平面直角坐标系10
第七章 平面直角坐标系 课件10(数学人教版七年级下册)
9.若点A(m,-2),B(1,n)关于原点对称,则 m= -1 ,n= 2 .
10、点P(x,y)在第四象限,且|x|=3, |y|=2,则P点的坐标是 (3 ,-2) 。
11、点P(a-1,a -9)在x轴负半轴上,则P 点坐标是 (-4 ,0) 。 12、点A(2,3)到x轴的距离为 3个单位 ;点B (-4,0)到y轴的距离为 4个单位 ;点C到x轴的 距离为1,到y轴的距离为3,且在第三象限,则C 点坐标是 (-3 ,-1) 。 13、直角坐标系中,在y轴上有一点p ,且 OP=5,则P的坐标为
(0 , y) (- , -) (X, 0) (- , +) (+ , -)
第四象限
每个象限内的点都有自已的符号特征。
1、点(-1,2)与点( 1,-2)关于 原点 对称, 点(-1,2)与点(-1,-2)关于 x轴 对称, 点(1,-2)与点(-1,-2)关于 y轴 对称。 2、若点A(a-1,a)在第二象限,则点B(a,1-a) 在第 一 象限。
1 1 1 2 2 2.5 2 2 6.75 1 2.5 3.25
第六章达标检测题
一、精心选一选 : 1、在平面直角坐标系中,点(4,- 3)所在的象限是( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 2、 2.若点A(a,b)在第三象限,则点B( a ,-b)在( ) A、第一象限B、第二象限 C、第三象限 D、第四象限 3、若xy >0,且x+y<0,则点M(x,y)在( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 4、点N位于y轴右方距y轴3个单位长度,位于x轴下方x轴距x 轴5个单位长度,则点N的坐标是( ) A、(3,- 5) B、(- 3,5) C、(5,- 3) D、(- 5,3) 5、若点M(x,y)的坐标满足xy=0(x≠y),则点M必在( ) A、原点上 B、x轴上 C、y轴上 D、x轴上或y轴上 6、过点(5,-2)且平行于x轴的直线上的点( ) A、横坐标都是5; B、纵坐标都是-2; C、横坐标都是-2; D、纵坐标都是5
《平面直角坐标系》优秀教案(精选12篇)
《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
2019年中考数学专题复习10——平面直角坐标系(含答案解析)
2019年中考数学专题复习10——平面直角坐标系(含答案解析)一、选择题(共10小题;共50分)1. 在平面直角坐标系中,点的坐标为,将点向右平移个单位长度后得到A. B. C. D.2. 在平面直角坐标系中,点关于A. C.3. 已知平面直角坐标系中,点A. C. D.4. 第六届北京农业嘉年华在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学根据数学知识将草莓博览园的游览线路进行了精简.如图,分别以正东、正北方向为轴、轴建立平面直角坐,表示科技生活馆的点的坐标为,则表A. B.5. “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图描述了某次单词复习中,,,四位同学的单词记忆效率与复习的单词个数A. B. C. D.6. 中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,所在位置的坐标为,所在位置的坐标为,那么,所在位置的A. B. D.7. 如图,点在观测点的北偏东方向,且与观测点的距离为千米,将点的位置记作,用同样的方法将点,点的位置分别记作,,则观测点的位A. B. C. D.8. 如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为,雍和宫站的坐标为A. B. C. D.9. 如图,直线,在某平面直角坐标系中,,,点的坐标为,点的,则点A. C.10. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为,其中:表示目标与探测器的距离;表示以正东为始边,逆时针旋转的角度.如图,雷达探测器显示在点,,处有目标出现,其中目标的位置表示为,目标的位置表示为.用这种方法表示目标B. C. D.二、填空题(共10小题;共50分)11. 如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为,表示慕田峪长,则表示雁栖湖的点的坐标为.12. 某雷达探测目标得到的结果如图所示,若记图中目标的位置为,目标的位置为,目标的位置为,则图中目标的位置可记为.13. 如图是一组密码的一部分,为了保密,许多情况下可采用不同的密码,请你运用所学的知识找到破译的“钥匙”,目前,已破译出“今天考试”的真实意思是“努力发挥”,若“今”所处的位置为,你找到的密码钥匙是,破译“正做数学”的真实意思是.14. 如图,每个小正方格都是边长为个单位长度的正方形,如果用表示点的位置,用表示点的位置,那么点的位置可表示为.15. 已知,,若白棋飞挂后,黑棋尖顶.黑棋的坐标为.16. 如图所示的象棋盘上,若帅位于点上,相位于点上,则炮所在点的坐标是.17. 在平面直角坐标系中,点绕坐标原点顺时针旋转后,恰好落在如图中阴影区域(包括边界)内,则的取值范围是.18. 如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移,轴对称,旋转)得到的,写出一种由得到的过程:.19. 如图,在平面直角坐标系中,每个最小方格的边长均为个单位长,,,,,均在格点上,其顺序按图中“”方向排列,如:,,,,,根据这个规律,点的坐标为.20. 如图在坐标系中放置一菱形,已知,.先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转次,点的落点依次为,,,,则的坐标为.三、解答题(共10小题;共130分)21. 如图,写出的各顶点坐标,并画出关于轴对称的,写出关于轴对称的的各点坐标.22. 如图,在平面直角坐标系中,,,.(1)求出的面积.(2)在图中作出关于轴的对称图形.(3)写出点,,的坐标.23. 在平面直角坐标系中,的顶点坐标是,,.线段的端点坐标是,.(1)试说明如何平移线段,使其与线段重合;(2)将绕坐标原点逆时针旋转,使的对应边为,请直接写出点的对应点的坐标;(3)画出()中的,并和同时绕坐标原点逆时针旋转.画出旋转后的图形.24. 如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于轴对称的图形,并直接写出点坐标;(2)以原点为位似中心,位似比为,在轴的左侧,画出放大后的图形,并直接写出点坐标;(3)如果点在线段上,请直接写出经过(2)的变化后点的对应点的坐标.25. 如图所示,写出各顶点的坐标以及关于轴对称的的各顶点坐标,并画出关于对称的.并求的面积.26. 如图,正方形网格中,为格点三角形(顶点都是格点),个单位长度的小正方形.(1)先画出关于轴对称的图形;(2)再画出绕原点顺时针旋转后得到的图形;(3)直接写出的长.27. 如图,在边长为的正方形网格中,的顶点均在格点上,点,的坐标分别是,,把绕点逆时针旋转后得到.(1)画出,直接写出点,的坐标;(2)求在旋转过程中,所扫过的面积.28. 如图,在平面直角坐标系中,每个小正方形的边长都为,和的顶点都在格点上,回答下列问题:(1)可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由得到的过程:;(2)画出绕点逆时针旋转的图形;(3)在()中,点所形成的路径的长度为.29. 如图,在坐标系中,已知,,过点分别作,垂直于轴、轴,垂足分别为,两点.动点从点出发,沿轴以每秒个单位长度的速度向右运动,运动时间为秒.(1)当为何值时,;(2)当为何值时,;(3)以点为圆心,的长为半径的随点的运动而变化,当与的边(或边所在的直线)相切时,求的值.30. 如图,在每个小正方形的边长为的网格中,,为小正方形边的中点,,为格点,为,的延长线的交点.(1)的长等于;(2)若点在线段上,点在线段上,且满足,请在如图所示的网格中,用无刻度的直尺,画出线段,并简要说明点,的位置是如何找到的(不要求证明).答案第一部分1. D2. A 【解析】点关于轴的对称点的坐标是.3. C4. C5. C6. D7. A8. D9. C10. C第二部分11.12.13. 对应文字横坐标加,纵坐标加,祝你成功【解析】已破译出“今天考试”的真实意思是“努力发挥”,“今”所处的位置为,所对应的文字的位置是,找到的密码钥匙是:对应文字横坐标加,纵坐标加.“正”的位置为对应文字位置是即为“祝”,“做”的位置为对应文字位置是即为“你”,“数”的位置为对应文字位置是即为“成”,“学”的位置为对应文字位置是即为“功”,“正做数学”的真实意思是:祝你成功.14.17.18. 答案不唯一,如:将沿轴向下翻折,在沿轴向左平移个单位长度得到19.20.【解析】连接,可得是等边三角形,画出第次、第次、第次翻转后的图形,由图可知:每翻转次,图形向右平移.因,故点向右平移(即)到点.由图可得,所以.第三部分21. 的各顶点的坐标分别为:,,;所画图形如下所示,的各点坐标分别为:,,.22. (1)(平方单位).(2)如图.(3),,.23. (1)将线段先向右平移个单位,再向下平移个单位(答案不唯一).(2).(3)它们旋转后的图形分别是和.24. (1)如图所示:,即为所求,点坐标为:;(2)如图所示:,即为所求,点坐标为:;(3)如果点在线段上,经过(2)的变化后的对应点的坐标为:.25. 各顶点的坐标以及关于轴对称的的各顶点坐标:,,,,,,如图所示:,即为所求.26. (1)(2)(3).27. (1)所求作如图所示:由,可建立如图所示坐标系,则点的坐标为,点的坐标为;(2),在旋转过程中,所扫过的面积为:28. (1)答案不唯一.例如:先沿轴翻折,再向右平移个单位,向下平移个单位【解析】先向左平移个单位,向下平移个单位,再沿轴翻折.(2)如图所示.(3)29. (1),,四边形是平行四边形.,.当时,.(2),,,解得.(3)①与相切时,如图所示:显然时,与相切;②与相切时,如图所示:过点作垂直于的延长线于点,则,所以,即,解得;③与相切时,如图所示:过点作垂直于的延长线于点,则,所以,即,解得.30. (1)【解析】.(2)如图,与网格线相交,得点,取格点,连接并延长与交于点,连接,则线段即为所求.。
人教版初中数学《平面直角坐标系》_完美课件
问题思考: (1)点A到点A1,纵坐标和横坐标哪个发生了变化? 是怎样变化的? 将点A(-2,-3)向右平移5个单位长度,得到点A1的 坐标是(3,-3),观察点A与A1的坐标变化发现:横坐标 增大了5,纵坐标不变. (2)把点A向上平移4个单位长度得到点A2,纵坐标 和横坐标哪个发生了变化?是怎样变化的?
