优选不定积分典型例题
(完整版)不定积分习题与答案
不定积分 (A)1、求下列不定积分1)⎰2xdx 2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+221 5)⎰⋅-⋅dxxxx32532 6)dxxxx⎰22sincos2cos7)dxxe x32(⎰+ 8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23( 2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos 6)⎰-+xx eedx7)dxxx)cos(2⎰ 8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx 12)dxx⎰3cos13)⎰xdxx3cos2sin 14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+211 2)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx 6)⎰+xdx217)⎰-+21xxdx 8)⎰-+211xdx4、求下列不定积分(分部积分法) 1)inxdxxs⎰ 2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan2 6)⎰xdxx cos27)⎰xdx2ln 8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dxxx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx (B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
(完整版)不定积分习题与答案
不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
不定积分典型例题
不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式. 例1、求 dx x x x ∫−)11(2解 原式= C x x dx x x ++=−∫−41474543474)(例2、求 dx e e x x ∫++113解 原式= C x e e dx e e x xx x ++−=+−∫2221)1( 例3、求 dx xx ∫22cos sin 1解 原式 ∫∫∫+=+=dx x dx x dx x x x x 222222sin 1cos 1cos sin cos sin C x x +−=cot tan 例4、 ∫dx x2cos 2 解 原式= C x x dx x ++=+∫2sin 2cos 1 例5、 dx xx ∫+221 解 原式∫∫+−=+−+=dx x dx x x )111(111222C x x +−=arctan 注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)C x G Cu G duu g dxx x g dx x f ux ++====∫∫∫=)]([)()()(')]([)()(ϕϕϕϕ还原求出令凑成在上述过程中,关键的一步是从被积函数)(x f 中选取适当的部分作为)('x ϕ,与dx 一起凑成 )(x ϕ的微分 du x d =)(ϕ且 ∫du u g )(易求.例1、求 ∫dx xxcos tan 解 原式= ∫∫−=x x xd dx x x x cos cos cos cos cos sin C xx d x +=−=−∫cos 2cos )(cos 23 例2、求 ∫−dx xx x 2arcsin解 原式)()(1arcsin 211arcsin 2x d x x dx xxx ∫∫−=⋅−=C x x d x +==∫2)(arcsin )(arcsin arcsin 2注)(21x d dx x= 例3、求 ∫−−dx xx 2491解 原式∫∫−−+−=−)49()49(81)2(3)2(21221222x d x x x dC x x x x x d +−+=−+−=∫222494132arcsin 214941)32(1)32(21例4、求 ∫+⋅+dx xx x 2211tan解 原式= C x x d x ++−=++∫|1cos |ln 11tan 222例5、求 dx x x x ∫−−12解 原式= ∫∫∫−+=−−−+dx x x dx x dx x x x x x 1)1()1(22222 C x x x d x x +−+=−−+=∫2323223)1(313)1(1213例6、求 ∫+dx xtan 11解 原式= ∫∫+−+=+dx xx xx dx x x x sin cos sin cos 1(21cos sin cos C x x x x x d x x x +++=⎥⎦⎤⎢⎣⎡+++=∫|)sin cos |ln (21)sin (cos sin cos 121 例7、求 ∫−+−dx xxx 11ln 112 解 原式=C xx x x d x x +−+=−+−+∫11ln 41)11(ln 11ln 212 例8、求 ∫+dx e x11解 原式= ∫∫∫+−=+−+dx e e dx dx e e e x x x xx 111 C e x e d edx xx x++−=++−=∫∫)1ln()1(11例9、求 ∫−+dx e e xx 1解 原式= C e e d e dx e e x x x x x +=+=+∫∫arctan )()(11122 例10、求 ∫+dx xxsin 1sin解 原式= ∫∫∫−−=+−dx xxdx dx x 2cos sin 1)sin 111( dx xxdx x x ∫∫+−=22cos sin cos 1C x x x ++−=sec tan 例11、求 ∫−xx dxln 32解 原式 )(ln )ln 32(21x d x −∫−=C x x d x +−+−⋅−=−−−=∫−2121)ln 32(121131)ln 32()31()ln 32( C x +−−=ln 3232例 12、求 ∫+dx xb x a 2222cos sin 1解 原式= ∫∫+=+)tan ()tan (111)(tan tan 12222x badx ba ab x d xa b C x baab +=)tan arctan(1 例13、求 ∫++dx x x 1164解 原式=∫∫∫+++−=+++−dx x x dx x x x dx x x x x 232322226224)(1)(1)(11 C x x dx x dx x ++=+++=∫∫33232arctan 31arctan )(113111 例14、求 ∫+dx x x )1(18解 原式=∫∫∫+−=+−+dx x x dx x dx x x x x 8788811)1(1C x x ++−=)1ln(81||ln 8例15、求 ∫+−−dx x x x 54232解 原式= dx x x x x x x d ∫∫+−++−+−541454)54(23222∫+−−++−=1)2()2(4|54|ln 2322x x d x x C x x x +−++−=)2arctan(4|54|ln 232 注 由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形如 ∫++dx cbx ax 21的积分(将分母配方,再凑微分). 例16、已知 2ln )1(222−=−x x x f ,且 x x f ln )]([=ϕ,求 ∫dx x )(ϕ.解 因为 1111ln )1(222−−+−=−x x x f ,故 11ln )(−+=x x x f ,又因为x x x x f ln 1)(1)(ln)]([=−+=ϕϕϕ,得x x x =−+1)(1)(ϕϕ,解出11)(−+=x x x ϕ,从而C x x dx x dx x x dx x +−+=−+=−+=∫∫∫|1|ln 2)121(11)(ϕ 例17、求 ∫dx x4cos 1解 原式C x x x d x x xd ++=+==∫∫322tan 31tan tan )tan 1(tan sec例18、求 ∫++dx x x x2)ln (2ln 1 解 原式=C x x x x x x d +=+∫)2ln arctan(21)ln (2)ln (2三、第二类换元法设 )(t x ϕ=单调可导,且0)('≠t ϕ,已知 C t F dt t t f +=∫)()(')]([ϕϕ,则C x F Ct F dt t t f dxx f x t t x ++==−===∫∫−)]([)()(')]([)(1)()(1ϕϕϕϕϕ还原令选取代换 )(t x ϕ=的关键是使无理式的积分化为有理式的积分(消去根号),同时使 dt t t f ∫)(')]([ϕϕ易于计算.