(新整理)最新北师大版九年级上相似三角形讲解学习

合集下载

北师大版初三上数学相似三角形(一)

北师大版初三上数学相似三角形(一)

相似三角形【知识要点】1.对应角相等,对应边成比例的三角形叫做相似三角形。

2.相似三角形的判定:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

②如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

③如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

3.相似三角形具有下述性质:①相似三角形对应角相等、对应边成比例;②相似三角形对应高、对应中线的比和对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方。

4.熟悉如图中形如“A”型,“X”型,“子母型”等相似三角形。

【典型例题】例1.在梯形ABCD中,AD∥BC,对角线AC,BD相交于O,BM∥CD交CA的延长线于M,求证:OC2 =OA·OMBGD例2 . 如图,三个正方形组成一个矩形,AB=AG=GH=HD=a ,求证:∠AFB+∠ACB=45°。

例3 . 已知CD 是直角三角形ABC 斜边AB 上的高,E 是CD 的中点,AE 的延长线交BC 于F ,AB FG ⊥,垂足是G ,求证:FB FC FG ∙=2ABCDE G H例4.如图,已知△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB 。

(1)求证:△ADE ∽△EFC 。

(2)如果△ADE 和△EFC 的面积分别是20和45,求四边形BFED 的面积。

例5. 如图所示,△ABC 中AB=AC ,D 为CB 的延长线上一点,E 为BC 延长线上一点,满足AB 2=DB ·CE 。

(1)求证:△ADB ∽△EAC ; (2)若∠BAC=40°,求∠EAD 的大小例6.已知:如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F求证:△AEF ∽△ACBADBCE例7.如图,已知梯形ABCD 中,AD ∥BC ,EF 过梯形对角线的交点O ,且EF ∥AD .(1)求证:OE=OF ; (2)求证:EFBC AD 211=+。

北师大版九年级上册数学教案:4.3相似三角形

北师大版九年级上册数学教案:4.3相似三角形
-给出实际例子,计算相似三角形的面积比。
2.教学难点
-难点内容:相似三角形的判定和应用。
-难点解析:
-学生可能会在判断两个三角形是否相似时,对判定条件的掌握不够准确。
-在应用相似三角形性质解决实际问题时,学生可能难以建立数学模型。
-教学方法:
-对于判定难点,可以通过多媒体动画或实物模型,直观演示相似三角形的形成过程,帮助学生理解判定条件。
同学们,今天我们将要学习的是《相似三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量不可到达物体高度的情况?”(如测量旗杆高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的奥秘。
(二)新课讲授(用时10分钟)
1.教学重点
-核心内容:相似三角形的定义、判定方法及性质。
-重点讲解:
-相似三角形的定义,强调对应角相等和对应边成比例的概念。
-相似三角形的判定方法,特别是AA、SAS、SSS相似定理的应用。
-相似三角形的性质,包括对应边、对应高、对应角平分线的比相等,以及面积比相等。
-举例解释:
-通过具体图形,展示如何判断两个三角形是否相似。
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是对应角相等,对应边成比例的两个三角形。它在几何学中具有重要作用,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过测量两个三角形的对应边和角,判断它们是否相似,并利用相似三角形的性质解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的判定方法和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。

北师大九年级数学上第四章相似三角形的性质及判定讲义

北师大九年级数学上第四章相似三角形的性质及判定讲义

教学过程前课回顾1. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 2. 相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方错题重现1.若3x-7y=0, 则y∶x=_______, =________。

2.若a=7, b=4, c=5, 则b, a, c 的第四比例项d=_______。

3.若线段a=4, b=6, 则a, b 的比例中项为________。

4.已知:===, 则=______,=_________。

5.已知:a∶b∶c=3∶4∶5, a+b -c=4, 则4a+2b-3c=________。

知识详解知识点二:相似三角形的判定 相似三角形的几种基本图形:A C E DB①E DCB A ②A③C BDE D BCA⑥A CB④D A CDBP⑤图①为“A ”型图,条件是DE ∥BC ,基本结论是△ADE ∽△ABC ; 图②为“X ”型图,条件是ED ∥BC ,基本结论是△ADE ∽△ABC ; 图③,图④是图①的变式;图⑤是图②的变式;图⑥是“母子”型图,条件是CD 为斜边上的高,基本结论是△ACD ∽△ABC ∽△CBD 。

典型例题作辅助线构造“A ”“X ”型例1、如图,1==DEAECD BD ,求BF AF 。

(试用多种方法解)方法一:方法二:方法三:例2、如图,AD 是△ABC 的中线,E 是AD 上的一点,且AE=31AD ,CE 交AB 于点F ,若AF=1.2cm ,求AB 的长。

九年级数学上册(北师大版)相似三角形的性质(同步课件)

九年级数学上册(北师大版)相似三角形的性质(同步课件)
【提问1】什么叫做相似三角形?
三角分别相等、三边成比例的两个三角形叫做相似三角形.
【提问2】相似三角形的判定方法有哪些?
三角形相似判定定理1:两角分别相等的两个三角形相似.
三角形相似判定定理2:两边成比例且夹角相等的两个三角形相似.
三角形相似判定定理3:三边成比例的两个三角形相似.
【提问3】你知道相似三角形的性质有哪些?