(3)如果把点A向左或向下平移n(n>0)个单位长度, 坐标会发生怎样的变化?
点A向左平移n(n>0)个单位长度时,横坐标减少n, 纵坐标不变,向下平移n(n>0)个单位长度时,横坐标不 变,纵坐标减少n.
(4)根据上述过程,你能总结出点的平移变化规律吗?
一般地,在平面直角坐标系中,将点(x,y)向右(或 左)平移a(a>0)个单位长度,可以得到对应点(x+a,y) (或(x-a,y));将点(x,y)向上(或下)平移b(b>0)个单位长 度,可以得到对应点(x,y+b)(或(x,y-b)).
【获奖课件ppt】人教版初中数学《平 面直角 坐标系 》_完 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《平 面直角 坐标系 》_完 美课件1 -课件 分析下 载
归纳总结
一般地,将一个图形依次沿两个坐标轴方向平移所 得到的图形,可以通过将原来的图形作一次平移得到.对 一个图形进行平移,这个图形上所有点的坐标都要发生 相应的变化;反过来,从图形上的点的坐标的某种变化, 我们也可以看出对这个图形进行了怎样的平移.
(2)第二次平移后,正方形的四个相应顶点E,F,G,H 的坐标分别是什么?
E(6,-3),F(6,-4),G(7,-4),H(7,-3)
中考数学复习讲义课件 第3单元 第10讲 平面直角坐标系及函数
分析并判断函数图象 15.(2021·益阳)如图,已知□ABCD 的面积为 4,点 P 在 AB 边上从左向右运动(不含端点),设△APD 的 面积为 x,△BPC 的面积为 y,则 y 关于 x 的函数图 象大致是( B )
A
B
C
D
16.(2021·郴州)如图,在边长为 4 的菱形 ABCD 中, ∠A=60°,点 P 从点 A 出发,沿路线 A→B→C→D 运 动.设点 P 经过的路程为 x,以点 A,D,P 为顶点的 三角形的面积为 y,则下列图象能反映 y 与 x 的函数关 系的是( A )
图1
图2
18.(2019·永州)在一段长为 1000 米的笔直道路 AB 上,甲、乙两名运 动员均从 A 点出发进行往返跑训练.已知乙比甲先出发 30 秒钟,甲距 A 点的距离 y(米)与其出发的时间 x(分钟)的函数图象如图所示,乙的速度是 150 米/分钟,且当乙到达 B 点后立即按原速返回. (1)当 x 为何值时,两人第一次相遇? (2)当两人第二次相遇时,求甲的总路程.
A.(6,1)
B.(3,7)
C.(-6,-1)
D.(2,-1)
6.已知点 A 的坐标为(2,m),且点 A 在第二、四象限的角平分线上,则 m=__-_2___. 7.点 P(-3,4)关于 x 轴的对称点为__(_-__3_,_-__4_)__,关于 y 轴的对称点为 ___(3_,__4_)___,关于原点的对称点为__(_3_,_-__4_)___;点 P 到原点的距离为 __5___. 8.(2021·西宁)在平面直角坐标系 xOy 中,点 A 的坐标是(2,-1),若 AB∥y 轴,且 AB=9,则点 B 的坐标是___(2_,__8_)_或_(_2_,__-_1_0_)____.
2008-2010中考数学经典真题题库10、平面直角坐标系_(含答案)
10、平面直角坐标系要点一:位置的确定及平面直角坐标系一、选择题1、(2010·金华中考)在平面直角坐标系中,点P(-1,3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】选B.点P横坐标小于0,纵坐标大于0,故点P(-1,3)位于第二象限。
2、(2009·杭州中考)有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系外,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都分别属于四个象限.其中错误的是()A.只有① B.只有② C.只有③ D.①②③答案:选C3、(2009·宁波中考)以方程组21y xy x=-+⎧⎨=-⎩的解为坐标的点(,)x y在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【解析】选A. 方程组21y xy x=-+⎧⎨=-⎩的解为1.50.5xy=⎧⎨=⎩,(1.5,0.5)在第一象限.4、(2009黄石中考)已知点A(m2-5,2m+3)在第三象限角平分线上,则m=()A 、4B 、-2C 、4或-2D 、-1【解析】选B.由点A (m 2-5,2m+3)在第三象限角平分线上知:m 2-5=2m+3,将选择项代入方程检验可得 答案:5、(2009济南中考)在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,, ()()()()1313h a b a b h --=--如③,=,.,,,.按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-,【解析】选B. ()()()535,3(5,3)f h f -=-=,. 6、(2008·金华中考)2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是( D )A.北纬31oB.东经103.5oC.金华的西北方向上D.北纬31o ,东经103.5o 答案:选D7、(2008·大连中考)在平面直角坐标系中,点P (2,3)在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:选A8、(2007·杭州中考)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )(A )()4,3- (B )()3,4-- (C )()3,4- (D )()3,4-【解析】选C.到x轴的距离描述的是纵坐标的绝对值,到y轴的距离是横坐标的绝对值.根据其在第二象限确定横坐标为负,纵坐标为正.9、(2007·盐城中考)如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()(A)(3,2)(B)(3,1)(C)(2,2)(D)(-2,2)【解析】选A.. 棋子“车”的坐标为(-2,3)确定x轴为棋盘下边缘所在的直线,y轴为棋盘左右的中轴线,棋盘中小方格的长度为单位1,从而确定棋子“炮”的坐标为(3,2).10、(2007·宜昌中考)如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是().(A)点A(B)点B (C)点C(D)点D答案:选B.二、填空题11、(2010·嘉兴中考)在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有个.【解析】因为222543=+,点(3,4),(4,3)符合要求,由对称性可知(3,-4),(-3,4),(-3,-4),(4,-3),(-4,3),(-4,-3)也符合要求,所以共8个点符合要求. 答案:812、(2010·宿迁中考)在平面直角坐标系中,线段AB 的端点A 的坐标为)2,3(-,将其先向右平移4个单位,再向下平移3个单位,得到线段B A '',则点A 对应点A '的坐标为______.【解析】根据平移的规律得坐标为(1,-1) 答案:(1,-1)13.(2009·绍兴中考)如图是绍兴市行政区域图,若上虞市区所在地用坐标表示为(12),,诸暨市区所在地用坐标表示为(52)--,,那么嵊州市区所在地用坐标可表示为__________.【解析】建立如图所示的坐标系,每个小正方形的边长为单位长度1.答案:(0,-3)14、(2009·乌鲁木齐中考)在平面直角坐标系中,点(12)A x x--,在第四象限,则实数x的取值范围是.【解析】由题知10. 2. 20xxx->⎧>⎨-<⎩解得答案:2x>15、(2008·益阳中考)如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为 .答案:(2,4)16、(2008·邵阳中考)2008年奥运火炬于6月3日至5日在我省传递(传递路线为:岳阳—汩罗—长沙—湘潭—韶山).如图,学生小华在地图上设定汩罗市位置点的坐标为(02)-,,长沙市位置点的坐标为(04)-,,请帮助小华确定韶山市位置点的坐标为.答案:(15)--,三、解答题17、(2007·泸州中考)如图是某市市区四个旅游景点的示意图(图中每个小正方形的边长为1 个单位长度),请以某景点为原点,建立平面直角坐标系(保留坐标系的痕迹),并用坐标表示下列景点的位置:①动物园_____________________②烈士陵园____________________【解析】答案不唯一,坐标系建立不同则结果不同,建立如图所示的坐标系①(3,5),②(0,0) ∴︒=∠70A ,︒=∠90B ,︒=∠140C 要点二、坐标与轴对称 一、选择题1. (2009·南充中考)在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是( ) A .(52)--,B .(25)--,C .(25)-,D .(25)-,【解析】选C. 由关于y 轴对称点的纵坐标相同,横坐标相反得点B 的坐标是(25)-,.2、(2010·綦江中考)直角坐标系内点P(-2,3)关于原点的对称点Q 的坐标为( )A . (2,-3)B . (2,3)C .(-2,3)D . (-2,-3)【解析】选A ,关于原点对称的点的坐标,横、纵坐标均互为相反数。
平面直角坐标系典型例题含答案及解析
平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。
