5.线性变换
线性变换初步线性变换的定义表示与性质
线性变换初步线性变换的定义表示与性质线性变换初步线性变换是线性代数中的一个重要概念,它在数学、物理学、计算机科学等领域中都有广泛的应用。
本文将介绍线性变换的定义、表示以及一些性质。
1. 定义线性变换是指保持向量加法和数乘运算的变换。
具体来说,对于两个向量u和v以及一个数k,如果对于线性变换T有以下两个性质成立:a) T(u + v) = T(u) + T(v)b) T(ku) = kT(u)则称T为一个线性变换。
线性变换可以将一个向量空间中的向量映射到另一个向量空间中的向量。
2. 表示线性变换可以用矩阵表示。
设V和W分别是两个向量空间,假设它们的维度分别为n和m。
如果存在一个n×m的矩阵A,使得对于任意的向量u∈V,都有T(u) = Av,则称矩阵A表示线性变换T。
例如,对于一个二维平面上的旋转变换,可以通过一个2×2的矩阵来表示。
对于一个三维向量的缩放变换,可以通过一个3×3的矩阵来表示。
3. 性质线性变换具有一些重要的性质:a) 线性变换保持向量加法。
即,对于线性变换T和任意的向量u、v,有T(u + v) = T(u) + T(v)。
b) 线性变换保持数乘运算。
即,对于线性变换T和任意的向量u以及数k,有T(ku) = kT(u)。
c) 线性变换保持零向量。
即,对于线性变换T,有T(0) = 0。
d) 线性变换保持线性组合。
即,对于线性变换T和任意的向量组u₁, u₂, ..., uₙ以及对应的系数k₁, k₂, ..., kₙ,有T(k₁u₁ + k₂u₂ + ... + kₙuₙ) = k₁T(u₁) + k₂T(u₂) + ... + kₙT(uₙ)。
e) 线性变换的复合仍然是线性变换。
即,如果T₁表示线性变换S₁,T₂表示线性变换S₂,则T₁∘T₂表示线性变换S₁∘S₂。
这些性质使得线性变换在代数运算和几何变换中具有重要的应用。
总结线性变换是保持向量加法和数乘运算的变换。
第三章第五讲 线性变换
通识教育平台数学课程系列教材第一节向量空间第二节向量的线性相关性第三节向量空间的基及向量的坐标第四节欧氏空间第五节线性变换定义1一、线性变换的定义设σ是向量空间V 到向量空间W 的一个映射,如果σ满足:1) σ( α+ β) = σ( α) + σ( β),2) σ( k α) = k σ( α).其中α,β为V 中任意向量,k 为任意实数σ有上面的性质也说成σ保持向量的线性运算. 简言之,线性映射就是保持线性关系的映射.则称σ是V 到W 的一个线性映射. σ(α) 称为α在σ下的象,也可记为σα.§5 线性变换向量空间V 到其自身的线性映射称为V 中的线性变换.(1) 向量空间中变换的写法σ: ( x , y ) →( x + y , x -y ), (x , y ) ∈R 2σ( x , y ) = (x + y , x -y ), ( x , y ) ∈R 2注:(2)).()()(2121βαβασσσk k k k +=+可简写成σ(α+ β) = σ(α) + σ(β),σ(k α) = k σ( α).(3) 通常用花体字母T , S , … 来表示V 中的线性变换. 向量α在线性变换T 下的像,记为T (α) 或T α.上一页例1设A为n 阶实矩阵,对任意的n维行向量α,令T(α)=αA, α∈V.事实上, 设α, β∈V,因为T(α+ β) = (α+ β)A= αA+ βA= T(α) + T( β).T(kα) = ( kα)A = k (αA)= k T( α)故T是R n中线性变换.例2设V 是一向量空间,λ∈R . 对任意的α∈V ,令T (α) = λα,则T 是V 中的一个线性变换.所以T 是V 中的线性变换. 称这种变换为数乘变换.E (α) = α, O (α) = 0.上一页事实上, 设α, β∈V ,k ∈R ,因为T (α+ β) = λ(α+ β)= λα+ λβ= T (α) + T ( β).T (k α) = λ( k α)= k (λα)= k T (α)特别地,当λ= 1 时,T (α) = α,T 称为恒等变换,记为E ;当λ= 0时,T (α) = 0,T 称为零变换,记为O ,即例3R 3 中σ( x , y , z ) = (x , y , 0) 是线性变换.事实上, 设α= ( x 1, y 1, z 1) , β=( x 2, y 2, z 2)σ(α+ β) = σ( x 1+ x 2, y 1 + y 2, z 1+ z 2 )= ( x 1+ x 2, y 1 + y 2, 0)= ( x 1, y 1, 0) + ( x 2, y 2, 0)= σ(α) + σ( β).