分布列期望方差

合集下载

随机变量的分布列、期望、方差

随机变量的分布列、期望、方差

„ „
P
1 1 3

4
2 1 3 3
3
5
2 3
4
1 ⑷ ~ B 5, ,
k
∴ P=( =k)=C5 ( ) ·( ) 其中 k 0,1,2,3,4,5. ∴所求 的分布列是

1 3
k
2 3
5-k

0
32 243
1
80 243
2
80 243
【典例解析】
考点一:随机变量的分布列
例 1. 袋子中有 1 个白球和 2 个红球. ⑴ 每次取 1 个球,不放回,直到取到白球为止.求取球次数 的分布列.
2
2013 年高考第一轮复习资—理科数学 ⑵ 每次取 1 个球,放回,直到取到白球为止.求取球次数 的分布列. ⑶ 每次取 1 个球,放回,直到取到白球为止,但抽取次数不超过 5 次.求取球次数 的分布列. ⑷ 每次取 1 个球,放回,共取 5 次.求取到白球次数 的分布列. 解: ⑴ 1,2,3.

1
1 3
2
1 3
3
1 3
P
⑵ 每次取到白球的概率是 ,不取到白球的概率是 2 , 所求的分布列是
3
1 3

P ⑶

1 1 3 2 2 1 3 3
3
2 2 1 3 3 3
2 1 3 3
2
3
2 1 3 3
2
„ „
n
2 3
n 1

1 3
P 1 P 2 1 1 , 1 3 A3
1 A2 1 1 , 2 1 1 A A3 2 3 1

分布列、期望、方差

分布列、期望、方差

分布列、期望、方差作者:来源:《数学金刊·高考版》2013年第03期■由于离散型随机变量的分布列、期望与方差与现实生活联系密切,能充分体现数学的应用价值,也符合高考发展的方向,是近几年高考考查的热点与重点内容. 预计在今后的高考中,它仍然是考查的重点,题型有选择题、填空题、解答题,不同的地区,在命题设计上不尽相同,但以解答题为主的可能性更大.■求离散型随机变量的期望和方差,一般先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出分布列,再根据数学期望和方差的公式计算. 这类题多为解答题,常常综合考查排列组合知识、随机事件的概率等,有时还会根据概率、期望、方差等数据对某些现象进行说理. 因此在复习时要注意对概率综合题的研究,既要落实“模型题”训练,又要注重从生活情境出发进行思考.■■ 根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表. 历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求工期延误天数的均值与方差.■破解思路先根据条件信息求出Y=0,2,6,8时的相应概率,列出Y的分布列,再根据分布列计算期望和方差. 这类题为容易题,体现对分布列、期望、方差等的最低要求.经典答案由已知条件和概率的加法公式可得到:P(X■于是,EY=0×0.3+2×0.4+6×0.2+10×0.1=3,DY=9.8. 故工期延误天数的均值为3,方差为9.8.?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇■ 一个袋中有若干个大小相同的黑球、白球和红球. 已知从袋中任意摸出1个球,得到黑球的概率是■;从袋中任意摸出2个球,至少得到1个白球的概率是■.(1)若袋中共有10个球,①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.(2)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于■,并指出袋中哪种颜色的球个数最少.破解思路(1)方程思想. 先根据条件建立方程,确定白球数,再确定随机变量ξ的可能取值,并求出相应的概率,求得分布列和期望.(2)先设定两种球的个数,表示出相应的概率,由概率关系建立不等式,得到两个未知数间的关系,从而论证结论.经典答案(1)①记“从袋中任意摸出2个球,至少得到1个白球”为事件A,设袋中白球的个数为x,则P(A)=1-■=■,得到x=5. 故白球有5个.②随机变量ξ的取值为0,1, 2,3,分布列是:■ξ的数学期望Eξ=■×0+■×1+■×2+■×3=■.(2)证明:设袋中有n个球,其中y个黑球,由题得y=■n,所以2y■ 品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试. 根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2, 3,4的四种酒在第二次排序时的序号,并令X=1-a1+2-a2+3-a3+4-a4,则X是对两次排序的偏离程度的一种描述.(1)写出X的可能值集合;(2)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求X的分布列;(3)某品酒师在相继进行的三轮测试中,都有X≤2,①试按(2)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.破解思路准确理解题意是确定随机变量X的取值的关键. 分析a1,a3与a2,a4中奇数、偶数的个数,确定X的奇偶性,然后估算X的范围,并逐一检验;借助树状图列出所有可能情形,计算X值相应的概率,得到分布列;通过计算概率,判断该品酒师酒味鉴别的能力,并说明理由.经典答案(1)由于1,2,3,4中奇数与偶数各有两个,所以a2,a4中奇数个数与a1,a3中偶数个数相同,所以1-a1+2-a2+3-a3+4-a4的奇偶性相同,从而X的可能值必为偶数,且非负,不大于8,故X的可能值集合为{0,2,4,6,8}.(2)列树状图可得1,2,3,4的排列共有24种,计算得X的分布列如下:■(3)①由(2)知P(X≤2)=P(X=0)+P(X=2)=■,又各轮测试相互独立,所以三轮测试都有X≤2的概率为P=■■=■.②由于P=■■=■■1. 某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如下表所示:■(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率;(2)从40人中任选2名学生,用X表示这两人参加培训次数之差的绝对值,求随机变量X的分布列及数学期望EX.2. 某高校的自主招生考试数学试卷共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个是正确的). 评分标准规定:每题只选1项,答对得5分,不答或答错得0分. 某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其中两个选项是错误的,有一道题可以判断其中一个选项是错误的,还有一道题因不理解题意只能乱猜. 对于这8道选择题,试求:(1)该考生得分为40分的概率;(2)该考生所得分数ξ的分布列及数学期望Eξ.3. 文科班某同学参加某省学业水平测试,物理、化学、生物获得等级A和获得等级不是A的机会相等,物理、化学、生物获得等级A的事件分别记为W1,W2,W3,物理、化学、生物获得等级不是A的事件分别记为■,■,■.(1)试列举该同学这次水平测试中物理、化学、生物成绩是否为A的所有可能结果(如三科成绩均为A记为(W1,W2,W3));(2)求该同学参加这次水平测试获得两个A的概率;(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于85%,并说明理由.。