注意a 与b 的先后顺序对位置的影响。
2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。
3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点)P到X轴距离为y,到y轴的距离为x。
x,(y7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限. A .一 B .二 C .三 D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a 3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。
3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上(除原点) 考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.(2,3)2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( ) A .a=4,b=-1 B .a=-4,b=1 C .a=-4,b=-1 D .a=4,b=1 考点4:点的平移1.已知点A (-2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A ′,则点A ′的坐标是( )A .(-5,6)B .(1,2)C .(1,6)D .(-5,2)2.已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于将A 经过( )的平移到了C .A .向左平移4个单位,再向上平移6个单位B .向左平移4个单位,再向下平移6个单位C .向右平移4个单位,再向上平移6个单位D .向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点5:点到坐标轴的距离考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A .2B .4C .0或4D .4或-4 2.如图,已知:)4,5(-A 、)2,2(--B 、)2,0(C 。
5.2平面直角坐标系(10)课件(北师大版八年级上册)
小结:
本节课我们学习了平面直角坐标系,我们要掌握以下 四方面的内容: 1. 能够正确画出直角坐标系; 2. 能在直角坐标系中,根据坐标找出点,由点求出 坐标; 3. 掌握x轴,y轴上点的坐标的特点: x轴上的点的纵坐标为0,表示为(x,0); y轴上的点的横坐标为0,表示为(0,y); 原点的坐标为(0,0). 4.各个象限内的点的坐标特征是: 第一象限(+,+) , 第二象限(-,+), 第三象限(-,-) , 第四象限(+,-)。
数轴上的点与 实数之间存在着 一一对应的关系。
我帮老师解决问题
如果课上老师要点一名同学回答问 题,但不知道同学们的姓名,我想根据同 学们所在的位置来确定,你能帮我解决吗?
行 10 胡天宇 8 6 4 2 m(4,6)
·
4
0
讲台
1
2
3
5 列
阅读教材,回答下列问题:
1. 平面上 两条互相垂直且有公共原点的数轴 组成 平面直角坐标系, 水平的数轴 叫x轴(横轴), 取向 右为正方向, 铅直的数轴 叫y轴(纵轴), 取向 上为正方向。 两轴的交点是 原点 。 这个平面叫 坐标 平面。
八年级数学
5.2 平面直角坐标系(一)
复习
什么是数轴? 规定了原点、正方向、单位长度的直线 就构成了数轴。
单位长度 原点
-3 -2 -1 0
·1
2
3
4
B
-3 -2 -1
数轴上的点A表示 数1.反过来,数1就是点A 的位置。我们说点1是点A 在数轴上的坐标。
D A
0 1 2
C
3
同理可知,点B在数轴 上的坐标是-3;点C在数轴 上的坐标是2.5;点D在数 轴上坐标是0.
作业
初二平面直角坐标系知识点及习题教学内容
初二平面直角坐标系知识点及习题平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系画平面直角坐标系时, x轴、y轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同。
2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0, y>0;第二象限:(-,+)点P(x,y),则x<0, y>0;第三象限:(-,-)点P(x,y),则x<0, y<0;第四象限:(+,-)点P(x,y),则x>0, y<0;在x轴上:(x,0)点P(x,y),则y=0;在x轴的正半轴:(+,0)点P(x,y),则x>0, y=0;在x轴的负半轴:(—,0)点P(x,y),则x<0, y=0;在y轴上:(0,y)点P(x,y),则x=0;在y轴的正半轴:(0,+)点P(x,y),则x=0, y>0;在y轴的负半轴:(0,—)点P(x,y),则x=0, y<0;坐标原点:(0,0)点P(x,y),则x=0, y=0;3、点到坐标轴的距离:点P (x,y )到x 轴的距离为 |y|, 到y 轴的距离为 |x|到坐标原点的距离为d=y x 224、点的对称:点P(m,n),关于x 轴的对称点坐标是(m,-n),关于y 轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)5、平行线:平行于x 轴的直线上的点的特征:纵坐标相等;平行于y 轴的直线上的点的特征:横坐标相等。
6、象限角的平分线:。
点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a) 第二、四象限角平分线上的点横纵坐标互为相反数,可记作点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)7、点的平移:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x-a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
平面直角坐标系复习讲义(知识点+典型例题)
D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为
。
(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )
.
【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
第10课时平面直角坐标系与函数基础
第10课时平面直角坐标系与函数基础 第10课时 平面直角坐标系与函数基础 百色中考命题规律与推测近五年中考考情2021年中考推测 年份 考查点 题型 题号 分值 估量将可能在选择、填空题中考查专门点的坐标特点,函数自变量的取值范畴及函数值,函数图象的分析,在解答题中与图形的性质、图形的变化综合考查确定点的坐标的方法.2021 未单独考查2021 未单独考查2021 象限内点的坐标特点 填空题 14 6分 建立适当的直角坐标系,确定点的坐标解答题 26(1)① 2021 函数值 选择题 6 3分2021 未单独考查 百色中考考题感知与试做点的坐标特点1.(2021·百色中考)若点A (x ,2)在第二象限,则x 的取值范畴是 x <0 W.函数值2.(2021·百色中考)已知函数y ={2x +1(x ≥0),4x (x<0),当x =2时,函数值y 为( A )A.5B.6C.7D.8核心考点解读平面直角坐标系与点的坐标1.平面直角坐标系与坐标的定义如图,在平面内画两条 互相垂直 同时原点重合的数轴,水平的数轴叫做x 轴或横轴,取向右为正方向,垂直的数轴叫做y 轴或纵轴,取向上为正方向;两轴交点O 为原点,如此就建立了平面直角坐标系,那个平面叫做坐标平面.坐标平面内每一个点P 都对应着一个横坐标x 和一个纵坐标y ,我们称有序实数对(x ,y )为点P 的坐标.各象限点的坐标的符号特点 点P (x ,y )在第一象限⇔x >0,y >0;点P (x ,y )在第二象限⇔ x <0,y >0 ;点P (x ,y )在第三象限⇔ x <0,y <0 ;点P (x ,y )在第四象限⇔ x >0,y <0坐标轴上点的坐标特点 x 轴上的点的 纵 坐标为0; y 轴上的点的 横 坐标为0;原点的坐标为 (0,0) 平行于坐标轴的直线上的点的坐标特点平行于x 轴的直线上的点 纵 坐标相等; 平行于y 轴的直线上的点 横 坐标相等 续表象限角平分线上的点的坐标特点 第一、三象限角平分线上点的横、纵坐标相等(相当于直线y =x 上的点); 第二、四象限角平分线上点的横、纵坐标 互为相反数 (相当于直线y =-x 上的点)对称点的坐标变化特点 点P (x ,y )关于x 轴对称P 1(x ,-y ); 点P (x ,y )关于y 轴对称P 2(-x ,y ); 点P (x ,y )关于原点对称P 3(-x ,-y )点平移的坐标变化特点 P (x ,y )向右平移a 个单位长度向左平移a 个单位长度P ′(x +a ,y )向上平移b 个单位长度向下平移b 个单位长度P″(x +a ,y +b ) 【温馨提示】(1)坐标轴上的点不属于任何象限;(2)点平移的坐标变化口诀:右加左减横坐标,上加下减纵坐标.3.点到坐标轴及原点的距离点P (x ,y )到x 轴 到y 轴 到原点 距离 |y| |x| x 2+y 2【知识拓展】坐标平面内任意两点P1(x1,y1),P2(x2,y2)之间的距离P1P2=(x2-x1)2+(y2-y1)2,线段P1P2的中点坐标为⎝ ⎛⎭⎪⎫x1+x22,y1+y22. 