AC
A′ C′
CD
= C′ D′ =
1
2
∴ CD = 2C ′ D′ = 3cm
4)由此你发现相似三角形还有哪些性质?
探索与思考
如图, △ ∽△ ′ ′ ′ ,相似比为,其中 、 ′′分别是 、 ′′边上的中线,问
AD 、 A′D′有什么关系呢?
解:∵ △ ∽△
【详解】解:∵AD经过△ ABC的重心,∴点D是BC中点,
∵BC=12,∴CD=BD=6,
∵GE∥BC,∴△AGE∽△ADC,
AE
AC
∵点E是AC中点,∴
解得:GE=3,故选D.
=
GE
CD
1
2
GE
6
= ,即
1
2
= ,

探索与思考
∴BD=
1
1
BC,B’D’= B’C’
3
3

AB BD
=
A′ B′ B′ D′

AB AD
=
=k
A′ B′ A′ D′
∴△ABE ∽△A' B' E' .
AB BC
=
A′ B′ B′ C′
=k
课堂小结
相似三角形的性质:
1)对应角相等,对应边成比例.

北师大版九年级上册相似三角形判定定理证明课件

北师大版九年级上册相似三角形判定定理证明课件

定 定理2:两边成比例且夹角相等的
理 证
两个三角形类似.

类似三角形
定理3:三边成比例的两个三
判定定理的
角形类似.
证明
定理的运用
再见
∴BACB=BBDE , 即:BBCE=BADB .
在△DBE和△ABC中,∠CBE=∠ABD, ∴∠CBE+∠DBC=∠ABD+∠DBC, ∴∠DBE=∠ABC且 BBCE=BADB. ∴△DBE∽△ABC.
练习 1.如图,在等边三角形ABC中,D,E,F分别是 三边上的点,AE=BF=CD,那么△ABC与△DEF类似 吗?请证明你的结论.
∴ ΔADE≌ΔA'B'C', ∴ ∠ADE=∠B',
A A'
又∵ ∠B'=∠B,
∴ ∠ADE=∠B, ∴ DE//BC, ∴ ΔADE∽ΔABC。
D
E
B
C B'
C'
∴ Δ A'B'C' ∽ΔABC
定理2:两边成比例且夹角相等的两个三角形类似.
如图,在△ABC与△A′B′C′中,已知∠A= ∠A′,
分析:由已知条件∠ABD=∠CBE, ∠DBC公用,所以∠DBE=∠ABC,要证 的△DBE和△ABC,有一对角相等,要证 两个三角形类似,可再找一对角相等,或
者找夹这个角的两边对应成比例.从已知条件中可看 到△CBE∽△ABD,这样既有相等的角,又有成比例 的线段,问题就可以得到解决.
证明:在△CBE和△ABD中,∠CBE=∠ABD, ∠BCE=∠BAD,∴△CBE∽△ABD,
2.如图,在正方形ABCD中,E是CD的中 点,点F在BC上,且FC= 1 BC.图中类似

北师大版九年级数学上册相似三角形的性质 课件

北师大版九年级数学上册相似三角形的性质 课件
ABBCCA ABBCCA
性质3
类似三角形面积的比都等于类似比的平 方。
推 理
△ABC∽△A'B'C', AB BC CA K
AB BC CA
分别作出△ABC与△A'B'C'的高AD和 A'D'
则 SABC
1 BCAD 2
1 KBCKAD
2

SABC 1 BCAD 1 BCAD
2
2
三、例题精析
类似三角形对应高的比,对应角平分线 的比,对应中线的比都等于类似比。
∵△ABC∽△A′B′C′

A B F DE
A/
C
B/ F‘ D/ E/
C/
性质2 类似三角形周长的比都等于类似比。
推 理
△ABC∽△A'B'C', AB BC CA K
AB BC CA
由合比性质可得: ABBCCA KABKBCKCAK
解:设 ED=MN=PN=x
∵△APN∽△ABC
∴PBNC
AE AD
∴x 80 x
120 80
∴x=48,∴这个正方形零件的边
长为48毫米.
【变式1-1】已知,△ABC∽A'B'C',AD 与A'D'是它们的对应角平分线,已知则 它们对应高的比为( )
【变式1-2】已知△ABC∽△A′B′C′, 在这两个三角形的一组对应中线中,如果 较短的中线为3cm,则较长的中线为()
【巩固训练5】如图,在平行四边形 ABCD中,点E在边DC上,DE:EC=3:1 ,连接AE交BD于点F,则△DEF的面积与 △DAF的面积之比为( B )

北师大版九上数学4.7相似三角形的性质知识点精讲

北师大版九上数学4.7相似三角形的性质知识点精讲

知识点总结6.相似三角形的性质相似三角形的性质★★★相似三角形的对应角相等,对应边成比例.相似三角形性质定理1★★★ 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比.相似三角形性质定理2★★★相似三角形的周长的比等于相似比.相似三角形性质定理3★★★相似三角形的面积的比等于相似比的平方.要点解析1.性质定理1和定理2可以概括为:相似三角形中对应线段(高、中线、角平分线)及周长的比都等于相似比. 即相似三角形对应高的比=对应中线的比=对应角平分线的比=周长的比=相似比.在这些比例中,只要知道任何一组线段的比,就可以求出其他对应线段的比.2.相似三角形的性质3为:相似三角形的面积比=相似比的平方,要防止出现“面积比=相似比”的错误.如果其中两个三角形相似,它们之间有怎样的性质呢?相似三角形线段的关系在相似三角形中,除了角和边外,还有三种主要线段:高线、中线,角平分线。

这些对应线段之间有怎样的关系呢?相似三角形周长和面积的关系周长比等于相似比。

面积的比等于相似比的平方。

【例】一块三角形木板,工人师傅要把它切割成:一块三角形和一块梯形,要使切割出的三角形与梯形面积之比为4:5,该怎么切割呢?同理,当DE平行于AC或AB时,也可以得到类似的结果,因此可以有三种切割方法。