例1、求 ∫−+221)1(xx xdx解 令 tdt dx t x cos ,sin ==原式=∫∫−−=+t td t t tdt t 22cos 2cos cos )1(sin cos sin t d tt cos )cos 21cos 21(221∫++−−= C xx C t t +−−−+−=+−+−=221212ln 221cos 2cos 2ln 221例2、求 ∫+241xxdx解 令 tdt dx t x 2sec ,tan ==原式=t d t t t d ttt tdt t t tdt sin )sin (sin sin sin sin 1sin cos sec tan sec 24424342∫∫∫∫−−−=−==⋅ C xx x x C t t ++++−=++−=)1(3)1(sin 1sin 13123323 例3、求 dx x x ∫−229解 令 t x sec 3=,则 tdt t dx tan sec 3⋅=原式= ∫∫∫−==⋅⋅dt t t dt tttdt t t t )cos (sec sec tan tan sec 3sec 9tan 3221sin |tan sec |ln C t t t +−+=12222ln C xa x a a x a x +−−−+=C xa x a x x +−−−+=2222ln 例4、求 ∫+dx x x )2(17解 令 t x 1=,则dt tdx 21−=,原式∫∫∫++−=+−=−+=)21(21114121)1(21777627t d t dt t t dt t ttC x x C t +++−=++−=||ln 21|2|ln 141|21|ln 14177 注 设n m ,分别为被积函数的分子,分母关于x 的最高次数,当1>−m n 时,可用倒代换求积分.例5、求 dx x xx ∫−+1122解 令t x 1=,dt tdx 21−=原式 ∫∫−+−=−−+=dt t t dt t t t t 222211)1(11111∫∫−−+−−=22212)1(11t t d dt tC xx x C t t +−−=+−+−=1arcsin 11arcsin 22例6、求 dx xx x∫−432解 原式 ∫∫∫−⋅=−=⋅−===dt t t t dt t t dt t t t t tx dt t dx 11211212541051411386121211令∫∫−++=⋅−+−=5554510)111(51211112dt t t dt t t t C t t t +−++=|1|ln 51251210125510 C x x x +−++=1ln 5125125612512565例7、求 ∫+xedx 1解 令t e x =+1,12−=t e x ,dt t tdx 122−=原式= C t t dt t dt t t t ++−=−=−⋅∫∫11ln 11212122C e e x x +++−+=1111ln例8、求 ∫+dx xx xln 1ln解 令x t ln 1+=原式∫∫−=+=dt tt x d x x 1ln ln 1lnC x x C t t dt tt ++−=+−=−=∫ln 1)2(ln 32232)1(2123例9、求 dx x x ∫++−+1111 解 令 tdt dx t x t x 2,1,12=−==+因为原式dx xx x x dx x x x ∫∫+−+=+−+=12||ln 2122而 ∫∫∫−+=−=+dt t t dt t dx x x 111(2121222 C x x x C t t t +++−+++=++−+=1111ln 1211ln2原式=C x x x x x +++−+−+−+1111ln214||ln 2=C x x x +++++−11ln 414四、分部积分法分部积分公式为 ∫∫−=vdx u uv dx uv ''使用该公式的关键在于 ',v u 的选取,可参见本节答疑解惑4. 例1、求 ∫dx e x x 3解 原式=x x x x x x de x e x e x de x e x de x ∫∫∫+−=−=63323233 C e xe e x e x x x x x +−+−=66323 例2、求 ∫dx xx 2cos 22 解 原式∫∫+=+=xdx x x dx x x cos 2161)cos 1(21232 ∫∫−+=+=xdx x x x x x d x x sin sin 2161sin 21612323 ∫∫−++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323 C x x x x x x +−++=sin cos sin 216123 例3、求 ∫dx e x 3解 原式C e te e t det dt e t t t t tttx dtt dx ++−==∫∫==66333222332令C eex ex xxx++−=333663332例4、求 ∫dx x )cos(ln解 原式 ∫+=dx x x x )sin(ln )cos(ln∫−+=dx x x x x x )cos(ln )sin(ln )cos(ln移项,整理得原式C x x x++=)]sin(ln )[cos(ln 2注 应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:∫∫xdx e xdx e xx ββααsin cos 或例5、求 ∫++dx x x )1ln(2解 原式 dx x x x x x ∫+−++=221)1ln(C x x x x ++−++=221)1ln(例6、求 ∫dx xx23ln解 原式= ∫∫−−=−=1(ln 3ln )1(ln 233xxd x x x xdC x x x x x x x x xd xx x x +−−−−=⎥⎦⎤⎢⎣⎡+−−=∫6ln 6ln 3ln )1(ln 2ln 3ln 2323 例7、推导 ∫+dx a x n)(122的递推公式 解 令 ∫+=dx a x I nn )(122∫++−+++=dx a x a a x n a x x I n n n 12222222)(2)(∫++−++=dx a x na nI a x x n n n 122222)(122)(122222)(+−++=n n nI na nI a x x ⎥⎦⎤⎢⎣⎡−++=+n nn I n a x xna I )12()(212221 ⎥⎦⎤⎢⎣⎡−++−=−−11222)32()()1(21n n n I n a x xa n I 例8、推导 ∫=xdx I n n tan 的递推公式.解 ∫⋅=−xdx x I n n 22tan tan ∫−⋅=−dx x x n )1(sec tan 22∫∫−−−⋅=xdx xdx x n n 222tan sec tan 2122tan 11)(tan tan −−−−−−=−=∫n n n n I x n I x xd 注 应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式. 例9、已知)(x f 的一个原函数是 2x e −,求 ∫dx x xf )(' 解 原式C e x xf dx x f x xf x xdf x +−=−==−∫∫2)()()()( 例10、求 ∫+dx x x x )1ln(arctan 2解 因为 ∫+dx x x )1ln(2∫++=)1()1ln(2122x d x C x x x +−++=22221)1ln()1(21 所以 原式= ∫⎥⎦⎤⎢⎣⎡−++22221)1ln()1(21arctan x x x xd[]∫⎥⎦⎤⎢⎣⎡+−+−−++=2222221)1ln(21arctan )1ln()1(21x x x x x x x []C x x xx x x x +++−−−++=23)1ln(23)1ln()1(arctan 212222 注 本题是三类函数相乘的形式,这类问题大多采用本题的方法.