函数及其自变量的取值范畴4.函数:一样地,设在一个变化过程中有两个变量x ,y ,假如关于x 在它承诺取值范畴内的每一个值,y 都有 唯独确定 的值与它对应,那么就说x 是自变量,y 是x 的函数.5.函数值:假如当x =a 时,y =b ,那么b 叫做当自变量的值为a 时的函数值.6.自变量的取值范畴表达式取值范畴 分式型,如y =a x分母不为0,即x ≠0 根式型,如y =x被开方数大于等于0,即x ≥0 分式+根式型,如y =a x 同时满足两个条件:①被开方数大于等于0即x≥0;②分母不为0,即x≠0.因此x>0函数的表示方法及其图象7.函数表示方法:列表法、解析法、图象法是函数关系的三种不同表示方法,它们分别表现出具体、便于抽象应用和形象直观的特点.8.函数的图象:一样地,关于一个函数,假如自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在平面内描出相应的点,这些点所组成的图形,确实是那个函数的图象.画函数图象的步骤:列表→描点→连线.9.已知函数解析式,判定点P(x,y)是否在函数图象上的方法:若点P(x,y)的坐标适合函数解析式,则点P(x,y)在其图象上;若点P(x,y)的坐标不适合函数解析式,则点P(x,y)不在其图象上.【方法点拨】判定符合题意的函数图象的方法(1)与实际问题结合判定符合实际问题的函数图象时,需遵循以下几点:①找起点,即结合题干中所给自变量及因变量的取值范畴,对应到图象中找相对应的点;②找专门点,即指交点或转折点,说明图象在此点处将发生变化;③判定图象变化趋势,即判定出函数的增减性;④看是否与坐标轴相交,即现在另外一个量为0.(2)与几何图形(含动点)结合以几何图形为背景判定函数图象的题目,一样的解题思路为:设时刻为t,找因变量与t之间存在的函数关系,用含t的式子表示,要注意是否需要分类讨论自变量的取值范畴,再找相对应的函数图象.(3)分析函数图象判定结论正误分清图象的横纵坐标代表的量及函数中自变量的取值范畴,同时也要注意:①分段函数要分段讨论;②转折点,即判定函数图象的倾斜方向或增减性发生变化的关键点;③平行线,即函数值随自变量的增大而保持不变.然后结合题干推导出实际问题的运动过程,从而判定结论的正误.1.(2021·柳州中考)如图,在平面直角坐标系中,点A的坐标是(-2,3)W.2.(2021·新疆中考)点(-1,2)所在的象限是第二象限.3.(2021·扬州中考)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是(C)A.(3,-4)B.(4,-3)C.(-4,3)D.(-3,4)4.若点A(a+1,b-2)在第二象限,则点B(-a,b+1)在(A )A.第一象限B.第二象限C.第三象限D.第四象限5.(2021·百色中考)若函数y=1x-2有意义,则自变量x的取值范畴是x≠2W.6.已知函数y=-x+3,当x=3时,函数值为0.7.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为(3,5)W.8.小明为备战体育中考,每天早晨坚持锤炼,他花20 min慢跑到离家900 m的江边,在江边休息10 min后,再用15 min快跑回家,下列图中表示小明离家的距离y (m)与时刻x(min)的函数图象是(B)9.(2021·百色中考适应性演练)某试验室在0:00~4:00的温度T (单位:℃)与时刻t (单位:h)的函数关系的图象如图所示,则开始升温后试验室每小时上升的温度为(B)A.5 ℃B.10 ℃C.20 ℃D.40 ℃典题精讲精练点的坐标例1(2021·贵港中考)在平面直角坐标系中,点P(m-3,4-2 m)不可能在(A)A.第一象限B.第二象限C.第三象限D.第四象限【解析】分点P的横坐标是正数和负数两种情形讨论求解.①当m-3>0,即m>3时,-2m<-6,4-2m<-2,因此,点P(m-3,4-2m)在第四象限,不可能在第一象限;②当m-3<0,即m<3时,-2m>-6,4-2m>-2,因此,点P(m-3,4-2m)能够在第二或第三象限.综上所述,点P不可能在第一象限.【点评】本题考查了各象限内点的坐标的符号特点,记住各象限内点的坐标的符号是解题的关键,四个象限内的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).函数自变量的取值范畴及函数值例2(2021·来宾中考)使函数y=22-x有意义的自变量x的取值范畴是(A)A.x<2B.x≤2C.x≥2D.x>2【解析】依照被开方数大于等于0且分母不等于0,列不等式即可得解.由题意,得2-x>0,解得x<2.【点评】本题考查了函数自变量的取值范畴,一样从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,考虑被开方数非负.函数及其图象例3(2021·百色中考模拟一)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时刻.设他从山脚动身后所用时刻为t(min),所走的路程为s(m),s与t之间的函数关系如图所示.下列说法错误的是(C)A.小明中途休息用了20 minB.小明休息前爬山的平均速度为每分钟70 mC.小明在上述过程中所走的路程为6 600 mD.小明休息前爬山的平均速度大于休息后爬山的平均速度【解析】依照函数图象可知,小明前40 min爬山2 800 m,在第40~60 min休息,在第60~100 min爬山(3 800-2 800) m,爬山的总路程为3 800 m,依照路程、速度、时刻之间的关系进行解答即可.A.依照图象可知,在第40~60 min,路程没有发生变化,因此小明中途休息的时刻为60-40=20(min),故正确;B.依照图象可知,当t=40时,s=2 800,因此小明休息前爬山的平均速度为2 800÷40=70(m/mi n),故正确;C.依照图象可知,小明在上述过程中所走的路程为3 800 m,故错误;D.小明休息后的爬山的平均速度为(3 800-2 800)÷(100-60)=25(m/min),小明休息前爬山的平均速度为2 800÷40=70(m/ min),70>25,因此小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确.【点评】本题考查了函数图象,解决本题的关键是读明白函数图象,猎取信息,解决问题.,1.在下列所给出坐标的点中,在第四象限的是(D)A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.(2021·绵阳中考)如图,在中国象棋的残局上建立平面直角坐标系,假如“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为(-2,-2)W.3.(2021·云南中考)函数y=1-x的自变量x的取值范畴为(B )A.x≤0B.x≤1C.x≥0D.x≥14.(2021·娄底中考)函数y=x-2x-3中自变量x的取值范畴是(C)A.x>2B.x≥2C.x≥2且x≠3D.x≠35.(2021·重庆中考B卷)依照如图所示的程序运算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(C)A.9B.7C.-9D.-76.(2021·呼和浩特中考)二十四节气是中国古代劳动人民长期体会积存的结晶,它与白昼时长紧密相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.依照下图,在下列选项中指出白昼时长低于11 h的节气(D)A.惊蛰B.小满C.立秋D.大寒7.(2021·长沙中考)小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了那个过程中,小明离家的距离y与时刻x之间的对应关系.依照图象,下列说法正确的是(B)A.小明吃早餐用了25 minB.小明读报用了30 minC.食堂到图书馆的距离为0.8 kmD.小明从图书馆回家的速度为0.8 km/min请完成精练本第16页作业。
平面直角坐标系与表示方法
· (+,-) (-,-)
-2
E ( 1,- 2 )
-3
· · D ( -4,- 3 ) 平法面-4直角G坐标(系0和,表-示4)方
所有x轴上的点,坐标的特点是: 纵坐标均为0,可记作(x,0)。 所有y轴上的点,坐标的特点是: 横坐标均为0,可记作(0,y)。
平面直角坐标系和表示方法
平面直角坐标系和表示方 法
❖ 例如,××同学在第3行第4排.这样 教室里座位也可以用一对实数表示.
平面直角坐标系和表示方 法
学习目标:
1.知道并能画出平面直角坐标系; 2.会在平面直角坐标系中找出任意点的 坐标; 3.明确数轴上点的坐标特征和四个象限 内的点的坐标符号特征; 4.能利用象限点和坐标轴上点的特点解 决有关问题。
不属于任何象限 第_二__象限 1
y
( + ,+ ) 第_一__象限
各坐+象标、限与-符中纵号点坐特的标点横的。第-_三3__-象2 限- 1 --
0
1
2
( - ,- )- 3
1 2 3x
第_四__象限
(+ ,- )
平面直角坐标系和表示方法
有了平面直角坐标系,平 结论 面内的点就可能用一个
有序数对来表示了
原点 -2 -3
-4
在平面内取互相垂直的有公共 原点的两条数轴;取向右,向 上的方向为正方向;一般两条 数轴的单位长度相同.
1 2 3 4 5 x 横轴
平面直角坐标系和表示方 法
3、对平面内任意一点P,过点P向x轴,y轴
作垂线,垂足在__x_轴__上___对应的数叫做点P 的横坐标,在_y_轴__上____对应的数叫做点P的
8号”如何表示?(5,6)表示什么含义?