证σ(k α) = σ(k x 1, k y 1, kz 1 )= ( k x 1, k y 1, 0)= k (x 1, y 1, 0)= k σ( α).故σ( x , y , z ) = (x , y , 0) 是R 3 中线性变换,称之为R 3 中向xOy 面的投影变换.x y z ( x , y , z )(x , y , 0)0上一页例4在R 2 中,设0≤ θ<2π, 令σ:(x , y )→(x cos θ-y sin θ, x sin θ+ y cos θ)则σ是R 2的一个线性变换.称线性变换σ是绕原点按逆时针方向旋转θ角的旋转变换.xy ( x , y )0θ事实上,由σ( (x , y )+(x 1 , y 1))=σ(x +x 1, y +y 1)证上一页)cos sin ,sin cos (θθθθy x y x k +-=)cos sin ,sin cos (θθθθky kx ky kx +-=),()),((ky kx y x k σσ=).,(),(11y x y x σσ+=)cos sin ,sin cos (θθθθy x y x +-=)cos sin ,sin cos (1111θθθθy x y x +-+)]cos )(sin )(,sin )(cos )[(1111θθθθy y x x y y x x ++++-+=二、线性变换的性质和运算§5 线性变换定理1设T 是V 中的线性变换,则(1)T 把零向量变到零向量,把α的负向量变到α的像的负向量,即T ( 0 ) = 0, T ( -α) = -T (α).(2)T 保持向量的线性组合关系不变,即)(2211s sk k k ααα+++ T = k 1T (α1)+k 2T (α2)+…+k s T (αs )(3)T 把线性相关的向量组变为线性相关的向量组,即若α1, α2, …, αs 线性相关,则T (α1 ), T (α2), …, T (αs )也线性相关.定义2设L(V) 是向量空间V中的全体线性变换的集合,定义L(V)中的加法、数乘与乘法如下:(1)加法:(T+S)α= T ( α) +S (α) ;(2)数乘:(k T)α= k T (α) ;(3)乘法:(T S)α= T (S (α)) ,其中,α∈V,k∈R,T ,S ∈L(V).易验证,T +S,T S 以及k T 都是V 中的线性变换.§5 线性变换三、线性变换的矩阵设V 是一个m 维向量空间,α1,α2,…,αm 是V 的一组基.T 是V 的一个线性变换.(1)T (α1)=a 11α1+ a 21α2 + … a m 1αm ,T (α2)=a 12α1+ a 22α2 + … a m 2αm ,……………T (αm ) = a 1m α1+ a 2m α2 + … a mm αm ,可用矩阵形式表示为:设则设,,2211m m k k k V ααααα+++=∈∀ (k 1α1+k 2α2+…+ k m αm )= k 1T (α1)+k 2T (α2)+…+k m T (αm )因此,若已知基向量α1,α2, …,αm 在线性变换T 下的像,就可知道V 中任意向量在线性变换T 下的像了.= (α1, α2, …, αm )(T (α1), T (α2), …, T (αm ))⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mm m m m m a a a a a a a a a 212222111211A (T (α1), T (α2), …, T (αm ) ) = (α1, α2, …, αm ) A.称矩阵A 为线性变换T 在基α1, α2, …, αn 下的矩阵.记T (α1, α2, …, αm ) = (T (α1), T (α2), …, T (αm ) )则有T (α1, α2, …, αm ) = (α1, α2, …, αm )A因此,取定V 的一组基后,对于V 的线性变换T 有唯一确定的m 阶方阵A 与它对应.T A在给定基下一一对应(1)V 中的全体线性变换组成的集合L (V ) 与全体实m 阶方阵所成集合R m X m 之间存在一一对应关系.注意:(2)线性变换的和、数乘和乘法对应于相应的矩阵之间的和、数乘和乘法.(3)线性变换可逆(即存在V 的一个变换S ,使得TS =E )当且仅当T 对应的矩阵A 可逆,且T 的逆变换对应的矩阵就是A -1.