)求X 的每个值的概率;(3)写出X 的分布列;(4)由均值定义求出E (X ).19.〔本小题总分值12分〕如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=. 〔Ⅰ〕证明:D H '⊥平面ABCD ; 〔Ⅱ〕求二面角B D A C '--的正弦值.【答案】〔Ⅰ〕详见解析;〔Ⅱ〕295.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.By〔II 〕如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -,那么()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,那么0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩,所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,那么0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是cos ,||||50m n m n m n ⋅<>===⋅,295sin ,m n <>=因此二面角B D A C '--考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.20.〔本小题总分值12分〕椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.〔Ⅰ〕当4,||||t AM AN ==时,求AMN ∆的面积; 〔Ⅱ〕当2AM AN =时,求k 的取值X 围. 【答案】〔Ⅰ〕14449;〔Ⅱ〕()32,2.试题解析:〔I 〕设()11,M x y ,那么由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -. 由及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749=⨯⨯⨯=.因此()33212k k t k -=-.3t >等价于()()232332132022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩,解得322k <<. 因此k 的取值X 围是()32,2.考点:椭圆的性质,直线与椭圆的位置关系.【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的X 围问题,常把所求参数作为函数,另一个元作为自变量求解.〔21〕〔本小题总分值12分〕 (Ⅰ)讨论函数xx 2f (x)x 2-=+e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2x =(0)x e ax a g x x-->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【答案】〔Ⅰ〕详见解析;〔Ⅱ〕21(,].24e .〔II 〕22(2)(2)2()(()),x x e a x x g x f x a x x-+++==+ 由〔I 〕知,()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥ 因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0'()0g x =, 当00x x <<时,()0,'()0,()f x a g x g x +<<单调递减; 当0x x >时,()0,'()0,()f x a g x g x +>>单调递增. 因此()g x 在0x x =处取得最小值,最小值为000000022000(1)+()(1)().2x x x e a x e f x x e g x x x x -++===+考点:函数的单调性、极值与最值. 【名师点睛】求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)由f ′(x )>0(f ′(x )<0)解出相应的x 的X 围.当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应的区间上是减函数,还可以列表,写出函数的单调区间.注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体〞概念,而极值是个“局部〞概念.请考生在22、23、24题中任选一题作答,如果多做,那么按所做的第一题计分,做答时请写清题号 〔22〕〔本小题总分值10分〕选修4-1:几何证明选讲如图,在正方形ABCD 中,,E G 分别在边,DA DC 上〔不与端点重合〕,且DE DG =,过D 点作DF CE ⊥,垂足为F .(Ⅰ) 证明:,,,B C G F 四点共圆;(Ⅱ)假设1AB =,E 为DA 的中点,求四边形BCGF 的面积.【答案】〔Ⅰ〕详见解析;〔Ⅱ〕12.〔II 〕由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB , 由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ 因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=考点:三角形相似、全等,四点共圆【名师点睛】判定两个三角形相似要注意结合图形性质灵活选择判定定理,特别要注意对应角和对应边.证明线段乘积相等的问题一般转化为有关线段成比例问题.相似三角形的性质可用来证明线段成比例、角相等;可间接证明线段相等.〔23〕〔本小题总分值10分〕选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.〔Ⅰ〕以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; 〔Ⅱ〕直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩〔t 为参数〕,l 与C 交于,A B 两点,||10AB =,求l 的斜率.【答案】〔Ⅰ〕212cos 110ρρθ++=;〔Ⅱ〕15±.试题解析:〔I 〕由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= 〔II 〕在〔I 〕中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=22121212||||()4144cos 44,AB ρρρρρρα=-=+-=-由||10AB =得2315cos ,tan 8αα==±, 所以l 的斜率为153或153-. 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式.【名师点睛】极坐标与直角坐标互化的注意点:在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的X 围,否那么点的极坐标将不唯一.在曲线的方程进展互化时,一定要注意变量的X 围.要注意转化的等价性.〔24〕〔本小题总分值10分〕选修4—5:不等式选讲 函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. 〔Ⅰ〕求M ;〔Ⅱ〕证明:当,a b M ∈时,|||1|a b ab +<+. 【答案】〔Ⅰ〕{|11}M x x =-<<;〔Ⅱ〕详见解析.试题解析:〔I 〕12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.〔II 〕由〔I 〕知,当,a b M ∈时,11,11a b -<<-<<, 从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<, 因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明.【名师点睛】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个局部,在每个局部上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用||||(0)x a x b c c -+->>的几何意义:数轴上到点1x a =和2x b =的距离之和大于c 的全体,|||||()|||x a x b x a x b a b -+-≥---=-.(3)图象法:作出函数1||||y x a x b =-+-和2y c =的图象,结合图象求解.。

2016年高考数学全国二卷(理)

2016年高考数学全国二卷(理)

2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的、号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面对应的点在第四象限,则实数m 的取值围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x =k π2–π6(k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12(k ∈Z )(8)中国古代有计算多项式值的九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 35,则sin 2α=(A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (A )2 (B )32(C )3 (D )2(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()miii x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = .(14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)(15)有三卡片,分别写有1和2,1和3,2和3。

2016全国卷Ⅱ高考理科数学试卷及答案(word版)复习进程

2016全国卷Ⅱ高考理科数学试卷及答案(word版)复习进程

2016年普通高等学校招生全统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知i m m z )1()3(-++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3-,1) (B )(1-,3) (C )(1,∞+) (D )(∞-,3-)(2) 已知集合{}3,2,1=A ,{}Z x x x x B ∈<-+=,0)2)(1(,则=B A (A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1- (3) 已知向量),1(m a =,)2,3(-=b 且b b a ⊥+)(,则=m(A )8- (B )6- (C )6 (D )8 (4) 圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a(A )34-(B )43- (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π(C )28π (D )32π (7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈-=ππ (B ))(62Z k k x ∈+=ππ(C ))(122Z k k x ∈-=ππ (D ))(122Z k k x ∈+=ππ (8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s (A )7 (B )12 (C )17 (D )34 (9) 若53)4cos(=-απ,则=α2sin (A )257 (B )51 (C )51- (D )257- (10)以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )m n 4 (B )m n 2 (C )n m 4 (D )nm 2 (11)已知21,F F 是双曲线E :12222=-by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2 (12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i iy x1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。

2016全国卷Ⅱ高考理科数学试卷及答案(版)(最新整理)

2016全国卷Ⅱ高考理科数学试卷及答案(版)(最新整理)

(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
(19) (本小题满分 12 分)
如图,菱形 ABCD 的对角线 AC 与 BD 交于点 O , AB 5 , AC 6 ,点 E, F 分别在 AD,CD 上, AE CF 5 ,
4 EF 交 BD 于点 H .将△DEF 沿 EF 折
到△DEF 的位置,OD 10 . (Ⅰ)证明: DH 平面 ABCD ; (Ⅱ)求二面角 B DA C 的正弦
(19)(本小题满分 12 分)
(I)由已知得 AC BD , AD CD ,又由 AE CF 得 AE CF ,故 AC / / EF . AD CD
因此 EF HD ,从而 EF D'H .由 AB 5 , AC 6 得 DO B0 AB2 AO2 4 . 由 EF / / AC 得 OH AE 1 .所以 OH 1, D'H DH 3 .
(A)24
(B)18
(C)12
(D)9
(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
(A)20π
(B)24π
23
(C)28π
(D)32π
(7) 若将函数 y 2 sin 2x 的图像向左平移 个单位长度,则平移后图 4 12
像的对称轴为
4
4
(A) x k (k Z ) 26
(A) 8
(B) 6
(C) 6
(D) 8
(4) 圆 x2 y 2 2x 8y 13 0 的圆心到直线 ax y 1 0 的距离为 1,则 a
(A) 4 3
(B) 3 4
(C) 3
(D) 2
(5) 如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为

2016 年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2016 年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案