相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理习题讲析△ABC的三边之比为3:4:5,与其相似的△DEF的最短边是9cm,则其最长边的长是A、5cmB、10cmC、15cmD、30cm解析:C试题分析:由△ABC的三边之比为3:4:5,根据相似三角形的对应边成比例,可得与其相似的△DEF的三边之比为3:4:5,又由与其相似的△DEF的最短边是9cm,即可求得答案。

解:∵△ABC的三边之比为3:4:5,∴与其相似的△DEF的三边之比为3:4:5,∵与其相似的△DEF的最短边是9cm,∴其最长边的长是:15cm.故选:C.如图,在△ABC中,∠C=90°,∠A=30°.在△A′B′C′中,∠C′=90°,A′C′=B′C′.能否分别将这两个三角形各自分割成两个三角形,使△ABC所分成的两个三角形与△A′B′C′所分成的两个三角形分别对应相似?若能,请设计一种分割方案;若不能,请说明理由.解析:试题分析:要想让分成的每个三角形分别对应相似.那么唯一的方法就是把各个三角形中的直角进行分割.把∠C分为45°,45°,那么两个三角形的两个角分别为30°,45°;45°,60°,把∠C′分为30°,60°,那么两个三角形的两个角分别为30°,45°;45°,60°,相应的两个三角形都有两角对应相等,那么相似.试题解析:如图所示:∵∠C=90°,∠A=30°,∠C′=90°,A′C′=B′C′,∴∠B=60°,∠A′=∠B′=45°,又∵∠ACE=∠BCE=45°,∠A′C′F=30°,∠B′C′F=60°,∴∠A=∠AA′C′F,∠ACE=∠A′,∴△ACE∽△C′A′F,∵∠B=∠B′C′F,∠B′=∠BCE,∴△BCE∽△C′B′F.(1)若四边形ABCD的对角线AC将四边形分成面积相等的两个三角形,证明直线AC必平分对角线BD.(2)写出(1)的逆命题,这个逆命题是否正确?为什么?答案。

九年级数学上册第四章图形的相似7相似三角形的性质教学课件新版北师大版

九年级数学上册第四章图形的相似7相似三角形的性质教学课件新版北师大版
解:因为DE∥BC 所以∠ADE=∠ABC, ∠AED=∠ACB 所以△A DE ∽△ABC 又因为BD=3AD 可得相似比k=AD:AB=1:2 所以S△ADE =1/4 S△ABC =12
小结 (你学到了什么呢?)
相似三角 形的性质
对应角相等、对应边成比例
对应高之比、对应中线之比、对 应角平分线之比都等于相似比 周长之比等于相似比 面积之比等于相似比的平方
归纳:相似三角形对应角的角平分线之比等于相似比。
相似三角形对应边上的中线 有什么关系呢?
A′
如右图△A B C , AE为 BC 边上的中线。
则:(1)把三角形扩大2倍后得 △A′B′C′,A′ E′为 B′C′边上
B′ A E′ C′
的中线。 △A B C 与△A′B′C′的 B E C
相似比为多少? AE 与A′ E′比是多
少?
(2)如右图两个相似三角形相似比为k,则对应边上的 中线的比是多少? 说说你判断的理由是什么? △A__E__C_ ∽△A′_E_′__C_′_
归纳:相似三角形对应边上的中线比等于相似比。
相似三角形对应高的比,对应中线的比、对应角平 分线的比都等于相似比.
课堂练习:
填空: (1)两个三角形的对应边的比为3:4,则这两个三角形的对 应角平分线的比为_____ ,对应边上的高的比为____,对应 边上的中线的比为____ (2)相似三角形对应角平分线比为0.2,则相似比为_______, 对应中线的比等于______;
3、在ΔABC中,AE是角平分线,D是AB上的一点, CD交AE于G,∠ACD=∠B,且AC=2AD.则ΔACD∽ Δ______.它们的相似比K =_______, AE ______
AG

北师大版九年级上册数学[《探索相似三角形相似的条件》知识点整理及重点题型梳理](基础)

北师大版九年级上册数学[《探索相似三角形相似的条件》知识点整理及重点题型梳理](基础)