例2例1R n 中恒等变换E (α) = α在每一组基下的矩阵为n 阶单位阵.R n 中零变换O (α)=0在任意基下的矩阵为零矩阵.R n 中线性变换T (α) = k α,k ∈R . T 在每一组基下的矩阵为数量矩阵k E n .例3求R 3 中的线性变换T (x 1, x 2, x 3)在标准基下的矩阵.T (e 1) = T (1, 0, 0 ) = (a 1 , b 1, c 1) = a 1e 1+b 1e 2+c 1e 3解所以T 在标准基下的矩阵为),,(332211332211332211x c x c x c x b x b x b x a x a x a ++++++=T (e 2) = T (0, 1, 0 ) = (a 2 , b 2, c 2) = a 2e 1+b 2e 2+c 2e 3T (e 3) = T (0, 0, 1 ) = (a 3 , b 3, c 3) = a 3e 1+b 3e 2+c 3e 3.321321321⎪⎪⎪⎭⎫ ⎝⎛=c c c b b b a a a A练习求R 2 中旋转变换σ(x , y ) = (x cos θ-y sin θ, x sin θ+ y cos θ)在标准基e 1= (1, 0), e 2= (0, 1)下的矩阵.σ(e 1) = (cos θ, sin θ) = cos θ⋅e 1+ sin θ⋅e 2,,σ(e 2) = (-sin θ, cos θ) = -sin θ⋅e 1+cos θ⋅e 2,,,.cos sin sin cos ),())(),((2121⎪⎪⎭⎫ ⎝⎛-=θθθθe e e e σσ解若设(x , y )的象σ(x , y )在e 1, e 2下的坐标为(x ', y ')则x ' = x cos θ-y sin θy ' = x sin θ+ y cos θ.cos sin sin cos ''⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛y x y x θθθθ四、象与原象的坐标变换公式设α1,α2, …, αn 是向量空间V 的一组基,线性变换σ在基α1, α2, …, αn 下的矩阵为A. 如果ξ与σ(ξ)在该基下的坐标分别为(x 1, x 2, …, x n ) 和(y 1, y 2, …, y n ),则(3)§5 线性变换得由n n y y y αααξ+++= 2211)(σ),,,(21n ααα =.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y nn x x x αααξ+++= 2211).()()()(2211n n x x x ασασασξσ+++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n x x x 2121))(,),(),((ααασσσ),,,(21n ααα =.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x A 将(3)与(4)比较得.2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y α的坐σ(α)的坐σ的矩(4)定理2设α1,α2,…,αn 是向量空间V 的一组基,线性变换σ在基α1,α2,…,αn 下的矩阵为A .如果ξ与σ(ξ)在该基下的坐标分别为(x 1,x 2,…,x n )和(y 1,y 2,…,y n ),则.2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y例4设σ是R 4的一个线性变换,对∀(x 1,x 2,x 3,x 4)∈R 4,σ(x 1,x 2,x 3,x 4)=(2x 1+x 2,3x 1-x 3,x 3,x 1+x 4),求σ在标准基ε1,ε2,ε3,ε4下的矩阵.σ(ε1) = σ(1, 0, 0, 0) = (2, 3, 0, 1)=2ε1+ 3ε2+ε4,σ(ε2) = σ(0, 1, 0, 0)= (1, 0, 0, 0)=ε1,,σ(ε3) = σ(0, 0, 1, 0) = (0, -1, 1, 0)=-ε2 + ε3,σ(ε4) = σ(0, 0, 0, 1) = (0, 0, 0, 1)=ε4.解因为))(),(),(),((4321εεεεσσσσ.1001010001030012),,,(4321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=εεεε所以σ在ε1, ε2, ε3, ε4下的矩阵为.1001010001030012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=A 上一页定理3设α1,α2,⋯,αm 和β1,β2,⋯,βm 是向量空间V 的两组基.