离散型随机变量分布列期望及方差

离散型随机变量分布列期望及方差

离散型随机变量分布列、期望及方差高三数学徐建勋2010-1-30教学目标:1、理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性2、理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题教学重点:(1)离散型随机变量及其分布列(2)条件概率及事件的独立性(3)离散型随机变量的期望与方差教学难点:离散型随机变量及其分布列及其两个基本性质教学过程:【知识梳理】1、随机变量的概念如果随机试验的结果可以用一个变量X表示,并且X是随着试验的结果的不同而变化的,那么这样的变量X叫随机变量,随机变量常用希腊字母X、Y、…表示。

如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.2、离散型随机变量的分布列设离散型随机变量X可能取得的值为,X取得每一个值的概率为,则称表为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列.离散型随机变量X的分布列的性质:(1)(2)一般的,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

3、二点分布如果随机变量X的分布列为,其中,则称离散型随机变量X服从参数为的二点分布.4、超几何分布一般的,设有总数为N件的两类物品,其中一类有n件,从所有物品中任取M件(M ≤N),这M件中所含这类物品的件数X是一个离散型随机变量,它取值为m时的概率为我们称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.5、条件概率一般地,设A,B为两个事件,且,在事件A发生的条件下,事件B发生的条件概率记为6、独立重复试验一般地,在相同条件下,重复地做n次试验称为n次独立重复试验.在n次独立重复试验中,事件A恰好发生k次的概率为,,1,2,…,n,其中p是一次试验中该事件发生的概率。

7、二项分布若将事件A发生的次数设为X ,事件A不发生的概率设为,那么在n次独立重复试验中,事件A恰好发生k次的概率是(其中k = 0,1,2,…,n),于是得到X的分布列:则称这样的离散型随机变量X服从参数为n,p的二项分布,记为。

分布列期望方差知识

分布列期望方差知识

离散型随机变量的分布列、数学期望、方差一. 离散型随机变量:若随机变量可能的取值可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;若随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。

二. 离散型随机变量的分布列、数学期望、方差 1. 设离散型随机变量ξ可能的取值为12,,,,i x x x ,ξ取每一个值()1,2,i x i =的概率为i p ,列表如下:叫做随机变量ξ的概率分布,简称分布列。

有如下性质: (1)()011,2,i p i ≤≤=(2)121i p p p ++++=2.数学期望:1122i i E x p x p x p ξ=++++叫做离散型随机变量ξ的数学期望,简称期望。

反映离散型随机变量ξ取值的平均水平。

若a b ηξ=+,则E aE b ηξ=+。

3.方差:()()()2221122i i D x E p x E p x E p ξξξξ=-+-++-+叫做离散型随机变量ξ的方叫做离散型随机变量ξ的标准差,记作σξ 若a b ηξ=+,则2D a D ηξ=。

方差反映随机变量ξ的取值与平均值的离散情况。

即稳定性。

三.几个典型的分布1.二项分布:n 次独立重复试验中,事件A 发生的次数(),B n p ξ,p 是一次试验A 发生的概率,设1q p =-。

则()()()();,0,1,,k k n kn n P k b k n p P k C p q k n ξ-=====2、几何分布:独立重复试验中事件A 第一次发生时的试验次数ξ服从几何分布,p 是一次试验A 发生的概率,设1q p =-。

()()11,2,k P k q p k ξ-===期望1E p ξ=,方差2q D pξ=。

3.两点分布:一次实验中,事件A 发生记为1,不发生记为0,p 是一次试验A 发生的概率,设1q p =-。

则期望E p ξ=,方差D pq ξ=。

练习1.已知随机变量(),B n p ξ,且6,3E D ξξ==,则()1;,b n p = .2.若随机变量ξ的分布列是:()()1,3P m P n a ξξ====.且2E ξ=,则D ξ的最小值是 .3.若随机变量ξ满足()(),P k g k p ξ==,2D ξ=,21ηξ=-,则E η= ,D η= 。

概率论,方差,分布列知识总结

概率论,方差,分布列知识总结

分布列、期望、方差知识总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。

)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X可能取的值为x1,x2, ,x i , ,x nX取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi≥0, i =1,2,…;②p1 + p2 +…+p n= 1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

4.求离散型随机变量分布列的解题步骤例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出二点分布如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中{}min,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二取到次品的概率.解:设 A = {第一个取到次品}, B = {第二个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第二个又取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P .1)|(0)()|()(0)A (P ≤≤⋅=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==⇒C C AB P .103)(=A P相互独立事件2.相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

离散型随机变量、分布列、数学期望、方差

离散型随机变量、分布列、数学期望、方差

离散型随机变量、分布列、数学期望、方差:一、框架第一方面:离散型随机变量及其分布列1. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

常用大写英文字母X 、Y 等或希腊字母ξ、η等表示。

2.分布列:设离散型随机变量ξ可能取得值为: x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表ξx 1x 2…x i…P P 1 P 2 … P i …为随机变量ξ的分布列 3. 分布列的两个性质:⑴P i ≥0,i =1,2,… ⑵P 1+P 2+…=1.常用性质来判断所求随机变量的分布列是否正确!第二方面:条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_B 都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

我们把两个事件A 、B 同时发生记作A·B ,则有P (A·B )= P (A )·P (B )推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。

即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )★相互独立事件A ,B 有关的概率的计算公式如下表:事件A ,B 相互独立 概率计算公式 A ,B 同时发生 P (AB )=P (A )P (B )A ,B 同时不发生 P (A -B -)=P (A -)P (B -)=[1-P (A )][1-P (B )]=1-P (A )-P (B )+P (A )P (B ) A ,B 至少有一个不发生 P =1-P (AB )=1-P (A )P (B )A ,B 至少有一个发生 P =1-P (A -B -)=1-P (A -)P (B -)=P (A )+P (B )-P (A )P (B )A ,B 恰有一个发生P =P (A B -+A -B )=P (A )P (B -)+P (A -)P (B )=P (A )+P (B )-2P (A )P (B )2.条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。