中考总复习数学10-第一部分 第10讲 平面直角坐标系与函数
返回题型清单
返回栏目导航ຫໍສະໝຸດ 3.(2022·石家庄国际学校模拟)如图,直线a⊥b,若以平行于a的直线为x轴,以
平行于b的直线为y轴,建立平面直角坐标系,若A(-3,2),B(2,-3),则坐标系的
原点最有可能是( B )
A.O1
B.O2
C.O3
D.O4
1
2
3
4
第10讲
平面直角坐标系与函数— 题型突破
返回题型清单
和分类讨论思想是解答本题的关键.尤其是实际背景下的
函数问题,如果涉及分段函数,需要根据自变量的不同取值
范围分类进行求解,还需要关注函数与方程(不等式)的联系.
1
2
3
4
5
第10讲
平面直角坐标系与函数— 题型突破
返回题型清单
返回栏目导航
3.(2022·石家庄新华区模拟)用max , 表示a,b两数中较大的数,如
标公式为
x +x y1+y2
,
(如图③).
第10讲
平面直角坐标系与函数— 考点梳理
返回思维导图
返回栏目导航
考点 2 函数及其自变量取值范围
1.函数的相关概念
(1)变量:在某一变化过程中可以取不同数值的量.
(2)常量:在某一变化过程中保持相同数值的量.
(3)函数:一般地,在一个变化过程中如果有两个变量x和y,并且对于x的每一
值范围,根据函数关系式的特点来确定正确的函数图象.
1
2
3
4
5
第10讲
平面直角坐标系与函数— 题型突破
拔高追问
返回题型清单
返回栏目导航
当x等于何值时,函数值y最大?
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课的主要内容是让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法以及坐标轴上的点的坐标特点。
教材通过生动的实例和丰富的练习,使学生能够理解并熟练运用平面直角坐标系解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数和二次函数等基础知识。
他们对数学图形有一定的认识,但平面直角坐标系的概念和应用可能较为抽象。
因此,在教学过程中,需要注重引导学生通过观察、操作和思考,理解和掌握平面直角坐标系的相关知识。
三. 说教学目标1.知识与技能目标:让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法,以及坐标轴上的点的坐标特点。
2.过程与方法目标:通过观察、操作和思考,培养学生运用平面直角坐标系解决实际问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:平面直角坐标系的建立,坐标轴的特点,坐标的表示方法。
2.教学难点:坐标轴上的点的坐标特点,以及运用平面直角坐标系解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究式教学法。
2.教学手段:利用多媒体课件、实物模型和几何画板等辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数学方法表示物体的位置。
2.探究平面直角坐标系:让学生观察和分析实际问题,引导学生发现平面直角坐标系的建立和特点。
3.学习坐标表示方法:讲解坐标的表示方法,让学生通过实际操作,掌握坐标轴上的点的坐标特点。
4.应用与拓展:让学生运用平面直角坐标系解决实际问题,培养学生的应用能力。
5.总结与反思:对本节课的内容进行总结,引导学生思考如何更好地运用平面直角坐标系。
七. 说板书设计板书设计要简洁明了,突出重点。
北师大版数学八年级上册2《平面直角坐标系》教案2
北师大版数学八年级上册2《平面直角坐标系》教案2一. 教材分析《平面直角坐标系》是北师大版数学八年级上册第二章的内容。
本节内容是在学生已经掌握了坐标系的基础知识,以及初中阶段所学的几何图形的性质的基础上进行的。
本节课的主要内容有:建立平面直角坐标系,确定原点、坐标轴和坐标单位,利用坐标表示点的位置,以及点的坐标与图形性质之间的关系。
这些内容对于学生理解和掌握坐标系的运用,以及解决实际问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经对坐标系有了初步的了解,掌握了坐标系的基本概念,能够利用坐标表示点的位置。
但是,对于平面直角坐标系的建立和坐标轴的确定,以及点的坐标与图形性质之间的关系,还需要进一步的引导和讲解。
此外,学生对于实际问题中的坐标系的运用,还需要通过实例进行讲解和练习。
三. 教学目标1.理解平面直角坐标系的建立和坐标轴的确定方法。
2.学会利用坐标表示点的位置,掌握点的坐标与图形性质之间的关系。
3.能够运用平面直角坐标系解决实际问题。
四. 教学重难点1.重点:平面直角坐标系的建立,坐标轴的确定,点的坐标表示方法。
2.难点:点的坐标与图形性质之间的关系,平面直角坐标系在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而掌握平面直角坐标系的知识;通过案例分析,让学生了解平面直角坐标系在实际问题中的应用;通过小组合作学习,培养学生团队合作意识和解决问题的能力。
六. 教学准备1.准备相关的教学案例和实际问题,用于讲解和练习。
2.准备平面直角坐标系的图示和模型,用于展示和解释。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾坐标系的基础知识,为新课的学习做好铺垫。
例如:“你们已经学习了坐标系,那么坐标系有什么作用呢?坐标系是如何帮助我们表示点的位置的呢?”2.呈现(10分钟)通过展示实际问题,引导学生思考平面直角坐标系的建立和坐标轴的确定方法。
人教版七年级第七章平面直角坐标系单元测试精选(含答案)10
人教版七年级第七章平面直角坐标系单元测试精选(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.一个n边形削去一个角后变成(n+1)边形,其内角和变为2 520°,则原多边形的边数是( )A.7 B.10 C.14 D.15【来源】2019年春人教版七年级数学下册《平面图形认识二》单元测试【答案】D2.如图为小杰使用手机内的微信跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为()A.向北直走700米,再向西直走100米B.向北直走100米,再向东直走700米C.向北直走300米,再向西直走400米D.向北直走400米,再向东直走300米【来源】[同步]2014年北师大版初中数学八年级上第三章3.1练习卷(带解析)【答案】A3.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7) B.(2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7) D.(2,-2),(4,3),(1,7)【来源】2019春冀教版七年级下册数学练习:第7章达标检测试题【答案】C4.已知点A(-1,-4),B(-1,3),则()A.A,B关于x轴对称B.A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴【来源】2018年秋北师大版八年级数学上册第三章位置与坐标检测卷【答案】C5.如图所示,将点A向右平移( )个单位长度可得到点BA.3个单位长度B..4个单位长度;C.5个单位长度D.6个单位长度【来源】2012年人教版七年级下第六章第二节用坐标表示平移(1)练习题(带解析)【答案】B6.若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【来源】福建省闽侯大湖中学人教版七年级数学下册:7平面直角坐标系测试题【答案】C7.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 018个点的坐标为( )A.(45,9) B.(45,11) C.(45,7) D.(46,0)【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】C8.象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是( )A.(-2,1) B.(2,-2) C.(-2,2) D.(2,2)【来源】人教版七年级下册数学章末复习:第7章平面直角坐标系【答案】C9.如图,将正整数按下图所示规律排列下去,若用有序数对(n,m)表示n排从左到右第m个数.如(4,3)表示9,则(10,3)表示()A.46 B.47 C.48 D.49【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】C10.如果用(2,3)表示电影院中的第2排3号位,那么(5,4)表示的意义是()A.4排5号B.5排4号C.4排或5排D.4号或5号【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】B11.长方形OABC中,AB=3,BC=2,芳芳建立了如图所示的平面直角坐标系,则点B的坐标是( )A.(3,2) B.(2,3) C.(-3,2) D.(-2,3)【来源】2017-2018学年浙教版八年级数学上册习题:单元测试【答案】C12.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【来源】浙教版九年级数学下册第一章解直角三角形单元检测试题【答案】A13.下列说法中正确的有( )①在同一平面内,不相交的两条直线必平行;②在同一平面内,不相交的两条线段必平行;③相等的角是对顶角;④两条直线被第三条直线所截,所得到的同位角相等;⑤两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个【来源】2015-2016学年广东普宁华侨管理区中学七年级下第一次段考数学卷(带解析)【答案】B14.点M(x,y)在第四象限,且|x|=2,y2=4,则点M的坐标是( )A.(2,2) B.(-2,-2) C.(2,-2) D.(-2,2)【来源】江西省崇仁县第二中学2016-2017学年八年级上学期期中考试数学试题【答案】C15.如图,三角形ABC经过平移得到三角形DEF,其中A点(-2,4)平移到D点(2,2),则B点(a,b)平移后的对应点E的坐标是()A.(a+2,b)B.(a+4,b-2)C.(a+2,b-2)D.(a+4,b+2)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】B二、填空题16.已知点P的坐标为(m,n),那么先向右平移2各单位长度,再向下平移1个单位长度后的对应点P′的坐标为__________.【来源】2018-2019学年七年级下(人教版)数学单元练习卷:第七章平面直角坐标系【答案】(m+2,n-1)17.如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为.【来源】2015届江苏省南京市江宁区中考一模数学试卷(带解析)【答案】(3,0)或(9,0)18.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是 .【来源】2014届上海市普陀区中考二模数学试卷(带解析)【答案】(5,-2).19.已知点N的坐标为(a,a-1),则点N一定不在第________象限.【来源】2018春冀教版七年级数学下册练习:第7章达标检测卷【答案】二20.写出平面直角坐标系中一个第三象限内点的坐标:________.【来源】2017年秋北师大版八年级数学上册章末检测卷:第3章?位置与坐标【答案】(-1,-1)(答案不唯一)21.已知点A的坐标(x,y)(y+3)2=0,则点A的坐标是________.