15-C1-提高版-沪教版七年级数学下期末复习之压轴题-教师版

合集下载

沪教版七年级数学第二学期期末压轴题复习

沪教版七年级数学第二学期期末压轴题复习

上海七年级第二学期期末压轴题复习1、如图,在平面直角坐标系中,∠ABO =2∠BAO ,P 为x 轴正半轴上一动点,BC 平分∠ABP ,PC 平分∠APF ,OD 平分∠POE 。

(1)求∠BAO 的度数;(2)求证:∠C =OAP ∠+21150; (3)P 在运动中,∠C +∠D 的值是否发生变化,若发生变化,说明理由,若不变,求出其值。

2、如图,在平面直角坐标系中,△ABC 是直角三角形,∠AOB =90°,斜边AB 与y 轴交于点C 。

(1)若∠A =∠AOC ,求证:∠B =∠BOC ;(2)延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB =∠EOB ,∠OAE =∠OEA ,求∠A 的度数;(3)如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P ,当△AOB 绕O 点旋转时(斜边AB 与y 轴正半轴始终交于点C ),在(2)的条件下,试问∠P 的度数是否发生变化?若不变,请求出其度数;若改变,请说明理由。

3、如图,已知∠MON =90°,点A 、B 分别在射线OM 、ON 上,∠OAB 的内角平分线与∠OBA 的外角平分线所在直线交于点C 。

(1)试说明∠C 与∠O 的关系;(2)当点A 、B 分别在射线OM 、ON 上移动时,试问∠C 的大小是否发生变化,若保持不变,求出∠C 的大小;若发生变化,求出其变化范围。

4、如图,△ABC 中,∠A =60°,1BP 、2BP 三等分∠ABC ,1CP 、2CP 三等分∠ACB 。

(1)如图1,求C BP 1∠的度数;(2)如图2,连接21P P ,求12P BP ∠的度数;(3)如图3,若1BP 、2BP 、……1-n BP 等分∠ABC ,1CP 、2CP 、……1-n CP 等分∠ACB ,则C BP n 1-∠=_____(用含n 的式子表示)5、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2014次,点P 依次落在点1232014P P P P ,,,...,的位置,则点2014P 的横坐标为?如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPO BOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.。

期末押题--七年级数学下学期期末专项复习(沪教版)

期末押题--七年级数学下学期期末专项复习(沪教版)

期末押题--七年级数学下学期期末专项复习(沪教版)期末押题02七年级下学期期末检测一、选择题1.13的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间2.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是()A.2.5B.3C.4D.53.如图,将长方形ABCD沿线段EF折叠到EB′C′F的位置,若∠EFC′=100∘,则∠DFC′的度数为()A.20∘B.30∘C.40∘D.50∘4.若点P a,b在第二象限,则点Q b+5,1−a所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,已知:AB∥CD,EG平分∠AEF,EH⊥EG,EH∥GF,则下列结论:①EG⊥GF;②EH平分∠BEF;③FG平分∠EFC;④∠EHF=∠FEH+∠HFD;其中正确的结论个数是()A.4个B.3个C.2个D.1个6.如图,AD是ΔABC的角平分钱,CE⊥AD,垂足为F.若∠CAB=30°,∠B=55°,则∠BDE的度数为()A.35°B.40°C.45°D.50°二、填空题7.计算:(﹣2)3+20190+(1)﹣1=__.38.已知x+2+x+y−42=0,则y−x=_________.9..对于任意实数a,b,定义关于“⊕”的一种运算如下:a⊕b=2a+b.例如:3⊕4=2×3+4=10.若x⊕(-y)=2,且2y⊕x=-1,则x+y=________.10.已知点A(-1,0)和点B(1,2),将线段AB平移至A´B´与点A对应,若点A´的坐标为(1,-3),则点B´的坐标为___________________.11.如图,直线EF,CD相交于点O,OA⊥OB,OD平分∠AOF,若∠FOD=4∠COB,则∠AOE___.12.如图,AB//CD,∠A=20°,∠CDP=145°,则∠P=_____.13.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_______.14.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离AE、CF分别是1cm、2cm,则线段EF的长为______cm.15.在平面直角坐标系中,O是坐标原点,已知P(2,3),A是X轴上一点,若以O、A、P三点组成的三角形为等腰三角形,则满足条件的点A有_________个16.如图,点E是BA延长线上一点,在下列条件中:①∠1=∠3;②∠5=∠B;③∠1=∠4且AC平分∠DAB;④∠B+∠BCD=180°,能判定AB//CD的有__.(填序号)17.如图,AE∥CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD⊥BC,.其下列结论:①BC平分∠ABG;②AC∥BG;③与∠DBE互余的角有2个;④若∠A=α,则∠BDF=180°−α2中正确的有_____.(把你认为正确结论的序号都填上)18.如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=_______°.三、解答题19.计算:(1)12+|﹣6|﹣(﹣3);(2)﹣22+23﹣3−27.20.(1)计算:24÷23−|5−42|+(2)已知实数a、b、c满足|a+3|+c−2=b−5+5−b,求(b+a−c−2)2的值.21.如图,已知GH、MN分别平分∠AGE、∠DMF,且∠AGH=∠DMN,试说明AB∥CD的理由.解:因为GH平分∠AGE(已知),所以∠AGE=2∠AGH()同理∠=2∠DMN因为∠AGH=∠DMN(已知)所以∠AGE=∠()又因为∠AGE=∠FGB()所以∠=∠FGB()所以AB∥CD().22.如图,已知点E在直线DC上,射线EF平分∠AED,过E点作EB⊥EF,G为射线EC上一点,连结BG,且∠EBG+∠BEG=90°.(1)求证:∠DEF=∠EBG;(2)若∠EBG=∠A,试判断AB与EF的位置关系,并说明理由.23.如图,若△A1B1C1是由ABC平移后得到的,且△ABC中任意一点P(x,y)经过平移后的对应点为P1(x−5,y+2)(1)求点小A1,B1,C1的坐标.(2)求△A1B1C1的面积.24.如图①,在△ABC中,∠BAC=90°,AD是BC边上的高.(1)求证:∠DAC=∠ABC;(2)如图②,△ABC的角平分线CF交AD于点E,求证:∠AFE=∠AEF.25.如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.。