第12章12.1离散型随机变量的分布列期望方差精品课件大纲人教版课件.ppt

第12章12.1离散型随机变量的分布列期望方差精品课件大纲人教版课件.ppt

1
1
A.9
B.6
1
1
C.3
D.4
答案:C
4.从装有3个红球、2个白球的袋中随机取出2 个球,设其中有ξ个红球,则随机变量ξ的概率 分布为
ξ 012 P
答案:0.1 0.6 0.3
5.若 ξ~B(4,13),则 P(ξ≥1)=________. 答案:6851
考点探究·挑战高考
考点突破 分布列的性质
故 X~B(6,13), 所以 P(X=k)=Ck6(13)k·(23)6-k, k=0,1,2,3,4,5,6.
所以 X 的分布列为:
(2)EX=np=6×13=2, Dξ=np(1-p)=6×13×23=43,
即遇到红灯的次数的期望为 2,方差为43.
【思维总结】 对于 ξ~B(n,p),P(ξ=k)= Cknpk(1-p)n-k 也是分布列的一种形式:通项公 式形式.
例4 (2010 年高考北京卷)某同学参加 3 门课 程的考试.假设该同学第一门课程取得优秀成
绩的概率为45,第二、第三门课程取得优秀成绩 的概率分别为 p 、q(p>q),且不同课程是否取 得优秀成绩相互独立.记 ξ 为该生取得优秀成 绩的课程数,其分布列为
(1)求该生至少有1门课程取得优秀成绩的概率; (2)求p,q的值; (3)求数学期望Eξ. 【思路分析】 (1)利用对立事件“ξ=0”. (2)利用ξ=0与ξ=1的概率建立p,q方程组. (3)求出:P(ξ=1).
分布列中随机变量取值的概率都在[0,1],同时 所有概率和一定等于1.
例1 设随机变量 ξ 的分布列 P(ξ=k5)=ak(k= 1,2,3,4,5).求:(1)常数 a 的值;
(2)P(ξ≥35);(3)P(110<ξ<170). 【思路分析】 将分布列简写成一个通项型 表达式,只是为了叙述方便,而表格形式更 能直观反映每种试验可能的分布,两种形式 实质内容是一致的.

分布列的期望和方差

分布列的期望和方差

)=p2p1=
2 9
,P(ξ=-2n)=p2p2=
4 9
,E(ξ)=
5m10n 9
.当
m>2n
时,选择
甲方;当 m<2n 时,选择乙方;当 m=2n 时,选择两方都一样.
题型二 离散型随机变量的方差
【例 2】 (2010·江苏苏北三市模拟)在一次电视节目的抢答
中,题型为判断题,只有“对”和“错”两种结果,其中某明星判断正
若按“项目二”投资,设获利ξ2万元,则ξ2 的分布列为:
ξ2 500 -300 0
P
3 5
1
1
3 15
E(ξ2)=500×35+(-300)×13+0×115=200(万元). 又 D(ξ1)=(300-200)2×79+(-150-200)2×29=35 000, D(ξ2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115= 140 000. 所以 E(ξ1)=E(ξ2),D(ξ1)<D(ξ2), 这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.
等于 5 点,则算甲方赢,乙方给甲 m 元,否则算乙方赢,甲方给 乙方 n 元;②如果第一轮掷骰子甲赢,则游戏结束,否则进行第 二轮掷骰子的游戏,无论谁赢游戏结束.
(1)如果 m=2,n=1,甲方和乙方哪方赢钱的期望更大? (2)你若希望赢钱,该选择哪一方?
解析:甲方赢的概率
p1=
1 3
,乙方赢的概率
• • [例2] (09·广东)已知离散型随机变量X的
分布列如右表,若E(X)=0,D(X)=1,, 则a=______,b=______.
• 分析:依据离散型随机变量的性质和期望、 方差的计算公式列方程组求解.

离散型随机变量的分布列、期望与方差

离散型随机变量的分布列、期望与方差

=2.752.
学例2 (2008·广东卷)随机抽取某厂的某种
产品200件,经质检,其中有一等品126件、 二等品50件、三等品20件、次品4件.已知生 产1件一、二、三等品获得的利润分别为6万 元、2万元、1万元,而1件次品亏损2万元.设 1件产品的利润为ξ(单位:万元).
(1)求ξ的分布列;
(2)求1件产品的平均利润(即ξ的数学期望);
ξ
0
1

M
P
C C 0 n0 M NM
C C 1 n1 M NM
CNn
CNn

C C m nm M NM
CNn
为⑦超几何分布列.如果随机变量ξ的分布列为超
几何分布列,则称随机变量ξ服从超几何分布.
3.离散型随机变量的分布列的性质 ⑧ Pi≥0,P1+P2+…+Pi+…=1 (i=1,2,3,…) . 4.离散型随机变量的均值 若离散型随机变量ξ的分布列为:
是随机变量的特征数,期望反映了随 机变量的平均取值,方差与标准差都 反映了随机变量取值的稳定与波动、 集中与离散的程度.在进行决策时,一 般先根据期望值的大小来决定,当期 望值相同或相差不大时,再去利用方 差决策.
备选题
某工厂每月生产某种产品三件,经检测发 现,工厂生产该产品的合格率为45.已知生产 一件合格品能盈利25万元,生产一件次品将 亏损10万元.假设该产品任何两件之间合格与 否相互之间没有影响.
设随机变量ξ表示在取得合格品以前
已取出的不合格品数,则ξ=0,1,2,3,
可得P(ξ=0)=
9 12
,
P(ξ=1)=
3× 9
12 11
=
9 44
,

高中数学离散型随机变量分布列、期望与方差

高中数学离散型随机变量分布列、期望与方差

离散型随机变量——分布列、期望与方差从近几年高考试题看,离散型随机变量的期望与方差涉及到的试题背景有:①产品检验问题;②射击,投篮问题;③选题、选课,做题,考试问题;④试验,游戏,竞赛,研究性问题;⑤旅游,交通问题;⑥摸球球问题;⑦取卡片,数字和入座问题;⑧信息,投资,路线问题;⑨与概率分布直方图关联问题;⑩综合函数、方程、数列、不等式、导数、线性规划等知识问题着重考查分析问题和解决问题的能力。

一、离散型随机变量的分布列、期望与方差1.离散型随机变量及其分布列: (1)离散型随机变量:如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. (2)离散型随机变量的特点:①结果的可数性;②结果的未知性。

