(完整版)高中物理模型解题
高中典型物理模型及解题方法

高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++ F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
高中物理经典解题模型归纳!帮你飞速解题(附含详细解析)!

⾼中物理经典解题模型归纳!帮你飞速解题(附含详细解析)!⾼中物理10个经典模型:1、'运动关联'模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.2、'⼈船'模型:动量守恒定律.能量守恒定律.数理问题.3、'⼦弹打⽊块'模型:三⼤定律.摩擦⽣热.临界问题.数理问题.4、'爆炸'模型:动量守恒定律.能量守恒定律.5、'单摆'模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.6、电磁场中的'双电源'模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.7、交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.8、'平抛'模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).9、'⾏星'模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).10、'全过程'模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⾼中物理4种基本模型:题型1:直线运动问题题型概述:直线运动问题是⾼考的热点,可以单独考查,也可以与其他知识综合考查。
单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第⼀个⼩题,难度为中等,常见形式为单体多过程问题和追及相遇问题.匀速直线运动模型:匀速直线运动也是⼀种理想化的物理过程,物体或质点在过程中,速度保持均匀不变,这也是⼀种理想化。
匀速直线运动过程分为不受任何⼒的和受平衡⼒的两种情况。
匀变速直线运动模型:这个运动过程虽然速度是均匀地变化的,但是加速度是不变的,根据⽜顿第⼆定律,质量,合外⼒,加速度三个物理量都保持不变。
变化的是时间,位移,速度,动能等物理量。
物体的质量与合外⼒都是恒定不变的。
加速度保持不变的过程也是⼀种理想过程,因为还有更⼀般的运动过程存在即变加速运动过程。
高考物理模型题(附答案)

第一章 运动和力一、追及、相遇模型模型讲解:1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。
为了使两车不相撞,加速度a 应满足什么条件?2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。
甲物体在前,初速度为v 1,加速度大小为a 1。
乙物体在后,初速度为v 2,加速度大小为a 2且知v 1<v 2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?3. 如图1.01所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和A v 。
空气中声音传播的速率为P v ,设P A P S v v v v <<,,空气相对于地面没有流动。
图1.01(1) 若声源相继发出两个声信号。
时间间隔为t ∆,请根据发出的这两个声信号从声源传播到观察者的过程。
确定观察者接收到这两个声信号的时间间隔't ∆。
(2) 请利用(1)的结果,推导此情形下观察者接收到的声波频率与声源发出的声波频率间的关系式。
4. 在一条平直的公路上,乙车以10m/s 的速度匀速行驶,甲车在乙车的后面作初速度为15m/s ,加速度大小为0.5m/s 2的匀减速运动,则两车初始距离L 满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动)。
二、先加速后减速模型模型概述:物体先加速后减速的问题是运动学中典型的综合问题,也是近几年的高考热点,同学在求解这类问题时一定要注意前一过程的末速度是下一过程的初速度,如能画出速度图象就更明确过程了。
1. 一小圆盘静止在桌面上,位于一方桌的水平桌面的中央。
桌布的一边与桌的AB 边重合,如图1.02所示。
已知盘与桌布间的动摩擦因数为1μ,盘与桌面间的动摩擦因数为2μ。
高中物理48个解题模型