【来源】2018春冀教版七年级数学下册练习:第7章达标检测卷【答案】(2,-3)22.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,3点A1、A2、A3,…在x轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.【来源】2017年广西贵港市港南区中考数学二模试卷【答案】23.已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是______,点B的坐标是______,点C的坐标是______.【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】(-5,0) (-5,-3) (0,-3)24.如图,点A0(0,0),A1(1,2),A2(2,0),A3(3,-2),A4(4,0),….根据这个规律,探究可得点A2 019的坐标是_______.【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】(2019,-2)25.在平面直角坐标系中,已知点P在第二象限,距离x轴3个单位长度,距离y轴2个单位长度,则点P的坐标为________.【来源】海南省临高县美台中学 2017-2018学年七年级下册期末模拟试卷数学试题【答案】(﹣2,3).26.如图,在直角坐标系中,设一动点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设P n(x n,y n),n=1,2,3,…求x1+x2+…+x99+x100的值.【来源】安徽省芜湖市南陵县黄浒初中2017-2018学年度第二学期七年级数学期中复习试卷【答案】5027.在如图所示的雷达定位系统上,如果约定A点位置表示为(60°,1),B点的位置表示为(300°,2),那么C点的位置可以表示为____________.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】(150°,3)28A(a在第______象限.【来源】人教版八年级数学下册第16章二次根式综合测试题【答案】二29.在平面直角坐标系中,点P(2,-2)和点Q(2,4)之间的距离等于________个单位长度.线段PQ的中点的坐标是________.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】6 (2,1)30.若点A(a,2a+1)在第一、三象限的两坐标轴夹角的平分线上,则a=________.(注:在角的内部,角平分线上的点到角两边的距离相等)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】-131.如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为________.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(2,1.5)32.若点P(2x-2,-x+4)到两坐标轴的距离相等,则点P的坐标为________.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(2,2)或(-6,6)三、解答题33.将一幅三角板拼成如图的图形,过点C作CF平分∠DCE交DE于点F.试说明CF∥AB的理由.【来源】2017年秋北师大版八年级数学上册章末检测卷:第7章平行线的证明(一)【答案】CF∥AB.理由见解析.34.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420 m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系.(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.【来源】2018春冀教版七年级数学下册练习:第7章达标检测卷【答案】(1) 张明同学是以中心广场为原点、正东方向为x 轴正方向、正北方向为y 轴正方向建立平面直角坐标系(2) 牡丹园的位置的35.如果规定北偏东30°的方向记作30°,从O 点出发沿这个方向走50米记作50,图中点A 记作(30°,50);北偏西45°的方向记作-45°,从O 点出发沿着该方向的反方向走20米记作-20,图中点B 记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).【来源】2019春冀教版七年级下册数学练习:第7章达标检测试题【答案】(1)(-75°,-15)表示南偏东75°距O 点15米处,(10°,-25)表示南偏西10°距O 点25米处;(2)详见解析.36.如图 平面内有四个点,它们的坐标分别是 (1,A (3,B CD(1)依次连接A 、B 、C 、D ,围成的四边形是什么图形?并求它的面积(2)将这个四边形向下平移【来源】青岛版八年级下册第七章实数单元测试【答案】(1)梯形,(2)A (1,0) B (3,0) C (4,)D (1,) 37.在平面直角坐标系中表示下面各点:A (0,3)B (1,-3)C (3,-5)D (-3,-5)E (3,5).连接CE ,CD .(1)A 点到原点的距离是___个单位长度;B 点到直线CD 的距离是____个单位长度;(2)将点C 向x 轴的负方向平移6个单位,它与点_______重合;(3)直线CE 与y 轴的位置关系是_______;直线CE 与x 轴的位置关系是_______.【来源】人教版七年级数学下第七章平面直角坐标系单元检测数学试题【答案】(1)3,2;(2)D;(3)平行;垂直.38.坐标平面内有4个点A(0,2),B(-2,0),C(1,-1),D(3,1).(1)建立坐标系,描出这4个点;(2)顺次连接A,B,C,D,组成四边形ABCD,求四边形ABCD的面积.(3)线段AB,CD有什么关系?请说明理由.【来源】人教版七年级数学下第七章平面直角坐标系单元检测数学试题【答案】(1)见解析;(2)8;(3)AB∥CD,理由见解析.39.在如图所示的平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来:(0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】画图见解析.40.下图是某动物园平面示意图的一部分(图中小正方形的边长代表100米).(1)在大门东南方向有哪些景点?(2)从大门径直向东走300米,再向北走200米,到达哪个景点?(3)以大门为坐标原点,向东方向为x轴正方向,向北方向为y轴正方向建立平面直角坐标系,写出蛇山、水族馆及大象馆的坐标.【来源】人教版数学七年级下册第七章平面直角坐标系单元综合提升卷【答案】(1)猴山,大象馆;(2)蛇山;(3)蛇山的坐标为(300,200);水族馆的坐标为(500,0);大象馆的坐标为(300,-300).41.已知点O(0,0),B(1,2).(1)若点A在y轴的正半轴上,且三角形OAB的面积为2,求点A的坐标;(2)若点A(3,0),BC∥OA,BC=OA,求点C的坐标;(3)若点A(3,0),点D(3,-4),求四边形ODAB的面积.【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】(1)A(0,4);(2)C(4,2)或(-2,2);(3)S四边形ODAB=9.42.若点M(a-3,a+1)到x轴的距离是3,且它位于第三象限,求点M的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(-7,-3)43.小强放学后,先向东走了300米,再向北走路200米,到书店A买了一本书,然后向西走了500米,再向南走了100米,到快餐店B买了零食,又向南走了400米,再向东走了800米,回到他家C,如图,以学校为原点建立坐标系,图中的每个单位长度表示100米.(1)请在图中的坐标系中标出A,B,C的位置,并写出A,B,C三点的坐标;(2)如果超市D的坐标为(-1,-3),邮局E的坐标为(4,2),请在图中标出超市和邮局的位置;(3)请求出小强家到超市的实际距离.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(1)A(3,2),B(-2,1),C(6,-3)(2)见解析(3)70044.已知三角形ABC的三个顶点坐标分别是A(-4,-1),B(-1,4),C(1,1),点A经过平移后对应点为A1(-2,1),将三角形ABC作同样的平移得到三角形A1B1C1,写出B1、C1两点的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】B1(1,6),C1(3,3)45.如果点P(m+3,m-2)在坐标轴上,求m的值和点P的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】P(0,-5)或(5,0)46.已知:P(3m25-,m13+)点在y轴上,求P点的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】点P坐标为(0,59 ).47.已知点P(2a-6,-3b+2)在第二象限,到x轴的距离为5,到y轴的距离为8,求a、b的值.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】a=-1,b=-1.48.点A在第一象限,当m为何值时,点A(m+2,3m-5)到x轴的距离是它到y轴距离的一半.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】m=12 5.49.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示.(2)请你在图中标出秋千的位置,秋千在大门以东400m,再往北300m处.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】(1)(2,4);(5,1);(5,4);(2)见解析.50.在平面直角坐标中描出下列各点.A(1,1),B(-3,3),C(1,3),D(-1,3),E(1,-4),F(3,3).由描出点你发现了什么规律?【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】见解析。
10平面直角坐标系-坐标应用题培优题和课后练习