例11、求 ∫+dx x xe x)1(2arctan 解 令 tdt dx t x 2sec ,tan ==原式dt e t t dt tte t t t ∫∫=⋅=cos sin sec sec tan 42 C t t e dt te t t+−==∫)2cos 2(sin 1012sin 21C x x x e x ++−+=)1(5)1(22arctan 例12、求 xdx x x arctan 122∫+ 解 原式= xdx x arctan )111(2∫+−∫∫+−=xdx x dx x arctan 11arctan 2 C x x x x +−+−=22)(arctan 21)1ln(21arctan例13、求 ∫−+⋅dx x x x x 22211arcsin 解 令 tdt dx t x t x cos ,arcsin ,sin ===,原式 ∫∫∫+=⋅+=tdt dt t ttdt tt t t 222sin cos cos sin )sin 1(2221cot cot 21)cot (t tdt t t t t td ∫∫++−=+−= C t t t t +++−=221|sin |ln cosC x x x x x +++−−=22)(arcsin 21||ln arcsin 1注 直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用. 五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分: (1) C a x A dx ax A+−=−∫||ln (2) )1()(11)(1≠+−−−=−−∫n C a x n A dx a x A n n (3) ∫=∫∫+⎥⎦⎤⎢⎣⎡−++=+++−n upx ap q nna u dup q p x dxdx q px x dx )(44)2()(2224422222=令=令 (4) ∫∫++−+++−−=+++−n n n q px x dxp a q px x n dx q px x dx a x )()2()(1)1(21)()(2122,其中 042<−q p .这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的. 例1、求 ∫+−322x x dx解 原式= C x x x d x dx +−=−+−=+−∫∫21arctan 21)1(2)1(2)1(22例2、求 ∫++++dx x x x x 4545242 解 原式= ∫∫++++++dx x x xdx x x x )4)(1(5)4)(1(422222 2222222)4111(65arctan )4)(1(251dx x x x x x dx x dx ∫∫∫+−++=++++= C x x x ++++=41ln 65arctan 22 本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,设 41454522242+++++=++++x DCx x B Ax x x x x ,通分后应有 )1)(()4)((45222+++++=++x D Cx x B Ax x x比较等式两端x 的同次幂的系数,得0=+C A ,0=+D B ,54=+C A ,44=+D B 由此, 1,35,1,35−=−===D C B A故原式= dx x x x x ∫⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−+++4135113522C x x x ++++=arctan 41ln 6522 例3、求 ∫−13x xdx解 设11123++++−=−x x C Bx x A x x ,通分后应有)1)(()1(2−++++=x C Bx x x A x 比较等式两端x 的同次幂的系数,得0 ,1 ,0=−=+−=+C A C B A B A ,由此,31,31,31=−==C B A故原式= dx x x x x ∫⎥⎦⎤⎢⎣⎡++−−−)1(31)1(312∫∫∫+++++++−−=43)21()21(211126113122x x d dx x x x x dx C x x x x +++++−=312arctan 311)1(ln 6122例4、求 ∫−)1(42x x dx解 原式= dx x x dx x x dx x x x x ∫∫∫+−−−=−−+)1)(1(1)1(1)1()1(22224222 dx x x dx x x ∫∫++−−−+=)1111(21)111(2222 ∫∫+−−+−=dx x dx x x 22112111211 C x x x x +−−++−=arctan 2111ln411 注:本题若用待定系数法,应当将被积函数分解为)1)(1)(1(1)1(12242x x x x x x ++−=−22111x F Ex x D x C x B x A +++++−++= 然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.例5、求 ∫++dx x x dxx 334811 解 令u x =4,则dx x du 34=,于是,原式∫∫+−++=++=du u u du u u u )24111(41234122 )|2|ln 4|1|ln (41C u u u ++−++=C x x x ++−++=)2ln()1ln(414444例6、求 ∫+dx x x 325)32( 解 令 dt xdx t x t x =−==+4,23,3222,从而, 原式= ∫∫+−=⋅−dt tt t dt t t 961(16144)3(3232 C t t t +−+=296||(ln 1612C x x x ++−+++=)32(29326|32|[ln 1612222 例7、求 ∫++dx x x x 45244解 45)45(145242244+++−+=++x x x x x x 设 4145)45(222211242+++++=+++−x B x A x B x A x x x ,通分后应有)1)(()4)(()45(2222112+++++=+−x B x A x B x A x由此, 316,0,31,02211−====B A B A ,故原式= dx x x ∫⎥⎦⎤⎢⎣⎡+−++)4(316)1(31122C xx x +−+=2arctan 38arctan 31例8、求 ∫+210)1(x x dx解 由于2109102101010210)1()1(1)1(1)1(1+−+=+−+=+x x x x x x x x x x 2109109)1()1(1+−+−=x x x x x 原式= dx x x x x x ∫⎥⎦⎤⎢⎣⎡+−+−2109109)1()1(1∫∫++−++−=210101010)1()1(1011)1(101||ln x x d x x d x C x x x ++++−=)1(101)1ln(101||ln 1010C x x x ++++=)1(1011ln 101101010注 对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分 ∫dx x x R )cos ,(sin 可通过万能代换2tan xt =化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,然后再求解. 例1、求 ∫xx dx4cos sin 解 原式= ∫∫∫+=+x x dxdx x x dx x x x x 24422cos sin cos sin cos sin cos sin ∫∫∫++−=x dx dx x x x d xsin cos sin )(cos cos 124 ∫+−=|2tan |ln cos )(cos cos 3123x x x d x C x x x +++=|2tan |ln cos 1cos 313例2、求 ∫+dx x sin 1解 原式= ∫++dx x x x x 2cos 2sin 22cos 2sin 22∫∫+=+=dx xx dx x x )2cos 2(sin )2cos 2(sin2 C x x ++−=2sin 22cos 2例3、求 ∫+−5cos sin 2x x dx解 令2tan x t =,则222212,11cos ,12sin tdtdx t t x t t x +=+−=+=,于是 原式=C x C t t t dt +⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+=+⎟⎠⎞⎜⎝⎛+=++∫512tan 3arctan 51513arctan 512232 例4、求 ∫+dx xxsin 1sin解 原式= ∫−dx x x x 2cos )sin 1(sin dx x xdx x x ∫∫−−=222cos cos 1cos sin C x x x++−=tan cos 1例5、求 ∫+dx xx xcos sin sin解 原式=dx x x x x dx x x x x x x ∫∫⎟⎠⎞⎜⎝⎛+−+=+−++cos sin cos sin 121cos sin cos sin cos sin 21 C x x x x x x x d x ++−=++−+=∫|)cos sin |ln (21cos sin )cos (sin 2121 例6、求 ∫xdx x cos 5sin解 原式=C x x dx x x +−−=+∫6cos 1214cos 81]6sin 4[sin 21 注 积化和差公式])cos()[cos(21cos cos ])cos()[cos(21sin sin ])sin()[sin(21cos sin x x x x x x x x x x x x βαβαβαβαβαβαβαβαβα−++=⋅+−−=⋅−++=⋅例7、求 ∫+xx dxcos )sin 2(2解 令 dt xdx t x ==cos ,sin于是原式= dt t t t t t t dt∫∫−+−++=−+)1)(2()1()2(31)1)(2(222222C tt t t dt t dt ++−+=++−=∫∫2arctan(23111ln 6123113122 C x x x ++−+=2sin arctan(231sin 1sin 1ln 61注 形如∫dx x x R )cos ,(sin 的有理函数的积分,一般可利用代换 t x=2tan 化为有理函数的积分.