高中物理48个解题模型1. 牛顿第一定律:物体静止或匀速直线运动的模型2. 牛顿第二定律:力与加速度的关系模型3. 牛顿第三定律:作用力与反作用力相等的模型4. 动量守恒定律:动量守恒的模型5. 能量守恒定律:能量守恒的模型6. 弹性碰撞:弹性碰撞的模型7. 不完全弹性碰撞:不完全弹性碰撞的模型8. 重力:重力的模型9. 力的合成与分解:力的合成与分解的模型10. 位移、速度和加速度的关系:位移、速度和加速度的模型11. 滑动摩擦力:滑动摩擦力的模型12. 静摩擦力:静摩擦力的模型13. 飞行物体的运动:飞行物体的运动的模型14. 自由落体运动:自由落体运动的模型15. 匀加速直线运动:匀加速直线运动的模型16. 匀变速直线运动:匀变速直线运动的模型17. 圆周运动:圆周运动的模型18. 谐振运动:谐振运动的模型19. 电场:电场的模型20. 磁场:磁场的模型21. 电流:电流的模型22. 电阻:电阻的模型23. 电势差:电势差的模型24. 电场强度:电场强度的模型25. 磁感应强度:磁感应强度的模型26. 波的传播:波的传播的模型27. 声音的传播:声音的传播的模型28. 光的传播:光的传播的模型29. 光的折射:光的折射的模型30. 光的反射:光的反射的模型31. 镜子和透镜:镜子和透镜的模型32. 光的干涉:光的干涉的模型33. 光的衍射:光的衍射的模型34. 感应电动势:感应电动势的模型35. 恒定电流的磁场:恒定电流的磁场的模型36. 磁感应强度的方向:磁感应强度的方向的模型37. 磁场中带电粒子的运动:磁场中带电粒子的运动的模型38. 双光栅实验:双光栅实验的模型39. 天体运动:天体运动的模型40. 物体运动的分析:物体运动的分析的模型41. 土星环的形成:土星环的形成的模型42. 阻力的大小:阻力的大小的模型43. 万有引力:万有引力的模型44. 静电场:静电场的模型45. 静磁场:静磁场的模型46. 电磁感应:电磁感应的模型47. 电磁波:电磁波的模型48. 热力学:热力学的模型。
高中物理解题模型详解(20套精讲)

= 1 mv2 − 0 2
物体 A 克服摩擦力做功,机械能转化为内能:
Wf
=
mg
⋅
g
(2
−µ 4
)t
2
+
L
−
m3g 2 8q 2 B 2
4、如图 1.05 所示,在水平地面上有一辆运动的平板小车, 车上固定一个盛水的杯子,杯子的直径为 R。当小车作匀加速运动 时,水面呈如图所示状态,左右液面的高度差为 h,则小车的加速 度方向指向如何?加速度的大小为多少?
(2)、加磁场之前,物体 A 做匀加速运动,据牛顿运动定律有:
mg sinθ + qE cosθ − Ff = ma 又FN + qE sinθ − mg cosθ = 0, Ff = µFN
解出 a = g(2 − µ) 2
A 沿斜面运动的距离为:
s = 1 at2 = g(2 − µ)t2
2
4
加上磁场后,受到洛伦兹力 F洛 = Bqv
C. 物体前 10s 内和后 10s 内加速度大小之比为 2:1
D. 物体所受水平恒力和摩擦力大小之比为 3:1
答案:ACD
三、斜面模型
1、相距为 20cm 的平行金属导轨倾斜放置,如图 1.03, 导轨所在平面与水平面的夹角为θ = 37° ,现在导轨上放一 质量为 330g 的金属棒 ab,它与导轨间动摩擦系数为 µ = 0.50 ,整个装置处于磁感应强度 B=2T 的竖直向上的匀 强磁场中,导轨所接电源电动势为 15V,内阻不计,滑动变 阻器的阻值可按要求进行调节,其他部分电阻不计,取 g = 10m / s 2 ,为保持金属棒 ab 处于静止状态,求:
解析:设以火车乙为参照物,则甲相对乙做初速为 (v1 − v2 ) 、加速度为 a 的匀减速运动。
(完整)高中物理牛顿第二定律——板块模型解题基本思路

高中物理基本模型解题思路——板块模型(一)本模型难点:(1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算(2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:(1)板的上下两表面是否粗糙或光滑(2)初始时刻板块间是否发生相对运动(3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
首先受力分析:对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, 即:⎪⎩⎪⎨⎧===m N N ma f F f mg F 动动μg a m μ= (方向水平向左)由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即:动f N F N F '⎪⎩⎪⎨⎧==+='M N N N Ma f F f F Mg F 动动μM mg a M μ= (方向水平向右) 由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。
假设当M m v v=时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。
则物块和长板将保持该速度一起匀速运动。
关于运动图像可以用t v -图像表示运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=∆v v二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板和地面间的动摩擦因数为2μ,长板足够长。
高中典型物理模型及解题方法