〖沪教版〗七年级数学下册期末复习考试试卷参考答案与试题解析4

〖沪教版〗七年级数学下册期末复习考试试卷参考答案与试题解析4

〖沪教版〗七年级数学下册期末复习考试试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(•西岗区)在平面直角坐标系中,点(2,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点的横坐标2>0,纵坐标﹣1<0,可判断这个点在第四象限.解答:解:∵点的横坐标2>0为正,纵坐标﹣1<0为负,∴点在第四象限.故选D.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.解决本题的关键就是记住个象限内点的坐标的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列统计中,能用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率考点:全面调查与抽样调查.分析:根据抽样调查和全面调查的特点即可作出判断.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解答:解:A、了解某厂生产的电灯使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解全国初中生的视力情况,因工作量较大,只能采取抽样调查的方式;C、要了解某校七年级学生的身高情况,要求精确、难度相对不大,实验无破坏性,应选择全面调查方式;D、要了解“娃哈哈”产品的合格率,具有破坏性,应选择抽样调查.故选C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)在“We like maths.”这个句子的所有字母中,字母“e”出现的频数是()A.2B.3C.4D.5考点:频数与频率.分析:数出这个句子中字母“e”出现的次数即可.解答:解:在“We like maths.”这个句子的所有字母中,字母“e”出现了2次,故字母“e”出现的频数为2.故选A.点评:此题考查频数的定义,即每个对象出现的次数.4.(3分)如图,已知AB∥CD,∠B=60°,则∠1的度数是()A.60°B.100°C.110°D.120°考点:平行线的性质.分析:首先根据平行线的性质,得∠B的内错角是60°,再根据邻补角的定义,得∠1的度数是180°﹣60°=120°.解答:解:∵AB∥CD,∠B=60°,∴∠2=∠B=60°,∴∠1=180°﹣60°=120°.故选D.点评:本题考查了平行线的性质以及邻补角的定义,解答本题的关键是掌握:两直线平行,内错角相等.5.(3分)下列方程是二元一次方程的是()A.B.C.3x﹣8y=11 D.7x+2=考点:二元一次方程的定义.分析:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.解答:解:A 、是分式方程,不是整式方程.故A错误;B 、的未知数的项的次数是2,所以它不是二元一次方程.故B错误;C、3x﹣8y=11符合二元一次方程的定义.故C正确;D、7x+2=中只有一个未知数,所以它不是二元一次方程.故D错误;故选C.点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.6.(3分)由a>b得到am>bm的条件是()A.m>0 B.m<0 C.m≥0 D.m≤O 考点:不等式的性质.分析:根据已知不等式与所得到的不等式的符号的方向可以判定m的符号.解答:解:∵由a>b得到am>bm,不等式的符号没有改变,∴m>0.故选A.点评:本题考查了不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.(3分)有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A.4组B.5组C.6组D.7组考点:频数(率)分布表.分析:根据组数=(最大值﹣最小值)÷组距计算即可,注意小数部分要进位.解答:解:∵在样本数据中最大值与最小值的差为35﹣12=23,又∵组距为4,∴组数=23÷4=5.75,∴应该分成6组.故选C.点评:本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.8.(3分)若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=()A.±1B.1C.﹣1 D.0考点:一元一次不等式的定义.分析:根据已知和一元一次不等式的定义得出m+1≠0,|m|=1,求出即可.解答:解:∵(m+1)x|m|+2>0是关于x的一元一次不等式,∴m+1≠0,|m|=1,解得:m=1,故选B.点评:本题考查了一元一次不等式的定义的应用,关键是能根据已知得出m+1≠0,|m|=1.9.(3分)若点P(x,y)的坐标满足xy=0,则点P位于()A.原点上B.x轴上C.y轴上D.坐标轴上考点:点的坐标.分析:根据0乘以任何数都等于0求出x=0或y=0,再根据坐标轴上的点的坐标特征解答.解答:解:∵xy=0,∴x=0或y=0,∴P(x,y)在坐标轴上.故选D.点评:本题考查了点的坐标,熟记坐标轴上的点的坐标特征是解题的关键.10.(3分)已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2 C.0D.4考点:二元一次方程组的解.专题:计算题.分析:根据x与y互为相反数得到x+y=0,即y=﹣x,代入方程组即可求出m的值.解答:解:由题意得:x+y=0,即y=﹣x,代入方程组得:,解得:m=x=2,故选A点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.11.(3分)如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4考点:算术平方根.分析:设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解答:解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.12.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解答:解:这种调查方式是抽样调查;故①正确;总体是我校八年级800名学生期中数学考试情况;故②正确;个体是每名学生的数学成绩;故③正确;样本是所抽取的200名学生的数学成绩,故④错误样本容量是200,故⑤错误,故选C.点评:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题(共7小题,每小题3分,满分21分)13.(3分)不等式x<1的正整数解是1,2 .考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:不等式的解集是x<3,故不等式x<1的正整数解为1,2.故答案为1,2.点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.(3分)若点P为直线AB外一点,则过点P且平行于AB的直线有 1 条.考点:平行公理及推论.分析:根据平行公理解答.解答:解:点P为直线AB外一点,则过点P且平行于AB的直线有1条.故答案为:1.点评:本题考查了平行公理,是基础题,熟记公理是解题的关键.15.(3分)已知:|x﹣2y|+(y+2)2=0,则xy= 8 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y,然后相乘即可得解.解答:解:根据题意得,x﹣2y=0,y+2=0,解得x=﹣4,y=﹣2,所以,xy=(﹣4)×(﹣2)=8.故答案为:8.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(3分)请写出一个以x,y为未知数的二元一次方程组,要求满足下列条件:①由两个二元一次方程组成;②方程组的解为,这样的方程组是.考点:二元一次方程组的解.专题:开放型.分析:根据x与y的值列出算式得到1+0=1,1﹣0=1,变形即可得到所求方程组.解答:解:根据题意得:.故答案为:点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.17.(3分)已知点A(1,2a+2)到x轴的距离是到y轴距离的2倍,则a的值为0或﹣2 .考点:点的坐标.分析:根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列出方程,然后求解即可.解答:解:∵点A(1,2a+2)到x轴的距离是到y轴距离的2倍,∴|2a+2|=2×1,∴2a+2=2或2a+2=﹣2,解得a=0或a=﹣2.故答案为:0或﹣2.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度并列出绝对值方程是解题的关键.18.(3分)(•潍坊)已知3x+4≤6+2(x﹣2),则|x+1|的最小值等于 1 .考点:解一元一次不等式;绝对值.分析:首先要正确解不等式,求出不等式的解集,再由求得的x的取值范围结合绝对值的意义进行计算.解答:解:3x+4≤6+2x﹣4,3x﹣2x≤6﹣4﹣4,解得x≤﹣2.∴当x=﹣2时,|x+1|的最小值为1.点评:本题重点考查了解一元一次不等式和绝对值的知识.化简绝对值是数学的重点也是难点,先明确x的取值范围,才能求得|x+1|的最小值.找出使|x+1|有最小值的x的值是解答本题的关键.19.(3分)(•沈阳)在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为(9,81).考点:点的坐标.专题:压轴题;规律型.分析:首先观察各点坐标,找出一般规律,然后根据规律确定点A9的坐标.解答:解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12;当n=2时,A2(2,4),即x=2,y=22;当n=3时,A3(3,9),即x=3,y=32;当n=4时,A1(4,16),即x=4,y=42;…∴当n=9时,x=9,y=92,即A9(9,81).故答案填(9,81).点评:解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题(共1小题,满分6分)20.(6分)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出两个不等式的解集,再求其公共解.解答:解:,解①得:x>3,解②得:x≤1,在数轴上表示如下:∴原不等式组的无解.点评:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.四、解答题(共2小题,满12分)21.(6分)解方程组.考点:解二元一次方程组.分析:直接把①代入②求出x的值,再把x的值代入①即可得出y的值.解答:解:把①代入②得:x=2,把x=2代入①得:y=﹣1,∴原方程组的解为.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.22.(6分)已知:,|b|=4,求a+b的值.考点:实数的运算.专题:分类讨论.分析:先根据数的开方法则及绝对的值的性质求出a、b的值,再进行计算即可.解答:解:∵=9,|b|=4,∴a=±9,b=±4.∴当a=9,b=4时,a+b=13;当a=﹣9,b=﹣4时,a+b=﹣13;当a=9,b=﹣4时,a+b=5;当a=﹣9,b=4时,a+b=﹣5.点评:本题考查的是实数的运算,熟知开方法则及绝对的值的性质是解答此题的关键.五、解答题(共2小题,满分14分)23.(7分)为了鼓励市民节约用水,规定自来水的收费标准如下:每月各户用水量价格(元/吨)不超过5吨部分 1.5超过5吨部分 2如果小花家每月的水费不少于15元,那么她家每月至少用水多少吨?考点:一元一次不等式的应用.分析:先设小花每月用水量是x立方米,根据小花家每月水费都不少于15元及超过5吨与不超过5吨的水费价格列出不等式,求解即可.解答:解:设小花家每月用水x吨,由题意,得:5×5+2(x﹣5)≥15解之得:x≥8.75,答:小花家每月至少用水8.75吨.点评:此题主要考查了一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.24.(7分)如图,“马”所处的位置为(2,3),其中“马”走的规则是沿着“日”字形的对角线走.(1)用坐标表示图中“象”的位置是(5,3).(2)写出“马”下一步可以到达的所有位置的坐标.考点:坐标确定位置.分析:(1)根据象在马的左边3个单位,结合图形写出即可;(2)根据网格结构找出与马现在的位置成“日”字的点,然后写出即可.解答:解:(1)(5,3);(2)如图,(1,1),(3,1),(4,2),(4,4),(1,5),(3,5).点评:本题考查了坐标确定位置,熟练掌握网格结构,类比点的坐标的确定方法求解是解题的关键.六、解答题(共1小题,满分9分)25.(9分)如图,AB⊥EF,垂足为B,CD⊥EF,垂足为D,∠1=∠F,试判断∠2与∠3是否相等?并说明理由.考点:平行线的判定与性质.分析:易证AB∥CD,则∠3=∠A,易证BM∥AF,则∠2=∠A,据此即可证得.解答:解:∠2=∠3.理由如下:∵AB⊥EF,CD⊥EF,∴AB∥CD,∴∠3=∠A.∵∠1=∠F,∴MB∥AF,∴∠2=∠A.∴∠2=∠3.点评:本题考查了平行线的判定与性质,正确由平行线的性质得到相等的角是关键.七、解答题(共1小题,满分10分)26.(10分)(•大连)某社区要调查社区居民双休日的学习状况,采用下列调查方式:①从一幢高层住宅楼中选取200名居民;②从不同住宅楼中随机选取200名居民;③选取社区内200名在校学生.(1)上述调查方式最合理的是②;(2)将最合理的调查方式得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2),在这个调查中,200名居民双休日在家学习的有120 人;(3)请估计该社区2 000名居民双休日学习时间不少于4小时的人数.考点:算术平均数;全面调查与抽样调查;用样本估计总体;频数与频率;频数(率)分布直方图;扇形统计图.专题:图表型.分析:(1)抽样调查为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性;(2)从扇形统计图中可以看出,双休日在家学习的人占60%;(3)首先从图2中计算出双休日学习时间不少于4小时的居民占总体的百分比,然后就可以通过样本估计总体,算出该社区2 000名居民双休日学习时间不少于4小时的人数.解答:解:(1)②;(2)在家学习的所占的比例是60%,因而在家学习的人数是:200×60%=120(人);(3)在家学习时间不少于4小时的频率是:=0.71.该社区2 000名居民双休日学习时间不少于4小时的人数是:2000×0.71=1420(人).估计该社区2000名居民双休日学习时间不少于4小时的人数为1420人.点评:统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.除此之外,本题还考查扇形统计图及相关计算.八、解答题(共1小题,满分12分)27.(12分)(•江苏)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.考点:二元一次方程组的应用.分析:在阅读考题中,要能获取题中相应的等量关系:从A地驶往B地,前路段为普通公路,其余路段为高速公路.得到:高速公路的长度=普通公路长度的两倍;汽车从A地到B地一共行驶了2.2h.最简单的是根据在普通公路的时间和在高速公路的时间提出问题,再设未知数,列方程组,解答问题.解答:方式1:问题:普通公路和高速公路各为多少千米?解:设普通公路长为xkm,高速公路长为ykm.根据题意,得解得答:普通公路长为60km,高速公路长为120km.方式2:问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了xh,高速公路上行驶了yh.根据题意,得解得答:汽车在普通公路上行驶了1h,高速公路上行驶了1.2h.方式3:问题:普通公路和两地公路总长各为多少千米?解:设普通公路长xkm,两地公路总长ykm.根据题意,得解得答:普通公路长60km,两地公路总长180km.方式4:问题:普通公路有多少千米,汽车在普通公路上行驶了多少小时?解:设普通公路长xkm,汽车在普通公路上行驶了yh.根据题意,得解得答:普通公路长60km,汽车在普通公路上行驶了1h.点评:这是一道较为新颖的行程问题的应用题,考查学生分析问题,提出问题并解决问题的能力.本题中常见的错误时:(1)阅读能力差,找不出题中的数量关系,无法提出问题;(2)对二元一次方程组的模型没有掌握,列不出方程组;(3)少数人计算能力差,书写不规范等.找到两个等量关系是解决问题的关键.创作人:百里是冰创作日期:2021.04.01审核人:北堂与火创作单位:北京市智语学校。

沪教版七年级下册数学期末测试卷(附答案)

沪教版七年级下册数学期末测试卷(附答案)