2262016年普通高等学校招生全国统一考试 理科数学(Ⅰ)参考答案第Ⅰ卷(选择题 共60分) 一、选择题 (60分) 1—12 DBCBA ADCCB AB 第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分13.2- 14.10 15.64 16.216000三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分为12分) 解:(I )由已知及正弦定理得, ()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =.∴2sinCcosC sinC =.可得1cosC 2=,所以C 3π=. (II)由已知,1sin C 2ab =.又C 3π=,所以6ab =.由已知及余弦定理得, 222cosC 7a b ab +-=.∴2213a b +=,从而()225a b +=.∴C ∆AB的周长为5.18.(本小题满分为12分) 解:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,∴平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG =可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =, ∴//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,∴C F ∠E 为二面角C F -BE-的平面角,C F60∠E =.从而可得(C -.∴(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-.设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧=⎪⎨=⎪⎩, ∴可取(3,0,n =. 设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩, 同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-∴二面角C E -B -A 的余弦值为19-. 19.(本小题满分12分) 解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ;22716.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ; 24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ; 2.02.02.04.02.02)20(=⨯+⨯⨯==X P ; 08.02.02.02)21(=⨯⨯==X P ; 04.02.02.0)22(=⨯==X P . 所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19. (Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当19=n 时,192000.68(19200500)0.2EY =⨯⨯+⨯+⨯(192002500)0.08+⨯+⨯⨯+(192003500)0.044040⨯+⨯⨯=; 当20=n 时,202000.88(202002500)0.08EY =⨯⨯+⨯+⨯⨯(202002500)0.044080+⨯+⨯⨯=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .20.(本小题满分12分) 解:(Ⅰ)因为||||AC AD =,AC EB //,∴ADC ACD EBD ∠=∠=∠, ∴||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x . ∴34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x ky ,A 到m 的距离为122+k , ∴1344)12(42||22222++=+-=k k k PQ .∴四边形MPNQ 的面积341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ面积的取值范围为(.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.21.(本小题满分12分)解:(Ⅰ)()(1)2(1)x f x x e a x '=-+-(1)(2)x x e a =-+.(i )设0a =,则()(2)xf x x e =-,()f x 只有一个零点. (ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.∴()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->,228∴()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2ea ≥-,则ln(2)1a -≤,∴当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.若2ea <-,则ln(2)1a ->,∴当(1,ln(2))x a ∈-时,'()0f x <; 当(ln(2),)x a ∈-+∞时,'()0f x >. ∴()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设12x x <,由(Ⅰ)知 12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,∴122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,∴222222(2)(2)x x f x x e x e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.∴当1x >时,'()0g x <,而(1)0g =, ∴当1x >时,()0g x <. 从而22()(2)0g x f x =-<,∴122x x +<.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲 解:(Ⅰ)设E 是AB 的中点,连结OE , ∵,120OA OB AOB =∠=︒, ∴OE AB ⊥,60AOE ∠=︒. 在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径, ∴直线AB 与⊙O 相切.(Ⅱ)∵2OA OD =,∴O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上, ∴'OO AB ⊥.同理可证,'OO CD ⊥. ∴//AB CD . 23.(本小题满分10分)解:(I )由cos 1sin x a ty a t =⎧⎨=+⎩ (t 均为参数)消去参数t 得1C 的普通方程为 ()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆. 方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程(II )24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =.229由题意:1C 和2C 的公共方程所在直线即为3C .①—②得:24210x y a -+-=,即为3C ,∴210a -=∴1a =或1a =-(舍去).24.(本小题满分10分)解:(I )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()y f x =如图所示:(II )由⑴及()1f x >得当1x -≤时,由41x ->,解得5x >或3x <, 1x -∴≤;当312x -<<时,由321x ->,解得1x >或13x <,113x -<<∴或312x <<.当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >. 综上,13x <或13x <<或5x >, ()1f x >∴的解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.2302016年普通高等学校招生全国统一考试理科数学(Ⅱ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题 (60分)1—12 ACDAB CBCDC AB第Ⅱ卷(非选择题 90分)二、填空题13.211314.②③④ 15.1和3 16.1ln2-三.解答题17.(本题满分12分) 解:(I )设{}n a 的公差为d ,72874S a ==,∴44a =,∴4113a ad -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===, [][]1111lg lg111b a ===, [][]101101101lg lg 2b a ===.(II )记{}n b 的前n 项和为n T ,则 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时, 100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=. 18.(本题满分12分) 解:(I )设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=. (II )设续保人保费比基本保费高出60%为事件B ,()0.100.053()()0.5511P AB P B A P A +===.(Ⅲ)设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20EX a a =⨯++⨯1.50.20 1.750.1020.05a a a +⨯+⨯+⨯0.2550.150.250.3a a a a =+++0.1750.1 1.23a a a ++=,∴平均保费与基本保费比值为1.23. 19.(本小题满分12分)解:(I )证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =; 又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=, ∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD . (II )建立如图坐标系H xyz -. ()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur,,,()060AC =uuu r,,,设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量 ()2301n =u u r,,,∴1212cosn nn nθ⋅==u r u u ru r u u r,∴sinθ.20.(本小题满分12分)解:(I)当4t=时,椭圆E的方程为22143x y+=,A点坐标为()20-,.由已知条件及椭圆的对称性知,直线AM的倾斜角为4π,直线AM的方程为2y x=+.将2x y=-代入22143x y+=,并整理得27120y y-=,解得0y=或127y=,∴1127y=.∴AMN△的面积为11212144227749AMNS∆=⨯⨯⨯=.(II)由已知条件知,3,0,(t k A>>,直线AM的方程为(y k x=.联立(2213x yty k x⎧+=⎪⎨⎪=+⎩并整理,得()222223230tk x x t k t+++-=,解得x=x=∴AM=+=由已知条件知,直线AN的方程为(1y xk=-,∴同理可得AN=.由2AM AN=得22233ktk k t=++,即23632k ktk-=-.∵椭圆E的焦点在x轴,所以3t>,即236332k kk->-,整理得()()23122k kk+-<-2k<.21.(本小题满分12分)解:(I)()f x的定义域为()()22,-∞--+∞,.()()()22224ee222xxx xf xx x x⎛⎫-' ⎪=+=⎪+++⎝⎭.∵当x∈()()22,-∞--+∞,时,()0f x'>,∴()f x在()()22,-∞--+∞,和上单调递增,∴0x>时,()2e0=12xxfx->-+,∴()2e20xx x-++>.(II)()()()24e2ex xa x x ax ag xx----'=()4e2e2x xx x ax ax-++=()322e2xxx axx-⎛⎫+⋅+⎪+⎝⎭=,[)01a∈,.由(I)知,当0x>时,()2e2xxf xx-=⋅+的值域为()1-+∞,,只有唯一解使得2e2ttat-⋅=-+,(]02t∈,.当(0,)x t∈时()0g x'<,()g x单调减;当(,)x t∈+∞时()0g x'>,()g x单调增.()()()222e1ee1e22t tt ttta t th at t t-++⋅-++===+.记()e2tk tt=+.231232在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22.(本小题满分10分) 解:(I )∵DF EC ⊥, ∴,DEF CDF ∆~∆∴GDF DEF FCB ∠=∠=∠,DF DE DGCF CD CB ==, ∴,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠由此0180,CGF CBF ∠+∠= ∴,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥.连结GB .由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ ∴四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=23.(本小题满分10分)解:(I )由c o s ,s i nx y ρθρθ==可得C的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-= 12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-.24.(本小题满分10分)解:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-,∴112x -<≤-;当1122x -<<时,()2f x <恒成立;当12x ≥时,由()2f x <得22,x <解得1x <, ∴112x ≤<.综上可得,()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时, 11,11a b -<<-<<,∴222222()(1)1a b ab a b a b +-+=+-- 22(1)(1)0a b =--<, ∴|||1|.a b ab +<+2332016年普通高等学校招生全国统一考试理科数学(Ⅲ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题(60分)1—12 DCADA ABCBB A C第Ⅱ卷(非选择题 90分)二、填空题:本大题共3小题,每小题5分 13.32 14.32π 15.21y x =-- 16.4 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)由题意得1111a S a λ==+,∴1≠λ,λ-=111a ,01≠a .由n n a S λ+=1,111+++=n n a S λ得 n n n a a a λλ-=++11,即n n a a λλ=-+)1(1.由01≠a ,0≠λ得0≠n a , ∴11n n a a λλ+=-. ∴}{n a 是首项为λ-11,公比为1-λλ的等比数列, ∴1)1(11---=n n a λλλ. (Ⅱ)由(Ⅰ)得n n S )1(1--=λλ, 由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321,解得1λ=-.18.(本小题满分12分) 解:(Ⅰ)由折线图中数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y,=40.1749.32 2.89=-⨯=,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb, 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. ∴y 关于t 的回归方程为: t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. ∴预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 19.(本小题满分12分)解:(Ⅰ)由已知得232==AD AM . 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,∴TN AM ,四边形AMNT 为平行四边形,∴AT MN //.∵⊂AT 平面PAB ,⊄MN 平面PAB ,∴//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE . 由AC AB =得BC AE ⊥,从而 AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE .234以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN ,)2,1,25(=AN .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =,∴2558|||||,cos |==><AN n AN n . 20.解:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且221(,0),(,),(,),222a b A B b P a - 11(,),(,)222a b Q b R +--.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . (Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=. ∴FQ AR ∥.(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=.由题设可得221211ba x ab -=--,∴01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合.∴所求轨迹方程为12-=x y . 21.(本小题满分12分)解:(Ⅰ)'()2sin 2(1)sin f x a x a x =---. (Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f = ∴32A a =-.当01a <<时,将()f x 变形为2()2c o s (1)c o s 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a --++=--=-. 令1114a a--<<,解得13a <-(舍去),15a >.235(ⅰ)当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>.又1(1)(17)|()||(1)|048a a a g g a a --+--=>,∴2161|()|48a a a A g a a-++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. (Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |f x a x a x =--- 2|1|a a ≤+-.当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥, ∴'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,∴'|()|2f x A ≤.22.(本小题满分10分) 解:(Ⅰ)连结BC PB ,,则,BFD PBA BPD ∠=∠+∠ PCD PCB BCD ∠=∠+∠.∵AP BP =,∴PCB PBA ∠=∠, 又BCD BPD ∠=∠, ∴PCD BFD ∠=∠.又180PFD BFD ∠+∠=, 2PFB PCD ∠=∠,∴1803=∠PCD , ∴ 60=∠PCD .(Ⅱ)∵BFD PCD ∠=∠, ∴ 180=∠+∠EFD PCD ,由此知E F D C ,,,四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,∴G 就是过E F D C ,,,四点的圆的圆心, ∴G 在CD 的垂直平分线上, ∴CD OG ⊥.23.(本小题满分10分)解:(I )1C 的普通方程为2213x y +=, 2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()d α=sin()2|3πα=+-.当且仅当2()6k k Z παπ=+∈时,()d α,此时P 的直角坐标为31(,)22.24.(本小题满分10分) 解:(Ⅰ)当2a =时,()|22|2f x x =-+. 解不等式|22|26x -+≤,得13x -≤≤. ∴()6f x ≤的解集为236 {|13}x x -≤≤.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++- |212|x a x a ≥-+-+|1|a a =-+, 当12x =时等号成立, ∴当x R ∈时,()()3f xg x +≥等价于|1|3a a -+≥. ① 当1a ≤时,①等价于13a a -+≥,无解. 当1a >时,①等价于13a a -+≥,解得2a ≥.∴a 的取值范围是[2,)+∞.。