高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++ F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1〈N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2。
水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
完整word版,高中物理模型解题

高中物理模型解题模型解题归类一、刹车类问题匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。
如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。
【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。
由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。
若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h?【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大二、类竖直上抛运动问题物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。
此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。
【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大?【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。
那么下述结论正确的是()A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/sC物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m三、追及相遇问题两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。
两物体在同一直线上相向运动时,会出现相遇的现象。
解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。
分析方法有:物理分析法、极值法、图像法。
常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、1、速度大者(减速)追速度小者(匀速):(有三种情况)(1)速度相等时,若追者位移等于被追者位移与两者间距之和,则恰好追上。
高中物理四大经典力学模型完全解析

四大经典力学模型完全解析一、斜面问题模型1.自由释放的滑块能在斜面上(如下图所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ.2.自由释放的滑块在斜面上(如上图所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如下图所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零。
4.悬挂有物体的小车在斜面上滑行(如下图所示):(1)向下的加速度a=g sinθ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sinθ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sinθ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如下图所示):(1)落到斜面上的时间t=2v0tanθg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tanα=2tanθ,与初速度无关;6.如下图所示,当整体有向右的加速度a=g tanθ时,m能在斜面上保持相对静止。
例1在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如下图所示),它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动。
(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法。
高中物理解题模型详解归纳--超好用

两车等速时恰好追及 两车只相遇一次
间距会逐渐增大
两车等速时 车 动 车前面
能再次相遇 即能相遇两次
二、先 速后减速模型
模型概述
物体先加速后减速的问题是 动学中典型的综合问题,也是 几年的高考热点,同学在求
解这类问题时一定要注意前一过程的末速度是下一过程的初速度,如能画出速度图象就更明确
过程了。
模型讲解
d
即
0 − (v1 − v2 )2 = −2ad
a = (v1 − v2 )2 2d
故 相撞的条
a ≥ (v1 − v2 )2 2d
2
两物体相距 s 在同一直线 同方向做匀 速 动 速
零 就保 静 动 物
体在前 初速 v1 速 大小 a1 物体在 初速 v2 速 大小 a2 知 v1<v2
但两物体一直没有相遇 求
第六章 电磁场 ............................................................................................................................ 10
一 电磁场中的单杆模型...................................................................................................10 电磁流 计模型............................................................................................................16 回旋 速模型 ................................................................................................................19
高中物理全套模型解题

高中物理全套模型解题
1.运动学模型:包括匀速直线运动、匀变速直线运动、自由落体运动、斜抛运动等基本运动模型,以及相对运动、相对速度等相关概念。
2. 力学模型:包括牛顿定律、摩擦力、弹性力、重力、万有引力等力学模型,以及应用力学模型解决各种物理问题。
3. 热学模型:包括热力学基本概念、热力学定律、热传导、热扩散、热辐射等热学模型,以及应用热学模型解决各种物理问题。
4. 光学模型:包括光的传播、光的反射、光的折射、光的干涉、光的衍射等光学模型,以及应用光学模型解决各种物理问题。
5. 电学模型:包括电势、电场、电荷、电流、电阻、电容等电学模型,以及应用电学模型解决各种物理问题。
6. 声学模型:包括声波的传播、声波的反射、声波的折射、声波的干涉、声波的衍射等声学模型,以及应用声学模型解决各种物理问题。
以上是高中物理全套模型解题的内容,通过掌握这些模型,能够更好地解决各种物理问题,提高物理学习成绩。
- 1 -。
高中物理68个解题模型