(3)离散型随机变量的分布列:设离散型随机变量X 所有可能的取值为i x ,与i x 对应的概率为i p (1,2,,)i n =,则下表:称为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列. (4)离散型随机变量的分布列的性质:①0i p >(1,2,,)i n =;②11nii p==∑(1,2,,)i n =.③(P ξ≥1)()()k k k x P x P x ξξ+==+=+⋅⋅⋅ 2.离散型随机变量的数学期望:(1)定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x , 这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).(2)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.3.离散型随机变量的方差:(1)定义:一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这 些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.(2)离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小 (离散程度).(3)()D X的算术平方根叫做离散型随机变量X 的标准差,它也是一个衡量离散 型随机变量波动大小的量.4.随机变量aX b +的期望与方差:①()()E aX b aE X b +=+;②2()().D aX b a D X +=二、条件概率与事件的独立性:1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件 概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =). 2.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两 个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事 件i A 换成其对立事件后等式仍成立.三、几类典型的概率分布:1.两点分布:如果随机变量X 的分布列为其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布.注:①两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验, 所以这种分布又称为伯努利分布. ②();().E X p D X np ==2.超几何分布:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个),称离散型随机变量X 的这 种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.记为:(,,)X H N M n .注:();ME X n N=2()()()(1)n N n N M M D X N N --=-. 3.二项分布:(1)定义:如果每次试验,只有两个可能的结果A 及A ,且事件A 发生的概率相同(p ). 那么重复地做n 次试验,各次试验的结果相互独立,这种试验称为n 次独立重复试验.在n 次试验中,事件A 恰好发生k 次的概率为:()C (1)kk n k n n P k p p -=-(0,1,,)k n =.(2)二项分布:若将事件A 发生的次数为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q-==, 其中0,1,2,,k n =,于是得到X 的分布列:由于表中第二行恰好是二项展开式00111()C C C C n n n kk n k n n n n n n q p p q p q p q p q --+=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . (3)二项分布的均值与方差:若~(,)X B n p ,则()E X np =,()D x npq =(1)q p =-.4.几何分布:(1)定义:在独立重复试验中,某事件第一次发生时,所作试验的次数X 也是一个正 整数的离散型随机变量.“X k =”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,()1,k p A p =- 那么112311231()()()()()()()(1)k k k k k P X k P A A A A A P A P A P A P A P A p p ---====-.(0,1,2,k =…);于是得到随机变量ξ的概率分布如下:记作(,),Xg k p(2)若(,),X g k p 则1()E X p =;21()pD X p-=(1)q p =-. 5.正态分布(1)概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上 面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则 这条曲线称为X 的概率密度曲线.(2)曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. (2)正态分布:①定义:如果随机现象是由一些互相独立的偶然因素所引起的, 而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作 用,则表示这样的随机现象的随机变量的概率分布近似服从正态分 布.服从正态分布的随机变量叫做正态随机变量,简称正态变量. ②正态变量概率密度曲线的函数表达式为 22()2()x f x μσ--=,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差. 期望为μ、标准差为σ的正态分布通常记作:2(,)XN μσ.③正态变量的概率密度函数的图象叫做正态曲线.④标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑤正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是 68.3%,95.4%,99.7%.⑥正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是 0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑦若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函 数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数,()()x P x μξφσ-<=.离散型随机变量——分布列、期望与方差考点1.产品检验问题:例1.已知甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品 元件,现从两个盒子内各取出2个元件,试求(1)取得的4个元件均为正品的概率; (2)取得正品元件个数ε的数学期望.例2.某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、 2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品, 则当天的产品不能通过.(1)求第一天通过检查的概率;(2)求前两天全部通过检查的概率;(2)若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、 2天分别得1分、2分.求该车间在这两天内得分的数学期望.考点2.比赛问题:例3.,A B 两队进行篮球决赛,共五局比赛,先胜三局者夺冠,且比赛结束。

11随机变量的分布列、期望和方差

11随机变量的分布列、期望和方差
[142,146)
[146,150)
[150,154)
[154,158)
人数
5
8
10
22
33
20
11
6
5
(1)列出样本的频率分布表(含累积频率);
(2)画出频率分布直方图;
(3)根据累积频率分布,估计小于134的数据约占多少百分比.
解:(1)样本的频率分布表与累积频率表如下:
区间
[122,126)
[126,130)
例10在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?
解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100。依题
意,可得ξ的分布列为
ξ
0
5
25
100
P
答:一张彩票的合理价格是0.2元.
分层抽样法,系统抽样法 分层抽样法,简单随机抽样法
系求得,则 .
3.设有 个样本 ,其标准差为 ,另有 个样本 ,且
,其标准差为 ,则下列关系正确的是(B)
4.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为(B)
DξB=(100-125)2×0.1+(110-125)2×0.2+(130-125)2×0.1+(145-125)2×0.2=165.
所以,DξA< DξB.因此,A种钢筋质量较好。
例10学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用。

数学期望和方差公式

数学期望和方差公式

数学期望和方差公式
数学期望和方差公式为:EX=npDX=np(1-p)、EX=1/PDX=p^2/q、DX=E(X)^2-(EX)^2。

对于2项分布(例子:在n次试验中有K次成功,每次成功概率为P,它的分布列求数学期望和方差)有EX=npDX=np(1-p)。

n为试验次数p为成功的概率,对于几何分布(每次试验成功概率为P,一直试验到成功为止)有EX=1/PDX=p^2/q。

还有任何分布列都通用的,DX=E(X)^2-(EX)^2。

关于数学期望的历史故事:
在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。

当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。

因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局或后两局中任意赢一局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。

可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×
25%=25(法郎)。

这个故事里出现了“期望”这个词,数学期望由此而来。

分布列、期望和方差

分布列、期望和方差

知识归纳1.随机变量(1)如果随机试验的结果可以用一个变量X 来表示,并且X 随试验结果的不同而变化,那么变量X 叫做随机变量.(2)如果随机变量所有可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型 随机变量.2.离散型随机变量的分布列(1)设离散型随机变量X 所有可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每个值x i (i =1,2,…n )的概率P (X =x i )=p i ,则称表X 的分布列也可简记为: P (X =x i )=p i ,i =1、2、…、n . (2)离散型随机变量的分布列的性质:①p i ≥0,i =1,2,…n ; ②p 1+p 2+p 3+…p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