【全国Ⅱ卷】2016年普通高校招生全国统一考试数学理科试卷含答案解析

【全国Ⅱ卷】2016年普通高校招生全国统一考试数学理科试卷含答案解析

2016年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=( )A.-8B.-6C.6D.84.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-B.-C.D.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.96.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π7.若将函数y=2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为( )A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)8.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若A.7B.12C.17D.349.若cos-=,则sin 2α=( )A. B. C.- D.-10.从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A. B. C. D.11.已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )A. B. C. D.212.已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则 (xi+yi)=( )A.0B.mC.2mD.4m第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b= .14.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字16.若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b= .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)S n 为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lg an],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{bn}的前1 000项和.18.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与上年度出险次数0 1 2 3 4 ≥5保费0.85a a 1.25a 1.5a 1.75a 2a一年内出险次数0 1 2 3 4 ≥5概率0.30 0.15 0.20 0.20 0.10 0.05(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=.(Ⅰ)证明:D'H⊥平面ABCD;(Ⅱ)求二面角B-D'A-C的正弦值.20.(本小题满分12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(本小题满分12分)(Ⅰ)讨论函数f(x)=-e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=--(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是,(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=-+,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.A由已知可得-⇒⇒-3<m<1.故选A.2.C由(x+1)(x-2)<0⇒-1<x<2,又x∈Z,∴B={0,1},∴A∪B={0,1,2,3}.故选C.3.D由题可得a+b=(4,m-2),又(a+b)⊥b,∴4×3-2×(m-2)=0,∴m=8.故选D.4.A圆的方程可化为(x-1)2+(y-4)2=4,则圆心坐标为(1,4),圆心到直线ax+y-1=0的距离为=1,解得a=-.故选A.5.B分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.6.C由三视图可得圆锥的母线长为=4,∴S圆锥侧=π×2×4=8π.又S圆柱侧=2π×2×4=16π,S圆柱底=4π,∴该几何体的表面积为8π+16π+4π=28π.故选C.7.B将函数y=2sin 2x的图象向左平移个单位长度得到函数y=2sin 2=2sin的图象,由2x+=kπ+(k∈Z),可得x=+(k∈Z).则平移后图象的对称轴为x=+(k∈Z),故选B.8.C k=0,s=0,输入a=2,s=0×2+2=2,k=1;输入a=2,s=2×2+2=6,k=2;输入a=5,s=6×2+5=17,k=3>2,输出s=17.故选C.9.D解法一:sin 2α=cos-=cos 2-=2cos2--1=2×-1=-.故选D.解法二:cos-=(cos α+sinα)=⇒cos α+sinα=⇒1+sin 2α=,∴sin2α=-.故选D.10.C如图,数对(x i,y i)(i=1,2,…,n)表示的点落在边长为1的正方形OABC内(包括边界),两数的平方和小于1的数对表示的点落在半径为1的四分之一圆(阴影部分)内,则由几何概型的概率公式可得=⇒π=.故选C.11.A解法一:由MF1⊥x轴,可得M-,∴|MF1|=.由sin∠MF2F1=,可得cos∠MF2F1==,又tan∠MF2F1==,∴=,∴b2=ac,∵c2=a2+b2⇒b2=c2-a2,∴c2-a2-ac=0⇒e2-e-1=0,∴e=.故选A.解法二:由MF1⊥x轴,得M-,∴|MF1|=,由双曲线的定义可得|MF2|=2a+|MF1|=2a+,又sin∠MF2F1===⇒a2=b2⇒a=b,∴e==.故选A.12.B由f(-x)=2-f(x)可知f(x)的图象关于点(0,1)对称,又易知y==1+的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,则x1+x m=x2+x m-1=…=0,y1+y m=y2+y m-1=…=2,∴(x i+y i)=0×+2×=m.故选B.二、填空题13.答案解析由已知可得sin A=,sin C=,则sin B=sin(A+C)=×+×=,再由正弦定理可得=⇒b==.14.答案②③④解析由m⊥n,m⊥α,可得n∥α或n在α内,当n∥β时,α与β可能相交,也可能平行,故①错.易知②③④都正确.15.答案1和3解析由丙说的话可知丙的卡片上的数字一定不是2和3.若丙的卡片上的数字是1和2,则乙的卡片上的数字是2和3,甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则乙的卡片上的数字是2和3,此时,甲的卡片上的数字只能是1和2,不满足题意.故甲的卡片上的数字是1和3.16.答案1-ln 2解析直线y=kx+b与曲线y=ln x+2,y=ln(x+1)均相切,设切点分别为A(x 1,y1),B(x2,y2),由y=ln x+2得y'=,由y=ln(x+1)得y'=,∴k==,∴x1=,x2=-1,∴y1=-ln k+2,y2=-ln k.即A-,B--,∵A、B在直线y=kx+b上,⇒∴--三、解答题17.解析(Ⅰ)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.(6分)(Ⅱ)因为b n=(9分)所以数列{b n}的前1 000项和为1×90+2×900+3×1=1 893.(12分)18.解析(Ⅰ)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(3分)(Ⅱ)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)====.因此所求概率为.(7分)(Ⅲ)记续保人本年度的保费为X元,则X的分布列为EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.(12分)19.解析(Ⅰ)由已知得AC⊥BD,AD=CD.又由AE=CF得=,故AC∥EF.因此EF⊥HD,从而EF⊥D'H.(2分)由AB=5,AC=6得DO=BO=-=4.由EF∥AC得==.所以OH=1,D'H=DH=3.于是D'H2+OH2=32+12=10=D'O2,故D'H⊥OH.(4分)又D'H⊥EF,而OH∩EF=H,所以D'H⊥平面ABCD.(5分)(Ⅱ)如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),=(3,-4,0),=(6,0,0),=(3,1,3).(6分)设m=(x1,y1,z1)是平面ABD'的法向量,-则即所以可取m=(4,3,-5).(8分)设n=(x2,y2,z2)是平面ACD'的法向量,则即所以可取n=(0,-3,1).(10分)于是cos<m,n>===-.sin<m,n>=.因此二面角B-D'A-C的正弦值是.(12分)20.解析(Ⅰ)设M(x 1,y1),则由题意知y1>0.当t=4时,E的方程为+=1,A(-2,0).(1分)由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.(2分)将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.(4分)因此△AMN的面积S△AMN=2×××=.(5分)(Ⅱ)由题意,t>3,k>0,A(-,0).将直线AM的方程y=k(x+) 代入+=1得(3+tk2)x2+2tk2x+t2k2-3t=0.(7分) 由x1(-)=-得x1=-,故|AM|=|x1+ |=.(8分)由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.(9分)由2|AM|=|AN|得=,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=--.(10分)t>3等价于---=--<0,即--<0.(11分)由此得--或--解得<k<2.因此k的取值范围是(,2).(12分)疑难突破 第(Ⅰ)问中求出直线 AM 的倾斜角是解决问题的关键;第(Ⅱ)问利用 2|AM|=|AN|得出 t 与 k 的关系式, 由 t>3,建立关于 k 的不等式,从而得出 k 的取值范围. 21. 解析 (Ⅰ)f(x)的定义域为(-∞,-2)∪(-2,+∞).(2 分) f '(x)=- -=≥0,且仅当 x=0 时, f '(x)=0, 所以 f(x)在(-∞,-2),(-2,+∞)单调递增. 因此当 x∈(0,+∞)时, f(x)>f(0)=-1. 所以(x-2)ex>-(x+2),(x-2)ex+x+2>0.(4 分) (Ⅱ)g'(x)=-=(f(x)+a).(5 分)由(Ⅰ)知, f(x)+a 单调递增.对任意 a∈[0,1), f(0)+a=a-1<0, f(2)+a=a≥0. 因此,存在唯一 xa∈(0,2],使得 f(xa)+a=0,即 g'(xa)=0.(6 分) 当 0<x<xa 时, f(x)+a<0,g'(x)<0,g(x)单调递减; 当 x>xa 时, f(x)+a>0,g'(x)>0,g(x)单调递增.(7 分) 因此 g(x)在 x=xa 处取得最小值, 最小值为 g(xa)= 于是 h(a)= ,由-= '= <h(a)= >0,得 y= ≤=.(8 分) 单调递增.所以,由 xa∈(0,2],得 = 因为 y== .(10 分) .单调递增,对任意 λ∈,存在唯一的 xa∈(0,2],a=-f(xa)∈[0,1),使得 h(a)=λ.所以 h(a)的值域是 .(12 分)综上,当 a∈[0,1)时,g(x)有最小值 h(a),h(a)的值域是疑难突破 本题求解的关键是“设而不求”方法的运用,另外,注意将对 g'(x)符号的判断灵活地转化为对 f(x)+a 符 号的判断. 22. 解析 (Ⅰ)因为 DF⊥EC,所以△DEF∽△CDF,则有∠GDF=∠DEF=∠FCB, = = ,所以△DGF∽△CBF,由此可得∠DGF=∠CBF. 因此∠CGF+∠CBF=180°,所以 B,C,G,F 四点共圆.(5 分)(Ⅱ)由 B,C,G,F 四点共圆,CG⊥CB 知 FG⊥FB.连结 GB. 由 G 为 Rt△DFC 斜边 CD 的中点,知 GF=GC, 故 Rt△BCG≌Rt△BFG, 因此,四边形 BCGF 的面积 S 是△GCB 面积 S△GCB 的 2 倍, 即 S=2S△GCB=2× × ×1= .(10 分) 23. 解析 (Ⅰ)由 x=ρcos θ,y=ρsin θ 可得圆 C 的极坐标方程 ρ2+12ρcos θ+11=0.(3 分) (Ⅱ)在(Ⅰ)中建立的极坐标系中,直线 l 的极坐标方程为 θ=α(ρ∈R).(4 分) 设 A,B 所对应的极径分别为 ρ1,ρ2,将 l 的极坐标方程代入 C 的极坐标方程得 ρ2+12ρcos α+11=0. 于是 ρ1+ρ2=-12cos α,ρ1ρ2=11.(6 分) |AB|=|ρ1-ρ2|= 由|AB|= = .(9 分) .(8 分)得 cos2α= ,tan α=± 或.(10 分)所以 l 的斜率为方法总结 利用数形结合的思想方法及整体运算的技巧极大地提高了解题效率. 24. 解析 (Ⅰ)f(x)= (2 分)当 x≤- 时,由 f(x)<2 得-2x<2,解得 x>-1;(3 分) 当- <x< 时, f(x)<2;(4 分) 当 x≥ 时,由 f(x)<2 得 2x<2,解得 x<1.(5 分)所以 f(x)<2 的解集 M={x|-1<x<1}.(6 分) (Ⅱ)证明:由(Ⅰ)知,当 a,b∈M 时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0. 因此|a+b|<|1+ab|.(10 分) 方法总结 解含有两个绝对值的不等式问题主要采用零点分段法求解,另外,若所证不等式的两边均为非负数, 则先把两边平方,然后利用作差法求解.。