线性变换σ在这两组基下的矩阵分别为A 与B ,从基α1,α2,⋯,αm 到基β1,β2,⋯,βm 的过渡矩阵是C ,则五、同一线性变换在不同基下的矩阵B =C -1AC .§5 线性变换线性变换与矩阵的对应关系是在取定了空间的一组基的情况下建立的.如果取不同的基,同一线性变换对应的矩阵一般是不相同的.于是得B =C -1AC.●●●由 证,),,(),,(2121A m m αααααα =σ,),,(),,(2121B m m ββββββ =σ.),,,(),,(2121C m m αααβββ =),,(21m βββ σ[][]C C m m ),,,(),,,(2121αααααα σσ==AC m ),,(21ααα =.),,,(121AC C m -=βββ (线性变换保持线性关系)定义4设A,B为两个n阶矩阵,如果存在可逆矩阵C,使得B=C-1AC,则称A与B相似,记作A~B.由定理3知线性变换在不同基下的矩阵是相似的;反之,若两矩阵相似,那么它们可以看作同一线性变换在不同基下的矩阵.定理设B=C-1AC,如果线性变换σ在基α1,α2,⋯,αn下的矩阵为A,且则σ在基β1, β2, ⋯, βn 下的矩阵为B.(β1, β2, ⋯, βn) = (α1, α2, ⋯, αn )C.σ基α1, α2, ⋯, αn下Aσ基(β1, ⋯, βn) = (α1, ⋯, αn)CBB = C-1AC.下上一页*相似是矩阵之间的一种关系,它具有下面三个性质:1. 反身性:A~A;2. 对称性:如果A ~B, 则B ~A;3. 传递性:如果A~B, B ~C, 则A~C.例2线性变换σ在基β1, β2下的矩阵为上一页设α1,α2与β1 , β2 是向量空间V 的两组基,由基α1,α2到基β1, β2的过渡矩阵为C ,线性变换σ在基α1,α2下的矩阵为求线性变换σ在基β1, β2下的矩阵B.,2111⎪⎪⎭⎫ ⎝⎛--=C ,0112⎪⎪⎭⎫ ⎝⎛-=A 解AC C B 1-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-2111011221111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=11011112.1011⎪⎪⎫ ⎛=定理4设σ是欧氏空间的一个线性变换,则下面几个命题等价:六、正交变换(1) σ是正交变换;§5 线性变换定义5设σ为欧氏空间V 中的线性变换, 如果对于任意的α, β∈V , 都有),,(),(βασβσα=则称σ为V 中的正交变换.(2) σ保持向量的长度不变,即对于任意的;)(,αασα=∈V 的标准正交基;也是的标准正交基,则是如果V V m m )(,),(),(,,,)3(2121ασασασααα (4) σ在任一组标准正交基下的矩阵都是正交矩阵.B =C -1AC .例6定义映射上述映射显然为一个线性变换,σ在标准正交基下的矩阵为(,)(cos sin ,sin cos ).x y x y x y σθθθθ=-+.cos sin sin cos ⎪⎪⎭⎫⎝⎛-=θθθθA .,为正交矩阵即且满足A E AA A A T T ==故坐标旋转变换是一个正交变换,它保持向量的长度不变.七、线性变换的特征值与特征向量§5 线性变换给定V 中的一个线性变换σ,是否存在V 的一组基,使σ在此组基下的矩阵为对角矩阵?事实上,的特征向量的属于特征值也是,非零实数的特征向量,则对任意的属于特征值是如果.λσξλσξk k 定义6设σ是向量空间V 的一个线性变换,如果存在实数λ和V 中一非零向量ξ,使得λξξ=)(σ那么λ称为σ的一个特征值, ξ称为σ的属于特征值λ的一个特征向量.1.线性变换的特征值与特征向量的概念例7设σ是数乘变换:σ(α)=λα, α∈V,则λ是σ的特征值,V中非零向量都是σ的属于特征值λ的特征向量.2. 线性变换可对角化的条件定理5设V为m维向量空间,为V中的一个线性变换.那么存在V的一组基,使得σ在这组基下的矩阵为对角矩阵的充要条件是σ有m个线性无关的特征向量.设σ可对角化, 则存在V 的一组基α1, α2, ⋯αm , 使σ在此基下的矩阵为对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m Λλλλ 21即σ(α1, α2, …, αm ) = (α1, α2, …, αm )Λ证则mi i i i ,2,1,)(==ααλσ反之,如果σ有m 个线性无关的特征向量,就取它们为基,则σ在此基下的矩阵就是对角形矩阵.