高中物理68个解题模型物理作为一门自然科学,研究的是物质和能量之间的相互关系。
在高中物理学习中,解题是一个重要的环节。
为了帮助同学们更好地掌握物理知识,提高解题能力,本文将介绍高中物理中常见的68个解题模型。
一、力学部分1. 牛顿第一定律模型:物体静止或匀速直线运动时,合外力为零。
2. 牛顿第二定律模型:物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
3. 牛顿第三定律模型:任何两个物体之间的相互作用力大小相等、方向相反。
4. 重力模型:物体受到的重力与物体的质量成正比。
5. 弹簧模型:弹簧的伸长或缩短与外力的大小成正比。
6. 摩擦力模型:物体受到的摩擦力与物体受到的压力成正比。
7. 斜面模型:物体在斜面上滑动时,重力分解为平行于斜面的分力和垂直于斜面的分力。
8. 动量守恒模型:在没有外力作用下,物体的总动量保持不变。
9. 能量守恒模型:在一个封闭系统中,能量的总量保持不变。
二、热学部分10. 热传导模型:热量从高温物体传递到低温物体。
11. 热膨胀模型:物体受热后会膨胀,受冷后会收缩。
12. 热平衡模型:两个物体处于热平衡时,它们的温度相等。
13. 热容模型:物体吸收或释放的热量与物体的质量和温度变化成正比。
14. 理想气体状态方程模型:PV = nRT,描述了理想气体的状态。
15. 热力学第一定律模型:热量的增加等于物体内能的增加与对外做功的总和。
三、光学部分16. 光的直线传播模型:光在均匀介质中直线传播。
17. 光的反射模型:光线与平面镜或曲面镜相交时,遵循入射角等于反射角的规律。
18. 光的折射模型:光线从一种介质射入另一种介质时,遵循折射定律。
19. 光的色散模型:光在经过棱镜等介质时,会发生色散现象。
20. 光的干涉模型:两束相干光叠加时,会出现干涉现象。
21. 光的衍射模型:光通过狭缝或物体边缘时,会发生衍射现象。
22. 光的偏振模型:光的振动方向只在一个平面上。
四、电学部分23. 电流模型:电流的大小等于单位时间内通过导体横截面的电荷量。
高中物理解题模型详解(20套精讲)

高考物理解题模型
目录
第一章运动和力 1
一、追及、相遇模型 1
二、先加速后减速模型 4
三、斜面模型 6
四、挂件模型 11
五、弹簧模型(动力学)18
第二章圆周运动20
一、水平方向的圆盘模型20
二、行星模型 23
第三章功和能 1
一、水平方向的弹性碰撞1
二、水平方向的非弹性碰撞 6
三、人船模型 9
四、爆炸反冲模型11
第四章力学综合13
一、解题模型:13
二、滑轮模型 19
三、渡河模型 23
第五章电路 1
一、电路的动态变化 1
二、交变电流 6
第六章电磁场10
一、电磁场中的单杆模型10
二、电磁流量计模型17
三、回旋加速模型20
四、磁偏转模型25。
(完整)高中物理牛顿第二定律——板块模型解题基本思路

(完整)⾼中物理⽜顿第⼆定律——板块模型解题基本思路⾼中物理基本模型解题思路——板块模型(⼀)本模型难点:(1)长板下表⾯是否存在摩擦⼒,摩擦⼒的种类;静摩擦⼒还是滑动摩擦⼒,如滑动摩擦⼒,N F 的计算(2)物块和长板间是否存在摩擦⼒,摩擦⼒的种类:静摩擦⼒还是滑动摩擦⼒。
(3)长板上下表⾯摩擦⼒的⼤⼩。
(⼆)在题⼲中寻找注意已知条件:(1)板的上下两表⾯是否粗糙或光滑(2)初始时刻板块间是否发⽣相对运动(3)板块是否受到外⼒F ,如受外⼒F 观察作⽤在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定⼀、光滑的⽔平⾯上,静⽌放置⼀质量为M ,长度为L 的长板,⼀质量为m 的物块,以速度0v 从长板的⼀段滑向另⼀段,已知板块间动摩擦因数为µ。
⾸先受⼒分析:对于m :由于板块间发⽣相对运动,所以物块所受长板向左的滑动摩擦⼒,即:===m N N ma f F f mg F 动动µg a m µ= (⽅向⽔平向左)由于物块的初速度向右,加速度⽔平向左,所以物块将⽔平向右做匀减速运动。
对于M :由于板块间发⽣相对运动,所以长板上表⾯所受物块向右的滑动摩擦⼒,但下表⾯由于光滑不受地⾯作⽤的摩擦⼒。
即:动f N F N F '==+='M N N N Ma f F f F Mg F 动动µ M mg a M µ= (⽅向⽔平向右)由于长板初速度为零,加速度⽔平向右,所以物块将⽔平向右做匀加速运动。
假设当M m v v=时,由于板块间⽆相对运动或相对运动趋势,所以板块间的滑动摩擦⼒会突然消失。
则物块和长板将保持该速度⼀起匀速运动。
关于运动图像可以⽤t v -图像表⽰运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=?v v⼆、粗糙的⽔平⾯上,静⽌放置⼀质量为M ,⼀质量为m 的物块,以速度0v 从长板的⼀段滑向另⼀段,已知板块间动摩擦因数为1µ,长板和地⾯间的动摩擦因数为2µ,长板⾜够长。
模型解题法-物理