2016年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科)解析版

2016年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科)解析版

注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ) (A )(31)-, (B )(13)-, (C )(1,)∞+ (D )(3)∞--, 【答案】A考点: 复数的几何意义.【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i(a ,b ∈R ) 平面向量OZ .(2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.(3)已知向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D 【解析】试题分析:向量a b (4,m 2)+=-,由(a b)b +⊥得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D. 考点: 平面向量的坐标运算、数量积.【名师点睛】已知非零向量a =(x 1,y 1),b =(x 2,y 2):(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34- (C (D )2 【答案】A考点: 圆的方程、点到直线的距离公式. 【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与半径长r 的大小关系来判断. 若d >r ,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A)24 (B)18 (C)12 (D)9【答案】B考点:计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.(6)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C 【解析】试题分析:由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为2324S ππ=⋅=,故该几何体的表面积为12328S S S S π=++=,故选C.考点: 三视图,空间几何体的体积. 【名师点睛】由三视图还原几何体的方法:(7)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) (A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B考点: 三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.(8)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的2,2x n ==,依次输入的a 为2,2,5,则输出的s =( )(A )7 (B )12 (C )17 (D )34 【答案】C考点: 程序框图,直到型循环结构.【名师点睛】直到型循环结构:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.(9)若3cos()45πα-=,则sin 2α=( ) (A )725(B )15 (C )15- (D )725-【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.考点:三角恒等变换.【名师点睛】三角函数的给值求值,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )(A )4n m (B )2n m (C )4m n (D )2m n【答案】C 【解析】试题分析:利用几何概型,圆形的面积和正方形的面积比为224S R mS R nπ==圆正方形,所以4m n π=.选C.考点: 几何概型.【名师点睛】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(11)已知12,F F 是双曲线2222:1x y E a b -=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A (B )32(C (D )2【答案】A考点:双曲线的性质.离心率.【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】B考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.第Ⅱ卷本卷包括必考题和选考题两部分.第13 ~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13) ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B A C A B A C A C π=-+=+=+=,又因为sin sin a b A B=, 所以sin 21sin 13a Bb A ==.考点: 三角函数和差公式,正弦定理.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(14) ,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .【答案】1和3 【解析】试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 考点: 逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.(16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln2-考点: 导数的几何意义.【名师点睛】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).注意:求曲线切线时,要分清在点P 处的切线与过P 点的切线的不同.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】试题分析:(Ⅰ)先用等差数列的求和公式求公差d ,从而求得通项n a ,再根据已知条件[]x 表示不超过x 的最大整数,求111101b b b ,,;(Ⅱ)对n 分类讨论,再用分段函数表示n b ,再求数列{}n b 的前1 000项和. 试题解析:(Ⅰ)设{}n a 的公差为d ,据已知有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =111101[lg1]0,[lg11]1,[lg101] 2.b b b ======考点:等差数列的的性质,前n 项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.18.(本题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【答案】(Ⅰ)0.55;(Ⅱ);(Ⅲ)1.23. 【解析】试题分析:(Ⅰ)根据互斥事件的概率公式求一续保人本年度的保费高于基本保费的概率;(Ⅱ)一续保人本年度的保费高于基本保费,当且仅当一年内出险次数大于3,由条件概率公式求解;(Ⅲ)记续保人本年度的保费为X ,求X 的分布列,再根据期望公式求解.试题解析:(Ⅰ)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故()0.20.20.10.050.55.P A =+++=(Ⅱ)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故()0.10.050.15.P B =+= 又()()P AB P B =,故()()0.153(|).()()0.5511P AB P B P B A P A P A ==== 因此所求概率为3.11考点: 条件概率,随机变量的分布列、期望. 【名师点睛】条件概率的求法:(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A ),求P (B |A );(2)基本事件法:当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).求离散型随机变量均值的步骤:(1)理解随机变量X 的意义,写出X 可能取得的全部值;(2)求X 的每个值的概率;(3)写出X 的分布列;(4)由均值定义求出E (X ).19.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '= (Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)25.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.By(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则00m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是cos ,||||50m n m n m n ⋅<>===⋅,295sin ,25m n <>=. 因此二面角B D A C '--考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.20.(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.试题解析:(I )设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749=⨯⨯⨯=.因此()33212k k t k -=-.3t >等价于()()232332132022k k k k k k k -+-+-=<--,即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩2k <<.因此k 的取值范围是)2.考点:椭圆的性质,直线与椭圆的位置关系.【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.(21)(本小题满分12分) (Ⅰ)讨论函数xx 2f (x)x 2-=+e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2x =(0)x e ax a g x x -->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【答案】(Ⅰ)详见解析;(Ⅱ)21(,].24e .(II )22(2)(2)2()(()),x x e a x x g x f x a x x-+++==+ 由(I )知,()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0'()0g x =, 当00x x <<时,()0,'()0,()f x a g x g x +<<单调递减; 当0x x >时,()0,'()0,()f x a g x g x +>>单调递增. 因此()g x 在0x x =处取得最小值,最小值为000000022000(1)+()(1)().2x x x e a x e f x x e g x x x x -++===+考点: 函数的单调性、极值与最值. 【名师点睛】求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)由f ′(x )>0(f ′(x )<0)解出相应的x 的范围.当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应的区间上是减函数,还可以列表,写出函数的单调区间.注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD 中,,E G 分别在边,DA DC 上(不与端点重合),且DE DG =,过D 点作DF CE ⊥,垂足为F .(Ⅰ) 证明:,,,B C G F 四点共圆;(Ⅱ)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【答案】(Ⅰ)详见解析;(Ⅱ)12.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB , 由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ 因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=考点: 三角形相似、全等,四点共圆【名师点睛】判定两个三角形相似要注意结合图形性质灵活选择判定定理,特别要注意对应角和对应边.证明线段乘积相等的问题一般转化为有关线段成比例问题.相似三角形的性质可用来证明线段成比例、角相等;可间接证明线段相等.(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==, 所以l. 考点:圆的极坐标方程与普通方程互化, 直线的参数方程,点到直线的距离公式.【名师点睛】极坐标与直角坐标互化的注意点:在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.(24)(本小题满分10分)选修4—5:不等式选讲 已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+. 【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-;当1122x -<<时, ()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<, 从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<, 因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明.【名师点睛】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用||||(0)x a x b c c -+->>的几何意义:数轴上到点1x a =和2x b =的距离之和大于c 的全体,|||||()|||x a x b x a x b a b -+-≥---=-.(3)图象法:作出函数1||||y x a x b =-+-和2y c =的图象,结合图象求解.。