因此α1,α2,⋯αm 就是σ的m 个线性无关的特征向量.上一页注意:从以上证明可知,如果线性变换σ在某一组基下的矩阵为对角阵A ,则这组基由σ的特征向量组成,且矩阵A 的对角元就是线性变换σ的特征值.方阵与线性变换是一一对应的,可类似引入方阵的特征值与特征向量的概念.3.矩阵的特征值与特征向量的概念定义1设A 是一个m 阶实方阵, 如果存在实数λ和非零的m 维列向量ξ, 使得λξξ=A 那么λ称为方阵A 的一个特征值, ξ称为A 的属于特征值λ的一个特征向量.(1)设m 阶方阵A 是m 维向量空间V 上线性变换σ在一组基下的矩阵,则λ是σ的特征值的充要条件是λ为矩阵A 的特征值.结论:从线性变换与矩阵的对应关系可得如下结论.设R m 中线性变换σ在基α1, α2, …, αm 下的矩阵为A . 即的特征向量于特征值的属是矩阵是的特征向量的充要条件征值的属于特是线性变换则为下的坐标中非零向量,它在基为..),,,(,,,2121λλσξαααξA X x x x X V Tm m =(2)m 阶矩阵A 可对角化的充要条件是A 有m 个线性无关的特征向量.即m 阶矩阵A 相似于对角矩阵的充要条件是A 有m 个线性无关的特征向量.σ的特征值= A 的特征值ξ= (α1, α2, …, αm ) XA 的属于λ的特征向量σ的属于λ的特征向量练习设R 2 的线性变换σ为σ: (x 1, x 2)→(2x 1+ 4x 2, -x 1),求σ在基α1= (1, -1), α2= (-1, 2) 下的矩阵.上一页σ在标准基ε1, ε2下的矩阵为,0142⎪⎪⎭⎫ ⎝⎛-=A 而由ε1, ε2 到α1, α2 的过渡矩阵为,2111⎪⎪⎭⎫ ⎝⎛--=C 解那么σ在α1, α2 下的矩阵为B =C -1AC ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-2111014221111⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=211101421112.73135⎪⎪⎭⎫ ⎝⎛--=。
线性变换的基本概念与定理
R X(t) R
温敏电阻
Y(t)
1、变换的基本概念
分类:确定性变换、随机变换 线性变换、非线性变换
X (t )
线性放大器 线性滤波器
2 T × β ( )
Y (t )
平方律检波 全波线性检波
线性变换
非线性变换
1、变换的基本概念
线性变换:设 Y (t ) = L[ X (t )] , 如果
L[ A1 X 1 (t ) + A2 X 2 (t )] = A1 L[ X 1 (t )] + A2 L[ X 2 (t )]
X (t )
T
Y (t )
1、变换的基本概念
分类: 确定性变换、随机变换
设e1和e2分别为两个随机试验的结果,Y(t)=T[X(t)],如果
x (t , e1 ) = x (t , e2 )
则T称为确定性变换。
y (t , e1 ) = y (t , e2 )
1、变换的基本概念
分类:确定性变换、随机变换
其中 A1 , A2 为随机变量, X1(t) , X2(t) 为随机过 程。则称L为线性变换。 对于线性变换, 若有
Y (t + ε ) = L[ X (t + ε )]
则称线性变换L是线性时不变的。
2、线性变换的基本定理
定理1: 设 Y (t ) = L[ X (t )] 则 E {Y (t )} = L{E[ X (t )]}
定理2:设 Y (t ) = L[ X (t )] 则 RXY (t1 , t 2 ) = Lt 2 [ RX (t1 , t 2 )]
RY (t1 , t 2 ) = Lt1 [ RXY (t1 , t 2 )] = Lt1 ⋅ Lt 2 [ RX (t1 , t 2 )]
线性代数-线性空间与线性变换PPT课件
例1
次数不超过
n
的多项式的全体,记作
P
x
,
n
即
P x n p x anx n a1x a0 an, ,a1,a0 ,
对于通常的多项式加法、数乘多项式的乘法构成线性空间.
这是因为:通常的多项式加法、数乘多项式的乘法两种运算显然满足线性运算规律,
故只要验证
P
x
对运算封闭.
n
一、线性空间的定义
1
0 ,
E 22
0
1
线性无关,所以 E11, E12 , E21, E22 是 M2
的一个基,向量
A
a11 a21
a12 a22
在这个基下的
坐标就是 a11, a12, a21, a22 T .