(i) 若 )cos ,(sin )cos ,sin (x x R x x R −=−或)cos ,(sin )cos ,(sin x x R x x R −=− 成立,最好利用代换 t x =cos 或对应的 t x =sin .(ii) 若等式 )cos ,(sin )cos ,sin (x x R x x R =−−成立,最好利用代换t x =tan .例8、求 ∫+dx xx x33cos sin sin21 解 令 t x =tan ,则 dt xdx =2sec ,于是原式= ∫∫∫∫+−+−+=+−++−−+=+t dt dt t t t dt t t t t t t dt t t 1311131)1)(1()1()1(31122223 = C t t t t ++−−++−|1|ln 31)312arctan(31)1ln(612 =C x x x x +−+++−31tan 2arctan(31)tan 1(1tan tan ln 6122。
不定积分的典型例题50题答案
例1. 解法1).12)(12(1224+-++=+x x x x x而 +++)12(2x x )1(2)12(22+=+-x x x 所以)121121(21112242dx x x dx x x dx x x ⎰⎰⎰++++-=++ .)]12arctan()12[arctan(211)12()12211)12()12(21)21)22(121)22(1[212222c x x x x d x x d dx x dx x +++-=+++++--=++++-=⎰⎰⎰⎰解法2dxx x x x xx x dx x x ⎰⎰+++-++-=++)12)(12(2)12(1122242.arctan 21)12arctan(211212242c x x dx x xx x dx +++=++++=⎰⎰ 解法3⎰⎰⎰+-=++=++≠22222421)1(11111,0xx x x d dx x x x dx x x x 当 c x x xx x x d +-=+--=⎰21arctan 212)1()1(22,2221arctan 21lim 20π-=-+→x x x ,2221arctan 21lim 20π=--→x x x 由拼接法可有.02221arctan 2100,2221arctan 21112242⎪⎪⎩⎪⎪⎨⎧<+--=>++-=++⎰x cx x x x c x x dx x x ππ 例2.解 将被积函数化为简单的部分分式(*)1)1(1)1()1(222223⋅⋅⋅⋅⋅++++++=+++x DCx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .211)1(2)1(23=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为.2.2426)1()2(2)1(3lim]12[lim )1()1()1(2[lim 22322123122231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以.21-=D 分解式(*)两边同乘以x ,再令,+∞→x 得.1,1-=⇒+=C C A 故有.arctan 21)1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dxx DCx x B x A dx x x x +-+-+-+=++++++=+++⎰⎰例3.解 令 ,2x u =再用部分分式,則⎰⎰++=++))(1(21)()1(22244u u u dudx x x x x,11)()1(1222+++++=++u D Cu u B u A u u u 两边乘以,u 再令,0→u 得.1=A 两边乘以,1+u 再令,1-→u 得.21-=B 两边乘以,u 再令,+∞→u 得.21,0-=⇒++=C C B A 令.21,1-=⇒=D u.arctan 41)1()1(ln 81arctan 41)1ln(81)1ln(41ln 21arctan 41)1ln(811ln 41ln 21]12121)1(211[21))(1(21)()1(2422824222222244c x x x x c x x x x c u u u u du u u u u u u u dudx x x x x +-++=+-+-+-=+-+-+-=+--++-=++=++∴⎰⎰⎰ 例4828872882815)1(1181)1()1(dx x x dx x x x dx x x ⎰⎰⎰+-+=⋅+=+)1(])1(111[818288++-+=⎰x d x x .)1(81)1ln(8188c x x ++++= 例5. 解 令 ,2tant x =则=-++⎰dx xx xsin cos 1cos 1 .2)sin 1ln(21arctan )1ln(211ln )1111()1)(1(21212111111222222222c x x ct t t dtt t t dtt t dx t t t t t t t ++--=++++--=+++--=-+=+⋅+-+-++-+⎰⎰⎰ 例6dx x x122+⎰⎰+=22421dx x x.1ln 811)12(81))21(ln(161)21(41)21(21)21()21()21(212222222222222c x x x x x c u u u u du u x d x +++-++=+-+--=-=+-+=⎰⎰分部积分例7.25342)2()1(25232121232c x x x dxx x x dx x x ++-=+-=-⎰⎰-分项例8dx x x dx x ]1111[2111224++-=-⎰⎰ .arctan 2111ln 41c x x x ++-+= 例9.dx x x dx x x ⎰⎰+-+=+1111.134132111c x x x dx xdx x ++-+=+-+=⎰⎰例10.⎰⎰⎰---=-+=+)24(cos )24()2cos(1sin 12x x d x dxx dx πππ.)24tan(c x +--=π 例 11c t t dt x xdx tx +=-=-⎰⎰=arcsin 11212⎪⎩⎪⎨⎧-<+>+-=.1,1arcsin 1,1arcsin x c x x c x 例12.解 .2cos 41)2sin 211(c x x dx x J I ++=-=+⎰dx x x x x x dxxx x x x J I ⎰⎰++-=++-=-222)sin (cos )2sin 211)(sin (cos sin cos )2sin 211)(sin (cos.)12ln(sin 412sin 412sin 12cos )2sin 211(c x x dx x xx +++=++=⎰解上面的联立方程可得出.,J I例13. ).(,)1ln(31)1ln(1111111,)21(332arctan 332.1,1111111332322333233略从而可解出可求出令I c x x dx x x dx x dx x x x x dx x x J I c x J I dx x x J dx x x dx x x dx x x x dx x I ++-+=+-+=+-+-=+-=-+-=++=+-+-=+-+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰例14.)1(12arcsin 12arcsin++=+⎰⎰x d xxdx x x .212arcsin )1(112arcsin1c x xxx dx x x x x ++++=+++=⎰)(分部积分例15.