新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习探索相似三角形相似的条件(基础)【学习目标】1. 相似三角形的概念.2.相似三角形的三个判定定理.3.黄金分割.4. 进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形的概念相似三角形:三个角分别相等,三边成比例的两个三角形叫做相似三角形.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的三个判定定理定理:两角分别相等的两个三角形相似.两边成比例且夹角相等的两个三角形相似.三边成比例的两个三角形相似.要点诠释:(1)要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.(2)此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.要点三、相似三角形的常见图形及其变换:要点四、黄金分割1.定义:一般地,点C 把线段AB 分成两条线段AC 和BC 两段,如果AC BC AB AC=,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.要点诠释:12AC AB =≈0.618AB(0.618是黄金分割的近似值,12是黄金分割的准确值). 2.作一条线段的黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB .(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. 要点诠释:一条线段的黄金分割点有两个.【典型例题】类型一、相似三角形的概念1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A 中只有一组直角相等,其他的角是否对应相等不可知;B 中什么条件都不满足;D 中只有一条对应边的比相等;C 中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】(2014秋•江阴市期中)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有 (填序号).【答案】①②④⑤.类型二、相似三角形的三个判定定理2、如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.【思路点拨】(1)利用等边三角形的性质以及相似三角形的判定方法两角对应相等的两三角形相似得出即可;(2)利用对顶角的性质以及相似三角形的性质进而判断得出即可.【答案与解析】(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF.【总结升华】此题主要考查了相似三角形的两个对应角相等的判定方法以及等边三角形的性质等知识,得出对应角关系是解题关键.举一反三【变式】如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.【答案】证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.3、(2014秋•洪江市期中)如图所示,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB 向点B以1cm/s的速度移动,点Q从点B开始沿边BC向点C以2cm/s的速度移动,如果点P、Q同时出发,经过多长时间后,△PBQ与△ABC相似?试说明理由.【思路点拨】首先设经x秒钟△PBQ与△ABC相似,由题意可得AP=xcm,BQ=2xcm,BP=AB﹣AP=(8﹣x)cm,又由∠B是公共角,分别从=或=分析,即可求得答案.【答案与解析】解:设经x秒钟△PBQ与△ABC相似,则AP=xcm,BQ=2xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣x)cm,∵∠B是公共角,∵①当=,即=时,△PBQ∽△ABC,解得:x=4;②当=,即=时,△QBP∽△ABC,解得:x=1.6,∴经4或1.6秒钟△PBQ与△ABC相似.【总结升华】此题考查了相似三角形的判定.属于动点型题目,注意掌握数形结合思想、分类讨论思想与方程思想的应用.4、网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试说明△ABC∽△DEF.【思路点拨】利用图形与勾股定理可以推知图中两个三角形的三条对应边成比例,由此可以证得△ABC∽△DEF.【答案与解析】举一反三【变式】如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=________,BC=_________;(2)判断△ABC与△DEF是否相似?并证明你的结论.【答案】(1)解:∠ABC=90°+45°=135°,(2)△ABC ∽△DEF .证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°, ∴∠ABC=∠DEF .BC FE===∴△ABC ∽△DEF .类型三、黄金分割5. 如图所示,矩形ABCD 是黄金矩形(即BC AB =215-≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【思路点拨】(1)矩形的宽与长之比值为215-,则这种矩形叫做黄金矩形.(2)要说明ABFE 是不是黄金矩形只要证明AB AE =215-即可. 【答案与解析】矩形ABFE 是黄金矩形. 理由如下:因为AB AE =ABED AB AD AB ED AD -=- =21512151)15)(15()15(21152-=-+=-+-+=-- 所以矩形ABFE 也是黄金矩形.【总结升华】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法.举一反三:【变式】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示,(1)求AM ,DM 的长,(2)试说明AM 2=AD ·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【答案】(1)∵正方形ABCD 的边长是2,P 是AB 中点,∴AD =AB =2,AP =1,∠BAD =90°,∴PD =522=+AD AP 。

相似三角形的判定 数学北师大版九年级上册

相似三角形的判定 数学北师大版九年级上册
初中数学北师大版九年级上册
第四章 图形的相似
4 探索三角形相似的条件
第1课时 相似三角形的判定(1)
类比引入
可否用比较少的条件来判定三角形相似呢? 类比全等三角形
相似多边形
各角分别相等、各边成比例
相似三角形
三角分别相等、三边成比例
复习回顾
[——北师版 七年级 数学下册 教材P93、P98、P101、P103]
A
C B A'
C' B'
例1 如图,D、E分别是△ABC的边AB和AC上的点,
DE∥BC,AB=7,AD=5,DE=10,求BC的长. A
平行
角相等
△相似
解:∵ DE∥BC,
D
∴∠ADE=∠B,∠AED=∠C.
B
∴△ADE∽△ABC (两角分别相等的两个三角形相似).
∴ AD DE .
AB BC
CP AC
3. 如图,画一个三角形,使它与△ABC相似,且相 似比为1:2.
A
E
B
F
C
①取AB、BC的中点 E、F,连接EF. 则△ABC∽△EBF, 且相似比为1:2
3. 如图,画一个三角形,使它与△ABC相似,且相
似比为1:2.
E
A
则△ABC∽△EBF,
且相似比为1:2
B
C
F
②分别延长AB、BC,使EB=2AB,FB=2CB.
AB AC
∴△ABC∽△A′B′C′
B′
A
C A′
C′
例 如图,D,E分别是△ABC的边 AC ,AB上的点,AE=1.5,
AC=2,BC=3,且 AD ,3 求DE的长 .
AB 4