二、基变换与坐标变换
设1,2, ,n 与 1, 2, , n 是线性空间Vn 中的两个基,且
第5章 线性空间与线性变换 20
目录/Contents
第5章 线性空间与线性变换 21
5.2 维数、基与坐标
一、线性空间的基、维数与坐标 二、基变换与坐标变换
一、线性空间的基、维数与坐标
第5章 线性空间与线性变换 22
定义 1 在线性空间V 中,如果存在n 个元素1,2, ,n 满足
(i) 1,2, ,n 线性无关; (ii) V 中任一元素 总可由1,2, ,n 线性表示,
x1, x2, , xn ,使
x11 x22 xnn ,
x1, x2, , xn 这组有序数就称为元素 在基1,2, ,n 下的坐标,并记作
x1, x2,
,xn
T
.
一、线性空间的基、维数与坐标
第5章 线性空间与线性变换 25
线性定常系统的线性变换
线性定常系统的线性 变换
https://
REPORTING
2023
目录
• 线性定常系统概述 • 线性变换的基本概念 • 线性定常系统的线性变换 • 线性变换的应用 • 线性变换的挑战与解决方案 • 线性变换的案例研究
2023
PART 01
线性定常系统概述
REPORTING
定义
线性变换是一种将系统从一种形式转换为另一种形式的方法,常 用的线性变换包括拉普拉斯变换和傅里叶变换。
应用
线性变换在控制系统分析和设计中具有广泛应用,如系统函数、传 递函数、频率响应等。
实现
通过数学运算和变换,将系统的形式进行转换,以便于分析和设计。
2023
PART 04
线性变换的应用
REPORTING
解决方案
为了提高计算效率,可以采用一些优化技术,如矩阵分块、稀疏矩阵、并行计算等,来降 低计算复杂度和提高计算速度。同时,也可以采用一些数值计算方法,如近似计算、数值 积分等,来减少计算量。
2023
PART 06
线性变换的案例研究
REPORTING
案例一:控制系统中的状态反馈线性变换
状态反馈线性变换的概念
线性变换的挑战与解决方 案
REPORTING
线性变换的稳定性问题
定义
线性变换的稳定性问题主要关注变换后的系统是否能够保 持稳定,即系统的状态是否能够逐渐收敛到某一平衡点或 周期性振荡。
挑战
在实际应用中,由于系统参数、初始条件、外部干扰等因 素的影响,线性变换后的系统可能会出现不稳定的情况。
解决方案
2023
PART 02
线性变换的基本概念
ห้องสมุดไป่ตู้
线性代数--第五章++线性空间与线性变换
定理5.3 设1, 2,…, n和1, 2,…, n是线性空间VK 的两组基. 如果向量在这两组基下的坐标分别为x=(x1, x2,…, xn)T, y=(y1, y2,…, yn)T, 则x=Cy. 其中C是过渡矩阵.
证明 由于
y1
y1
ξ
β1,β2 , ...,βn
y2
M
α1,α2 , ..., αn
ℱ()=x1ℱ(1)+x2ℱ(2)+…+xnℱ(n)
即, ℱ()是由ℱ(1), ℱ(2),…, ℱ(n)唯一确定的.
由于ℱ(1), ℱ(2),…, ℱ(n)VK, 故可由1, 2,…, n线 性表示, 记
ℱ(1)=a111+a212+…+an1n ℱ(2)=a121+a222+…+an2n
…………………… ℱ(n)=a1n1+a2n2+…+annn
实系数齐次线性方程组Ax=0的全体解的集合U, 对解 向量的加法和乘数两种运算, 构成实数域R上的一个线性 空间.
数域K上的所有次数小于n的多项式的集合K[x]n, 对多 项式的加法和乘数两种运算, 构成K上的一个线性空间.
线性空间具有下列简单性质: 1. 零向量是唯一的.
01=01+02=02 2. 每个向量的负向量是唯一的.
则称V为数域K上的一个线性空间. 记为VK , 或V.
线性空间也称为向量空间, 其元素都称为向量. 例如:
数域K上的所有n维向量组成的集合Kn, 对向量的加法 和乘数两种运算, 构成数域K上的一个线性空间.