解 令,)21(12,211,12222dt t t t dx t t x t x x x +++=+-=⇒+-=++ .)1212(231212ln 231ln 2])12(23)12(231[2)21(12222222c x x x x x x x x x dt t t t dt t t t t I ++++++++++-+++=+-+-=+++=⎰⎰例16.解 .sin 2cos 5]cos 2sin 5[x x x x +='- 被积函数的分子是x x sin ,cos 的线性组合,故有.1,2,cos )25(sin )25()cos 2sin 5()cos 2sin 5(cos sin 12==⇒-++='-+-=+B A x A B x B A x x B x x A x x 于是.cos 2sin 5ln 2cos 2sin 5)cos 2sin 5()cos 2sin 5(2cos 2sin 5cos sin 12c x x x dx xx x x x x dx x x x x +-+=-'-+-=-+⎰⎰ 例17.解 ⎰⎰⎰-=-+-=+=4cos 13)(cos sin 3sin 2cos 22t dtx x d x xdx t x .cos 2cos 2ln 41]2121[41c xx dt t t ++-=+--=⎰ 例18.⎰⎰+=+x xdxx dx 222cos )2cos 1(cos 21 .3tan arctan 313arctan 313tan 3)(tan 2cos 1)(tan 222c x c t t dtx x d xx d +=+=+=+=+⎰⎰⎰ 例19..)1ln(18189623266332366c x x x x x dx xx x t x +++-+-=⋅⋅⋅=+-=⎰例20..15arctan 21515ln153215c x xx x x x dx x xx t x x+-------+-=⋅⋅⋅=---=--⎰例21..]1ln [arctan 2112sin 22c x x x x x dx tx t +-++=⋅⋅⋅=-+=≤⎰π 例22.,11ln 21211222tan 232c x x x x x dxx tx t +++-+-=⋅⋅⋅=+=<⎰π例23.⋅⋅⋅=+-=⎰t e x x xe e dx232换元后有理函数积分例24..1arcsin arcsin 2c x x x xdx +-+=⎰分部积分例25..)(c e dx e e dx exxx e xe xe +==⎰⎰+例26.”)妙用“1(cos sin 1ln cos sin 1)cos sin 1(cos sin 12cos c x x x x x x d x x xdx ++=++=+⎰⎰例27..)13()(2dx e x x e x x x x +++⎰.])[(32])[()()13(])[(23222322c e x x e x x d e x x e x x e x x x x x e ++=++=∴++='+⎰原式例28..11)1(arctan .)1(arctan 2111arctan22x x c x dx x x +-='+-=+⎰例29.=++-=+⎰⎰xb x a x b x a d a b dxx b x a x22222222222222sin cos )sin cos (1sin cos 2sin .2sin )()sin cos (.sin cos 2222222222222x a b x b x a c x b x a ab -='+++-例30.)ln ()ln (1)ln (ln 1)ln (ln 12222x xx d xx x dxxx x x xdx x x x ---=--=--⎰⎰⎰ .ln ln 1c x x xc xx x +-=+-=例31..1212ln2211)1(22sin 22c xx xx xdxt x +---+-=-+⎰=例32..111)1(22tan 2323c x x dx x x tx ++++=+=⎰例33..313222sec 0422c x a x a dx x a x t a x a +⎪⎪⎭⎫⎝⎛-⋅=-=>⎰例34dt tt t dt t t x dxtx ⎰⎰⎰--=+=-+=22sin 2cos 1cos cos cos 1cos 11.arcsin 112c x x x x ++-+-=例35..ln 212ln 141)1(2)1()2(72717c x x dt t ttx x dxtx +++-=-⋅+=+⎰⎰=例36..13)12(2)431(]43)21[()1(2232121232232c xx x t tdt x dxx x dx tx ++++=+-=++=++⎰⎰⎰=+例37..22)(212)2(2222c e x x dx e x x x e x dx x e x x xx x ++-='+++-=+⎰⎰ 例38..)2ln(201ln 21)2()2(101010910c x x x x dx x x x dx ++-=+=+⎰⎰ 例39..1ln 72ln )2()1()1()1(71076777c x x x x dx x x x x dx x ++-=+-=+-⎰⎰ 例40..)1ln (1)()111(111112c x x nx d x n dx x x x x dx x n n n n n n n n n ++-=+-=+⋅=+⎰⎰⎰-- 例41..)1(121003dx x x ⎰-+9899111003)1(493)1(1331)1(12----=-+=-⎰x x dx x x u x例51. 求,))((dx x b a x ⎰-- 其中.b a < 解 由配方得2,)2())((22a b R b a x R x b a x -=+--=--其中,令,2b a u x ++=则有原式 .))((4)(2)(2arcsin )(41cos sin 22)2sin 412(22cos 1cos 2222222sin 22c x b a x b a x ab b a x a bc t t R t R c t t R dt t R tdt R du u R t R u +--+-+-+--=++=++=+==-=⎰⎰⎰= 例52.设)(x f 有一个原函数,sin xx 求.)(⎰'dx x f x 解 用分部积分法有 (*))()()()(⋅⋅⋅⋅⋅⋅-=='⎰⎰⎰dxx f x xf x xdf dx x f x.sin cos ]sin [])([)(sin )(211xx x x c x x dx x f x f c x x dx x f -='+='=⇒+=⎰⎰ 代入(*)有 1sin sin cos )(c x x x x x dx x f x ---='⎰, 即 .sin 2cos )(c x x x dx x f x +-='⎰。
不定积分经典例题
不定积分经典例题1. 计算不定积分:$\int \frac{1}{x^2} dx$解:该不定积分可以通过直接计算得到。
由于$\frac{1}{x^2}$ 的原函数是 $-\frac{1}{x}$,因此$$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$$其中 $C$ 是常数。
2. 计算不定积分:$\int (2x+3)dx$解:使用不定积分的线性性质,可以将被积函数分解成两个分别可求积的部分。
所以$$\int (2x+3)dx = \int 2x dx + \int 3 dx = x^2 + 3x + C$$其中 $C$ 是常数。
3. 计算不定积分:$\int e^x \sin(x) dx$解:可以通过分部积分法来计算该不定积分。
设 $u = e^x$,$dv = \sin(x) dx$,则 $du = e^x dx$,$v = -\cos(x)$。
根据分部积分公式,$$\int e^x \sin(x) dx = -e^x \cos(x) - \int -e^x \cos(x) dx$$然后再次使用分部积分法,可得$$\int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x) - \int e^x \sin(x) dx$$将右侧的不定积分移到左侧,可以得到$$2 \int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x)$$因此$$\int e^x \sin(x) dx = \frac{-e^x \cos(x) + e^x \sin(x)}{2} + C$$其中 $C$ 是常数。
这只是一些经典的不定积分例题,当然还有很多其他的例题。
希望这些例题能够帮助你理解不定积分的计算方法。
不定积分的典型例题50题
cos 2 xdx
例 14. arcsin 2 x dx arcsin 2 x d ( x 1) 1 x 1 x 例 15. I 例 16.
dx x x2 x 1 .