北师大版九年级数学上册_三角形相似判定方法的汇总及选用

北师大版九年级数学上册_三角形相似判定方法的汇总及选用

三角形相似判定方法的汇总及选用一.相似三角形的判定方法:(1)定义法:对应角相等,对应边的比相等的两个三角形相似.(2)平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.(3)判定定理1:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.(4)判定定理2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.(5)判定定理3:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.注意:①在两个三角形中,只要满足两个角对应相等,那么这两个三角形相似,证明时,关键是寻找对应角;②一般地,公共角、对顶角、同角的余角(或补角)都是相等的,在证明过程中要特别注意,这一判定方法是三角形相似的最常用的方法.二.合理选择判定方法在运用相似三角形的判定定理解几何问题时,要注意定理的选择,即①已知有一角相等时,可选择判定定理2 或判定定理3;②已知有两边的比相等时,可选择判定定理1或判定定理2.还应注意形似三角形判定定理的作用,即①可以用来判定两个三角形相似;②间接证明角相等,线段成比例:间接地为计算线段长度及角的大小创造条件.例1:如图1,点D 在△ABC 的边AB 上,满足怎样的条件时,△ACD ∽△ABC ?试分别加以举例.分析:此题属于探索性问题,由相似三角形的判定方法可知:△ACD 与△ABC 已有公共角∠A,要使这两个三角形相似,可根据相似三角形的判定方法寻找一个条件即可.解:当满足以下三个条件之一时,△ACD ∽△ABC.条件一:∠ACD=∠B;条件二:∠ADC=∠ACB; 条件三:,ABAC AC AD =.2AB AD AC ⋅= 反思:本题探索的问题是相似三角形的判别方法,在探索两个三角形形似时,用分析法,可先证明△ACD ∽△ABC 然后寻找两个三角形中边的关系或角的关系即可.例2:如图2,已知△ABC 中,,900=∠C D 、E 在BC 上,且BD=DE=EC=AC ,指出图中相似三角形,并证明你的结论.分析:先利用排除法找到不可能形似的,再证明相似的,△ACE 是等腰直角三角形,所以不可能同其他三角形相似;又△ACD 是直角三角形,所以不可能和非直角三角形△ADE 、△ABD 、△ABE 相似;又△ACD 和△ACB 对应边的比不相等,所以一也不可能相似;因为∠AED=∠BEA ,所以△AED 和△BEA 可能相似.证明:设AC=CE=ED=DB=a.,2,22a EB ED a AE =⋅=.2EB ED AE ⋅= 即AEEB ED AE =.∠AED=∠BEA , △AED ∽△BEA.反思:对于具体问题,一定要灵活处理.因为此题出现三角形较多,首先要“快刀斩乱麻”去掉那些不可能相似的三角形,再来检验那些可能相似的三角形. 例3:(苏州)如图3,梯形ABCD 中.AB ∥CD .AB=2CD ,E,F 分别是AB ,BC 的中点.EF 与BD 相交于点M .(1)求证:△EDM ∽△FBM ;(2)若DB=9,求BM .分析:(1)从已知条件中易推出BE=CD,BE ∥CD,于是根据一组对边平行且相等的四边形为平行四边形,得四边形DCBE 是平行四边形.因此CB ∥DE,故可推出△EDM ∽△FBM. (2)利用(1)中的△EDM ∽△FBM ,可得,BFDE BM DM =而F 为BC 的中点,得DE=2BF,DM=2EB.故BM 为所求. 解:(1)∵E 是AB 的中点,∴AB=2EB.∵AB ∥CD,∴四边形CBED 为平行四边形,∴ CB ∥DE.∴∠DEM=∠BFM, ∠EDM=∠FBM. ∴△EDM ∽△FBM.(2) ∵△EDM ∽△FBM, ∴BFDE BM DM =.∵F 是BC 的中点,∴ DE=2BF. ∴DM=2BM,∴BM=.331=DB图2BA 图3反思:遇到有平行条件时,通常利用平行线的性质;借助平行线的性质,找相等的角来证明三角形相似.例4:如图4,已知在△ABC 中, ∠C=,900D 、E 分别为AB 、BC 上的点,且.BC BE AB BD ⋅=⋅求证:DE ⊥AB.分析:证垂直的方法很多,我们已知当一个三角形与已知直角三角形全等,那么这个三角形也是直角三角形,类似地,我们也可以通过证一个三角形与已知三角形相似来证明垂直问题,而由∠B 为公共角, .BC BE AB BD ⋅=⋅可得△ABC ∽△EBD,故问题得证.证明: ∵.BC BE AB BD ⋅=⋅∠B=∠B, ∴△ABC ∽△EBD.∴∠EDB=∠C.又∵∠C=,900∴∠EDB=.900 ∴DE ⊥AB.反思:若将题设里的BC BE AB BD ⋅=⋅与结论DE ⊥AB 交换后,该如何证明?请与同伴交流你的证明思路.图4。

北师大版九年级数学上册 相似三角形的判定与性质 讲义(Word版,无答案)

北师大版九年级数学上册  相似三角形的判定与性质 讲义(Word版,无答案)

相似三角形的判定与性质知识点一:相似三角形的判定【方法点拨】1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.【例1】已知,如图所示,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.【变式训练3】如图,四边形ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC2=AB•AD;(2)求证:△AFD∽△CFE.【变式训练4】如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC=∠DBE,∠3 =∠4.求证:(1)△ABD∽△CBE;(2)△ABC∽△DBE.知识点二:相似三角形的性质相似三角形的性质:(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.【例1】如图,在△ABC 中,若点D、E 分别是AB、AC 的中点,S△ABC=4,则S△ADE=()A.1B.2C.3D.4【变式训练1】如图,在△ABC 和△DBE 中,53AB BCDB BE==,且∠DBA=∠CBE.(1)若△ABC 与△DBE 的周长之差为10cm,求△ABC 的周长;(2)若△ABC 与△DBE 的面积之和为170cm2,求△DBE 的面积.【变式训练2】如图,D、E 分别是△ABC 的边AB、BC 上的点,DE∥AC,若S△BDE:S△CDE =1:3,求S△DOE:S△AOC 的值.相似与投影的应用1. 相似三角形的应用【例1】如图,身高1.6 米的学生小李想测量学校的旗杆的高度,当他站在C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2 米,BC=8 米,则旗杆的高度是米.【变式训练1】如图,小明用自制的直角三角形纸板DEF 测量树的高度AB.他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=40cm.EF=30cm,测得边DF 离地面的高度AC=1.5m,CD=10m,求树高AB.【变式训练2】随着人们对生活环境的要求逐渐提高,环境保护问题受到越来越多人的关注,环保宣传也随处可见.如图,小云想要测量窗外的环保宣传牌AB 的高度,她发现早上阳光恰好从窗户的最高点C 处射进房间的地板F 处,中午阳光恰好从窗户的最低点处射进房间的地板E 处,小云测得窗户距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF =3m.请根据以上测量数据,求环保宣传牌AB 的高度.2. 图形的位似画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤注:①位似中心可以是平面内任意一点,该点可在图形内,或在图形外,或在图形上(图形边上或顶点上)。