数域K上的所有mn矩阵的集合Kmn, 对矩阵的加法和 乘数两种运算, 构成数域K上的一个线性空间.
线性变换
即
i A e i T (e i )
( i 1,2,, n)
因此, 如果一个线性变换T有关系式T ( x ) Ax , 那么矩阵A应以T (e i )为列向量. 反之, 如果一个线性变换T使T (e i ) i ( i 1,2, , n), 那么 T ( x ) T [(e1 , e 2 ,, e n) x ]
二、线性变换在给定基下的矩 阵
记T 1 , 2 ,, n T 1 , T 2 ,, T n , 上式
可表示为
T 1 , 2 ,, n 1 , 2 ,, n A
其中
a11 a21 A a n1
a12 a 22 an 2
a1n a2 n , ann
那末,A 就称为线性变换 T 在基 1 , 2 , , n下的 矩阵.
显然, 矩阵A由基的象T ( 1),, T ( n )唯一确定.
现在, 假设A是线性变换T在基 1 , 2 , , n 下 的矩阵, 也就是说基 1 , 2 , , n 在变换T下的象为 T ( 1 , 2 , , n ) ( 1 , 2 , , n ) A 那么, 变换T需要满足什么条件呢?
变换的概念是函数概念的推广.
定义2
设V是线性空间, T是一个从V
到它本身的变换, 如果变换T满足
(1) 任给 1 , 2 Vn , 有 T 1 2 T 1 T 2 ;
( 2) 任给 Vn , k R, 都有T k kT .
或
T , ( A).
设 A, T ( ) , 就说变换T把元素变为 ,
称为 在变换T下的象, 称为在变换T下的源.
第五章 线性变换 S2 线性变换矩阵
1 , 2 , , n A
(2)
4
上面矩阵A=(aij)的第 j 列就是j的象Tj在基底[1, 2,…, n]下的坐标. 因此A被线性变换T唯一确定.
矩阵A称为线性变换T在基底 [1, 2,…, n]矩阵. 把前面的(1) T T ( x11 x2 2 xn n ) x1T 1 x2T 2 xnT n x1 写成矩阵形式
第五章 线性变换
第二节 n维线性空间中线性 变换的矩阵
只讨论n维线性空间V上的线性变换T. 研究线性变换T和n阶矩阵之间的关系.
1
§性空间V中取定一个基底之后,V中任意 一个向量与它的象T都可用它们在该基底下 的坐标表示出来,而且表示法是唯一的. 对于n维线性空间V中的任意向量 , 它在基底[1, 2,…, n]下的坐标 ( x1 , x2 ,, xn ) 唯一. 且
a1 j a2 j T j 1 , 2 , , n , a nj
( j 1,2,, n)
把n个矩阵形式记在一起得 a11 a12 a1n
a a a 22 2n 21 [T 1 , T 2 ,, T n ] , , , n 1 2 an1 an 2 ann
定理1 设[1, 2,…, n]是线性空间V的一个基底,T是V 上的线性变换. 则线性变换T被该基底的象T1, T2,…, Tn所确定.
注: 确定一个线性变换就是确定每个元的象。两个 线性变换T1和T2相等的意义是它们使得每个向 量的象都相同.