(3)E (X )=x 1p 1+x 2p 2+…+x n p n 为随机变量 X 的均值或数学期望.它反映了离散型随机变量取值的平均水平(4)D (X )=∑i =1n[x i -E (X )]2p i =(x 1-E ξ)2p 1+(x 2-E ξ)2p 2+…+(x n -E ξ)2p n为随机变量X 的方差.它反映了随机变量取值相对于均值的平均波动大小. 方差D (X )的算术平方根D (X )叫做随机变量X 的标准差,记作σ(X ).高三第一轮复习离散型随机变量及其概率分布(5)设a,b 是常数,随机变量X,Y 满足Y=aX+b,则E(Y)=E(aX+b)=aE(X)+b,D(Y)=D(aX+b)=a2D(X)3.二点分布如果随机变量X的分布列为E(X)=p,D(X)=p(1-p)4.超几何分布设有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率P(X=m)=k n kM N MnNC CC--(0≤m≤l,l为n和M中较小的一个),称这种离散型随机变量的概率分布为超几何分布,也称X服从参数为N、M、n的超几何分布.5.条件概率设A、B为两个事件,在事件A发生的条件下,事件B发生的概率叫做条件概率,公式:P(B|A)=P(A∩B) P(A).任何事件的条件概率都在0和1之间,即0≤P(B|A)≤1如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).6.事件的独立性如果事件A的发生与否不影响事件B发生的概率,则P(B|A)=P(B),这时称事件A与B相互独立.如果事件A与B相互独立,则P(A∩B)=P(A)P(B),对于n个事件A1、A2、…、A n,如果其中任何一个事件发生的概率不受其它事件是否发生的影响,则称这n个事件A1、A2、…、A n相互独立.如果事件A与B相互独立,那么事件A与B,A与B,A与B也都相互独立7.独立重复试验与二项分布(1)一般地,在相同条件下重复做n次试验,各次试验的结果相互独立,称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率都为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从参数为n、p的二项分布,记作X~B(n,p).E(X)=np,D(X)=np(1-p)解决概率问题的步骤第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验,然后把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.第三步,运用公式求概率古典概型P(A)=m n;互斥事件P(A∪B)=P(A)+P(B);条件概率P(B|A)=P(AB) P(A);独立事件P(AB)=P(A)P(B);n次独立重复试验:P(X=k)=C k n p k(1-p)n-k. 基础训练:1.下列四个表格中,可以作为离散型随机变量分布列的一个是( )A BC D2.设随机变量ξ的分布列为P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i,i =1,2,3,则a 的值为( )A .1 B.913 C.1113 D.27133.袋中有大小相同的 5 个球,分别标有 1,2,3,4,5 五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量 x ,则 x 所有可能取值的个数是( )A.5B.9C.10D.25 4.某一射手射击所得的环数ξ的分布列如下ξ 6 7 8 9 10P 0.1 0.2 0.25 x 0.15此射手“射击一次命中环数≥8”的概率为_____.5.某篮运动员在三分线投球的命中率是12,他投球5次,恰好投进 3 个球的概率____ (用数值作答)6.已知随机变量ξ的分布列是:则 D (ξ)=( )ξ 1 2 3P0.4 0.2 0.4A .0.6B .0.8C .1D .1.27.已知随机变量ξ~B (n ,p ),且 E (ξ)=2.4,D (ξ)=1.44,则n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.18.已知 X 的分布列如下表,设 Y =2X +1,则 Y 的数学期望A.61B.32C.1 D 369.(2011 年上海)马老师从课本上抄录一个随机变量ξ的概率分布律如下表.请小牛同学计算ξ的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案 E (ξ)=_____.10.已知离散型随机变量 X 的分布列如下表.若 E (X )=0,D (X )=1,则 a =___,b =____.典型例题例1:从集合{1,2,3,4,5}的所有非空子集中,等可能地取出一个.(1)记性质 r :集合中的所有元素之和为 10,求所取出的非空子集满足性质 r 的概率;(2)记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学 期望 E (ξ)变式1.某次选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分 布列与数学期望(注:本小题结果可用分数表示).(超几何分布)例2:从 5 名男生和 4 名女生中选出 4 人去参加辩论比赛. (1)求参加辩论比赛的 4 人中有 2 名女生的概率;(2)设ξ为参加辩论比赛的女生人数,求ξ的分布列及数学期望.变式2.(2011 年广东广州调研)某商店储存的 50 个灯泡中,甲厂生产的灯泡占 60%,乙厂生产的灯泡占 40%,甲厂生产的灯泡的一等品率是 90%,乙厂生产的灯泡的一等品率是 80%.(1)若从这 50 个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这 50 个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ.求E(ξ)的值.(二项分布)例3:已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为—,某植物研究所分2个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,如果某次没有发芽,则称该次实验是失败的.(1)第一小组做了 3 次实验,记该小组实验成功的次数为X,求X 的概率分布列及数学期望;(2)第二小组进行实验,到成功了 4 次为止,求在第 4 次成功之前共有 3 次失败的概率.变式3.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料. (1)求甲中奖且乙、丙都没有中奖的概率; (2)求中奖人数ξ的分布列及数学期望 E (ξ).例4:一个袋中装有 6 个形状大小完全相同的小球,球的编号分别为 1,2,3,4,5,6.(1)若从袋中每次随机抽取 1 个球,有放回的抽取 2 次,求取出的两个球编号之和为 6 的概率;(2)若从袋中每次随机抽取 2 个球,有放回的抽取 3 次,求恰有 2 次抽到 6 号球的概率;(3)若一次从袋中随机抽取 3 个球,记球的最大编号为 X ,求随机变量 X 的分布列.例5:某商店试销某种商品20 天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品 3 件,当天营业结束后检查存货,若发现存货少于 2 件,则当天进货补充至 3 件,否则不进货,将频率视为概率. (1)求当天商品不进货的概率;(2)记 X 为第二天开始营业时该商品的件数,求 X 的分布列和数学期望及方差.变式5.(2011 年广东惠州调研)某工厂在试验阶段大量生产一种零件.这种零件有 A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响.若A项技术指标达标的概率为—,B 项技术指标达标的概率为98.按质量检验规定:两项技术指标都达标的零件为合格品.