12 sin x cos x dx. 5 sin x 2 cos x sin xdx . 例 17. 3 sin 2 x
1 dx. 例 13. I 1 x3
d (1 sin x cos x) 1 sin x cos x ln 1 sin x cos x c (妙用“ 1”) 2 x x ( x x ) e ( x 3 x 1 ) e dx . 例 27.
例 26.
1 sin x cos x
(x
4
x dx. 1) ( x 4 x 2 )
2
例 4. 例 5.
x15 x8 1 x8 1 1 8 7 dx x dx dx ( x8 1)2 ( x8 1)2 8 ( x8 1) 2
1 cos x dx. 1 cos x sin x
dx. 分子分母同乘( x 1 x )
1
1 x2
x 1
1 cost dt
cost
cost cos t dt 1 sin xdx 2 1 cos t x x x 2 2 x 例 45. dx sin 2 cos 22sin sin x cos x cos dx 2 dx 2 csc 2 xdx cot x c 3 sin 3 x 2 sin2 x
例 6. x 2 x 2 1dx
1 1 1 1 dx [ ]dx 例 8. 4 2 1 x 2 1 x 1 x2
不定积分典型例题
例例1812.2
xx44 11xx22
ddxx
xx14141x1x2211ddxx
((xx22111)1)((xxx2x22211))11ddxx
(x2
1 1 )dx 1
1 x2
3
x3xarctgxC。
例9.某厂生产某种产品,每日生产的产品的总成 本 y 的变化率是日产量 x 的函数 y 7 25 ,已知固定
例9
求
x (1 x)2 dx.
解
x
(1 x)2 dx
x 11 (1 x)2 dx
[1 (1
x)
1 (1 x)2
]d (1
x)
1 ln( x 1) C1 (1 x) C2
ln( x 1) 1 C (1 x)
例11 求 sin3 xdx
解 sin3 xdx sin2 x sin xdx (1 cos2 x)d cos x (cos x 1 cos3 x) C
ssiinn
22 xx 22
ddxx
11 22
((11
ccooss
xx))ddxx
11 22
((xx
ssiinn
xx)) CC
。。
例71.0
1
dx 4
sin 2 x cos 2 x
1 sin 2
x
dx
4ctg
xC。
22
)
1 x
dx
ln|x|(C1,1)
1 1 x2
dx arctgxC。
dx.
解
1
1 cos
x
dx
1 cos x 1 cos2 x
dx
1 cos x sin2 x
不定积分例题(含过程及解析)
例题1dx e x x ⎰+)12( ce e x dxe e x x d e e x de x x x xx x x x+-+=•-+=+-+=+=⎰⎰⎰2)12(2)12()12()12()12( 根据分部积分法⎰⎰-=vdu uv udv ,(2x+1)为u ,e x 为v 。
(确定u 和v 的口诀:对反幂三指;对——对数函数、反——反函数、幂——幂函数、三——三角函数、指——指数函数)2x+1为幂函数,e x 为指数函数。
例题2dx xe x ⎰-ce xe dxe e xe dx e xe xde x x x x x x x++-=•+-=--=-=-------⎰⎰⎰1)(x e -是一个复合函数,其导数应为1-•-x e例题3⎰xdx arctanc x x x xd xx x dx x x x x xxd x x ++-=++-=+-•=-•=⎰⎰⎰)1ln(21arctan 11121arctan 1arctan tan arctan 2222arctanx ’=1/1+x 2,在这里会用到反三角函数的导数公式。
其它的反三角导数是arcsinx ’=211x -、arccosx ’=211x --、arccotx ’=211x +-例题4dx x x ⎰2cos 2sin|cos |ln 2cos cos 12cos sin 2cos cos sin 22x x d xdx xx dx xx x -=-===⎰⎰⎰这里用到二倍角公式,如下:Sin2x=2sinxcosxCos2x=2cos 2x-1=1-sin 2x-1例题5dx x x ⎰++2cos 1sin 12c x x x xdx dx dx x dx xx +-=-=-=-=⎰⎰⎰⎰21tan 21sec 121cos 1cos 2cos 22222 这里除了用到二倍角公式,还会用到sin 、cos 、sec 、csc 间的相互转化,sinx 和cscx 互为倒数、cosx 和secx 互为倒数。
不定积分100题
不定积分100题(附答案)容易题1—60,中等题61—105,难题106—122. 1.设⎰-=1tan cos 2x x dxI , 则=I ( ). (C).;)1(tan 221C x +-2.设⎰-=12x xdx I ,则=I ( )。
(D).C x+-1arcsin. 3.设⎰=x dxI sin ,则=I ( ). (B).C x c x +-tan csc ln4.设⎰=axdx I 2 ,则=I ( )。
(A).C ax+2; 5.设⎰++=dx e e I xx 113,则=I ( ). (B).C x e e x x ++-2216.设⎰=xdx I tan ,则( ). (D).C x +-sin ln . 7.设⎰=xdx I ln 则( )。
(D).C x x x I +-=ln 8.设⎰=xdx I arctan , 则=I ( ). (B).C x x x ++-1ln arctan 29.设 ⎰=xdx x I cos sin ,则( ). (A).C x I +-=2cos 4110.设⎰+=21x dx I , 则=I ( ). (B)C x x +++21ln11.设211)(xx f -=,则的一个原函数=)(x F ( )。
(A).x x -+11ln 21 12.设)(x f 为可导函数,则( )。
(C).⎰=')())((x f dx x f13.设⎰=xdx I arcsin ,则( ). (C).C x x x +-+21arcsin14.=+⎰x x dx sin 2)2sin(( ) (B )c x x ++|2tan |ln 412tan 812 15.=-⎰)4(x x dx ( ) (C )c x+2arcsin2 16.=-⎰dx x x 21ln ( ) (B )c xx+-ln17.设x xsin 为)(x f 的一个原函数,且0≠a ,则⎰dx a ax f )(=( ) (A )xa ax 3sin19.欲使⎰⎰=dx x f dx x f )()(λλ,对常数λ有何限制?( ) 0≠λ。
(完整版)不定积分练习题及答案