2016年高考理科数学试题全国卷2及解析word完美版

2016年高考理科数学试题全国卷2及解析word完美版

《2016年高考理科数学试题全国卷2及解析word完美版》摘要:、(题满分分)()讨论函数(x)x单调性并证明当x0(x–)x+x+0,参考答案、析∴+30–0∴–3故选.、析B{x|(x+)(x–)0x∈Z}{x|–xx∈Z}∴B{0,}∴∪B{0,,,3}故选. 3、析向量+b(,–)∵(+b)⊥b∴(+b)·b0–(–)0得8故选.、析圆x+–x–8+30化标准方程(x–)+(–)故圆心(,)得–故选. 5、析→有6种走法→G有3种走法由乘法原理知共6×38种走法故选B.析二由题明从街道处出发到处短有条路再从处到G处短共有条路则明到老年公寓可以选择短路径条数·8条故选B,析次运算0×+二次运算×+6三次运算6×+57故选. 9、析∵(–α)α(–α)(–α)–故选.法二对(–α)展开直接平方法三换元法 0、析由题得(x,)(3)如图所示方格而平方和如图阴影由几何概型概率计算公式知∴π故选.、析离心率由正弦定理得.故选.、析由(–x)–(x)得(x)关(0,)对称而+也关(0,)对称∴对每组对称x+x'0+'∴故选B. 3、析∵∴B(+)+ 由正弦定理得b.、析对①⊥⊥...06年全国高考理科数学试题全国卷、选择题题共题每题5分每题给出四选项只有项是合题目要、已知z(+3)+(–)复平面对应四象限则实数取值围是( ) .(–3,) B.(–,3) .(,+∞) .(–∞,–3) 、已知集合{,,3}B{x|(x+)(x–)0x∈Z}则∪B( ) .{} B.{,} .{0,,,3} .{–,0,,,3} 3、已知向量(,)b(3,–)且(+b)⊥b则( ) .–8 B.–6 .6 .8 、圆x+–x–8+30圆心到直线x+–0距离则( ) .– B.–.. 5、如下左图明从街道处出发先到处与红会合再起到位G处老年公寓参加志愿者活动则明到老年公寓可以选择短路径条数( ) . B.8 ..9 6、上左图是由圆柱与圆锥组合而成几何体三视图则该几何体表面积( ) .0πB.π.8π.3π 7、若将函数x图像向左平移单位长则平移图象对称轴( ) .x–(k∈Z) B.x+(k∈Z) .x–(k∈Z) .x+(k∈Z) 8、国古代有计算多项式值秦九韶算法上左3图是实现该算法程序框图执行该程序框图若输入x依次输入5则输出( ) .7 B..7 .3 9、若(–α)则α ( ) . B..–.– 0、从区[0,]随机抽取数xx…x…构成数对(x,)(x,)…(x,)其两数平方和数对共有则用随机模拟方法得到圆周率π近似值( ) . B...、已知、是双曲线–左右焦上与x轴垂直∠,则离心率( ) . B...、已知函数(x)(x∈R)满足(–x)–(x)若函数与(x)图像交(x,)(x,)(x,)则( ) .0 B...二、填空题题共题每题5分 3、△B角B对边分别b若则b___________.、α、β是两平面是两条直线有下列四命题 ()如⊥⊥α∥β那么α⊥β()如⊥α∥α那么⊥(3)如α∥β⊂α那么∥β()如∥α∥β那么与α所成角和与β所成角相等其正确命题有____________________(填写所有正确命题编)5、有三张卡片分别写有和和3和3.甲乙丙三人各取走张卡片甲看了乙卡片说“我与乙卡片上相数不是”乙看了丙卡片说“我与丙卡片上相数不是”丙说“我卡片上数和不是5”则甲卡片上数是____________.6、若直线kx+b是曲线lx+切线也是曲线l(x+)切线则b__________.三、答题答应写出说明证明程或演算步骤7、(题满分分)等差数列{}前项和且78记b[lg]其[x]表示不超x整数如[09]0[lg99]. ()bbb0; ()数列{b}前 000项和. 8、(题满分分)某险种基保费(单位元)继续购买该险种投保人称续保人续保人年保费与其上年出险次数关如下上年出险次数0 3 ≥5 保费 085 5 5 75 设该险种续保人年出险次数与相应概率如下[] 年出险次数0 3 ≥5 概率 030 05 00 00 00 0 05 ()续保人年保费高基保费概率; ()若续保人年保费高基保费其保费比基保费高出60%概率; (3)续保人年平保费与基保费比值. 9、(题满分分)如图菱形B对角线与B交B56、分别、上交B.将△沿折到△'位置'. ()证明'⊥平面B; ()二面角B–'–正弦值. 0、(题满分分)已知椭圆+焦X轴上是左顶斜率k(k0)直线交两上⊥. ()当||||△面积; ()当||||k取值围.、(题满分分)()讨论函数(x)x单调性并证明当x0(x–)x+x+0; ()证明当∈[0,)函数g(x)(x0)有值设g(x)值()函数()值域.请考生、3、题任选题作答如多做则按所做题计分做答请写清题、(题满分0分)[选修–几何证明选讲]如图正方形B、G分别边上(不与端重合)且G作⊥垂足. () 证明BG四共圆; ()若B四边形BG面积. 3、(题满分0分)[选修–坐标系与参数方程]直角坐标系x圆方程(x+6)+5. ()以坐标原极x轴正半轴极轴建立极坐标系极坐标方程; ()直线l参数方程是(参数)l与交B两|B|l斜率.、(题满分0分)[选修–5不等式选讲]已知函数(x)|x–|+|x+|不等式(x)集. (); ()证明当b∈|+b||+b|.参考答案、析∴+30–0∴–3故选.、析B{x|(x+)(x–)0x∈Z}{x|–xx∈Z}∴B{0,}∴∪B{0,,,3}故选. 3、析向量+b(,–)∵(+b)⊥b∴(+b)·b0–(–)0得8故选.、析圆x+–x–8+30化标准方程(x–)+(–)故圆心(,)得–故选. 5、析→有6种走法→G有3种走法由乘法原理知共6×38种走法故选B.析二由题明从街道处出发到处短有条路再从处到G处短共有条路则明到老年公寓可以选择短路径条数·8条故选B6、析几何体是圆锥与圆柱组合体设圆柱底面圆半径r周长圆锥母线长l圆柱高.由图得rπrπ由勾股定理得l表πr++lπ+6π+8π8π故选. 7、析由题将函数x图像向左平移单位得(x+)(x+)则平移函数对称轴x++kπk∈Z即x+k∈Z故选B8、析次运算0×+二次运算×+6三次运算6×+57故选. 9、析∵(–α)α(–α)(–α)–故选.法二对(–α)展开直接平方法三换元法 0、析由题得(x,)(3)如图所示方格而平方和如图阴影由几何概型概率计算公式知∴π故选.、析离心率由正弦定理得.故选.、析由(–x)–(x)得(x)关(0,)对称而+也关(0,)对称∴对每组对称x+x'0+'∴故选B. 3、析∵∴B(+)+ 由正弦定理得b.、析对①⊥⊥α∥β则αβ位置关系无法确定故错误;对②因所以直线作平面γ与平面β相交直线则∥因⊥α∴⊥∴⊥故②正确;对③由两平面平行性质可知正确;对④由线面所成角定义和等角定理可知其正确故正确有②③④ 5、析由题得丙不拿(,3)若丙(,)则乙(,3)甲(,3)满足;若丙(,3)则乙(,3)甲(,)不满足;故甲(,3) 6、析lx+切线·x+lx+(设切横坐标x) l(x+)切线·x+l(x+)–∴ 得xx–∴blx+–l. 7、析()设{}公差778∴∴∴+(–).∴b[lg][lg]0b[lg][lg]b0[lg0][lg0]. ()记{b}前项和则000b+b++b000[lg]+[lg]++[lg000].当0≤lg9;当≤lg099;当≤lg3000999;当lg3000.∴0000×9+×90+×900+3×893. 8、()设续保人年保费高基保费事件()–()–(030+05)055. ()设续保人保费比基保费高出60%事件B(B|).⑶设年所交保费随机变量X. X 085 5 5 75 030 05 00 00 00 005 平保费X085×030+05+5×00+5×00+75×00+×0053 ∴平保费与基保费比值3. 9、析()证明如下左图∵∴∴∥.∵四边形B菱形∴⊥B∴⊥B∴⊥∴⊥'.∵6∴3;又B5⊥B∴B∴·∴'3∴|'|||+|'|∴'⊥.又∵∩∴'⊥面B. ()方法、几何法若B56则3B0∵B5∴5–∵∥∴∴3–3 ∵’3’∴满足’’+则△’直角三角形且’⊥ 即’⊥底面B即’是五棱锥’–B高.底面五边形面积×·B+×6×++ 则五棱锥’–B体积V·’××.方法二、向量法建立如下左图坐标系–xz.B(5,0,0)(,3,0)'(0,0,3)(,–3,0) ∴向量B(,3,0)'(–,3,3)(0,6,0) 设面B'法向量(x,,z)由得取∴(3,–,5).理可得面'法向量(3,0,) ∴|θ|∴θ0、析()当椭圆方程+坐标(–,0)则直线方程k(x+).立椭圆和直线方程并整理得(3+k)x+6kx+6k–0得x–或x–则|||–+|·∵⊥∴||··∵||||k0∴··整理得(k–)(k–k–)0 k–k+0无实根∴k.所以△面积||(·). ()直线方程k(x+) 立椭圆和直线方程并整理得(3+k)x+kx+k–30得x–或x–∴|||–+|·∴||· ∵||||∴···整理得.∵椭圆焦x轴∴3即3整理得0得k.、析()证明(x)x∴'(x)x(+)∵当x∈(–∞,–)∪(–,+∞)'(x)0∴(x)(–∞,–)和(–,+∞)上单调递增∴x0x(0)–∴(x–)x+x+0()g'(x)∈[0,)由()知当x0(x)x值域(–,+∞)只有.使得·–∈(0,]当x∈(0,)g'(x)0g(x)单调减;当x∈(,+∞)g'(x)0g(x)单调增 ()记k()∈(0,]k'()0∴k()单调递增∴()k()∈(,].、析()证明∵⊥∴R△∽R△∴∠G∠∠B∵GB∴∴△G∽△B∴∠B∠G∴∠GB∠G+∠B∠G+∠G∠90°∴∠GB+∠GB80°.∴BG四共圆.()∵B ∴GG∴R△GGG连接GBR△BG≌R△BG∴四边形BG△BG×××. 3、()整理圆方程得x++x+0 由ρx+、ρθx、ρθ可知圆极坐标方程ρ+ρθ+0. ()记直线斜率k则直线方程kx–0 由垂径定理及到直线距离公式知即整理得k则k±.、析()当x–(x)–x–x––x若–x–;当–≤x≤(x)–x+x+恒成立;当x(x)x若(x)x.综上可得{x|–x}. ()当b∈(–,)有(–)(b–)0即b++b则b+b++b+b则(b+)(+b)即|+b||b+| 证毕.。