平面直角坐标系【坐标应用题】【培优练习】1.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)顺次连接(1)中的所有点,得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);(3)指出(1)中关于点P成中心对称的点_________ .2.中国象棋棋盘中隐藏着直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图中“马”所在的位置可以直接走到B,A等处.(1)若“马”的位置在点C,为了到达点D,请按“马”走的规则,在图上用虚线画出一种你认为合理的行走路线;(2)如果图中“马”位于(1,﹣2)上,试写出A、B、C、D四点的坐标.3.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.4.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B记为:A⇒B(+1,+4),从B到A记为:B⇒A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A⇒C(_________ ,_________ ),B⇒C(_________ ,_________ ),C⇒_________ (﹣3,﹣4);(2)若贝贝的行走路线为A⇒B⇒C⇒D,请计算贝贝走过的路程;(3)若贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点;(4)在(3)中贝贝若每走1m需消耗1.5焦耳的能量,则贝贝寻找妮妮过程中共需消耗多少焦耳的能量?5.如图,点A用(3,1)表示,点B用(8,5)表示.若用(3,3)→(5,3)→(5,4)→(8,4)→(8,5)表示由A到B的一种走法,并规定从A到B只能向上或向右走,用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.6.如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.7.小华去某地考察环境污染问题,并且事先知道下面的信息:(1)“悠悠日用化工品厂A”在他所在地的北偏东30度的方向,距离此处3千米;(2)“佳味调味品厂B”在他现在所在地的北偏西45度的方向,距离此处2.4千米;(3)“幸福水库C”在他现在所在地的南偏东27度的方向,距离此处1.5千米的地方.根据这些信息,请建立直角坐标系,帮助小华完成这张表示各处位置的简图.8.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向西走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.9.如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.10.在下图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?11.温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中点A坐标为(9,0),请你直接在图中画出该坐标系,并写出其余5点的坐标.12.徐浩同学准备把如图所示的一张“探宝路线图”通过电话告诉李林同学,请你帮助设计一种把“探宝路线图”清楚告诉对方的方法.13.下图描述了A、B…等11位同学每天课余时间安排;请仔细观察,并回答以下问题:(1)_________ 的娱乐时间和学习时间是相等的.(2)_________ 用于学习的时间相同,都是_________ 刻钟;_________ 用于学习的时间也相同,都是_________ 刻钟.(3)_________ 的学习时间比娱乐时间多;_________ 的学习时间比娱乐时间少.(4)从图中看,A、B、C、D、E、G这六位同学的课余时间安排有什么共同点?14.在某河流的北岸有A、B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A、B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A、B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置在图中标出水泵站的位置,并求出所用水管的长度.15.读一读,想一想,做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.16.国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大的多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图a是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.(1)在如图b的小方格棋盘中有一个“皇后Q”,她所在的位置可用“(2,3)”来表示,则:①“皇后Q”所在的位置“(2,3)”的意义是_________ ;②写出棋盘中不能被该“皇后Q”所控制的四个位置_________ ;(2)如图c也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互相不受对方控制(在图c中的某四个小方格中标出字母Q即可).17.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图中,过A(﹣2,3)、B(4,3)两点作直线AB,则直线AB上的任意一点P(a,b)的横坐标可以取_________ ,纵坐标是_________ .直线AB与y轴_________ ,垂足的坐标是_________ ;直线AB与x轴_________ ,AB与x轴的距离是_________ .(2)在图中,过A(﹣2,3)、C(﹣2,﹣3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是_________ ,纵坐标可以是_________ .直线AC与x轴_________ ,垂足的坐标是_________ ;直线AC与y轴_________ ,AC与y轴的距离是_________ .(3)在图中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P (x,y)的横坐标与纵坐标_________ ,并且直线OE _________ ∠xOy.【课后作业】1.图中标明了李明同学家附近的一些地方。
【2014中考复习方案】(苏科版)中考数学复习权威课件 :10 平面直角坐标系与函数(26张ppt,含13年试题)
考点聚焦
归类探究
第10课时┃归类探究
解 析 在平面直角坐标系中,点的左右平移,横坐标发生 变化而其纵坐标不变,由A(-4,0)平移至原点O(0,0),可知 线段AB向右平移了4个单位,故点B平移后的坐标是(0+4,2), 即(4,2).
方法点析
求一个图形旋转、平移后的对应点的坐标,
一般要把握三点:一是图形变换的性质;二是图形的全等
考点聚焦
归类探究
第10课时┃归类探究
探究六、函数图象
命题角度:
1.画函数图象; 2.函数图象的实际应用. 例1.[2013•重庆] 2013年“中国好声音”全国巡演重庆站在奥 体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站, 等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后, 童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发 后所用时间,y表示童童离家的距离.下图能反映y与x的函数 关系式的大致图象是( )A
归类探究
第10课时┃归类探究
解
析
∵x-1≥0,解得x≥1,故选B.
方法点析
求函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;(2)当 函数表达式是分式时,分式的分母不能为0;(3)当函数表 达式是二次根式时,被开方数为非负数.此题就是第三种 情形,考虑被开方数必须大于等于0.
考点聚焦 归类探究
图10-1
第10课时┃归类探究
解 析
如图所示,
PE BE PE 2 由对称性可知P的横坐标为3, = ,即 = , DF BF 2 3 4 4 7 所以PE= , +1= . 3 3 3 7 故P的坐标为(3, ). 3
考点聚焦 归类探究
第10课时┃归类探究
2024年广东省中考数学总复习专题10:平面直角坐标系
2024年广东省中考数学总复习专题10平面直角坐标系知识点一:平面直角坐标系关键点拨及对应举例1.相关概念定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.几何意义:坐标平面内任意一点M 与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2. 点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数点P(a,b)的对称点的坐标特征:①关于x 轴对称的点P1 的坐标为(a,-b);②关于y 轴对称的点P2 的坐标为(-a,b);③关于原点对称的点P3 的坐标为(-a,-b).点M(x,y)平移的坐标特征:M(x,y)M1(x+a,y)M2(x+a,y+b)坐标轴上的点不属于任何象限.平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3. 坐标点的距离问题点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b|;)到y 轴的距离为|a|.平行于x 轴,y 轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.考向平面直角坐标系第1页(共7页)。
平面直角坐标系及其应用
平面直角坐标系(基础)知识讲解【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系与点的坐标的概念1. 平面直角坐标系在平面画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为向;竖直的数轴称为y轴或纵轴,取向上方向为向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面都有唯一的一点与它对应,也就是说,坐标平面的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面任意一个点,不在这四个象限,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【典型例题】类型一、有序数对1.如果将一“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.举一反三:【变式】某地10:00时气温是6℃,表示为(10,6),那么(3,-7)表示________.【答案】3:00时该地气温是零下7℃.类型二、平面直角坐标系与点的坐标的概念2.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为( ).A.(5,-4) B.(4,-5) C.(-5,4) D.(-4,5)【答案】D.3.在平面直角坐标系中,描出下列各点A(4,3),B(-2,3),C(-4,1),D(2,-2).【答案与解析】解:因为点A的坐标是(4,3),所以先在x轴上找到坐标是4的点M,再在y轴上找到坐标是3的点N.然后由点M作x轴的垂线,由点N作y轴的垂线,过两条垂线的交点就是点A,同理可描出点B、C、D.所以,点A、B、C、D在直角坐标系的位置如图所示.【总结升华】对于坐标平面任意一点,都有唯一的一对有序数对和它对应;对于任意一对有序数对,在坐标平面都有唯一的一点与它对应,也就是说,坐标平面的点与有序实数对是一一对应的.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征4.指出下列各点所在的象限或坐标轴.A(4,5)、B(-2,3)、C(-4,-1)、D(2.5,-2)、E(0,-4) 、F(3,0)、G(0,0).【思路点拨】先判断所求点的横纵坐标的符号,进而判断所在象限.【答案与解析】解:点A在第一象限,点B在第二象限,点C在第三象限,点D在第四象限,点E在y轴上,点F在x轴上,点G在原点上.【总结升华】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限点的符号,但注意坐标轴上的点不属于任何象限,原点既在x轴上,又在y轴上.举一反三:【变式1】点A(3,n)在第四象限,到x轴的距离为4.则点A的坐标为________.