沪教版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|2、如图,若AB=AD,则添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. B. C. D.3、在平面直角坐标系中,已知A(1,1),要在坐标轴上找一点P,使得△PAO 为等腰三角形,这样的P点有几个()A.9B.8C.7D.64、下列说法正确的是()A.面积相等的两个三角形全等B.矩形的四条边一定相等C.一个图形和它旋转后所得图形的对应线段相等D.随机投掷一枚质地均匀的硬币,落地后一定是正面朝上5、如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CDB.EC=BFC.∠A=∠DD.AB=BC6、等腰三角形的一个角是100°,则其底角是()A.40°B.100°C.80°D.100°或40°7、下列说法中正确的有()①等角的余角相等;②两直线平行,同旁内角相等;③相等的角是对顶角;④同位角相等;⑤直角三角形中两锐角互余.A.1个B.2个C.3个D.4个8、如图,平行四边形OABC的顶点O,B在y轴上,顶点A在反比例函数y=﹣上,顶点C在反比例函数y=上,则平行四边形OABC的面积是( )A.8B.10C.12D.9、在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,以下命题是假命题的是()A.若∠B+∠C=∠A,则△ABC是直角三角形B.若a 2=(b+c)(b﹣c),则△ABC是直角三角形C.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.若a=3 2, b=4 2, c=5 2,则△ABC是直角三角形10、如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置时,若AB=2,AD=4,则阴影部分的面积为()A. B. C. D.11、如图,三角形内的线段相交于点,已知,.若的面积=2,则四边形的面积等于( )A.4B.5C.6D.712、下列结论正确的是()A.有两个锐角相等的两个直角三角形全等;B.顶角和底边对应相等的两个等腰三角形全等C.一条斜边对应相等的两个直角三角形全等;D.两个等边三角形全等.13、如图,在一笔直的海岸线上有两个测点,,从处测得船在北偏东的方向,从处得船在北偏东的方向,则船离海岸线的距离北的长为()A. B. C. D.14、已知一个等腰三角形两内角的度数之比为,求这个等腰三角形顶角的度数()A.30°B.20°C.120°D.20°或120°15、已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B=∠C=2∠A,则此三角形是()A.锐角三角形B.有一个内角为45°的直角三角形C.直角三角形 D.钝角三角形二、填空题(共10题,共计30分)16、如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为________°.17、若,则的立方根为________.18、点P(4,-3)关于x轴对称的点P'的坐标为 ________19、如图,若∠A = 15°,AB = BC = CD = DE = EF ,则∠DEF 等于________.20、如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________度.21、若P(2﹣a, 3)到两坐标轴的距离相等,则P点坐标为________.22、在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=35°时,∠BOD的度数为________.23、如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=________.24、如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF= ________.25、比较大小:________三、解答题(共5题,共计25分)26、计算27、如图,已知BE=CF,AB∥CD,AB=CD.求证:AF∥DE.28、推理计算:已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF,求∠BEG 和∠DEG的度数.29、如图,在四边形ABCD中,对角线AC与BD相交于P,请添加一个条件,使= AC•BD,并说明理由.四边形ABCD的面积为:S四边形ABCD解:添加的条件:理由:30、如图所示,在四边形ABCD中,∠A-∠C=∠D-∠B,求证:AD∥BC.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、C5、A6、A8、C9、D10、D11、D12、B13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

沪教版七年级数学第二学期期末复习(家教+精讲)

沪教版七年级数学第二学期期末复习(家教+精讲)

3
9 3
(D) 9 3
12、下列计算正确的是( A. ( x y) x y
2 2
2 C. (3) 3
)
2
B. ( 3.14 ) 2
0
1

1 2
D. ( x ) x
3 m
2m
xm
13、 要使二次根式 x 1 有意义,字母 x 必须满足的条件是 A.x≥1 B.x>-1 C.x≥-1 D.x>1
) A、 2cm
2
B、
D P cm
2
E
D、1cm B C 10、如图,在锐角△ABC 中,CD、BE 分别是 AB、AC 边上的高, 且相交于一点 P,若∠A=50°,则∠BPC 的度数是( ) A.150° B.130° C.120° D.100° 11、中华人民共和国国旗上的五角星,它的五个锐角的度数和是( ) 0 0 0 0 A、50 B、100 C、180 D、 200 12、在 ABC 中,三个内角满足∠B-∠A=∠C-∠B,则∠B 等于( ) A、70° B、60° C、90° D、120° 13、在锐角三角形中,最大内角的取值范围是( )
20、已知 a=2,b=4,c=-2,且 x
b b 2 4ac ,求 x 的值; 2a
4
相交线和平行线部分
一、 填空: 1、∠A 的余角是 20°,那么∠A 等于________度. 2、∠A 与∠B 互补,如果∠A=36°,那么∠B 的度数为_________. 3、如图1-1所示,∠AOC=36,∠DOE=90, 则∠BOE=_______. 4、如图1-1中,有_________对对顶角.
)
(图 1-10) 5、如图 1-7,已知 B、C、E 在同一直线上,且 CD//AB,若∠A=105°,∠B=40°,则∠ACE 为( A.35° B. 40° C. 105° D. 145° 6、 如图 1-8 , a // b,,且∠2 是∠1 的 2 倍,那么∠2 等于( ) A. 60° B. 90° C. 120° D. 150° 7、 如图 1-9 ,AB,CD 交于点 O,OE⊥AB 于 O,则下列说法中不正确的是( ) A.∠1 与∠2 是对顶角 B. ∠2 与∠3 是互为余角 C. ∠1 和∠3 是互为余角 D. ∠3 和∠4 是对顶角 8、 如图 1-10 , 若∠1+∠2+∠3+∠4=180°,则( ) A.AD // BC B. AB // CD C. BD⊥DC D. AB⊥BC

沪教版七年级下册数学期末测试卷及含答案(考试真题)(综合考察)

沪教版七年级下册数学期末测试卷及含答案(考试真题)(综合考察)

沪教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知∠1=∠2=∠3=55º,则∠4=()A.135ºB.125ºC.110ºD.无法确定2、菱形在平面直角坐标系中的位置如图所示,点C的坐标是,点A的纵坐标是,则点B的坐标是()A. B. C. D.3、下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线一定平行.(2)在同一平面内,不相交的两条线段一定平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个4、电力公司需要制作一批如图1所示的安全用电标记图案,该图案可以抽象为如图2所示的几何图形,其中,,点,在上,且,,则制作时的度数是()A.50°B.65°C.80°D.90°5、如图,与∠1是内错角的是( )A.∠2B.∠3C.∠4D.∠56、三角形两边的长分别是8和6,第三边的长是方程x2-12x+20=0的一个实数根,则三角形的周长是( )A.24B.24或16C.26D.167、如图,A,B的坐标分别为(0,1),(3,0),若将线段AB平移至A1B1,则a+b的值为( )A.4B.5C.6D.78、已知m是的整数部分,n是的小数部分,则m2﹣n的值是()A.6﹣B.6C.12﹣D.139、已知图中的两个三角形全等,则等于( )A.70°B.50°C.60°D.120°10、如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.则这四个结论中正确的有( )A.4个B.3个C.2个D.1个11、在平面内,,,,则( )A. B. C. 或 D.不能确定12、如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=30°,∠2=70°,则∠3等于()A.40°B.30°C.20°D.15°13、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为()A.(﹣1,0)B.(1,0)C.(﹣2,0)D.(2,0)14、在平面直角坐标系中,点(4,-3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限15、已知平面直角坐标系中两点A(1,-1),B(1,2),连结AB,平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(2,-3),则点B的对应点B1的坐标为( )A.(2,0)B.(2,4)C.(-1,1)D.(2,-6)二、填空题(共10题,共计30分)16、求值:________.17、已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n=________.18、如图,已知,,,则的度数为________.19、4的算术平方根是________,9的平方根是________,-27的立方根是________。

沪科版七年级下册数学期末测试卷及含答案(巩固)(必刷题)

沪科版七年级下册数学期末测试卷及含答案(巩固)(必刷题)

沪科版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在等式a3•a2•()=a11中,括号里面的代数式是()A. a7B. a8C. a6D. a32、下列命题中,正确的命题是()A.相等的两个角是对顶角B.一条直线有且只有一条平行线C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.一个角一定不等于它的补角3、如图所示,直线、、、的位置如图所示,若,,,则的度数为A. B. C. D.4、已知≈1.732,≈5.477,那么≈()A.173.2B.±173.2C.547.7D.±547.75、在﹣2,0,﹣4,π这四个数中,最小的数是()A.﹣2B.0C.﹣4D.π6、抛物线y=2(x﹣2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是()A.x=2B.x=﹣1C.x=5D.x=07、要使分式有意义,则x的取值应满足()A.x≠﹣2B.x≠1C.x=﹣2D.x=18、使式子有意义的x的取值范围是()A. B. C. 且 D. 且9、如图,在平面直角坐标系中,已知点A(﹣2,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10、下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.过三点最多可以作三条直线C.两条直线被第三条直线所截,同位角相等D.垂直于同一条直线的两条直线平行11、在(﹣)0,,0,,0.010010001…,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有()A.1个B.2个C.3个D.4个12、下列运算正确的是()A. B. C. D.13、下列说法正确的是()A.1的立方根是;B. ;C. 的平方根是; D.0没有平方根;14、下列说法中,正确的是()A. 的平方根是﹣6B.带根号的数都是无理数C.27的立方根是±3D.立方根等于﹣1的实数是﹣115、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a ﹣b,3,x2+1,a,x+1分别对应下列六个字:中,爱,我,数,学,五,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱五中C.我爱五中D.五中数学二、填空题(共10题,共计30分)16、已知,,则________.17、如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为________.18、分解因式:a2+3ab=________19、如图,将周长为20个单位的沿边向右平移4个单位得到,则四边形的周长为________.20、梁平百里竹海是国家4A级景区,位于重庆市梁平区西北部,景区内竹海绵延百里,风景迷人,其中“观音洞”、“寿海”、“竹海之门”景区最为出名,由于新冠疫情影响,景区特在去年12月12日对“寿海”和“竹海之门”两个景区的门票进行了线上限时秒杀销售和线下促销销售,当天销售结束后统计发现,线上限时秒杀销售的门票数量和线下促销销售的门票数量相同,线上限时秒杀销售的“竹海之门”的门票数量是线上限时秒杀销售门票总数量的,线下促销销售的“寿海”和“竹海之门”的门票单价相同,均为线上限时秒杀销售的两个景区的门票单价之和,线上限时秒杀销售和线下促销销售总销售额为1974元,且线上限时秒杀销售和线下促销销售的门票总销售量不少于200张,不超过300张,线上限时秒杀销售和线下促销销售的两种门票单价均为整数,则线上限时秒杀销售“寿海”景区的门票的销售额最多为________元.21、学完一元一次不等式解法后,老师布置了如下练习:解不等式,并把它的解集在数轴上表示出来.以下是小明的解答过程:解:第一步去分母,得15 - 3x≥2(7 - x) ,第二步去括号,得15 - 3x≥14 - 2x,第三步移项,得-3x + 2x≥14 - 15 ,第四步合并同类项,得-x≥ - 1 ,第五步系数化为 1,得x≥1.第六步把它的解集在数轴上表示为:老师看后说:“小明的解题过程有不符合题意!”问:请指出小明从第几步开始出现了不符合题意,并说明判断依据.答:________.22、如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a > 0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为________.23、已知,则________.24、分式方程的解为________.25、当x________时,分式有意义.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、若a+b=﹣3,ab=1.求a3b+a2b2+ab3的值.28、如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.请说明理由29、x 取何正整数时,代数式的值不小于代数式的值?30、计算:+(精确到0.0001)参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、A5、C6、B7、B8、D9、B10、B12、B13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