2016年高考理科数学全国2卷含答案

2016年高考理科数学全国2卷含答案

2016年普通高等学校招生全国统一考试理科数学1-2卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4. 作图可先使用铅笔画出,确定后必须用墨色笔迹的签字笔描黑。

5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m 的取值范围是(A ))1,3(-(B ))3,1(-(C )),1(+∞(D )(2)已知集合,,则(A )(B )(C )(D )(3)已知向量,且,则m =(A )-8 (B )-6 (C )6 (D )8 (4)圆的圆心到直线的距离为1,则a=(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 (A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z ) (C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(4π–α)= 53,则sin 2α= (A )257(B )51(C )51- (D )257-(10)从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率 的近似值为(A ) (B ) (C ) (D )(11)已知F 1,F 2是双曲线E 的左,右焦点,点M 在E 上,M F 1与 轴垂直,sin,则E 的离心率为(A ) (B ) (C ) (D )2(12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为)(1,1y x ,),(22y x ···,(m m y x ,),则=+∑=mi i iy x1)((A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分。

2016年普通高等学校招生全国统一考试(新课标Ⅱ卷)理(精校解析)

2016年普通高等学校招生全国统一考试(新课标Ⅱ卷)理(精校解析)

2016 年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1 至3 页,第Ⅱ卷3 至5 页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知z (m 3) (m 1)i 在复平面内对应的点在第四象限,则实数m的取值范围是()(A)(3,1) (B)(1,3) (C)(1,+) (D)(-,3)【答案】A【解析】由已知得,解得,所以实数的取值范围是.考点:复数的几何意义.(2)已知集合A {1,2,3},B {x| (x 1)(x 2) 0, x Z},则A B ()(A){1}(B){1,2} (C){0,1,2,3} (D){1,0,1,2,3}【答案】C【解析】集合 B {x | 1x 2,x Z} {0,1},而 A {1, 2,3},所以A B {0,1, 2,3},故选C.考点:集合的运算.(3)已知向量a (1,m),a =(3,2),且(a+,则m=()b ) b(A)-8 (B)-6 (C)6 (D)8【答案】D【解析】向量 ab (4, m 2) ,由 (ab ) b 得 43 (m 2)(2) 0,解得 m 8 ,故选 D.考点: 平面向量的坐标运算、数量积. (4)圆x2y 2 2x 8y 13 0的圆心到直线 ax y 1 0 的距离为 1,则a=()(A )4(B ) 3(C ) 3(D )24 (B ) 334【答案】A【解析】由 由配方得,所以圆心为,半径,因为圆的圆心到直线的距离为 1,所以 ,解得 ,故选 A.考点: 圆的方程、点到直线的距离公式.(5)如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓 参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A )24 (B )18 (C ) 12 (D )9【答案】B【解析】由题意,小明从街道的 E 处出发到 F 处最短有C 2 条路,再从 F 处到 G 处最短共有4C 条路,则小明到老年公寓可以选择的最短路径条数为C 2C 1条,故选 B.1 34318考点: 计数原理、组合.(6)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A ) 20 (B ) 24 (C ) 28 (D )32【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为.考点: 三视图,空间几何体的体积. (7)若将函数 y 2 sin 2x 的图像向左平移12个单位长度,则平移后图象的对称轴为 ()kk(A ) x(k Z ) (B ) x(kZ )26 2 6 k k(C ) x(k Z ) (D ) x(k Z )212212【答案】B【 解 析 】 由 题 意 , 将 函 数 y2 sin 2x 的 图 像 向 左 平 移个 单 位 得12y 2 sin 2(x) 2sin(2x ) ,则平移后函数的对称轴为 2xk ,kZ ,12 6 62 k 即 x ,k Z ,故选 B.6 2考点: 三角函数的图象变换与对称性.(8)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框 图,若输入的 x2,n 2,依次输入的 a 为 2,2,5,则输出的 s( )(A)7 (B)12 (C)17 (D)34【答案】C【解析】第一次运行,,,,,不满足;第二次运行,,,,不满足;第三次运行,,,,满足.输出,故选C.考点:程序框图,直到型循环结构.3(9)若cos( ) ,则sin 2()4 571 1 (D)7 (A)(B)(C)25 5 5 25【答案】D23 72【解析】cos 2 2 cos 1 2 14 4 525,,故选D.且cos 2 cos 2 sin 24 2考点:三角恒等变换.(10)从区间0,1随机抽取2n个数x,1x,…,2x,ny,1y,…,2y,构成n个数对nx y,x y,…,,1,12, 2x y ,其中两数的平方和小于 1 的数对共有 m 个,则用随机nn模拟的方法得到的圆周率 的近似值为 (A )4nm(B ) 2n m (C )4m n(D )2mn【答案】C【解析】利用几何概型,圆 形的面积和正方形的面积比为SR 2 m圆S4Rn2正方形,所以4m .选 C. n考点: 几何概型.(11)已知F 1, F 2 是双曲线E xy22:1的左,右焦点,点 M 在 E上,ab22MF 与 x 轴垂直,11sin MF F ,则 E 的离心率为()2 133(A ) 2 (B )(C ) 3(D )22【答案】A【解析】因为 , 是双曲线 的左,右焦点,所以 , ,因为点 在 上, 与 轴垂直,所以 ,因为在 中, ,所以 ,整理得 ,因为,所以,整理得,由得,(舍去);由得,,因为,所以.考点:双曲线的性质.离心率.(12)已知函数f(x)(x R) 满足f (x ) 2 f(x),若函数yx 1与y f(x) 图像的x交点为m( , ),( , ), ,( , ),x y x y x y则(x y )()1 12 2 m m i ii 1(A)0 (B)m(C)2m(D)4m【答案】C【解析】由于f x f x 2 ,不妨设f xx 1,与函数yx 1 11的交点x x为1, 2,1,0,故x x y y ,故选C.1 2 1 2 2考点:函数图象的性质第Ⅱ卷本卷包括必考题和选考题两部分.第13 ~21 题为必考题,每个试题考生都必须作答.第22~24 题为选考题,考生根据要求作答.二、填空题:本大题共3 小题,每小题5 分(13) ABC的内角A, B,C的对边分别为a,b,c,若cos A 4 ,cos 5C,a 1,则5 13b.21【答案】13【解析】在△中,因为,,所以,,所以,因为,由正弦定理得,,所以. 考点:三角函数和差公式,正弦定理.(14) ,是两个平面,m,n 是两条直线,有下列四个命题:(1)如果m n,m ,n / /,那么.(2)如果m ,n / /,那么m n .(3)如果/ /,m ,那么m / /.(4)如果m / /n,/ /,那么m 与所成的角和n 与所成的角相等.其中正确的命题有..(填写所有正确命题的编号)【答案】②③④【解析】对于①,m n,m ,n // ,则,的位置关系无法确定,故错误;对于②,因为n //,所以过直线n 作平面与平面相交于直线c ,则n // c ,因为m ,m c,m n ,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.考点:空间中的线面关系.(15)有三张卡片,分别写有1 和2,1 和3,2 和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.