北师大版九年级上册数学《相似三角形判定定理的证明》图形的相似说课教学复习课件

北师大版九年级上册数学《相似三角形判定定理的证明》图形的相似说课教学复习课件

又∠B =∠ACD, ∴△ABC∽△DCA,
B
C
∴ BC AC .
AC AD
∴AD=25 . 4
随堂检测
3.如图,在▱ABCD中,点E在边BC上,点F在边AD 的延长线上,且DF=BE,EF与CD交于点G.
(1)求证:BD∥EF; (2)若 DG 2 ,BE=4,求EC的长.
GC 3
随堂检测
证明: (1)∵四边形ABCD是平行四边形, ∴AD∥BC. ∴DF∥BE. 又∵DF=BE, ∴四边形BEFD是平行四边形. ∴BD∥EF.
随堂检测
解:(2) ∵四边形BEFD是平行四边形,
∴DF=BE=4.
∵DF∥EC,
∴∠F=∠GEC,∠FDG=∠ECG.
∴△DFG∽△CEG.

DG DF . GC CE
或等比代换。转化思想的运用。
九年级数学北师版·上册
第四章 图形的相似
相似三角形的性质
第2课时
课件
新课引入
如果△ABC∽△A1B1C1,相似比为2,那么 △ABC与△A1B1C1的周长比是多少?面积比呢?
如果△ABC∽△A1B1C1,相似比为k,那么你能 求△ABC与△A1B1C1的周长比和面积比吗?
典型例题

AB A' B'
AC A'C'
,AD = A'B',AE = A'C', A′
∴ AB AC , 而 ∠ BAC =∠ DAE,
AD AE
∴ △ABC ∽△ADE.∴ AB BC .
AD DE

AB A' B'
BC B'C'

九年级数学上册第四章图形的相似7相似三角形的性质教学课件(新版)北师大版

九年级数学上册第四章图形的相似7相似三角形的性质教学课件(新版)北师大版

课堂练习 3、已知,在△A B C 中,DE||BC, DE:BC=3:5 则:(1)AD:DB= 3:2 .
(2)△ADE的面积:梯形DECB的面积= 9:16 . (3)△ABC的面积为25,则△ADE的面积= 9 .
课堂练习 4、如图,已知DE∥BC,BD=3AD,S△ABC =48,求: △ADE的面积。
DE h

1 ,解得DE 3

2 3
h
小试牛刀 1.已知△ABC∽△A′B′C′,BD和B′D′是它们的对应中
线, AC 3 , BD 4cm, 求BD的长? AC 2
2、△ABC∽△A′B′C′,AD和 A′D′是它们的对应 角平分线,已知AD=8cm,A′D′=3cm,求△ABC和 △A′B′C′对应高的比.
从上面可以看出当相似比=k时,面积比=___k_2 __.
归纳:相似三角形的面积比等于相似比的平方。
4×4正方形网格
A
2B
√10
√2 C
看一看: ΔABC与ΔA’B’C’有什么关系? 为什么?
相似
A’
√5
√2
B’1
C’
算一算: ΔABC与ΔA’B’C’的相似比是多少? √2 ΔABC与ΔA’B’C’的周长比是多少? √2 面积比是多少? 2 想一想:
从上面可以看出当相似比=k时,周长比=___k___
归纳:相似三角形的周长比等于相似比。
相似三角形的面积有什么关系呢?
右图(1)(2)(3)分别是边长为1、2、3的等 边三角形,它们都相似.
(2)与(1)的相似比=_____2_:_1_____, (2)与(1)的面积比=_____4_:_1_____; (3)与(1)的相似比=_____3_:_1_____, (3)与(1)的面积比=_____9_:_1_____.

北师大九年级数学上第四章相似三角形的性质讲义

北师大九年级数学上第四章相似三角形的性质讲义

相似三角形的性质一、知识点回顾1、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例。

(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

(3)相似三角形周长的比等于相似比。

以上各条可以概括为:相似三角形的对应线段之比等于相似比。

(4)相似三角形面积之比等于相似比的平方。

二、例题:例1、如图,在Rt △ABC 内有三个内接正方形,DF=9cm ,GK=6cm ,求第三个正方形的边长PQ 。

解: 设PQ=xcm ,则PK=6-x 。

∵GF=9-6=3cmRt △FGK ∽ Rt △KPQ ∴PQPKGK GF = 即:xx -=663∴x =4cm即:正方形的边长为4cm例2、如图,在△ABC 中,EF ∥BC ,且EF=32BC=2cm ,△AEF 的周长为10cm ,求梯形BCFE 的周长。

解:∵EF ∥BC∴△AEF ∽ △ABC ∴BCEFABC AEF =∆∆周长周长(相似三角形的周长之比等于相似比)∴△ABC 的周长为15cm∴梯形BCFE 的周长=△ABC 的周长-△AEF 周长+2EF=9cm例3、如图,△ABC 被DE 、FG 分成面积相等的三部分,且DE ∥FG ∥BC 。

求DE :FG :BC 。

解:∵DE ∥FG ∴△ADE ∽ △AFG∴2⎪⎭⎫ ⎝⎛=∆∆FG DE S S AFG ADE (相似三角形的面积之比等于相似比的平方)。

∵S 1=S 2∴212=⎪⎭⎫⎝⎛FG DE 即:21=FG DE 同理31=BC DE ∴DE :FG :BC=1:2:3例4、如图,矩形FGHN 内接于△ABC ,F 、G 在BC 上,N 、H 分别在AB 、AC 上,且AD ⊥BC 于D ,交NH 于E ,AD=8cm ,BC=24cm ,NF :NH=1:2,求此矩形的面积。