沪教版七年级下册数学期末测试卷及含答案(基础+提升)(精练)

沪教版七年级下册数学期末测试卷及含答案(基础+提升)(精练)

沪教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,点P(﹣3,1)关于y轴对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2、等腰三角形的两条边分别为6和8,则等腰三角形的周长是()A.20B.22C.20或22D.不确定3、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定4、如图,直线与直线、分别相交于点、点,平分交直线与点,若,则的度数为().A.34°B.36°C.38°D.68°5、2的算术平方根是()A.4B.±4C.D.±6、为防止森林火灾的发生,会在森林中设置多个观测点.如图.若起火点在观测台的南偏东的方向上.点表示另一处观测台,若那么起火点在观测台的()A.南偏东B.南偏西C.北偏东D.北偏西7、如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°8、如图,在Rt ABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E 是BC的中点,连接ED,则∠EDC的度数是()A.25°B.30°C.50°D.65°9、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配.( )A.①B.②C.③D.①和②10、如图,△ABC的面积是2cm2,直线l∥BC,顶点A在l上,当顶点C沿BC所在直线向点B运动(不超过点B)时,要保持△ABC的面积不变,则顶点A 应()A.向直线l的上方运动B.向直线l的下方运动C.在直线l上运动 D.以上三种情形都可能发生11、如图,在⊙O中,AC∥OB,∠BAO=m°,则∠BOC的度数为()A. m°B.2 m°C.(90﹣m)°D.(180﹣2 m)°12、﹣=()A.2B.﹣2C.±2D.不存在13、如图,在ABC中,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD的度数为()A.30°B.40°C.60°D.90°14、若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A. B. C.  D.15、如图,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于点P,若∠A=50°,则∠BPC等于()A.90°B.130°C.270°D.315°二、填空题(共10题,共计30分)16、在□ABCD中,对角线AC,BD交于点O,AC=8,BD=12,则AD的取值范围是________.17、如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=________度18、在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图BD是平行四边形ABCD的对角线,点E在BD上,DC=DE=AE,∠1=25°,则∠C的大小是________.19、写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,________.求证:________.证明:20、在△ABC中,已知∠A=60°,∠B=80°,则∠C=________.21、如图,已知∠1=∠2=∠3=65°,则∠4的度数为________.22、△ABC之中, ∠BAC=90°,点D在直线AB上,连接DC,若tanB= ,AB=3,AD=2,则△DBC的面积为________.23、如图,已知中,点D,E分别在边AC,AB上,连接BD,DE,,请你添加一个条件,使,你所添加的条件是________.(只填一个条件即可)24、如图,在平面直角坐标系中,抛物线的顶点为A,与x轴分别交于O、B两点.过顶点A分别作AC⊥x轴于点C,AD⊥y轴于点D,连结BD,交AC于点E,则△ADE与△BCE的面积和为________.25、如图,点 A 在直线DE上,若∠DAB=75°,∠ACF=141°,则当∠BAC=________°时,DE∥BC.三、解答题(共5题,共计25分)26、计算:.27、在下面的括号内,填上推理的根据.已知:如图,∠1=∠2,∠4+∠5=180°,求证:∠6=∠7.证明∵∠1=∠2∠2=∠3(▲)∴∠1=∠3∴∵∠4+∠5=180°∴(▲)∴(▲)∴∠6=∠7(▲)28、如图,在△ABC中,已知∠1=∠2,BE=CD.(1)求证:△ABE≌△ACD;(2)请写出图中所有等腰三角形.29、在数轴上画出所表示的点A30、已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、A5、C6、B7、D8、D9、C11、B12、A13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、30、。

(初一压轴题锦集)沪教版数学学科【可修改文字】

(初一压轴题锦集)沪教版数学学科【可修改文字】

可编辑修改精选全文完整版课 题七年级压轴题精讲教学内容1. (1)如图(a ),如果,360︒=∠+∠+∠D E B 那么CD AB 、有怎样的关系?为什么?解:过点E 作E F ∥AB ①,如图(b ),则 ︒=∠+∠180BEF ABE ,( ) 因为 ︒=∠+∠+∠360EDC BED ABE ( ) 所以 =∠+∠EDC FED ° (等式的性质)所以 FE ∥CD ② ( ) 由①、② 得AB ∥CD ( ). (2)如图(c ),当∠1、∠2、∠3满足条件 时,有AB ∥CD .(3)如图(d ),当∠B 、∠E 、∠F 、∠D 满足条件_______________________ 时,有AB ∥CD .2.如图,DE 是△ABC 的中位线, F 是DE 的中点,BF 的延长线交AC 于点H ,则AH :HE 等于( )A .l :1B .2:1C .1:2D .3:2 3.如图,已知∠1=∠2,∠3=∠4,∠A=1000,求x 的值。

ABE DCF (b )ABEDC (a )23AC EB(c )D1A CBE F(d )D100x 04321A7.、如图,在边长为4的正方形ABCD 中,点G 是CD 的中点,联结BG .将正方形ABCD 绕点C 顺时针方向旋转90,得到正方形EDCF ,(1)请你画出旋转后点G 的对应点H 及线段BG 的对应线段;(2)用阴影表示旋转过程中线段DG 所扫过的平面区域,并计算其面积。

(结果保留π)8.已知n 为自然数, (1)用长除法求20113+n除以11+n 的商式和余式;(2)若20113+n能被11+n 整除,则称2011为n 的吉祥数,试求2011的吉祥数。

9.计算:+++++++-158134111222x x xxx…141422-+++n xnx10、如图,点C 是线段AB 上任意一点,分别以为边在线段的同一侧作等边三角形ADC 和等边三角形CEB ,AE 交DC 于点M ,BD 交CE 于点N(1)图中三角形ACE 是由三角形__________按__________时针方向旋转___________度得到的,ACE ∠的对应角是____________(2)图中经过旋转后能够重合的三角形有___________对,它们是____________(3)如果将(1)所做的等边三角形换成等腰三角形ADC 和等腰三角形CEB,且顶角BCE ACD ∠=∠那么图中是否有经过旋转后能够重合的三角形,有几对,若有请说明。

沪教版七年级下数学压轴题

沪教版七年级下数学压轴题

1. 如果2x - 5 = 9,则x 的值是:A. 7B. 8C. 9D. 102. 一根绳子被剪成了3 段,长度分别为5 米、7 米和8 米,那么这根绳子的总长度是:A. 18 米B. 19 米C. 20 米D. 21 米3. 一个等边三角形的边长为6 cm,则它的面积是:A. 12√3 cm²B. 18 cm²C. 24 cm²D. 36 cm²4. 小红有60 元钱,她把这些钱平均分成了4 份,每份的钱数是:A. 10 元B. 12 元C. 15 元D. 20 元5. 如果一个长方形的周长是30 cm,宽是5 cm,那么它的长度是:A. 10 cmB. 12 cmC. 15 cmD. 20 cm6. 圆的直径是10 cm,则这个圆的半径是:A. 5 cmB. 10 cmC. 15 cmD. 20 cm7. 小明把一本书的3/4 读完了,如果这本书共有120 页,那么他已经读了多少页:A. 80 页B. 90 页C. 100 页D. 110 页8. 一个长方体的高是4 cm,底面积是20 cm²,则它的体积是:A. 60 cm³B. 70 cm³C. 80 cm³D. 90 cm³9. 如果一个角的度数是90 度,它的余角是:A. 30 度B. 45 度C. 60 度D. 90 度10. 一条河的宽度是40 米,若小明从河的一侧走到对岸的距离是50 米,则他沿着河岸走的实际距离是:A. 30 米B. 40 米C. 50 米D. 60 米。

沪教版七年级下册数学期末测试卷及含答案精编

沪教版七年级下册数学期末测试卷及含答案精编

沪教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,且CF⊥AD于H,下列判断,①BG是△ABD中边AD上的中线;②AD既是△ABC中∠BAC的角平分线,也是△ABE中∠BAE的角平分线;③CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线,其中正确的个数是()A.0B.1C.2D.32、点M (﹣5,3)关于x轴的对称点的坐标是()A.(﹣5,﹣3)B.(5,﹣3)C.(5,3)D.(﹣5,3)3、如图,在下列条件中:①:②;③且;④,能判定的有()A.3个B.2个C.1个D.0个4、如图,在平面直角坐标系中,点A在一次函数y=x位于第一象限的图象上运动,点B在x轴正半轴上运动,在AB右侧以它为边作矩形ABCD,且AB =2 ,AD=1,则OD的最大值是()A. B. +2 C. +2 D.5、设等腰三角形的顶角度数为y,底角度数为x,则( )A.y=180°-2x(x可为全体实数)B.y=180°-2x(0°≤x≤90°) C.y=180°-2x(0°<x<90°) D.y=180°-x(0°<x<90°)6、在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′7、如图5,A=80 ,点O是AB,AC垂直平分线的交点,则BC0的度数是( )A.40B.30C.20D.108、点P(a,b)在第四象限,则点P到x轴的距离是( )A.aB.bC.-aD.-b9、在下列实数中,最小的是()A.-B.-C.0D.10、下列说法正确的是()A.圆有无数条对称轴,对称轴是直径所在的直线B.正方形有两条对称轴C.两个图形全等,那么这两个图形必成轴对称D.等腰三角形的对称轴是高所在的直线11、如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个12、如图,在平面直角坐标系中,⊙O′经过原点O,并且分别与x轴、y轴交于点B、C,分别作O′E⊥OC于点E,O′D⊥OB于点D.若OB=8,OC=6,则⊙O′的半径为()A.7B.6C.5D.413、若点P(3a+5,﹣6a﹣2)在第四象限,且到两坐标轴的距离相等,则a的值为()A.1B.2C.﹣1D.﹣214、已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5B.6C.11D.1615、如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A. B.16π﹣32 C. D.二、填空题(共10题,共计30分)16、49的算术平方根是________.17、如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC =5cm,则四边形DECF的周长是________.18、三角形三边长分别为3,,4则a的取值范围是________.19、的平方根是________ ,-的相反数是________ .20、如图,△ABC中,D是AC边的二等分点,E是BC边的四等分点,F是BD边的二等分点,若S△ABC =16,则S△DEF=________.21、如图,已知点A(1,2)是反比例函数y= 图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是________.22、判定两直角三角形全等的各种条件:(1)一锐角和一边对应相等(2)两边对应相等(3)两锐角对应相等.其中能得到两个直角三角形全等的条件是________23、如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为________.24、如图,已知D,E分别是△ABC的边BC和AC的中点,若△ABC的面积为24,则△DEC的面积为________。