不定积分练习题211sin )_________2x dx -=⎰一、选择题、填空题:、( 22()(ln )_______x e f x x f x dx =⎰、若是的原函数,则:3sin(ln )______x dx =⎰、2224()(tan )sec _________;5(1,1)________;6'()(),'()_________;1()7(),_________;18()arcsin ,______()x x xe f x f x xdx y F x f x f ax b dx f e f x dx c dx xe xf x dx x c dx f x --===+==+==+=⎰⎰⎰⎰⎰⎰、已知是的一个原函数,则、在积分曲线族点的积分曲线是、则、设则、设则____;9'(ln )1,()________;10()(,)(,)()______;()()()()11()sin sin ,()______;12'()(),'()(),()_____()()()()()(f x x f x f x a b a b f x A B C D xf x dx x x xdx f x F x f x x f x f x dx A F x B x C x κϕϕ=+==-====⎰⎰⎰、则、若在内连续,则在内必有导函数必有原函数必有界必有极限、若则、若则)()()()c D F x x cϕ+++13()[()]()()[()]()()()()()()()dA d f x dx f xB f x dx f x dx dxC df x f xD df x f x c====+⎰⎰⎰⎰、下列各式中正确的是: (ln )14(),_______11()()ln ()()ln x f x f x e dx xA cB x cC cD x cxx-==++-+-+⎰、设则:15______1()()arcsin ()2arcsin(21)2()arcsin(21)A c B cC x cD x c=+-+-+16()[,][,]()()()()()()()()'()f x a b a b A f x B f x C f x D f x f x 、若在上的某原函数为零,则在上必有____的原函数恒等于零;的不定积分恒等于零;恒等于零;不恒等于零,但导函数恒为零。
不定积分100道例题及解答
不定积分100道例题及解答摘要:一、引言1.1 积分的概念1.2 不定积分的概念二、不定积分的性质2.1 不定积分的存在性2.2 不定积分的线性性2.3 不定积分的连续性三、不定积分的计算方法3.1 基本积分公式3.2 反常积分3.3 复合函数积分3.4 隐函数积分3.5 参数方程积分四、100 道不定积分例题及解答4.1 例题1-104.2 例题11-204.3 例题21-30...4.10 例题91-100五、结论5.1 不定积分在实际问题中的应用5.2 不定积分的技巧和策略正文:一、引言1.1 积分的概念积分学是微积分学的一个重要分支,它主要研究如何求解一个函数在某一区间上的累积效应。
积分可以形象地理解为“求曲边梯形的面积”,即将函数的图像与坐标轴所围成的曲边梯形面积分解为无数个无穷小的矩形,然后求和得到总面积。
1.2 不定积分的概念不定积分,又称为一元函数的不定积分,是指求解一个函数f(x) 在区间[a, b] 上的原函数F(x)。
原函数F(x) 的导数等于原函数f(x),即F"(x) =f(x)。
不定积分的目的是找到一个函数F(x),使得F"(x) = f(x),并在给定的区间[a, b] 上求解该函数。
二、不定积分的性质2.1 不定积分的存在性根据牛顿- 莱布尼茨公式,几乎所有的连续函数都存在原函数,即具有不定积分。
然而,存在一些特殊的函数,例如非连续函数、含有分段的函数等,它们可能没有不定积分。
2.2 不定积分的线性性不定积分具有线性性,即对于任意的两个函数f(x) 和g(x),它们的和的不定积分等于各自不定积分的和,即∫(f(x) + g(x)) dx = ∫f(x) dx + ∫g(x)dx。
2.3 不定积分的连续性如果一个函数在某一区间上连续,那么它的不定积分在该区间上也是连续的。
三、不定积分的计算方法3.1 基本积分公式基本积分公式包括幂函数、三角函数、指数函数、对数函数等的积分公式,通过记忆这些公式,可以简化不定积分的计算过程。
典型例题 不定积分
x sin x 例9 求 dx. 1 cos x
解
x x x 2 sin cos 2 2 dx 原式 2 x 2 cos 2 x x dx tan dx 2 2 x 2 cos 2 x x x x tan tan dx tan dx 2 2 2 x x tan C . 2
3 x 3 x 3 x d ( ) 令( ) t 1 ( ) dt 2 1 2 2 原式 dx 3 t2 1 3 2x 3 3 2x ln ( ) 1 ln ( ) 1 2 2 2 2
1 t 1 1 1 ln C ( )dt 3 t 1 t 1 2(ln 3 ln 2) t 1 2 ln 2 1 3x 2x ln x C. x 2(ln 3 ln 2) 3 2
2018/11/3
13
f ( x ) f 2 ( x ) f ( x ) ]dx. 例10 求 [ 3 f ( x ) f ( x)
解
原式
f ( x ) f 2 ( x ) f 2 ( x ) f ( x ) dx 3 f ( x)
f ( x ) f 2 ( x ) f ( x ) f ( x ) dx 2 f ( x ) f ( x)
常见类型:
1. f ( x
n 1
) x dx;
n
f (ln x ) 3. dx; x
5. f (sin x ) cos xdx;
f ( x) 2. dx; x 1 f( ) x dx; 4. 2 x
6. f (a x )a x dx;
f (arctan x ) 8. dx; 2 1 x
1
不定积分计算例题
高等数学二、计算题(共 200 小题,)1、设x x x f +=12)(,求)(x f 的定义 2、设xx x f -+=11)(,确定)(x f 的定义域及值域。
3、设)ln(2)(22x x x x x f -+-=,求)(x f 的定义域。
4、的定义域,求设)(sin 512arcsin)(x f x x x f π+-=。
5、的定义域,求设⎪⎭⎫ ⎝⎛++-=x f x f x x x f 1)(22ln )(。
6、的定义域求函数22112arccos )(x x xx x f --++=。
7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(<m ,求)(x F 的定义域。
8、的定义域,求设 )(16sin )(2x f x x x f -+=。
9、的定义域,求设)(12)(2x f xx x f --=。
10、设,求的定义域f x x x f x ()lg ()=+256。
11、设,求的定义域f x x xf x ()arctan ()=-+2512。
12、 ,2||)1(110==-++===x a y x y x f a y 及满足条件,设.)(y x f 及求 13、,55lg)(-+=x x x f 设的定义域;确定)()1(x f []的值,求若)2(lg )()2(g x x g f =。
14、),00()(≠≠++=abc x c bx xa x f , 设成立,对一切,使求数0)()(≠=x x f x m f m 。
15、1)()1(3)2(3)3()(2+-+++-+++=x f x f x f x f c bx ax x f ,计算设的值,其中cb a ,,是给定的常数。
16、)1()11(1)(2-≠+-+=x x x f xx x f ,求设。
17、)()0(13)1(243x f x x x x x x x f ,求 设≠+++=+。
不定积分典型例题48500精品
((xx
ssiinn
xx))
CC
。。
例71.0
1
dx 4
sin 2 x cos 2 x
1 sin 2
x
dx
4ctg
xC。
22
)
1 x
dx ln|x|(C1,1)
1 1 x2
dx arctgxC。
例例1812.2
xx44 ddxx xx441111ddxx ((xx2211))((xx2211))11ddxx
解 sin3 xdx sin2 x sin xdx (1 cos2 x)d cos x (cos x 1 cos3 x) C
3
正弦余弦三角函数积分偶次幂降幂,齐次幂拆开 放在微分号
例12 求
1
1 e
x
dx
.