模型解题法-物理
高中物理模型解题法
光盘标模型页面授课人授课时长
序号题
八、光学 P 85-92 扈之霖 57:36 1
九、守恒定律 P 93-100 扈之霖 1:01:56 2
十一、过程与状态 P 108-112 孟卫东 1:03:49 3 1
四、带电粒子在场中运动 P 43-56 王邦平 53:39 4
二、总论策略篇 P 12-23 王邦平 54:47 5
一、总论战略篇 P 1-11 王邦平 56:58 6
六、导电轨道 P 66-75 扈之霖 58:56 7
十二、连接体 P 113-118 孟卫东 59:30 8
十五、热学 P 134-138 孟卫东 1:01:01 1
五、原子 P 57-65 王邦平 56:41 2
十、时间与空间 P 101-107 孟卫东 1:01:53 3
七、恒定电路 P 76-84 扈之霖 54:50 4
2 十三、场 P 119-125 孟卫东 1:04:2
3 5
十四、动态电路 P 126-133 孟卫东 55:50 6
三、相互作用 P 24-30 王邦平 50:44 7
三、相互作用 P 30-42 王邦平 50:27 8
名师简介:
扈之霖:北京市教研中心兼职教研员,教育部考试中心《中国考试》杂志编委,模型解
题研究专家,物理高级教师。
孟卫东:高中物理主编,特级教师,教育部全国理科试验班任课教师、新课程标准化实
验实验教材编写课题组成员,中国物理学会教学委员会中学分会委员。
王邦平:物理高级教师、学科带有人,海淀区高中物理教材编写组成员,参加多项教育教学课题研究工作。
高中物理解题模型详解