上海七年级数学第二学期压轴题(部分)

上海七年级数学第二学期压轴题(部分)

七年级第二学期期末考试浦东新区1.已知:如图,在△ABC中,∠ACD是△ABC的外角,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,如果∠A2=m°,那么∠A=°(用含m的代数式表示).2.如图1,已知点C为线段AB上一点,CB>CA,分别以线段AC、BC为在线段AB同侧作△ACD和△BCE,且 CA =CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)说明AE=DB的理由.(2)如果∠ACD=60°,求∠AFB的度数.(3)将图1中的△ACD绕着点C顺时针旋转某个角度,到如图2的位置,如果∠ACD=α,那么∠AFB与α有何数量关系(用含α的代数式表示)?试说明理由3把两个大小不同的等腰直角三角形三角板按照一定的规则放置:“在同一平面内将直角顶点叠合”.(1)图1是一种放置位置及由它抽象出的几何图形,B、C、D在同一条直线上,联结EC.请找出图中的全等三角形(结论中不含未标识的字母),并说明理由;(2)图2也是一种放置位置及由它抽象出的几何图形,A、C、D在同一条直线上,联结BD、联结EC并延长与BD交于点F.请找出线段BD和EC的位置关系,并说明理由;(3)请你:①画出一个符合放置规则且不同于图1和图2所放位置的几何图形;②写出你所画几何图形中线段BD和EC的位置和数量关系;③上面第②题中的结论在按照规则放置所抽象出的几何图形中都存在吗?普陀区1.如图,△ABD与△AEC 都是等边三角形,AB≠AC.下列结论中,正确的是①BE=CD;②∠BOD=60°;③∠BDO=∠CEO.第26题图12.将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)求证:△BCE≌△B′CF;(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.3.已知坐标平面内的三个点A(-1,3),B(-3,1),O(0,0),问:(1)OA=OB吗?试说明理由.(2)△ABO的面积是多少?为什么?4.如图11,在直角坐标平面内有两点()0,2A 、()2,0B -,且A 、B 两点之间的距离等于a (a 为大于0的已知数),在不计算a 的数值条件下,完成下列两题:(1)以学过的知识用一句话说出a >2的理由;(2)在x 轴上是否存在点P ,使△PAB 是等腰三角形,如果存在,请写出点P 的坐标,并求△PAB 的面积;如果不存在,请说明理由.解:1.如图,网格中有△ABC和点D,请你找出另外两点E、F,在图中画出△DEF,使△ABC≌△DEF,且顶点A、B、C分别与D、E、F对应2.如图,在△ABC中,AB=AC,点D、E分别在BC、AC的延长线上,AD=AE,∠CDE=30°.求:∠BAD的度数如图1,在平面内取一点O ,过点O 作两条夹角为︒60的数轴,使它们以点O 为公共原点且具有相同的单位长度,这样在平面内建立的坐标系称为斜坐标系,我们把水平放置的数轴称为横轴(记作a 轴),将斜向放置的数轴称为斜轴(记作b 轴).类似于直角坐标系,对于斜坐标平面内的任意一点P ,过点P 分别作b 轴、a 轴的平行线交a 轴、b 轴于点M 、N ,若点M 、N 分别在a 轴、b 轴上所对应的实数为m 与n ,则称有序实数对(m ,n )为点P 的坐标.可知建立了斜坐标系的平面内任意一个点P 与有序实数对(m ,n )之间是相互唯一确定的.(图2)(1)请写出图2(其中虚线均平行于a 轴或b 轴)中点P 的坐标,并在图中标出点Q ()3,2-;(2)如图3(其中虚线均平行于a 轴或b 轴),在斜坐标系中点()4,1A 、()1,1-B 、()1,6-C .①试判断ABC ∆的形状,并简述理由;②如果点D 在边BC 上,且其坐标为()1,5.2-,试问:在边BC 上是否存在点E 使ACE ∆与ABD ∆相全等?如有,请写出点E 的坐标,并说明它们全等的理由;如没有,请说明理由.。

沪教版七年级下册数学期末测试卷及含答案(易考题)(配有卷)

沪教版七年级下册数学期末测试卷及含答案(易考题)(配有卷)

沪教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列个数中相反数最小的是()A. B. C.0 D.π2、(- )2的平方根是x,64的立方根是y,则x+y的值为()A.3B.7C.3或7D.1或73、如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.16B.C.D.4、如图,为的直径,为延长线上的一点,在上(不与点,点重合),连结交于点,且.设,下列说法正确的是()A. B. C. D.5、如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°6、在四边形ABCD中AB∥CD,点E在CA的延长线上,若∠EAB=130°,则下列结论正确的是()A.∠ACB=50°B.∠ACD=50°C.∠ADC=130°D.∠EAD=130°7、在 -1,,,四个数中,最小的数是()A.-1B.C.2D.8、与数轴上的点一一对应的数是()A.整数B.有理数C.无理数D.实数, AD的中点, 9、如图①, 已知正方体的棱长为4, E, F, G分别是AB, AA1截面EFG将这个正方体切去一个角后得到一个新的几何体, 如图②, 则图②中阴影部分(截面)的面积为()A. B. C.2 D.310、在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个11、如图,将等腰△ABC沿DE折叠,使顶角顶点A落在其底角平分线的交点F 处,若BF=DF,则∠C的度数为()A.60°B.72°C.75°D.80°12、规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:① AB=A1B1, AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;② AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③ AB=A1B1, AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④ AB=A1B1, CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个A.1B.2C.3D.413、在△ABC中,∠A=500,∠ABC的角平分线和∠ACB的角平分线相交所成的∠BOC的度数是()A. B. C. D.14、已知等腰三角形的两边长分别为4,9,则它的周长为( )A.13B.17C.22D.17或2215、如图,等腰三角形的顶角为,底边,则腰长为().A. B. C. D.二、填空题(共10题,共计30分)16、如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).17、如图,在平面直角坐标系中,是以菱形的对角线为边的等边三角形,点与点关于轴对称,则点的坐标是________.18、下面说法中正确的有________.(填序号)①顶角和底边对应相等的两个等腰三角形全等.②有三个角对应相等的两个三角形全等.③有两个角和一边对应相等的两个三角形全等.④有两个角和其中一角的对边对应相等的两个三角形全等.⑤有两个角相等,一条边相等的两个三角形全等.19、如图所示,已知点分别是的中点,厘米2,则________平方厘米.20、如图,在△ABC中,AD,CE分别为BC,AB边上的高,若BC=6,AD=5,CE=4,则AB的长为________.21、如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.22、如图,和都是等腰直角三角形,,反比例函数的图象经过点,则________.23、计算:(π﹣3)0﹣(﹣)﹣2+(﹣1)2020=________.24、如图,在中,点时和的角平分线的交点,,,则为________.25、AD为△ABC的中线,AE为△ABC的高,△ABD的面积为10,AE=5,CE=1,则DE的长为________.三、解答题(共5题,共计25分)26、计算:(﹣1)3+| |﹣()0×().27、如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现中塌陷区,就改变方向,由B点沿北偏东23°方向继续修建B段,到达C点又改变方向,使所修路段CE∥AB,求此时∠ECB的度数,并说明理由。

沪教版数学七年级下册第15章平面直角坐标系章节压轴题专练(解析版)

沪教版数学七年级下册第15章平面直角坐标系章节压轴题专练(解析版)