解:∵NH ∥BC ∴△ANH ∽ △ABC 又∵AD ⊥BC ,NH ∥FG ∴AE ⊥NHD∴BCNHAD AE =(相似三角形的对应边上的高之比等于相似比) 设NF=x ,则NH=2x ,AE=AD -ED=8-x ∴24288xx =- ∴x =4.8 ∴S 矩形FGHN =NF×NH=46.08答:矩形的面积为46.08cm 2三、训练题: 【基础与巩固】1.等腰三角形ABC 的腰的长为12,底的长为10,等腰三角形A ′B ′C•′的两边长分别为5和6,且△ABC ∽△A ′B ′C ′,则△A ′B ′C ′的周长为( ).(A )17 (B )16 (C )17或16 (D )342.两个相似多边形的一组对应边分别为3cm•和4.5cm ,•如果它们的面积和为78cm 2,那么较大的多边形面积为( ).(A )46.8cm 2 (B )42cm 2 (C )52cm 2 (D )54cm 23.顺次连接三角形三边的中点,所成的三角形与原三角形的对应高的比是( ). (A )1:4 (B )1:3 (C )1:2 (D )1:24.已知△ABC ∽△A ′B ′C ′,且AB=2A ′B ′,如果△ABC 的周长是26cm ,•那么△A ′B ′C ′的周长是______cm ;5.把一个四边形放大成与其相似的四边形,如果边长扩大为原来的10倍,•那么面积扩大为原来的________倍,如果面积扩大为原来的25倍,那么边长扩大为原来的_________倍;6.要把一根1m 长的铜丝截成两段,用它们围成两个相似三角形,且相似比为35,那么截成的两段铜丝长度的差应是______m .7.如果两个相似三角形对应高的比是1:2,那么它们的面积比是______;8.如果两个相似三角形对应中线的比等于5:6,•那么这两个相似三角形的相似比为_______;9.如果两个相似三角形的周长分别为9cm 和15cm ,•那么这两个相似三角形的对应角平分线的比为________;10.若△ABC ∽△A ′B ′C ′,AD 、A ′D ′分别是△ABC 、△A ′B ′C ′的高,AD : A ′D ′=3:4,△A ′B ′C ′的一条中线B ′E ′=16cm ,则△ABC 的中线 BE=_______cm .11.在一张比例尺为1:5 000•的地图上,•一块多边形区域的周长是72cm ,•面积是320cm 2,求这个区域的实际周长和面积.12.已知△ABC 的三边长分别为3,4,5,与它相似的△A ′B ′C ′的最大边长为15,•求△A ′B ′C ′的面积.13.如图,△ABC ∽△A ′B ′C ′,AD 、A ′D ′分别是这两个三角形的高,EF 、E•′F ′分别是这两个三角形的中位线.''''AD EFA D F F 与相等吗?为什么?14. 如图,在Rt △ABC 中,∠A=90°,AB=3cm ,AC=4cm ,以斜边BC 上距点B3cm 的点P•为中心,把AB C F G HND E这个三角形按逆时针方向旋转90°成图中的△DEF位置,•求旋转前后两个直角三角形重叠部分的面积是多少?15. 如图,△ABC∽△A′B′C′,AD、A′D′分别是△ABC、△A′B′C′的角平分线,BE、B′E′分别是△ABC、△A′B′C′的中线,AD、BE相交于点O,A′D′、B′E′相交于点O′.△AOE与△A′O′E′相似吗?为什么?16. 如图,在矩形FGHN中,点F、G在边BC上,点N、H分别在边AB、AC上,且AD⊥BC,•垂足为D,AD交NH于点E,AD=8cm,BC=24cm,NF:NH=1:2,求此矩形的面积.17. 一块直角三角形木块的面积为1.5m2,直角边AB长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示.你能用所学的知识说明谁的加工方法更符合要求吗?(加工损耗忽略不计)【拓展与延伸】1、如图,梯形ABCD中,AD∥BC,对角线BD分成两部分面积的比是1:2,EF是中位线,则被EF分成的两部分面积之比为S AEFD:S BCFE=()A、3:4B、4:5 C:5:7 D、7:92、如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若S△AOD:S△ACD=1:3,则S△AOD:S△BOC 等于()A、1:6 B、1:3 C、1:4 D、1:63、如图,DE∥BC,DE把△ABC的面积分成相等的两部分,那么DE:BC等于()A、1:2B、1:4C、2:2D、2:24、如图,将△ABC的高AD三等分,过每一个分点作底边的平行线,这样把三角形分成三部分,设这三部分的面积为S1,S2,S3,则S1:S2:S3=()A 、1:2:3B 、2:3:4C 、1:3:5D 、3:5:75、如图,在△ABC 中,∠CBA=90°,BD ⊥AC 于D ,则下面关系式中错误的是( )A 、AB 2=AD×AC B 、BD 2=AD×DC C 、AB 2=AC 2-BC 2 D 、AB 2=AC×DC6、如图,在△ABC 中,AD ⊥BC ,PQMN 为正方形,且顶点在△ABC 各边上,BC=60cm ,AD=40cm ,则正方形边长为( )A 、12cmB 、16cmC 、20cmD 、24cm7、如果两个相似三角形的对应边的比是4:5,周长的和为18cm ,那么这两个三角形的周长分别为_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(新整理)最新北师大版九年级上相似三角形①、反身性:对于任一ABC ∆有ABC ∆∽ABC ∆. ②、对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.③、传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆ (2) 、三角形相似的判定定理的预备定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 用数学语言表述是:BC DE //Θ, ∴ ADE ∆∽ABC ∆. 知识点7 、三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)、以上各种判定均适用.(2)、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)、直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.知识点8 、相似三角形常见的图形(1)E ABCD(3)DBCAE (2)CDEAB注意:相似多边形问题往往要转化成相似三角形问题去解决,因此,熟练掌握相似三角形知识是基础和关键.知识点13 、位似图形有关的概念与性质及作法1、如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫做位似图形.2、这个点叫做位似中心,这时的相似比又称为位似比.注意:(1)、位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点.(2)、位似图形一定是相似图形,但相似图形不一定是位似图形.(3)、位似图形的对应边互相平行或共线.3、位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.注:位似图形具有相似图形的所有性质.4、画位似图形的一般步骤:(1)、确定位似中心(位似中心可以是平面中任意一点)(2)、分别连接原图形中的关键点和位似中心,并延长(或截取).(3)、根据已知的位似比,确定所画位似图形中关键点的位置.(4)、顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤注意:①、位似中心可以是平面内任意一点,该点可在图形内,或在图形外,或在图形上(图形边上或顶点上)。