【答案】1 和3【解析】由题意分析可知甲的卡片上数字为1 和3,乙的卡片上数字为2 和3,丙卡片上数字为1 和2.考点:推理.(16)若直线y kx b 是曲线y ln x 2 的切线,也是曲线y ln(x 1) 的切线,则b .【答案】1ln 2【解析】的切线为:(设切点横坐标为),的切线为:,所以 ,解得 ,所以 .考点: 导数的几何意义.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12 分) S为等差数列a 的前 n 项和,且 nna ,S记 b =lg a ,其中x表示不超过 x1=1728.a ,S记 b =lg a,其中x表示不超过 xnn的最大整数,如0.9=0,lg 99=1.(Ⅰ)求b ,b ,b ;111101(Ⅱ)求数列b 的前 1 000 项和.n【答案】(Ⅰ) b , b ,b, b,1 0111b;(Ⅱ)1893.1012【解析】(Ⅰ)设 的公差为 ,据已知有,解得所以的通项公式为(Ⅱ)因为 所以数列的前项和为考点:等差数列的的性质,前 n 项和公式,对数的运算. 18.(本题满分 12 分)某险种的基本保费为 a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 5 保费0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5概率0.30 0.15 0.20 0.20 0.10 0. 05 (Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.【答案】(Ⅰ)根据互斥事件的概率公式求解;(Ⅱ)由条件概率公式求解;(Ⅲ)记续保人本年度的保费为X,求X的分布列为,在根据期望公式求解..【解析】(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故(Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故又,故因此所求概率为(Ⅲ)记续保人本年度的保费为,则的分布列为因此续保人本年度的平均保费与基本保费的比值为考点:条件概率,随机变量的分布列、期望.19.(本小题满分12 分)如图,菱形ABCD的对角线AC与BD交于点O,AB5, AC6,点E, F分别在AD,CD上,5AE CF,EF交BD于点H.将DEF沿EF折到D'EF位置,4OD.10(Ⅰ)证明:D H平面ABCD;(Ⅱ)求二面角B D A C的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)2 95 25.【 解 析 】( I ) 由 已 知 得, , 又 由 得 , 故.因此,从而.由, 得 .由 得 .所以, .于是 ,故 . 又 ,而,所以.(II )如图,以为坐标原点,的方向为 轴的正方向,建立空间直角坐标系, 则,,,,,,,. 设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取.于是,.因此二面角的正弦值是.考点:线面垂直的判定、二面角.20.(本小题满分12 分)已知椭圆E: x y2 21的焦点在x轴上,A是E的左顶点,斜率为k(k0) 的直线交Et 3于A,M两点,点N在E上,MA NA.(Ⅰ)当t4,| AM|| AN| 时,求AMN的面积;(Ⅱ)当2 AM AN时,求k的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(I)设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.将代入得.解得或,所以.因此的面积.(II )由题意 , , .将 直 线 的 方程 代 入 得.由 得 ,故 .由题设,直线 的方程为 ,故同理可得 ,由 得,即 .当时上式不成立,因此 . 等价于 ,即 .由此得,或 ,解得 .因此 的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系. (21)(本小题满分 12 分) (Ⅰ)讨论函数 f (x) x 2 xe 的单调性,并证明当 x 0 时, (x 2)e x x 2 0 ;x 2(Ⅱ)证明:当 a[0,1) 时,函数eax a x(g x )=(x 0) 有最小值.设 g (x ) 的最 小值为x2h (a ) ,求函数 h (a ) 的值域.1 e2【答案】(Ⅰ)详见解析;(Ⅱ) ( ,].. 2 4【解析】(Ⅰ) 的定义域为.且仅当时,,所以在单调递增,因此当时,所以(II)由(I)知,单调递增,对任意因此,存在唯一使得即,当时,单调递减;当时,单调递增.因此在处取得最小值,最小值为于是,由单调递增所以,由得因为单调递增,对任意存在唯一的使得所以的值域是综上,当时,有最小值,的值域是考点:函数的单调性、极值与最值.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10 分)选修4-1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA, DC上(不与端点重合),且DE DG,过D点作DF CE,垂足为F.(Ⅰ) 证明:B,C,G, F四点共圆;(Ⅱ)若AB1,E为DA的中点,求四边形BCGF的面积.【答案】(Ⅰ)详见解析;(Ⅱ)1 2 .【解析】(I)因为,所以则有所以由此可得因此所以四点共圆.(II)由四点共圆,知,连结,由为斜边的中点,知,故因此四边形的面积是面积的2 倍,即考点:三角形相似、全等,四点共圆(23)(本小题满分10 分)选修4—4:坐标系与参数方程在直角坐标系xOy中,圆C的方程为(x6)2 y2 25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l 的参数方程是x t cos y t sin(t 为参数), l 与C 交于 A , B 两点,| AB | 10 ,求l 的斜率. 【答案】(Ⅰ)212cos 110;(Ⅱ)15. 3【解析】(I )由 可得圆 的极坐标方程(II )在(I )中建立的极坐标系中,直线 的极坐标方程为 由所对应的极径分别为将 的极坐标方程代入 的极坐标方程得于是由 得 ,所以 的斜率为 或 .考点:圆的极坐标方程与普通方程互化, 直线的参数方程,点到直线的距离公式. (24)(本小题满分 10 分)选修 4—5:不等式选讲 已知函数11f (x ) | x | | x | , M 为不等式 f (x ) 2的解集.22(Ⅰ)求 M ; (Ⅱ)证明:当 a ,b M 时,| a b ||1 ab |.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(I)当时,学科&网由得解得;当时,;当时,由得解得.所以的解集.(II)由(I)知,当时,,从而,因此考点:绝对值不等式,不等式的证明.。

2016全国卷Ⅱ高考理科数学试卷及答案(版)(最新整理)

2016全国卷Ⅱ高考理科数学试卷及答案(版)(最新整理)

(B) x k (k Z ) 26
理科数学试卷 第 1 页(共 5 页)
(C) x k (k Z ) 2 12
(D) x k (k Z ) 2 12
(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行
该程序框图,若输入的 x 2 , n 2 ,依次输入的 a 为 2,2,5,则输出的 s
(A)( 3 ,1) (B)( 1, 3 ) (C)(1, )
(D)( , 3 )
(2) 已知集合 A 1,2,3, B x (x 1)(x 2) 0,x Z,则 A B
(A) 1
(B) 1,2
(C) 0,1,2,3
(D) 1,0,1,2,3
(3) 已知向量 a (1, m) , b (3,2) 且 (a b) b ,则 m
5
13

(14) , 是两个平面, m, n 是两条直线,有下列四个命题:
①如果 m n , m , n // ,那么 . ②如果 m , n // ,那么 m n . ③如果 // , m ,那么 m // .
④如果 m // n , // , n // ,那么 m 与 所成的角和 n 与 所成的角相等.
1.75a
2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数
0
1
2
3
4
5
理科数学试卷 第 3 页(共 5 页)
概率
0.30
0.15
0.20
0.20
0.10
0.05
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60%的概率;

2016年普通高等学校招生全国统一考试数学理试题(全国卷2 Word版 含解析)

2016年普通高等学校招生全国统一考试数学理试题(全国卷2 Word版 含解析)