第15章 平面直角坐标系章节压轴题专练1.在直角坐标平面内有直线l ∥x 轴,直线l 上有两点A 、B ,已知点A ),且与A 、B 两点的距离等于3,求点B 的坐标. 【难度】★★★【答案】3B或3B.【解析】//AB x 轴,∴纵坐标相等,A B 、距离为3,当B 在A 3,3B∴,当B 在A 3,3B ∴.【总结】考察坐标的性质及点的移动、点之间的距离,注意要考虑分类.2.已知:点A (a ,-3),B (-4,b ),若A 、B 两点的连线平行于x 轴,a ,b 应满足什么条件? 【难度】★★★【答案】3b =-且4a ≠-.【解析】解://AB x 轴,∴纵坐标相等,3b ∴=-且4a ≠-. 【总结】考查直角坐标系内点的坐标特征,注意A 、B 是不同的两点.3.在直角坐标平面内,有一点C (a ,b ),垂直于x 轴的直线AB 经过点C ,已知点A (5,-2),ab 的值是154,a 与b 的值各是多少?【难度】★★★ 【答案】21520a b ==,. 【解析】AB x ⊥轴,点C (a ,b )在AB 上,A (5,-2),112155554420a ab b b ∴==∴=∴=,,,. 【总结】考查点的坐标的特征,注意进行合理计算.4.已知点M 为平行于x 轴且到x 轴的距离为5的直线上的一点,它到y 轴的距离是6,且M 的坐标. 【难度】★★★【答案】()65M ,或()65-,或()65-,或()65--,. 【解析】∵点M 到x 轴的距离是5,∴点M 的纵坐标的绝对值是5, ∴点M 的纵坐标为5±.∵点M 到y 轴的距离是6,∴点M 的横坐标的绝对值是6, ∴点M 的纵坐标为6±,∴点M 的坐标为()65M ,或()65-,或()65-,或()65--,. 【总结】考查坐标系内点坐标的特征,注意距离与坐标之间的关系.5.如图,长方形ABCD的两条边在坐标轴上,点D与原点重合,AB=6,AD=8,点P从点A出发做匀速运动,沿长方形ABCD的边经过点B到达点C,用了14s.(1)当点P坐标是(8,4)时,点P运动了几秒?(2)当P运动到达第8s时,求点P的坐标.【难度】★★★【答案】(1)4秒;(2)(6,6).【解析】点P从A跑到C的路程为14,则速度为14÷14=1,(1)当点P坐标是(8,4)时,则AP=4,则时间为4÷1=4秒;(2)当P运动到达第8s时,P点经过的路程为8×1=8,∵AB=6,∴BP=2,CP=6,∴P点坐标是(6,6).【总结】考查动点与平面直角坐标系的结合,注意动点的运动过程,综合性较强.6.直角坐标平面内,△ABC的位置如图所示(1)画出△ABC关于x轴对称的图形,并写出各点的坐标;(2)画出△ABC关于原点对称的图形,并写出各点的坐标;(3)把△ABC各点的横坐标减3,纵坐标加1,再把所得的点依次连接起来,所得到的图形与原来的图形相比有什么变化?(4)把△ABC各点的横坐标不变,纵坐标乘以-2,再把所得的点依次连接起来,所得到的图形与原来的图形相比面积有什么变化?.【难度】★★★【答案】(1)如图;(2)如图;(3)形状和大小都不改变;(4)不改变. 【解析】(4)把△ABC 各点的横坐标不变,纵坐标乘以-2,可得:A (3,2)B (2,0)C (-1,0),面积为3,而原来的面积为3,面积没有改变【总结】考察对称的点坐标的特点,注意进行观察.7.如图,画出△ABC 绕点O 逆时针旋转90°后得到的图形△DEF ,并写出各点的坐标.【难度】★★★ 【答案】如图.【解析】可在直角坐标系中画出图形即可得答案.【总结】考察图形旋转的画法.F (2,-3E (-2,-3)D (-1,0)Oy xC (-3,-2)B (0,2)A (-3,2)8.已知点A 的坐标是(3,0),点B 的坐标是(-1,0),△ABC 是等腰三角形,且一边上的高为4,写出所有满足条件的点C 的坐标. 【难度】★★★ 【答案】见解析.故点C 的坐标为(1,4)或(1,-4)或(-1,4)或(-1,-4)或(3,4)或(3,-4). 【总结】本题综合性较强,考察等腰三角形的性质的运用,注意进行分类讨论.9.(闵行2018期末25)如图,在直角坐标平面内,已知点A 的坐标为(3,3),点B 的坐标为(﹣4,3),点P 为直线AB 上任意一点(不与A 、B 重合),点Q 是点P 关于y 轴的对称点. (1)△ABO 的面积为 .(2)设点P 的横坐标为a ,那么点Q 的坐标为 .(3)设点P 的横坐标为,如果△OPA 和△OPQ 的面积相等,且点P 在点Q 的右侧,那么应将点P向_______(填“左”“右”)平移个单位.(4)如果△OPA的面积是△OPQ的面积的2倍,那么点P的坐标为.【答案】(1)212;(2)(﹣a,3);(3)右,23;(4)P(﹣1,3)或(35,3).【解析】解:(1)△ABO的面积为:12AB•OC=12×7×3=212.故答案是:212.(2)因为点P为直线AB上任意一点(不与A、B重合),点Q是点P关于y轴的对称点,点P的横坐标为a,所以点Q的坐标是(﹣a,3).故答案是:(﹣a,3);(3)∵△OPA和△OPQ的面积相等,点O到直线AB的距离都是3,∴线段AP=PQ.∴此时点P是线段AQ的中点,∵P(13,3),∴Q(-13,3),∴应将点P向右平移23个单位.故答案是:右;23;(4)①当点P在原点左侧时,P(﹣1,3);②当点P在原点右侧时,设点P表示的数为(m,3),则3﹣m=2m×2,解得m=35.故P(﹣1,3)或(35,3).故答案是:P(﹣1,3)或(35,3).10.(普陀2018期末27)如图,在平面直角坐标系中,点A的坐标为(0,1),点B的坐标为(﹣3,﹣1),将线段AB向右平移m(m>0)个单位,点A、B的对应点分别为点A′,B′.(1)画出线段AB,当m=4时,点B′的坐标是;(2)如果点B ′又在直线x=上,求此时A ′、B ′两点的坐标;(3)在第(2)题的条件下,在第一象限中是否存在这样的点P ,使得△A ′B ′P 是以A ′B ′为腰的等腰直角三角形?如果存在,直接写出点P 的坐标;如果不存在,试说明理由.【答案】(1)(1,﹣1);(2)A'(6,1),B'(3,﹣1);(3)(1,2)或(5,﹣4)或(4,4)或(8,﹣2).【解析】解:(1)∵点A 的坐标为(0,1),点B 的坐标为(﹣3,﹣1),将线段AB 向右平移m (m >0)个单位,∴A'(m ,1),B'(m ﹣3,﹣1),当m=4时,A'(4,1),B'(1,﹣1),故答案(1,﹣1);(2)由(1)知,B'(m ﹣3,﹣1),∵点B ′又在直线2m x =上,∴32mm -=,∴m=6,由(1)知,A'(m ,1),B'(m ﹣3,﹣1),∴A'(6,1),B'(3,﹣1);(3)存在,理由:如图,由(2)知,A'(6,1),B'(3,﹣1),过点B'作GH ∥x 轴,过点P 作PG ⊥GH 于G ,过点A ;作A'H ⊥GH 于H ,∴H (6,﹣1),∴A'H=2,B'H=3,∵△PA'B'是等腰直角三角形,∴A'B'=PB',∠A'B'P=90°,∴∠PB'G+∠A'B'H=90°,∵∠PB'G+∠B'PG=90°,∴∠B'PG=∠A'B'H ,∴△PB'G ≌△A'B'H (AAS ),∴B'G=A'H=2,PG=B'H=3,∴P (1,2),同理:P 1(5,﹣4),P 2(4,4),P 3(8,﹣2),即:点P 的坐标为(1,2)或(5,﹣4)或(4,4)或(8,﹣2).。