解
1
1 e
x
dx
(1
1 e x
)e
tan x x C
x2+1, x<0.
例4. 求 f (x)dx,其中 f (x)=
1, 0 x 1 1, x 1 x
解: f (x)在(,0),[0,1]和[1,]内分别有
原函数
x3 3
x,
x
C1和ln
x
C2
(C1 , C2待定),
作函数
x3 x, x 0 3
(sec2 x 1)2 sec2 xd secx
(sec6 x 2sec4 x sec2 x)d secx
1 sec7 x 2 sec5 x 1 sec3 x C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而要使F(x)成为f (x)在R上的原函数,必须 F(x)连续,从而C1=0,C2=1,因此满足 条件的函数为
F(x)=
x3 x, x 0 3 x, 0 x 1
ln x 1 x 1.
故
f (x)dx F(x) C
)
axdx a x ln a
C(,6)
cosxdx sinxC, sec2 dx tgxC,
x 成本为1000元,求总成本与日产量的函数关系。
解:因为总成本是总成本变化率y的原函数,所以
y (7 25 ) dx 7x 50 x C 。 x
已知当 x0 时,y1000,因此有 C =1000,
于是总成本 y 与日产量 x 的函数为 y 7x 50 x 1000。
作业: P137:5 (2)(5) (10) (15).
例9 求
x (1 x)2 dx.
解
x
(1 x)2 dx
x 11 (1 x)2 dx
[1 (1
x)
1 (1 x)2
]d (1
x)
1 ln( x 1) C1 (1 x) C2
ln( x 1) 1 C (1 x)
例11 求 sin3 xdx
解 sin3 xdx sin2 x sin xdx (1 cos2 x)d cos x (cos x 1 cos3 x) C
1 ln u C 2
1 ln(3 2x) C. 2
例8 求
x(1
1 5
ln
dx. x)
解
1 dx x(1 5ln x)
1
1 5ln
d(ln x
x)
1 5
1
1 5l
n
d x
(1
5
ln
x)
u
1 2ln
1 lnu C
x
1l
1 5
1 u
du
n(1 5ln
x)
C
5
5
熟练以后就不需要进行 u ( x) 转化了
x2+1, x<0.
例4. 求 f (x)dx,其中 f (x)=
1, 0 x 1
1, x 1 x
解: f (x)在(,0),[0,1]和[1,]内分别有
原函数
x3 3
x,
x
C1和ln
x
C2
(C1 , C2待定),
作函数
x3 x, x 0 3
F(x)= x C1 0 x 1
ln x C2 x 1
解
1
1 cos
x
dx
1 cos x 1 cos2 x
dx
1 cos x sin2 x
dx
1
1
sin2 x dx sin2 x d(sin x)
cot x 1 C. sin x
例15 求 sin2 x cos5 xdx.
解 sin2 x cos5 xdx sin2 x cos4 xd(sin x)
sin2 x (1 sin2 x)2 d(sin x)
(sin2 x 2sin4 x sin6 x)d(sin x)
3
正弦余弦三角函数积分偶次幂降幂,齐次幂拆开 放在微分号
例12 求
1
1 e
x
dx
.
解
1
1 e
x
dx
(1
1 e x
)e
x
dx
1
ex ex
dx
ex
1
d(x)
de x
1 ex
1 ex
1
d (1 e x )
1 ex
ln(1 e x ) C .
例13 求 tan5 x sec3 xdx
)
1 x
dx
ln|x|(C1,1)
1 1 x2
dx arctgxC。
例例1812.2
xx44 11xx22
ddxx
xx14141x1x2211ddxx
((xx22111)1)((xxx2x22211))11ddxx
(x2
1 1 )dx 1
1 x2
3
x3xarctgxC。
例9.某厂生产某种产品,每日生产的产品的总成 本 y 的变化率是日产量 x 的函数 y 7 25 ,已知固定
(
a
1
x
a
1
x
)dx
1 2a
d(a x) ax
d(a x) ax
1 2a
ln
|
a
x
|
ln
|
a
x
|
C
1 2a
ln
a a
x x
C
例7 求
3
1 2
dx. x
解
1 1 1 (3 2x),
3 2x 2 3 2x
3
1 dx 2x
1 2
3
1 2
x
(3
2
x)dx
u 3 2x
1 2
1du u
例56. (ex3cosx)dx ex3sinxC。
例例699.
ssiinn
22 xx 22
ddxx
11 22
((11
ccooss
xx))ddxx
11 22
((xx
ssiinn
xx)) CC
。。
例71.0
1
dx 4
sin 2 x cos 2 x
1 sin 2
x
dx
4ctg
xC。
22
解 tan5 x sec3 xdx
tan4 x sec2 x secx tan xdx
(sec2 x 1)2 sec2 xd secx
(sec6 x 2sec4 x sec2 x)d secx
1 sec7 x 2 sec5 x 1 sec3 x C
5
3
例14
求
1
1 cos
x
dx.
例2. 求 xex21dx
解:观察 xex21 中间变量u=x2+1
但 u=x2+1的导数为
u = 2x
在被积函数中添加2个因子
因此
1 2
2x
ex2
1
u' u
xex21dx 1ex21C 2
f
( ( x)) ' ( x)dx
u=(x) du dx
f
(u)du
例3. 求 x3 x4 5dx
优选不定积分典型例题
例2. 求
1 x x x(1 x2
2
)
dx
解:
1 x x2 x(1 x2 )
dx
1
dx x
2
dx x
arctan x ln | x | C
例3. 求 tan2 xdx 解: tan2 xdx
(sec2 x 1)dx sec2 xdx dx
tan x x C
解:
x4
5
x3dx
1 4
x4 5 4x3dx
u
u du
u x4 5 1
1
u 2du
4
1 1 u 121 C 4 1 1
1 6
(x4
3
5) 2
C
2
例4. 求 dx (a 0) a2 x2
解:能想出原函数的形式吗?
dx arcsin x C 1 x2
记得这个公式吗?如何用这个公式?
a
dx 1 (x)2
dx a
1 (x)2
a
a
arcsin
x a
C
例5. 求 sin2 xdx.
解:
sin
2
xdx
1
cos 2x 2
dx
1 2
dx
1 2
cos
2 xdx
1 2
x
1 4
cos
2 xd (2 x)
1 x 1 sin 2x C 24
例6
求 dx a2x2
解:
a
dx 2x
2
1 2a