2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12 (k ∈Z )(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 35,则sin 2α=(A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A )2 (B )32(C )3 (D )2(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = .(14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

2016年普通高等学校招生全国统一考试理科数学2

2016年普通高等学校招生全国统一考试理科数学2

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞)(C) [3,+∞) (D)(0,2]U [3,+∞)(2)若z=1+2i ,则41i zz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.【答案】D
【解析】程序在运行过程中各变量的值如下表示:
A B是否继续循环
循环前1 1
第一圈2 3是
第二圈3 7是
第三圈4 15是
第四圈5 31是
第五圈6 63否
则输出的结果为63.故答案为:D.
6.【答案】B
【解析】显然有三视图我们易知原几何体为一个圆柱体的一部分,并且有正视图知是一个一半的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为 ∴选B.
在△ACF中,由余弦定理得:CF2=AF2+AC2-2AF•AC•cosA
=( AB)2+( AB)2-2• AB• AB•cosA= AB2- AB2cosA,
∴ = = ,∴ = = ,
∵当cosA取最小值时, 比值最大,
∴当A→π时,cosA→-1,此时 达到最大值,最大值为 = ,
则 恒成立,t的最小值为 .∴选B
由双曲线的定义可得|AF1|-|AF2|=2a,∴|BF1|=2a.又∵|BF2|-|BF1|=2a,∴|BF2|=4a.
∴|AF2|=4a,|AF1|=6a.
在△AF1F2中,由余弦定理可得:|F1F2|2=|AF1|2+|AF2|2-2|AF2||AF1|cos 60°,
∴(2c)2=(4a)2+(6a)2-2×4a×6a× ,化为c2=7a2,∴b²=c²-a²=6a²
∴渐近线斜率k=± =± =±
9.【答案】C
【解析】试题分析:不等式 所表示的平面区域如下图所示,当 所表示直线经过点B(0,3)时,z有最大值18.
10.【答案】A
【解析】由题意知先使五个人的全排列,共有 种结果,去掉相同颜色衣服的人都相邻的情况,再去掉仅穿蓝色衣服的人的相邻和仅穿穿黄色衣服的人相邻两种情况,从而求得结果.
(1)求证:Q、H、K、P四点共圆;
(2)求证:QT=TS.
23.选修4-4:极坐标与参数方程
已知直线 过定点 与圆 : 相交于 、 两点.
求:(1)若 ,求直线 的方程;
(2)若点 为弦 的中点,求弦 的方程
24.选修4-5:不等式选讲
设函数f(x)=1-|2x-3|.
(1)求不等式f(x)≥3x+1的解集;
13.【答案】70
【解析】观察式子,可发现(x + -2) =(x- )
∴常数项为 =70
14.【答案】
【解析】根据题意可知三棱锥 的三条侧棱 ,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,正三棱柱中,底面边长为 ,高为
由题意可得:三棱柱上下底面中心连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心, 正三棱柱的外接球的球心为 ,外接球的半径为 ,根据 , ,可知 , .
(2)若不等式f(x)-mx≥0的解集非空,求m的取值范围.
2016好题精选模拟卷2答案解析
1.【答案】D
【解析】由图可知:z=3+i.
∴复数 = = = =2﹣i表示的点是Q(2,﹣1).∴选:D.
2.【答案】A
【解析】∵a - >0∴a > =a ∴x∈(-1,1)
∵b >1∴lgx²<0∴0<x²<1∴x∈(0,1)∪(-1,0)∴q是p的充分不必要条件
∴穿相同颜色衣服的人不能相邻的排法是 - -2 =48种∴选A
11.【答案】B
【解析】解:根据题意画出图形,如图所示:
∵3AB=2AC,∴AC= AB,又E、F分别为AC、AB的中点,∴AE= AC,AF= AB,
∴在△ABE中,由余弦定理得:BE2=AB2+AE2-2AB•AE•cosA
=AB2+( AB)2-2AB• AB•cosA= AB2- AB2cosA,
(2)在区域内任取3个点,记这3个点在区域V的个数为X,求X的分布列和数学期望。
19.如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;(2)证明:面PDC⊥面PAD;
15.【答案】10
【解析】∵ ∴ ∵O为外心
∴O为三条中垂线的交点∴ = , =
∴R²=OA²=16×8x+10 ×5 y=4×32x+4×25y=4×25=100
∴R=10即OA=R=10
16.【答案】10
【解析】由g(x)=f(x)+1-x知f(x)=g(x)+x-1,
从而有g(x+20)+(x+20)-1≥f(x+20)≥f(x)+20=g(x)+x-1+20则g(x+20)≥g(x)
17.已知数列{a },a =1, =a - n²-n- (1)求a
(2)证明 + +…+ < (n∈N )
18.设不等式x²+y²≤4确定的平面区域为U,丨x丨+丨y丨≤1确定的平面区域为V
(1)定义:横、纵坐标均为整数的点称为“整点”,在区域U内任取3个整点,求这些整点中恰有2个整点在区域V内的概率。
由题意知先使五个人的全排列,共有 种结果.
去掉同颜色衣服相的人都相邻的情况,再去掉仅穿蓝色相邻和仅穿黄色相邻的两种情况.
穿相同颜色衣服的人都相邻的情况有 种(相邻的看成一整体),
当穿兰色衣服的相邻,而穿黄色衣服的人不相邻,共有 种(相邻的看成一整体,不相邻利用插空法),同理当穿黄色衣服的相邻,而穿蓝色衣服的人不相邻,也共有 种,
15.O为△ABC的外心,AB=16,AC=10 。若 且32x+25y=25,则OA=
16.已知f(x)是定义在R上的函数,f(1)=10,且对于任意x∈R都有f(x+20)≥f(x)+20,f(x+1)≤f(x)+1,若g(x)=f(x)+1-x,则g(10)=
三.解答题:本大题共6小题,前5题每题12分,选考题10分,共70分,解答应写出必要的文字说明、证明过程或演算步骤。
A M B N C P D Q
2.已知命题p:a - >0(a>1),命题q:b >1(0<b<1),那么q是p的()
A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件
3.已知向量 ·( +2 )=0, ,且 =1,则 的最大-3y,则()
12.【答案】B
【解析】 依题意, = ∴设切线为
∴ ∴2x²+2abx+a²b²-a²=0∵△=0∴4a²b²-8(a²b²-a²)=0∴b²=2
∴b=- ∵y= x+1,y= x- ∴d= = ∵ =
S= ·d· = +1∴a=2∴ =2a=4
∴ =( )· ( )=1+ +
根据基本不等式,原式≥1+ = ,当且仅当 取等∴选B
3.【答案】D
【解析】设向量 , +2 对应点分别为A、B向量 对应点C,由 =1知
点C在以B为圆心,半径为1的圆上。∴ = +1= +1
∵ ²= ²+ ²+4 又∵ ·( +2 )=0∴ ²+2 · =0
∴2 · =-1∴4 · =-2∴ ²=1+4-2=3∴ =
∴ = ∴选D
4.【答案】D
【解析】由z=x-3y得y= x−
A 3 B4 C5 D 6
8.如图, 、 是双曲线 (a>0,b>0)的左、右焦点,过 的直线l与双曲线的左右两个分支分别交于点A、B,若△ 为等边三角形,则该双曲线渐近线的斜率为()
A± B± C± D±
9.设变量 满足约束条件 ,则目标函数 的最大值为
(A)3(B)4(C)18(D)40
10.已知身穿红黄两种颜色衣服的各有2人,身穿蓝色衣服的有1人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有()
∴原式=1+ + +… <1+ + + +…+
=1+ + - …+ - = - < 成立
∴原式得证
18.【答案】(1) (2)
【解析】(1)依题可知平面区域U的整点为 ,共有13个,平面区域V的整点为 ,共有5个,
∴ 。
(2)依题可得:平面区域U的面积为: ,平面区域V的面积为: ,
A 2 B C 3 D 3+2
第II卷(非选择题共90分)
本卷包括必考题和选考题两部分。第13~21题为必考题,每个试题考生都必须作答。第22~24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。
13.(x + -2) 的展开式中常数项为
14.正三角形ABC的变成为2 ,将它沿高AD翻折,使点B与点C间的距离为 ,此时四面体ABCD的外接球的体积为
7.【答案】A
【解析】∵sinB=cosAsinC∴sin(A+C)=cosAsinC∴sinAcosC+cosAsinC=cosAsinC
∴sinAcosC=0∵sinA≠0∴cosC=0∴C=90°
∵ = cosA=9 = sinA=6∴解得tanA= sinA= cosA=
∴bc=15∴解得c=5 b=3 a=4∴△ABC为直角三角形
A z的最大值为1 B z的最小值为1 Cz的最大值为2 D z的最小值为2
5.若某程序框图如图所示,则该程序运行后输出的B等于()
A. B. C. D. 63
6.已知某几何体的三视图如右图所示,则该几何体的体积为()
A. B.
C. D.
相关文档
最新文档