上海教师进修学院附属实验中学七年级下册数学期末压轴难题试卷

上海教师进修学院附属实验中学七年级下册数学期末压轴难题试卷

上海教师进修学院附属实验中学七年级下册数学期末压轴难题试卷一、选择题1.下列图形中,1∠与2∠是同旁内角的是( )A .B .C .D . 2.下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是( ) A . B . C . D . 3.下列各点中,位于第三象限的是( )A .()1.5, 3.5-B .()2,4C .()3,2--D .()2.5,3- 4.下列四个命题,①连接两点的线段叫做两点间的距离;②经过两点有一条直线,并且只有一条直线;③两点之间,线段最短;④线段AB 的延长线与射线BA 是同一条射线.其中说法正确的有( )A .1个B .2个C .3个D .4个5.如图,//AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠是角平分线BF 交于点F ,48E F ∠-∠=︒,则F ∠等于( )A .42°B .44°C .72°D .76° 6.下列计算正确的是( ) A .93=± B .382-= C .2(7)5= D .222= 7.如图,直线l ∥m ,等腰Rt △ABC 中,∠ACB =90°,直线l 分别与AC 、BC 边交于点D 、E ,另一个顶点B 在直线m 上,若∠1=28°,则∠2=( )A .75°B .73°C .62°D .17°8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…,第n 次移动到n A ,则22021OA A △的面积是( )A .2504mB .21009m 2C .21011m 2D .21009m二、填空题9.169=___.10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.11.若(,)A a b 在第一、三象限的角平分线上,a 与b 的关系是_________.12.如图,//AB DE ,70ABC ∠=︒,140CDE ∠=︒,则BCD ∠的度数为___________︒.13.把一张对边互相平行的纸条折成如图所示,EF 是折痕,若38EFB ∠=︒,则BFD ∠=______.14.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15=____ 15.如图,已知()0,A a ,(),0B b ,第四象限的点(),C c m 到x 轴的距离为3,若a ,b 满足()22222a b b c c -+++=--BC 与y 轴的交点坐标为__________.16.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长的速度运动,运动时间为t 秒.若t =2021秒,则点P 所在位置的点的坐标是_____.三、解答题17.计算(每小题4分)(1323(3)29()--(2)2335(3)20203|2|8(1)---.(44﹣2 | + ( -1 )201718.求下列各式中x 的值:(1)2360x -=;(2)31348x -=-. 19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C . 证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC = =90°(垂直定义)∴ ∥EG (同位角相等,两直线平行)∴∠1= ( )∠2=∠3( )又∵∠3=∠E (已知)∴ =∠2∴AD 平分∠BAC20.如图,三角形ABC 在平面直角坐标系中.(1)请写出三角形ABC 各点的坐标;(2)求出三角形ABC 的面积;(3)若把三角形ABC 向上平移2个单位,再向左平移1个单位得到三角形A B C ''',在图中画出平移后三角形A B C '''.21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.二十二、解答题22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.二十三、解答题23.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上.(1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.24.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的:过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=_ ;1.小颖求得BED ∠的度数为__ ;2.上述思路中的①的理由是__ ;3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).25.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 .拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题1.A解析:A【分析】根据同旁内角的定义去判断【详解】∵A选项中的两个角,符合同旁内角的定义,∴选项A正确;∵B选项中的两个角,不符合同旁内角的定义,∴选项B错误;∵C选项中的两个角,不符合同旁内角的定义,∴选项C错误;∵D选项中的两个角,不符合同旁内角的定义,∴选项D错误;故选A.【点睛】本题考查了同旁内角的定义,结合图形准确判断是解题的关键.2.B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正解析:B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选:B .【点睛】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.3.C【分析】根据各象限的点的特征即可判断,第三象限的点的特征是:横纵坐标都是负数.【详解】位于第三象限的点的横坐标和纵坐标都是负数,∴C ()3,2--符合题意,故选C .【点睛】本题考查了平面直角坐标系的定义,掌握各象限的点坐标的符号是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.4.B【分析】利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案.【详解】解:①连接两点的线段长度叫做两点间的距离,故此选项错误.②经过两点有一条直线,并且只有一条直线,故此选项正确.③两点之间,线段最短,故此选项正确.④线段AB 的延长线是以B 为端点延长出去的延长线部分,与射线BA 不是同一条射线故此选项错误.综上,②③正确.故选:B .【点睛】本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义. 5.B【分析】过F 作FH ∥AB ,依据平行线的性质,可设∠ABF =∠EBF =α=∠BFH ,∠DCG =∠ECG =β=∠CFH ,根据四边形内角和以及∠E -∠F =48°,即可得到∠E 的度数.【详解】解:如图,过F 作FH ∥AB ,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,即∠E+2∠BFC=180°,①又∵∠E-∠BFC=48°,∴∠E =∠BFC+48°,②∴由①②可得,∠BFC+48°+2∠BFC=180°,解得∠BFC=44°,故选:B.【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.6.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A93=,此项错误;B382-=-,此项错误;C、2=≠7(7)5D222==,此项正确;4故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.7.B【分析】∠,再利用平行线的性质即可如图标注字母M,首先根据等腰直角三角形的性质得出EBM得出∠2的度数.【详解】解:如图标注字母M,∵△ABC 是等腰直角三角形,∴45A ABC ∠=∠=︒,∴1284573EBM EBA ∠=∠+∠=︒+︒=︒,又∵l ∥m ,∴273EBM ∠=∠=︒,故选:B .【点睛】本题主要考查等腰直角三角形的性质和平行线的性质,解题关键是熟练掌握等腰直角三角形的性质和平行线的性质.平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.8.C【分析】每四次一循环,每个循环,点向x 轴的正方向前进2cm ,由于2021=505×4+1,则可判断点A2021在x 轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解析:C【分析】每四次一循环,每个循环,点向x 轴的正方向前进2cm ,由于2021=505×4+1,则可判断点A 2021在x 轴上,且OA 2021=505×2+1=1011,然后根据三角形面积公式.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 每四次一循环,每个循环,点向x 轴的正方向前进2cm ,∴OA 4n =2n ,∵2021=505×4+1,∴点A 2021在x 轴上,且OA 2021=505×2+1=1011,∴△OA 2A 2021的面积=12×1×1011=10112(cm 2). 故选:C .【点睛】本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.二、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】=求解即可.a【详解】==,1313故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.10.21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.故答案为21:05【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.11.a=b.【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.解析:a=b.【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.12.30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠解析:30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,∴∠BCD=∠BCF-∠DCF=70°-40°=30°.故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.13.【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.【详解】,,是折痕,折叠后,,,,,故答案为:.【点睛】本题考查了平行解析:104︒【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.【详解】∠=︒,AC BD EFB'//',38∴∠=︒-∠=︒-︒=︒,EFD EFB'180********EF是折痕,折叠后,'142∠=︒,EFDEFD EFD∴∠=∠=︒,'142∠=︒,EFB38∴∠=∠-∠=︒-︒=︒,BFD EFD EFB14238104故答案为:104︒.【点睛】本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想.14.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.15.【分析】根据二次根式的非负性、绝对值的非负性求出a ,b ,再求出直线BC 的解析式即可得解;【详解】∵、都有意义,∴,∴,∴,∴,∵第四象限的点到轴的距离为3,∴C 点的坐标为,设直 解析:30,2⎛⎫- ⎪⎝⎭ 【分析】根据二次根式的非负性、绝对值的非负性求出a ,b ,再求出直线BC 的解析式即可得解;【详解】 ∵都有意义,∴2c =, ∴()2220a b b -+++=,∴2020a b b -+=⎧⎨+=⎩, ∴42a b =-⎧⎨=-⎩, ∵第四象限的点(),C c m 到x 轴的距离为3,∴C 点的坐标为()2,3-,设直线BC 的解析式为y kx d =+,把()2,0-,()2,3-代入得:2320k d k d +=-⎧⎨-+=⎩, 解得:3432k d ⎧=-⎪⎪⎨⎪=-⎪⎩, 故BC 的解析式为3342y x =--, 当0x =时,32y =-, 故BC 与y 轴的交点坐标为302⎛⎫ ⎪⎝⎭,-; 故答案是302⎛⎫ ⎪⎝⎭,-. 【点睛】本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.16.(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A (1,1), B (-1,1),C (-1,-2), D(1,-2)∴AB = CD = 2,AD = BC = 3,∴四边形ABCD 的周长= AB + AD +BC +CD = 10∵P 点的运动是绕矩形ABCD 的周长的循环运动,且速度为每秒一个单位长度∴P 点运动一周需要的时间为10秒∵2021=202×10+1∴当t =2021秒时P 的位置相当于t =1秒时P 的位置∵t =1秒时P 的位置是从A 点向B 移动一个单位∴此时P 点的坐标为(0,1)∴t =2021秒时P 点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P 点一个循环运动需要花费的时间.三、解答题17.(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(23)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案; (4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2(2)原式=(3)原式=2+(-2)+1=1(4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18.(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,解析:(1)6x =±;(2)12x =-【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,236x =,开方得,6x =±;(2)移项得,33184x =-+, 合并同类项得,318x =-, 开立方得,12x =-.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键. 19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD 平分∠BA C .【详解】证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC =EGC ∠=90°(垂直定义)∴AD ∥EG (同位角相等,两直线平行)∴∠1=E ∠(两直线平等行,同位角相等)∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E (已知)∴1∠=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义)故答案是:∠EGC ;AD ;∠E ;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1),,;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得三点坐标解析:(1)()2,2A --,()3,1B ,()0,2C ;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形ABC 的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得A B C '''、、三点坐标,连接对应线段即可.【详解】解:(1)根据平面直角坐标系中点的位置,可得:()2,2A --,()3,1B ,()0,2C ;(2)三角形ABC 的面积11154245313222=⨯-⨯⨯-⨯⨯-⨯⨯ 2047.5 1.520137=---=-=;(3)三角形ABC 向上平移2个单位,再向左平移1个单位得到三角形A B C '''可得()3,0A '-,()2,3B ',()1,4C '-,连接''''''A B A C B C 、、,三角形A B C '''如图所示:【点睛】此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据34<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵34<,c∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 二十二、解答题22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x ,则364x =,所以4x =,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB =【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.二十三、解答题23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n =90°时,∠C =∠CBF =90°,∴BC ⊥DG (EF ),AC ⊥DE (GF );当n =120°时,∴AB ⊥DE (GF ).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.24.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=,过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.25.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE=S △BDE ,S △ABE=S △AEC ,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S 1=2S 2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE =S △BDE ,S △ABE =S △AEC ,从而得到结论;拓展延伸:(1)作△ABD 的中线AE ,则有BE =ED =DC ,从而得到△ABE 的面积=△AED 的面积=△ADC 的面积,由此即可得到结论;(2)连接AO .则可得到△BOD 的面积=△BOC 的面积,△AOC 的面积=△AOD 的面积,△EOC 的面积=△BOC 的面积的一半, △AOB 的面积=2△AOE 的面积.设△AOD 的面积=a ,△AOE 的面积=b ,则a +3=2b ,a =b +1.5,求出a 、b 的值,即可得到结论.试题解析:解:解决问题连接AE .∵点D 、E 分别是边AB 、BC 的中点,∴S △ADE =S △BDE ,S △ABE =S △AEC .∵S △BDE =2,∴S △ADE =2,∴S △ABE =S △AEC =4,∴四边形ADEC 的面积=2+4=6.拓展延伸:解:(1)作△ABD 的中线AE ,则有BE =ED =DC ,∴△ABE 的面积=△AED 的面积=△ADC 的面积= S 2,∴S 1=2S 2.(2)连接AO .∵CO =DO ,∴△BOD 的面积=△BOC 的面积=3,△AOC 的面积=△AOD 的面积.∵BO =2EO ,∴△EOC 的面积=△BOC 的面积的一半=1.5, △AOB 的面积=2△AOE 的面积.设△AOD 的面积=a ,△AOE 的面积=b ,则a +3=2b ,a =b +1.5,解得:a =6,b =4.5,∴四边形ADOE 的面积为=a +b =6+4.5=10.5.26.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF )=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;②∠F=12∠BED ,理由是:分别过E 、F 作EN//AB ,FM//AB ,∵EN//AB ,∴∠BEN=∠ABE ,∠DEN=∠CDE ,∴∠BED=∠ABE+∠CDE ,∵DF 、BF 分别是∠CDE 的角平分线与∠ABE 的角平分线,∴∠ABE=2∠ABF ,∠CDE=2∠CDF ,即∠BED=2(∠ABF+∠CDF );同理,由FM//AB ,可得∠F=∠ABF+∠CDF ,∴∠F=12∠BED ;(3)2∠F+∠BED=360°.如图,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,∵AB ∥CD ,EG ∥AB ,∴CD ∥EG ,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE ),即∠BED=360°-(∠ABE+∠CDE ),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。