高考物理解题模型目录第一章运动和力 ....................................................................................一、追及、相遇模型.............................................................................二、先加速后减速模型..........................................................................三、斜面模型 ......................................................................................四、挂件模型 ......................................................................................五、弹簧模型(动力学)....................................................................... 第二章圆周运动 ....................................................................................一、水平方向的圆盘模型.......................................................................二、行星模型 ...................................................................................... 第三章功和能........................................................................................一、水平方向的弹性碰撞.......................................................................二、水平方向的非弹性碰撞....................................................................三、人船模型 ......................................................................................四、爆炸反冲模型................................................................................ 第四章力学综合 ....................................................................................一、解题模型: ...................................................................................二、滑轮模型 ......................................................................................三、渡河模型 ...................................................................................... 第五章电路............................................................................................一、电路的动态变化.............................................................................二、交变电流 ...................................................................................... 第六章电磁场........................................................................................一、电磁场中的单杆模型.......................................................................二、电磁流量计模型.............................................................................三、回旋加速模型................................................................................四、磁偏转模型 ...................................................................................第一章 运动和力一、追及、相遇模型模型讲解:1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理模型解题模型解题归类一、刹车类问题匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。
如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。
【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。
由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。
若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h?【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大二、类竖直上抛运动问题物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。
此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。
【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大?【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。
那么下述结论正确的是()A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/sC物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m三、追及相遇问题两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。
两物体在同一直线上相向运动时,会出现相遇的现象。
解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。
分析方法有:物理分析法、极值法、图像法。
常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、1、速度大者(减速)追速度小者(匀速):(有三种情况)(1)速度相等时,若追者位移等于被追者位移与两者间距之和,则恰好追上。