【答案】(3,-4).【高清课堂:第一讲平面直角坐标系1 369934练习3】【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.5.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴x=-3.∵点B到x轴的距离为3,∴y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0)B.(3,0)或(–3,0)C.(0,3)D.(0,3)或(0,–3)【答案】B.【高清课堂:第一讲平面直角坐标系1 369934练习4(5)】【变式2】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________. 【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).平面直角坐标系(提高)巩固练习【巩固练习】一、选择题1.A 地在地球上的位置如图,则A 地的位置是( ).A.东经130°,北纬50°B.东经130°,北纬60°C.东经140°,北纬50°D.东经40°,北纬50° 2.点A (a ,-2)在二、四象限的角平分线上,则a 的值是( ). A.2B.-2C.12D.12-3.已知点M 到x 轴、y 轴的距离分别为4和6,且点M 在x 轴的上方、y 轴的左侧,则点M 的坐标为( ) .A .(4,-6)B .(-4,6)C .(6,-4)D .(-6,4)4.已知A(a ,b)、B(b ,a)表示同一个点,那么这个点一定在( ) .A .第二、四象限的角平分线上B .第一、三象限的角平分线上C .平行于x 轴的直线上D .平行于y 轴的直线上 5. 已知点(M a ,)b ,过M 作MH x ⊥轴于H ,并延长到N ,使NH MH =, 且N 点坐标为(2-,3)-,则()a b += . A.0B.1C.—1D.—56. ()在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定,形的部不包含边界上的点.观察如图所示的中心在原点,一边平行于x 轴的形:边长为1的形部有一个整点,边长为2的形部有1个整点,边长为3的形部有9个整点……,则边长为8的形部的整点的个数为 ( ) .A .64B .49C .36D .25二、填空题7.已知点P (2-a ,3a -2)到两坐标轴的距离相等,则P 点的坐标为___________. 8.线段AB 的长度为3且平行x 轴,已知点A 的坐标为(2,-5),则点B 的坐标为 . 9.如果点(0A ,1),(3B ,1),点C 在y 轴上,且ABC △的面积是5,则C 点坐标____. 10.设x 、y 为有理数,若|x +2y -2|+|2x -y +6|=0,则点(x ,y )在第______象限. 11.观察下列有序数对:(3,-1)、15,2⎛⎫- ⎪⎝⎭,17,3⎛⎫- ⎪⎝⎭、19,4⎛⎫- ⎪⎝⎭、……根据你发现的规律,第100个有序数对是________.12.在平面直角坐标系中,点A 、B 、C 的坐标分别为:A(-2,1)、B(-3,-1),C(-1,-1),且D 在x 轴上方. 顺次连接这4个点得到的四边形是平行四边形, 则D 点的坐标为_______. 13.已知平面直角坐标系两点M(5,a),N(b ,-2). (1)若直线MN ∥x 轴,则a________,b________; (2)若直线MN ∥y ,轴,则a________,b________.14.()若点P(x ,y)的坐标满足x+y =xy ,则称点P 为“和谐点”,请写出一个“和谐点”的坐标,如________. 三、解答题15.如图,棋子“马”所处的位置为(2,3).(1)你能表示图中“象”的位置吗?(2)写出“马”的下一步可以到达的位置(象棋中“马”走“日”字或“”字)16.如图,若B (x 1,y 1)、C (x 2,y 2)均为第一象限的点,O 、B 、C 三点不在同一条直线上.(1) 求△OBC 的面积(用含x 1、x 2、y 1、y 2的代数式表示); (2) 如图,若三个点的坐标分别为A (2,5),B (7,7),C (9,1),求四边形OABC 的面积.17.如图所示,在平面直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,2),A 1(2,2),A 2(4,2),A 3(8,2);B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形OA 3B 3变换成三角形OA 4B 4,则A 4的坐标是________,B 4的坐标是________;(2)若按(1)中找到的规律将三角形OAB 进行n 次变换,得到三角形OA n B n ,推测A n 的坐标是________,B n 的坐标是________. (3)求出△O的面积.【答案与解析】 一、选择题 1. 【答案】C. 2. 【答案】A ;【解析】因为(a ,-2)在二、四象限的角平分线上,所以a+(-2)=0,即a=2. 3. 【答案】D ;【解析】根据题意,画出下图,由图可知M (-6,4).4. 【答案】B ;【解析】由题意可得:a b =,横坐标等于纵坐标的点在一三象限的角平分线上. 5. 【答案】B ;【解析】由题意知: 点M (a ,b )与点N (-2,-3)关于x 轴对称,所以M(-2,3) . 6. 【答案】B ;【解析】边长为奇数的形所含整点个数为奇数的平方,而边长为偶数的形所含整点个数与边长比此偶数少1的奇数的形所含整点个数相同. 二、填空题7. 【答案】P (1,1)或P (2,-2); 【解析】232a a -=-,得01a a ==或,分别代入即可. 8. 【答案】B (5,-5)或(-1,-5);【解析】235-1B x =±=或,而5B y =-. 9. 【答案】(0,73-)或(0,133); 【解析】3AB =,由ABC △的面积是5,可得ABC △的边AB 上的高为103,又点 C 在y 轴上,所以0C x =,101371-333C y =±=或. 10.【答案】二;【解析】由绝对值的非负性,可得x ,y 的值,从而可得(x ,y )所在的象限. 11.【答案】1201,100⎛⎫- ⎪⎝⎭; 【解析】横坐标的规律:n+1-1(21)n +(),纵坐标的规律:1(1)n n-. 12.【答案】(0,1)或(-4,1);【解析】2204D x =-±=或-,1D y =.13.【答案】(1)=-2, ≠5; (2)≠-2, =5; 14.【答案】(2,2)或(0,0)(答案不唯一). 三、解答题 15.【解析】解: (1)(5,3) ; (2)(1,1)、(3,1)、(4,2)、(1,5)、(4,4)、(3,5) . 16.【解析】解: (1) 如图:AOB MOB CON BMNC S S S S ∆∆∆=+-梯形111221222112111()()2221()2AOB MOB CONBMNC S S S S x y y y x x x y x y x y ∆∆∆=+-=++--=-梯形(2)连接OB ,则:四边形OABC 的面积为:1177(75-27)(97-71)38.5222AOB BOC S S ∆∆+=⨯⨯+⨯⨯==. 17.【解析】解:(1)(16,2), (32,0); (2)(2n ,2), (2n+1,0); (3)△n n OA B ∆的面积为: 1112222n n ++⨯⨯=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系试题10
一、选择题
1、根据下列表述,能确定位置的是
A .红星电影院2排
B .北京市四环路
C .北偏东30°
D .东经118°,北纬40°
2、已知点A (4,-3)到x 轴的距离为 A 、4 B 、-4 C 、3 D 、-3
3、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,
所得图形与原图形相比 A 、向右平移了3个单位 B 、向左平移了3个单位 C 、向上平移了3个单位 D 、向下平移了3个单位
4、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为 A (3,0) B (3,0)或(–3,0) C (0,3) D (0,3)或(0,–3)
5、若点A (m ,n )在第三象限,则点B (|m|,n )所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限
6、若点P (a ,b )在第三象限,则 A .a>0,b>0 B .a<0,b<0 C .a<0,b>0 D .a>0,b<0
7、三角形A’B’C’是由三角形ABC 平移得到的,点A (-1,-4)的对应点为A ’(1,
-1), 则点 B (1,1)的对应点B ’、点C (-1,4)的对应点C ’的坐 标分别为 A 、(2,2),(3,4) B 、(3,4),(1,7) C 、(-2,2),(1,7) D(3,4),(2,-2)
8、点M (m+1,m+3)在x 轴上,则M 点坐标为 A .(0,-4) B .(4,0) C .(-2,0) D .(0,-2)
9、下列说法错误的是 A .在x 轴上的点的坐标纵坐标都是0,横坐标为任意数; B .坐标原点的横、纵坐标都是0;
C .在y 轴上的点的坐标的特点是横坐标都是0,纵坐标都大于0;
D .坐标轴上的点不属于任何象限
10、如图,四边形ABCD 是平行四边形,下列说法正确的是 A 、 A 与D 的横坐标相同 B 、 C 与D 的横坐标相同 C 、 B 与C 的纵坐标相同 D 、 B 与D 的纵坐标相同
C
B
A
10题 14题 16题 二、填空题
11、小刚位于某住宅楼12层B 座,可记为B12,按这种方法小红家住8层A 座 应记为 .
12、小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为 (– 4,3)、(– 2,3),则移动后猫眼的坐标为 。
13、由坐标原点O(0,0),A(-2,0),B(-2,3)三点围成的三角形ABC 的为 . 14、如图,小强告诉小华图中A 、B 两点的坐标分别为(– 3,5)、(3,5),小华一 下就说出了C 在同一坐标系下的坐标 .
O A
B
C
15、A(-3,-2)、B(2,-2)、C(-2,1)、D(3,1)是坐标平面内的四个点,
则线段AB与CD的关系是_________________
16、已知矩形OABC在平面直角坐标系中的位置如图,点B的坐标为(3,- 2),则矩形 OABC的面积是 .
17、已知AB在y轴上,A点的坐标为(0,3),并且AB=5,则B的坐标为 .
18、在直角坐标系中,点M到x轴负半轴的距离为12,到y轴的正半轴的距离
为4,则M点的坐标为.
三、解答下列各题
19、已知正方形的边长为8,它在平面直角坐标系中的位置如图所示.
(1)直接写出点A,B,C,D四个点的坐标.(4分)
(2)若将正方形向右平移4个单位长度,写出平移后A点的坐标.(2分)
20、已知,如图在平面直角坐标系中,S△AB C =24,
OA=OB,BC =12,求△ABC三个顶点的坐标.(6分)
21、如图,△ABC在直角坐标系中,(1)请写出△ABC各点
的坐标.(2)求出S△ABC. (3)若把△ABC向上平移2个单位,再向右平
移2个单位得△A′B′C′,在图中画出△ABC变化
位置,并写出A′、B′、C′的坐标. (12分)
22.如图6-1,这是某市部分简图,请以火车站为坐
标原点建立平面直角坐标系,并分别写出各地的坐标.
体育场
文化宫
医院火车站
宾馆
市场
超市
x
y
o123456
-1
-2
1
2
3
4
5
6
-1
A
B
C
C
O x
y
(第19题)
A
B。