(1)一个零件经过检测至少一项技术指标达标的概率;(2)任意依次抽取该种零件 4 个,设ξ表示其中合格品的个数,求ξ分布列及E (ξ),D (ξ).例 6:(2011 届广东韶关摸底)A 、B 两个投资项目的利润率分别为随机变量 x 1和x2.根据市场分析,x1和x2的分布列分别为:(1)在A、B 两个项目上各投资 100 万元,y1和y2分别表示投资项目A 和B 所获得的利润,求方差Dy1、Dy2;(2)将x(0≤x≤100)万元投资A 项目,100-x 万元投资B 项目,f(x)表示投资 A 项目所得利润的方差与投资 B 项目所得利润的方差的和. 求f(x)的最小值,并指出x 为何值时,f(x)取到最小值[注:D(ax+b)=a2Dx].变式6.(2011 年广东揭阳模拟)某单位甲乙两个科室人数及男女工作人员分布情况见下表.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两个科室中共抽取 3 名工作人员进行一项关于“低碳生活”的调查.(1)求从甲、乙两科室各抽取的人数;(2)求从甲科室抽取的工作人员中至少有 1 名女性的概率;(3)记ξ表示抽取的 3 名工作人员中男性的人数,求ξ的分布列及数学期望.参考答案基础训练:1.下列四个表格中,可以作为离散型随机变量分布列的一个是( C )A BC D2.设随机变量ξ的分布列为P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i,i =1,2,3,则a 的值为( D )A .1 B.913 C.1113 D.27133.袋中有大小相同的 5 个球,分别标有 1,2,3,4,5 五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量 x ,则 x 所有可能取值的个数是( B )A.5B.9C.10D.25 4.某一射手射击所得的环数ξ的分布列如下ξ 6 7 8 9 10P 0.1 0.2 0.25 x 0.15此射手“射击一次命中环数≥8”的概率为__0.7___.5.某篮运动员在三分线投球的命中率是12,他投球5次,恰好投进 3 个球的概率____ (用数值作答)解析:C 35⎝ ⎛⎭⎪⎫125=516.6.已知随机变量ξ的分布列是:则 D (ξ)=( B )ξ 1 2 3P0.4 0.2 0.4A .0.6B .0.8C .1D .1.27.已知随机变量ξ~B (n ,p ),且 E (ξ)=2.4,D (ξ)=1.44,则n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.18.已知 X 的分布列如下表,设 Y =2X +1,则 Y 的数学期望A.61B.32C.1 D 369.(2011 年上海)马老师从课本上抄录一个随机变量ξ的概率 分布律如下表.请小牛同学计算ξ的数学期望,尽管“!”处无法 完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的 数值相同.据此,小牛给出了正确答案 E (ξ)=__2___.10.已知离散型随机变量 X 的分布列如下表.若 E (X )=0,D (X )=1,则 a =___,b =____.解析:由题知a +b +c =12,-a +c +6=0,12×a +12×c +22×112=1,解得a =512,b =14. 典型例题例1:从集合{1,2,3,4,5}的所有非空子集中,等可能地取出一个.(1)记性质 r :集合中的所有元素之和为 10,求所取出的非空子集满足性质 r 的概率;(2)记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学 期望 E (ξ)解析:(1)记“所取出的非空子集满足性质r ”为事件A ,基本事件总数n =C 15+C 25+C 35+C 45+C 55=31.事件A 包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4}.事件A 包含的基本事件数m =3,所以p (A )=m n =331. (2)依题意,ξ的所有可能取值为1,2,3,4,5.又p (ξ=1)=C 1531=531,p (ξ=2)=C 2531=1031,p (ξ=3)=C 3531=1031,p (ξ=4)=C 4531=531,p (ξ=5)=C 5531=131.故ξ的分布列为:从而E (ξ)=1×31+2×31+3×31+4×31+5×31=31. 变式1.某次选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望(注:本小题结果可用分数表示).解:方法一:(1)记“该选手能正确回答第i 轮的问题”的事件为A i (i =1,2,3),则P (A 1)=45,P (A 2)=35,P (A 3)=25,∴该选手被淘汰的概率p =P (A 1+A 1A 2+A 1A 2A 3)=P (A 1)+P (A 1)P (A 2)+P (A 1)P (A 2)P (A 3) =15+45×25+45×35×35=101125.(2)ξ的可能值为1,2,3,P (ξ=1)=P (A 1)=15;P (ξ=2)=P (A 1A 2)=P (A 1)P (A 2)=45×25=825; P (ξ=3)=P (A 1A 2)=P (A 1)P (A 2)=45×35=1225.∴ξ的分布列为∴E(ξ)=1×5+2×25+3×25=25(超几何分布)例2:从 5 名男生和 4 名女生中选出 4 人去参加辩论比赛.(1)求参加辩论比赛的 4 人中有 2 名女生的概率;(2)设ξ为参加辩论比赛的女生人数,求ξ的分布列及数学期望.解析:(1)P=C25·C24C49=1021.(2)ξ可能取值为0,1,2,3,4,P(ξ=0)=C45C49=5126,P(ξ=1)=C35·C14C49=2063,P(ξ=2)=C25·C24C49=1021,P(ξ=3)=C15·C34C49=1063,P(ξ=4)=C44C49=1126.所求的分布列为:∴E(ξ)=0×126+1×63+2×21+3×63+4×126=63.变式2.(2011 年广东广州调研)某商店储存的 50 个灯泡中,甲厂生产的灯泡占 60%,乙厂生产的灯泡占 40%,甲厂生产的灯泡的一等品率是 90%,乙厂生产的灯泡的一等品率是 80%.(1)若从这 50 个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这 50 个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ.求E(ξ)的值.解:(1)方法一:设事件A 表示“甲厂生产的灯泡”,事件B表示“灯泡为一等品”,依题意有 P (A )=0.6,P (B |A )=0.9,根据条件概率计算公式得P (AB )=P (A )·P (B |A )=0.6×0.9=0.54.方法二:该商店储存的 50 个灯泡中是甲厂生产的灯泡有 50×60%=30(个),乙厂生产的灯泡有 50×40%=20(个),其中是甲厂生产的一等品有 30×90%=27(个), 乙厂生产的一等品有 20×80%=16(个), 故从这 50 个灯泡中随机抽取出一个灯泡,它是甲厂生产的一等品的概率是P =5027=0.54.(2)ξ的取值为0,1,2,P (ξ=0)=C 223C 250=2531 225,P (ξ=1)=C 127C 123C 250=6211 225,P (ξ=2)=C 227C 250=3511 225.∴ξ的分布列为:∴E (ξ)=0×1 225+1×1 225+2×1 225=1 225=1.08. (二项分布)例3:已知某种从太空飞船中带回的植物种子每粒成功发芽的 概率都为—,某植物研究所分2个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,如果某次没有发芽,则称该次实验是失败的. (1)第一小组做了 3 次实验,记该小组实验成功的次数为 X , 求 X 的概率分布列及数学期望;(2)第二小组进行实验,到成功了 4 次为止,求在第 4 次成功 之前共有 3 次失败的概率.