【题1】汽车正以10m/s 的速度在平直公路上前进,发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度为6m/s 2的匀减速运动,汽车才不至于撞上自行车?(2)速度相等时,若追者位移小于被追者位移与两者间距之和,则追不上。
(此种情况下,两者间距有最小值)【题2】一车处于静止状态,车后距车S 0=25m 处有一个人,当车以1m/s 2的加速度开始起动时,人以6m/s 的速度匀速追车。
问:能否追上?若追不上,人车之间最小距离是多少?(3)速度相等时,若追者位移大于被追者位移与两者间距之和,则有两次相遇。
(此种情况下,两者间距有极大值)【题3】甲乙两车在一平直的道路上同向运动,图中三角形OPQ 和三角形OQT的面积分别为S 1和S 2(S 2>S 1).初始时,甲车在乙车前方S 0处( )A.若S 0=S 1+S 2,两车不相遇B.若S 0<S 1两车相遇2次C.若S 0=S 1两车相遇1次D.若S 0=S 2两车相遇1次2、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)。
(此种情况下,两者间距有最大值)【题4】质点乙由B 点向东以10m/s 的速度做匀速运动,同时质点甲从距乙12m 远处西侧A 点以4m/s 2的加速度做初速度为零的匀加速直线运动.求:⑴两者间距何时最大?最大间距是多少?⑵甲追上乙需要多长时间?此时甲通过的位移是多大?四、共点力的平衡1、静态平衡问题:对研究对象进行受力分析,根据牛顿第一定律列方程求解即可。
主要分析方法有:力的合成法、力按效果分解、力按正交分解、密闭三角形。
【题1】一个半球的碗放在桌上,碗的内表面光滑,一根细线跨在碗口,线的两端分别系有质量为m1,m2的小球,当它们处于平衡状态时,质量为m1的小球与O 点的连线与水平线的夹角为60°。
求两小球的质量比值。
【题2】如图,重物的质量为m ,轻细线AO 和BO 的A 、B 端是固定的。
平衡时AO 是水平的,BO 与水平面的夹角为θ。
AO 的拉力F 1和BO 的拉力F 2的大小是( )A. θcos 1mg F =B. θcot 1mg F =C. θsin 2mg F =D. θsin 2mg F =【题3】如图所示,质量为m的两个球A、B固定在杆的两端,将其放入光滑的半圆形碗中,杆的长度等于碗的半径,当杆与碗的竖直半径垂直时,两球刚好能平衡,则杆对小球的作用力为()A.33mg B.233mg C.32mg D.2mg2、动态平衡问题:此类问题都有一个关键词,“使物体缓慢移动……”,因此物体在移动过程中,任意时刻、任意位置都是平衡的,即合外力为零。
分析方法有两类:解析法和图解法,其中图解法又有矢量三角形分析法、动态圆分析法、相似三角形分析法。
(1)解析法:找出所要研究的量(即某个力)随着某个量(通常为某个角)的变化而变化的函数解析式。
通过函数的单调性,研究该量的变化规律。
【题1】如图所示,A、B两物体的质量分别为m A、m B,且m A>m B,整个系统处于静止状态,滑轮的质量和一切摩擦均不计,如果绳一端由Q点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角θ变化的情况是?(2)图解法(有三种情况):①矢量三角形分析法:物体在三个不平行的共点力作用下平衡,这三个力必组成一首尾相接的三角形。
用这个三角形来分析力的变化和大小关系的方法叫矢量三角形法,它有着比平行四边形更简便的优点,特别在处理变动中的三力问题时能直观的反映出力的变化过程。
【题2】如图所示,绳OA、OB等长,A点固定不动,将B 点沿圆弧向C点运动的过程中绳OB中的张力将()A、由大变小;B、由小变大C、先变小后变大D、先变大后变小②动态圆分析法:当处于平衡状态的物体所受的三个力中,某一个力的大小与方向不变,另一个力的大小不变时,可画动态圆分析。
【题3】质量为m的小球系在轻绳的下端,现在小球上施加一个F=mg/2的拉力,使小球偏离原位置并保持静止则悬线偏离竖直方向的最大角度θ为。
③相似三角形分析法:物体在三个共点力的作用下平衡,已知条件中涉及的是边长问题,则由力组成的矢量三角形和由边长组成的几何三角形相似,利用相似比可以迅速的解力的问题。
【题4】如图所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。
现施拉力F将B缓慢上拉(均未断),在AB杆达到竖直前()A.绳子越来越容易断, B.绳子越来越不容易断,C.AB杆越来越容易断, D.AB杆越来越不容易断。
【补充】动杆和定杆活结与死结:物体的平衡问题中,常常遇到“动杆和定杆活结与死结”的问题,我们要明确几个问题:①动杆上的弹力必须沿着杆子的方向,定杆上的弹力可以按需供给;②活结两边的绳子上的张力一定相同,死结两边的绳子上的张力可以不同;③动杆配死结,定杆配活结。
五、瞬时加速度问题【两种基本模型】1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
【解决此类问题的基本方法】:(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳或弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
【题1】如图所示,小球 A、B的质量分别为m 和 2m ,用轻弹簧相连,然后用细线悬挂而静止,在剪断弹簧的瞬间,求 A 和 B 的加速度各为多少?【题2】如图所示,木块A和B用一弹簧相连,竖直放在木板C上,三者静止于地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度 aA =,aB=。
【题3】如图,物体B、C分别连接在轻弹簧两端,将其静置于吊篮A中的水平底板上,已知A、B、C的质量都是m,重力加速度为g,那么将悬挂吊篮的细线烧断的瞬间,A、B、C的加速度分别为多少?六、动力学两类基本问题图1BA 图3ABC8题图解决动力学问题的关键是想方设法求出加速度。
1、已知受力求运动情况【题1】质量为m=2kg的小物块放在倾角为θ=370的斜面上,现受到一个与斜面平行大小为F =30N的力作用,由静止开始向上运动。
物体与斜面间的摩擦因数为μ=0.1,求物体在前2s 内发生的位移是多少?【题2】某人在地面上用弹簧秤称得体重为490N.他将弹簧秤移至电梯内称其体重,t0至t3时间段内,弹簧秤的示数如图334所示,电梯运行的v-t图可能是(取电梯向上运动的方向为正)( )2、已知运动情况求受力【题3】总重为8t的载重汽车,由静止起动开上一山坡,山坡的倾斜率为0.02(即每前进100m上升2m),在行驶100m后,汽车的速度增大到18km/h,如果摩擦阻力是车重的0.03倍,问汽车在上坡时的平均牵引力有多大?【题4】升降机由静止开始上升,开始2s内匀加速上升8m, 以后3s内做匀速运动,最后2s内做匀减速运动,速度减小到零.升降机内有一质量为250kg的重物,求整个上升过程中重物对升降机的底板的压力,并作出升降机运动的v-t图象和重物对升降机底板压力的F-t图象.(g 取10m/s2)七、受力情况与运动状态一致的问题物体的受力情况必须符合它的运动状态,故对物体受力分析时,必须同步分析物体的运动状态,若是物体处于平衡状态,则F合=0;若物体有加速度a,则F合=ma,即合力必须指向加速度的方向。
【题1】如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是( )A. 小车静止时,F=mgsinθ, 方向沿杆向上B. 小车静止时,F=mgcosθ方向垂直杆向上C. 小车向右以加速度a运动时,一定有F=ma/sinθD. 小车向左以加速度a运动时,22)()(mgmaF+=,方向斜向左上方2.若将上题中斜杆换成细绳,小车以加速度a向右运动,求解绳子拉力的大小及方向。