上海市七年级下册数学期末压轴难题试卷及答案-百度文库

上海市七年级下册数学期末压轴难题试卷及答案-百度文库

上海市七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题1.如图,A ∠与1∠是( )A .同位角B .内错角C .同旁内角D .对顶角2.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是( )A .B .C .D .3.在平面直角坐标系中,下列各点在第二象限的是( ) A .()3,0-B .()2,1-C .()2,1-D .()2,1--4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( ) A .1个B .2个C .3个D .4个5.如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内CD 上方的一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC 的度数可能是( )A .①②③B .①②④⑤C .①②③⑤D .①②③④⑤ 6.若a 2=163b =2,则a +b 的值为( )A .12B .4C .12或﹣4D .12或47.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠8.一只青蛙在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2021次跳到点( )A .(6,45)B .(5,44)C .(4,45)D .(3,44)二、填空题9.计算:4﹣1=___.10.将点()14P -,先关于x 轴对称,再关于y 轴对称的点的坐标为_______. 11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B =50°,∠C =70°,则∠DAE =_____________°.12.如图,直线a ∥b ,直线c 与直线a ,b 分别交于点D ,E ,射线DF ⊥直线c ,则图中与∠1互余的角有 _______个.13.如图,沿折痕EF 折叠长方形ABCD ,使C ,D 分别落在同一平面内的C ',D 处,若155∠=︒,则2∠的大小是_______︒.14.如图,在纸面上有一数轴,点A表示的数为﹣1,点B表示的数为3,点C表示的数为3.若子轩同学先将纸面以点B为中心折叠,然后再次折叠纸面使点A和点B重合,则此时数轴上与点C重合的点所表示的数是_______.15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为()2,3,则()12,7对应的正整数是_______.第1列第2列第3列第4列……第1行12510……第2行43611……第3行98712……第4行16151413……第5行…………………………16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2020的坐标是______.三、解答题17.计算(131252724-(2)221|18.求下列各式中x 的值. (1)4x 2=64; (2)3(x ﹣1)3+24=0.19.如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF ∥AD ,(已知)2∴∠=______.(______). 又12∠=∠,(已知)13∴∠=∠,(______).AB ∴∥______,(______) 180.(DGA BAC ∴∠+∠=︒______)20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.阅读下面的文字,解答问题.22的小数部分我们不可能全部地写出来,但是由于122<<2 1.21,差就是小数部分21-.根据以上的内容,解答下面的问题: (1)5的整数部分是___________,小数部分是___________; (2)若设23+整数部分是x ,小数部分是y ,求x y -的值.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒. (1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.26.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、选择题 1.A 解析:A 【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可. 【详解】解:根据图象,∠A 与∠1是两直线被第三条直线所截得到的两角,因而∠A 与∠1是同位角,故选:A.【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单.2.C【分析】根据火柴头的方向、平移的定义即可得.【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得.【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了平移,掌握理解平移的概念是解题关键.3.C【分析】根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答.【详解】解:A、(0)在x轴上,故本选项不符合题意;B、(2,-1)在第四象限,故本选项不符合题意;D、(-2,1)在第二象限,故本选项符合题意;D、(-2,-1)在第三象限,故本选项不符合题意.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据几何初步知识对命题逐个判断即可.【详解】解:①对顶角相等,为真命题;②内错角相等,只有两直线平行时,内错角才相等,此为假命题;③平行于同一条直线的两条直线互相平行,为真命题;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题;⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题;①③命题正确.故选:B.【点睛】本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.D【分析】根据平方根和立方根的意义求出a、b即可.【详解】解:∵a2=16,∴a=±4,∵3b2,∴b=8,∴a+b=4+8或﹣4+8,即a+b=12或4.故选:D.【点睛】本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A,B,C正确.故选D.【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次解析:D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标.【详解】解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次.2025-1-3=2021,故第2021次时青蛙所在位置的坐标是(3,44).故选:D.【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.二、填空题9.1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x2=a ,那么这个正数x解析:1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.10.(1,-4)【分析】直角坐标系中,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.关于y 轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设关于x 轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.关于y 轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设()14P -,关于x 轴对称的点为P' 则P'点的坐标为(-1,-4)设点P'和点''P 关于y 轴对称则''P 的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数,关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.11.10【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=1解析:10【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,∵AD是角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE是高,∴∠BAE=90°-∠B=90°-50°=40°,∴∠DAE=∠BAE-∠BAD=40°-30°=10°.故答案为:10.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.12.4【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF⊥直线c∴∠1+∠2=90°,∠1解析:4【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF⊥直线c∴∠1+∠2=90°,∠1+∠3=90°即与∠1互余的角有∠2,∠3又∵a∥b∴∠3=∠5,∠2=∠4∴∠1互余的角有∠4,∠5∴与∠1互余的角有4个故答案为:4【点睛】本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得155EFC ∠=∠=︒,由折叠的性质可得55EFC EFC '∠=∠=︒,然后问题可求解.【详解】解:由长方形ABCD 可得://AD BC ,∵155∠=︒,∴155EFC ∠=∠=︒,由折叠可得55EFC EFC '∠=∠=︒,∴218070EFC EFC '∠=︒-∠-∠=︒;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n解析:138【分析】根据表格中的数据,以及正整数6对应的位置记为()2,3,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.【详解】解:∵正整数6对应的位置记为()2,3,即表示第2行第3列的数,∴()12,7表示第12行第7列的数,由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,…n 行n 列的数字是n 2-(n -1)=n 2-n +1,∴第12行12列的数字是122-12+1=133,∴第12行第7列的数字是138,故答案为:138.【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n 行n 列数的特点为(n 2-n +1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度. 16.【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:(1010,0)【分析】先分别求出点2468,,,P P P P 的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点2P 的坐标是2(1,0)P ,点4P 的坐标是4(2,0)P ,点6P 的坐标是6(3,0)P ,点8P 的坐标是8(4,0)P ,归纳类推得:点2n P 的坐标是2(,0)n P n ,其中n 为正整数,因为202021010=⨯,所以点2020P 的坐标是2020(1010,0)P ,故答案为:(1010,0).【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.三、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x =±4;(2)x =-1(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x 2=64,∴x 2=16,∴x =±4;(2)3(x -1)3+24=0,∴3(x -1)3=-24,∴(x -1)3=-8,∴x -1=-2,∴x =-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解. 19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】解:EF ∥AD ,(已知)(两直线平行,同位角相等)解析:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】 解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.20.(1)见解析,,;(2)5;(3) 或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P 点解析:(1)见解析,()0,3,()4,0;(2)5;(3) ()3,0 或 ()5,0【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据111A B C △的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P 点得坐标为 (),0t ,因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,求解即可. 【详解】解:(1) 如图,111A B C △ 为所作.1A (0,3),1C (4,0);(2) 计算 111A B C △ 的面积 111442421435222=⨯-⨯⨯-⨯⨯-⨯⨯=.(3)设P 点得坐标为(t ,0), 因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,解得 3t = 或 5t =, 即 P 点坐标为 (3,0) 或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)2,;(2).【分析】(1)利用求解;(2)由于,则,,然后计算.【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,,,.【点睛】本题考查了解析:(1)22;(2)4.【分析】(1)利用23<求解;(2)由于12<<,则3x =,231y ==,然后计算x y -.【详解】解:(122;(2)132<<,而2x ,小数部分是y ,3x ∴=,231y ==,3(31)33143x y .【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键.二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a ,∵3a 表示长度,∴a >0,∴a∴这个长方形场地的周长为 2(3a +5a )=16a (m ),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)见解析;(2)10°;(3)【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E 作HE ∥CD ,设 由(1)得AB ∥CD解析:(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠=∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ ∥MN ,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.综上所述,∠BAM的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.26.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.如图,AD是△ABC的中线,E是AD的中点,如果 ,那么 ________.
3.如图,△ABC中,∠C=90°,AD=BD,∠BAD=40°,则∠CAD=________.
4.如图,△ABC中,AB=AC=19cm,将△ABC对折,使点A与点B重合,折痕为DE,若△BCD的周长为26cm,则BC的长为.
(1)平行
(2)成立
考点二:压轴题
1、在 中, ,点 在 边上, (如图1).
(1)若 在 的 边上,且 ,求 的度数;
(2)若 , 在 的 边上,△ADE是等腰三角形,求 的度数;
(3)若 将 分割成的两个三角形中有一个是等腰三角形,求 的度数.
(1)50°
(2)25°,40°,10°
(3)80°,50°,100/3,80/3
②如图2,若0°<∠BCA<180°,若使①中的结论仍然成立,则∠α与∠BCA应满足的关系是∠α+∠BCA=180°__________;
(2)如图3,若直线CD经过∠BCA的外部,∠BCA=∠α,请探究EF、与BE、AF三条线段的数量关系,并给予证明.
三、课堂练习
1.以三条线段3、4、x-5为这组成三角形,则x的取值为________.
(1)∠AEF的度数是90∘
4、直线CD经过∠BCA的顶点C,CA=CB.E、F分别是直线CD上两点,
且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题:
①图1,若∠BCA=90°,∠α=90°,则EF_____=_____|BE-AF|(填“>”,“<”或“=”号);
2、如图,已知∠MON=90∘,点A,B分别在射线MO,ON上,BE是∠ABN的平分线,射线BE的反向延长线与∠BAO的角平分线AC相交于点C.
(1)如图1,当∠BAO=70∘时,∠ABC是多少度?
(2)当点A,B分别在射线OM,ON上移动时,试问∠ACB的大小是否发生变化?如果不变,请求出∠ACB的度数;如果∠ACB的大小随点A,B的移动而发生变化,请求出∠ACB的度数的变化范围。
(1)∠ABC=∠CBO+∠ABO=80∘+20∘=100∘
(2)∠ACB=45∘,
3、如图1,在梯形ABCD中,AD∥BC,∠C=90∘,点E为CD的中点,点F在底边BC上,且∠FAE=∠DAE.
(1)求∠AEF的度数;
(2)若梯形ABCD中,AD∥BC,∠C不是直角,点F在底边BC或其延长线上,如图2、图3,其他条件不变,你在(1)中得出的结论是否仍然成立,若都成立,请在图2、图3中选择其中一图进行证明;若不都成立,请说明理由。
3、如图,已知BD平分∠ABC,CD平分∠ACB,DE∥AB,DF∥AC
说明△DEF的周长为BC;
4、在△ABC中,AB=BC,将△ABC绕点A旋转得△AB1C1,使点C1落在直线BC上(点C1与点C不重合).
(1)如图1,当∠B<60°时,写出边AB1与边BC的位置关系;
(2)当∠ABC>60°时,请你在图2中画出△AB1C1,再猜想你在(1)中得出的结论是否还成立?并说明理由.
B、∠A=∠D,∠C=∠F,AC=EF
C、AB=DE,BC=EF,△ABC的周长=△DEF的周长
D、∠A=∠D,∠B=∠E,∠C=∠F
四、家庭作业
1.已知等腰三角形一腰上的中线将三角形的周长分为9和15两部分,则这个等腰三角形的底边长为.
2.如图所示,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,
2.掌握平行线和三角形综合题型。
考点及考试要求
1.灵活应用平行线和全等三角形的判定和性质,
2.掌握平行线和三角形综合题型。
教学内容
一、 知识点总结
二、考点分析
考点一:平行线与三角形
1、如图,D是BC上的一点,△ABC和△ADE是等边三角形,求证:AB//CE。
2、如图所示,△ABC中,∠CAB的平分线AD⊥BD于D,DE∥CA交AB于点E.求证:AE=EB.
A.联结等边三角形三边中点所构成的三角形,也是等边三角形
B.有一个角是60°的等腰三角形是等边三角形
C.三条边上的高都相等的三角形是等边三角形
D等边三角形
8.在△ABC和△DEF中,根据下列条件,能判定△ABC≌△DEF的是().
A、AB=DE,BC=EF,∠A=∠D
第2题图第3题图第4题图第5题图
5.如图,将长方形纸片ABCD沿BD对折,重叠部分是△BED,若AB=4、AD=6,则△ABE的周长是_______________。
6.若一个三角形的三条高所在直线的交点在此三角形外,则此三角形是()
A.锐角三角形B.钝角三角形C.直角三角形D.都有可能
7.下列结论错误的是()
学科教师辅导讲义
讲义编号18SHSXC1015
班级编号:年级:课时数:2
学员姓名:辅导科目:数学学科教师:
学科组长签名及日期
剩余课时数
课题
期末复习-压轴题
授课时间:
备课时间:
教学目标
1.灵活应用平行线和全等三角形的判定和性质,
2.掌握平行线和三角形综合题型。
重点、难点
1.灵活应用平行线和全等三角形的判定和性质,
则∠A的大小等于____度.
3.如图所示,在直角梯形 中, °, ∥ , , 是 的中点, ⊥ .
(1)求证: ;
(2)求证: 是线段 的垂直平分线;
(3) 是等腰三角形吗?并说明理由.
签字确认
学员教师班主任
相关文档
最新文档