②、外位似:位似中心在连接两个对应点的线段之外,称为“外位似”(即同向位似图形)③、内位似:位似中心在连接两个对应点的线段上,称为“内位似”(即反向位似图形)(5)、在平面直角坐标系中,如果位似变换是以原点O为位似中心,相似比为k(k>0),原图形上点的坐标为(x,y),那么同向位似图形对应点的坐标为(kx,ky), 反向位似图形对应点的坐标为(-kx,-ky),相似三角形经典例题透析类型一、相似三角形的概念1、判断对错:(1)、两个直角三角形一定相似吗?为什么?(2)、两个等腰三角形一定相似吗?为什么?(3)、两个等腰直角三角形一定相似吗?为什么?(4)、两个等边三角形一定相似吗?为什么?(5)、两个全等三角形一定相似吗?为什么?思路点拨:要说明两个三角形相似,要同时满足对应角相等,对应边成比例.要说明不相似,则只要否定其中的一个条件.解:(1)、不一定相似.反例直角三角形只确定一个直角,其他的两对角可能相等,也可能不相等.所以直角三角形不一定相似.(2)、不一定相似.反例等腰三角形中只有两边相等,而底边不固定.因此两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,所以等腰三角形不一定相似.(3)、一定相似.在直角三角形ABC与直角三角形A′B′C′中(4)、一定相似.因为等边三角形各边都相等,各角都等于60度,所以两个等边三角形对应角相等,对应边成比例,因此两个等边三角形一定相似.(5)、一定相似.全等三角形对应角相等,对应边相等,所以对应边比为1,所以全等三角形一定相似,且相似比为1.【变式2】下列能够相似的一组三角形为( )A、所有的直角三角形B、所有的等腰三角形C、所有的等腰直角三角形D、所有的一边和这边上的高相等的三角形类型二、相似三角形的判定1、如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.2、已知在Rt△ABC中,∠C=90°,AB=10,BC=6.在Rt△EDF中,∠F=90°,DF=3,EF=4,则△ABC和△EDF相似吗?为什么?举一反三【变式1】、已知:如图正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP..【变式3】、已知:如图,AD是△ABC的高,E、F分别是AB、AC的中点.求证:△DFE∽△ABC.类型三、相似三角形的性质1、△ABC∽△DEF,若△ABC的边长分别为5cm、6cm、7cm,而4cm是△DEF中一边的长度,你能求出△DEF的另外两边的长度吗?试说明理由.2、如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.举一反三【变式1】△ABC中,DE∥BC,M为DE中点,CM交AB于N,若,求.类型四、相似三角形的应用举一反三【变式1】、如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.【变式2】、已知:如图,阳光通过窗口照射到室内,在地面上留下1.5m宽的亮区DE.亮区一边到窗下的墙脚距离CE=1.2m,窗口高AB=1.8m,求窗口底边离地面的高BC?类型五、相似三角形的周长与面积1、已知:如图,在△ABC与△CAD中,DA∥BC,CD与AB相交于E点,且AE︰EB=1︰2,EF∥BC交AC于F点,△ADE的面积为1,求△BCE和△AEF的面积.【变式2】、如图,已知:△ABC中,AB=5,BC=3,AC=4,PQ//AB,P点在AC上(与点A、C不重合),Q点在BC上.(1)、当△PQC的面积与四边形PABQ的面积相等时,求CP的长;(2)、当△PQC的周长与四边形PABQ的周长相等时,求CP的长;类型六、综合探究1、如图,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE⊥BP,P为垂足,PE交DC于点E,(1)、设AP=x,DE=y,求y与x之间的函数关系式,并指出x的取值范围;(2)、请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由.中考链接:例1、如图,已知等腰△ABC中,AB=AC,AD⊥BC于D,CG‖AB,BG分别交AD,AC于E、 F,求证:BE2=EF·EG证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF∴EC 2=EG· EF ,故EB 2=EF·EG【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证 明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到 相似三角形的基本图形中是证明本题的关键。

例2 、 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC ,∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点,∴ED=21AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3,∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD(1)又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA(2)由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD(1)∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2)由(1)(2)两式得:BA FB =AC FD,证毕。

【解题技巧点拨】本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD”过渡,使问题得证,证法二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。

例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD求证:△DBE ∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。

A B C DE FG1234ABCDABCDE F二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF •AC=BC •FE例6、已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。

相关文档
最新文档