解析:(1)由题意,随机变量X 可能取值为0,1,2,3,则X ~B ⎝ ⎛⎭⎪⎫3,13,即P (X =0)=C 03·⎝ ⎛⎭⎪⎫1-133=827,P (X =1)=C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-132=49,P (X =2)=C 23·⎝ ⎛⎭⎪⎫132·⎝⎛⎭⎪⎫1-131=29,P (X =3)=C 33·⎝ ⎛⎭⎪⎫133=127.∴X 的概率分布列为:∴X 的数学期望E (X )=0×27+1×9+2×9+3×27=1. (2)第二小组第7次实验成功,前面6次实验中有3次失败,每次试验又是相互独立的,因此所求概率为P =C 36·⎝ ⎛⎭⎪⎫133·⎝⎛⎭⎪⎫1-133·13=1602 187.变式3.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料. (1)求甲中奖且乙、丙都没有中奖的概率;(2)求中奖人数ξ的分布列及数学期望 E (ξ).解:(1)设甲、乙、丙中奖的事件分别为A 、B 、C ,那么P (A )=P (B )=P (C )=16.P (A ·B ·C )=P (A )P (B )P (C )=16·⎝ ⎛⎭⎪⎫562=25216. (2)ξ的可能值为0,1,2,3,P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫16k ⎝ ⎛⎭⎪⎫563-k(k =0,1,2,3). 所以中奖人数ξ的分布列为:E (ξ)=0×216+1×72+2×72+3×216=2.例4:一个袋中装有 6 个形状大小完全相同的小球,球的编号分别为 1,2,3,4,5,6.(1)若从袋中每次随机抽取 1 个球,有放回的抽取 2 次,求取出的两个球编号之和为 6 的概率;(2)若从袋中每次随机抽取 2 个球,有放回的抽取 3 次,求恰有 2 次抽到 6 号球的概率;(3)若一次从袋中随机抽取 3 个球,记球的最大编号为 X ,求随机变量 X 的分布列.正解:(1)设先后两次从袋中取出球的编号为m ,n ,则两次取 球的编号的一切可能结果(m ,n )有6×6=36 种,其中和为6 的结果有(1,5),(5,1),(2,4),(4,2),(3,3),共5种, 则所求概率为356.(2)每次从袋中随机抽取2个球,抽到编号为6的球的概率p =C 15C 26=13.所以,3次抽取中,恰有2次抽到6号球的概率为 C 23p 2(1-p )=3×⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫23=29.(3)随机变量X 所有可能的取值为3,4,5,6.P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=620=310,P (X =6)=C 25C 36=1020=12.所以,随机变量X 的分布列为:例5试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品 3 件,当天营业结束后检查存货,若发现存货少于 2 件,则当天进货补充至 3 件,否则不进货,将频率视为概率. (1)求当天商品不进货的概率;(2)记 X 为第二天开始营业时该商品的件数,求 X 的分布列和数学期望及方差.解析:(1)P (“当天商品不进货”)=P (“当天商品销售量为0件”)+P (“当天商品销售量为1件”)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (“当天商品销售量为1件”)=520=14,P (X =3)=P (“当天商品销售量为0件”)+P (“当天商品销售量为2件”)+P (“当天商品销售量为3件”) =120+920+520=34. 故X 的分布列为:X 的数学期望为EX =2×4+3×4=4, 方差DX =14×⎝⎛⎭⎪⎫2-1142+34×⎝ ⎛⎭⎪⎫3-1142=316.变式5.(2011 年广东惠州调研)某工厂在试验阶段大量生产一种零件.这种零件有 A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响.若A项技术指标达标的概率为—,B 项技术指标达标的概率为98.按质量检验规定:两项技术指标都达标的零件为合格品.(1)一个零件经过检测至少一项技术指标达标的概率;(2)任意依次抽取该种零件 4 个,设ξ表示其中合格品的个数,求ξ分布列及E (ξ),D (ξ).解:(1)设M :一个零件经过检测至少一项技术指标达标,则M -:A ,B 都不达标;故P (M )=1-P (M -)=1-⎝ ⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫1-89=3536. (2)依题意知ξ~B ⎝ ⎛⎭⎪⎫4,23,P (ξ=0)=⎝ ⎛⎭⎪⎫134=181,P (ξ=1)=C 14⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫133=881,P (ξ=2)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=2481=827,P (ξ=3)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫13=3281, P (ξ=4)=⎝ ⎛⎭⎪⎫234=1681. ξ的分布列为:E (ξ)=4·3=3,D (ξ)=4·3·⎝⎛⎭⎪⎫1-3=9. 例 6:(2011 届广东韶关摸底)A 、B 两个投资项目的利润率分别为随机变量 x 1和x 2.根据市场分析,x 1和x 2的分布列分别为:(1)在 A 、B 两个项目上各投资 100 万元,y 1 和 y 2 分别表示投资项目 A 和 B 所获得的利润,求方差 Dy 1、Dy 2;(2)将 x (0≤x ≤100)万元投资 A 项目,100-x 万元投资 B 项目,f (x )表示投资 A 项目所得利润的方差与投资 B 项目所得利润的方差的和. 求f (x )的最小值,并指出 x 为何值时,f (x )取到最小值[注:D (ax +b )=a 2Dx ].解析:(1)由题设可知y 1 和 y 2 的分布列分别为:(2)f (x )=D ⎝ ⎛⎭⎪⎫x 100y 1+D ⎝ ⎛⎭⎪⎫100-x 100y 2=⎝ ⎛⎭⎪⎫x 1002Dy 1+⎝ ⎛⎭⎪⎫100-x 1002Dy 2 =41002[x 2+3(100-x )2]=41002(4x 2-600x +3×1002), 当x =6002×4=75时,f (x )=3为最小值. 变式6.(2011 年广东揭阳模拟)某单位甲乙两个科室人数及男女工作人员分布情况见下表.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两个科室中共抽取 3 名工作人员进行一项关于“低碳生活”的调查.(1)求从甲、乙两科室各抽取的人数;(2)求从甲科室抽取的工作人员中至少有 1 名女性的概率; (3)记ξ表示抽取的 3 名工作人员中男性的人数,求ξ的分布列 及数学期望.解:(1)从甲组应抽取的人数为315×10=2,从乙组中应抽取的人数为315×5=1. (2)从甲组抽取的工作人员中至少有1名女性的概率P =1-C 26C 210=23⎝⎛⎭⎪⎫或P =C 14C 16+C 24C 210=23. (3)ξ的可能取值为0,1,2,3,0.30.5 0.2 P 12 8 2 y 2 0.20.8 P 10 5 y 1 E (y 1)=5×0.8+10×0.2=6, D (y 1)=(5-6)2×0.8+(10-6)2×0.2=4.E (y 2)=2×0.2+8×0.5+12×0.3=8,P(ξ=0)=C24C210·C12C15=475,P(ξ=1)=C14C16C210·C12C15+C24C210·C13C15=2275,P(ξ=2)=C26C210·C12C15+C16C14C210·C13C15=3475,P(ξ=3)=C26C210·C13C15=15,∴ξ的分布列为:E(ξ)=0×75+1×75+2×75+3×5=5.。

第63讲 分布列,期望与方差

第63讲 分布列,期望与方差
设离散型随机变量 X 的分布列为
X x1 x2 x3 … xi … xn P p1 p2 p3 … pi … pn 则(xi-E(X))2描述了(xi=1,2,…,n)相对于均值E(X)
n
的偏离程度.而 D( X ) ( xi E( X ))2 pi 为 i 1
这些偏离程度的加权平均,刻画了随机变量X 与其均值E(X)的平均偏离程度.我们称D(X)为 随机变量X 的方差.
,k

0,1,2,, m,
其中m=min{M , n},且n≤N,M≤N,
n,M,N∈N*.称分布列
X
0
1

m
P
C C 0 n0 M NM CnN
C C 1 n1 M NM CnN

C C m nm M NM CnN
为超几何分布列.
注意事项
超几何分布描述的是不放回抽样问题, 随机变量为抽到的某类个体的个数. 超几何分布必须同时满足二个条件:
分布列
变式训练
16 超几何分布求样本数
变式训练 超几何分布求分布列
例题讲解
C 分布列求概率
变式训练
C 分布列求变量取值
例题讲解
6
超几何分布求概率
35
例题讲解
超几何分布求分布列
变式训练
1 4
超几何分布求概率,分布列
例题讲解
互斥事件+相互独立事件求概率,分布列期望
例题讲解
2 3
互斥事件+相互独立事件求概率,分布列期望
如果随机变量 X 的分布列为两点分布列,
就称 X 服从两点分布,而称 p为成功概率
两点分布的特征: 1.试验结果只有两个
2.随机变量的取值只有0,1两个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分布列期望方差
大石中学2015届高三数学(理)3月概率练

1、2014年巴西世界杯的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣。

甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素,x y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中的微量元素,x y满足175
x≥,且75
y≥,该产品为优等品。

用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望)。

2、为调查市民对汽车品牌的认可度,在秋
季车展上,从有意购车的500名市民中,随机抽样100名市民,按年龄情况进行统计的频率分布表1和频率分布直方图2。

频率分布表1 频率分布直方图2
分组
(岁)
频数
频率
[20,25) 5 0.050
[25,30)20 0.200
[30,35)①0.350
[35,40)30 ②
[40,45]10 0.100
合计 100 1.000
(1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图估计这500名志愿者的平均年龄;
(2)在抽出的100名市民中,按分层抽样
法抽取20人参加宣传活动,从这20人中选取2名市民担任主要发言人,设这2名市民中“年龄低于30岁”的人数为X,求X的分布列及数学期望。

大石中学2015届高三数学(理)3月概率练

3、某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用 (总费用=采取预防措施的费用+发生突发事件损失的期望值.)
(1)求不采取任何措施下的总费用;(2)请确定预防方案使总费用最少.
4、为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
①顾客所获的奖励额为60元的概率
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.
大石中学2015届高三数学(理)3月概率练

5、甲乙两人进行围棋比赛,约定每局胜者
得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中
获胜的概率p1
p>,且各局胜负相互独立.已
()
2
知第二局比赛结束时比赛停止的概率为5

9(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望ξE.
6、(2015•万州区模拟)首届重庆三峡银行•长江杯乒乓球比赛于2014年11月14﹣16日在万州三峡之星举行,决赛中国家乒乓队队员张超和国家青年队队员夏易正进行一场比赛.根据以往经验,单局比赛张超获胜的概率为,夏易正获胜的概率为,本场比赛采用五局三胜制,即先胜三局的人获胜,比赛结束.设各局比赛相互间没有影响.试求:
(1)比赛以张超3胜1败而宣告结束的概率;(2)令ξ为本场比赛的局数.求ξ的概率分布和数学期望.
大石中学2015届高三数学(理)3月概率练

7、乒乓球台面被网分成甲、乙两部分,如图,
甲上有两个不相交的区域,A B,乙被划分为两个不相交的区域,C D.某次测试要求队员接到落点在甲上的来球
后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为1
2
,在D上的概率为1
3
;对落点在B上的
来球,小明回球的落点在C上的概率为1
5
,在D上的概率为35.假设共有两次来球且落在
,A B上各一次,小明的两次回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和 的分布列与数学期望.
8、一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。

如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。

假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为50%,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。

大石中学2015届高三数学(理)3月概率作

1、(本题满分12分)某物流公司送货员从公司A处准备开车送货到某单位B处.若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图所示(例如A→C→D算作两个路段:路段AC发生堵车事件的概率为1

6
路段CD发生堵车事件的概率为1
).
10
(Ⅰ)请你为其选择一条由A 到B 的路线,使得途中发生堵车事件的概率最小;
(Ⅱ)若记路线A →C →F →B 中遇到堵车的次数为随机变量ξ,求ξ的数学期望E ξ.
2、抛掷三枚不同的具有正、反两面的金属
制品1
2
3
A A A 、、,假定1
A 正面向上的概率为12
,2
A 正面向上的概率为13
,3
A 正面向上的概率为t(0<t<1),把这三枚金属制品各抛掷一次,
设ξ表示正面向上的枚数。

(1)求ξ的分布列及数学期望E ξ(用t 表示); (2)令*6(21)cos(
)()56n
n a
n E n N t
π
ξ=-∈+,求数列{}n
a 的前n
项和.
3、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.
(Ⅱ) 在取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.
15
E
F B 25
25
16
110
16
15
4、甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,
2
各局比赛的结果都相互独立,第1局甲当裁判.
(I)求第4局甲当裁判的概率;
(II)X表示前4局中乙当裁判的次数,求X 的数学期望.
6、在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.
7、随机将()
1,2,,2,2
n n N n
*
⋅⋅⋅∈≥这2n个连续正整数分成A,B两组,每组n个数,A组最小数为
1
a,最大数为
2
a;B组最小数为1b,最大数为1b,记
2112
,
a a
b b
ξη
=-=-
(1)当3
n=时,求ξ的分布列和数学期望;(2)令C表示事件ξ与η的取值恰好相等,
求事件C发生的概率()
p c;
对(2)中的事件C,c表示C的对立事件,判
断()
p c和()
p c的大小关系,并说明理由。

相关文档
最新文档