3
向量与象T在基底[1, 2,…, n]下坐标X=(x1, x2,…, xn)T与Y=(y1, y2,…, yn)T之间的关系 设Tj 在基底[1, 2,…, n]下坐标为 (a1j, a2j,…, anj)T 写成矩阵形式
二次函数中线性变换的规律和性质
二次函数中线性变换的规律和性质二次函数是高中数学学习中重要的内容之一,它具有许多重要的规律和性质。
其中,线性变换是二次函数中一个常见且重要的操作。
本文将探讨二次函数中线性变换的规律和性质,并举例说明其应用。
一、线性变换的定义与性质:在二次函数的基础上进行线性变换,通常可以利用一系列基础函数与常数的乘积或求和运算来实现。
设原二次函数为f(x),线性变换后的二次函数为g(x),则有以下性质:1. 对于△x的线性变换:线性变换可以通过△x(△x≠0)来实现横向平移。
当△x>0时,二次函数在x轴的正方向上平移;当△x<0时,二次函数在x轴的负方向上平移。
2. 对于△y的线性变换:线性变换可以通过△y(△y≠0)来实现纵向平移。
当△y>0时,二次函数在y轴的正方向上平移;当△y<0时,二次函数在y轴的负方向上平移。
3. 对于a的线性变换:线性变换可以通过a来实现图像的横向或纵向压缩或拉伸。
当|a|>1时,二次函数在x轴方向上压缩;当|a|<1时,二次函数在x轴方向上拉伸;当a>0时,二次函数在y轴方向上拉伸;当a<0时,二次函数在y轴方向上压缩。
二、线性变换的规律与表达式:在二次函数中,常见的线性变换形式包括平移、压缩和拉伸。
下面以具体的例子来说明这些线性变换的规律与表达式。
1. 平移的规律与表达式:设原二次函数为f(x),线性变换后的二次函数为g(x)=f(x-△x)+△y,其中△x和△y分别表示横向和纵向平移的距离。
当△x>0时,g(x)在x轴方向上向左平移△x个单位;当△y>0时,g(x)在y轴方向上向上平移△y个单位。
2. 压缩与拉伸的规律与表达式:设原二次函数为f(x),线性变换后的二次函数为g(x)=af(x),其中a表示压缩或拉伸的比例。
当a>1时,g(x)在x轴方向上压缩,压缩比例为1/a;当0<a<1时,g(x)在x轴方向上拉伸,拉伸比例为1/a;当a>0时,g(x)在y轴方向上拉伸,拉伸比例为|a|;当a<0时,g(x)在y轴方向上压缩,压缩比例为|a|。
第五讲线性空间与线性变换
第五讲线性空间与线性变换第五讲线性空间与线性变换⼀、基本概念1. 数域K 数的集合,且1) 0,1K ∈;2) K 关于,,,+-?÷运算封闭.例如:数域,,Q R C* 任意数域都包含有理数域(有理数域是最⼩的数域). 数域有⽆穷多.2. 数域K 上的线性空间K V ⾮空集合V + 数域K + 集合V 在数域K 上关于“+”与“数乘”运算封闭 + ⼋条规律线性空间也称为向量空间,其中的元素也称为向量. * n 维实向量线性空间nR 例如,例5.1-例5.73. ⼦空间K U 1) K K U V ?;2) 且K U 是数域K 上的线性空间.⽣成⼦空间K U 1)12,,,s K V ααα? ;2){}112212,,,K s s s U L k k k k k k K ααα=+++∈ . (P84 例5.10)4. 基维数坐标基线性空间中的“极⼤线性⽆关组” P84 维数 “极⼤线性⽆关组”的秩 P84 例如,例5.11-例5.14坐标线性空间中的向量由基线性表⽰的系数 P85 例如,例5.15-例5.165. 基变换和坐标变换基变换基之间的线性变换 P87过渡矩阵构成基变换的矩阵(过渡矩阵是可逆矩阵) P88 坐标变换向量在不同的基下的坐标之间的线性变换 P88 6. 线性变换线性变换线性空间K V 到K V 的满⾜线性运算的映射 P89 例如,例5.17-例5.20线性变换的矩阵基表⽰基的像的线性变换矩阵 P90 例如,例5.21-例5.227. 欧⽒空间内积设V 是实数域R 上的⼀个线性空间,在V 上定义⼀个⼆元函数,记作[],αβ,如果它满⾜:1),,,V k R αβγ?∈∈,有 1) [][],,αββα=(对称性); 2) [][][],,,αβγαγβγ+=+, [][],,k k αββα=(线性性); 3)[],0αα≥,当且仅当αο=时,[],0αα=(正定性),则称这个⼆元函数[],αβ是V 上的内积. P93欧⽒空间定义了内积的实线性空间(实数域上的线性空间) P93 * n 维实向量线性空间nR 是欧⽒空间例如,例5.24-例5.261α=(规范性) P94向量的夹⾓[],,a r c c o sαβαβαβ=?,0,αβπ≤≤ P94 向量的正交 [],,02παβαβ==(正交性) P94 例如,标准单位向量组中的向量是相互正交的向量例1(P94 例5.27)8. 规范正交基规范向量组向量长度皆为1的向量组正交向量组向量皆⾮零且互相正交的向量组(正交向量组线性⽆关) P94规范正交向量组满⾜规范性和正交性的向量组,即若12,,,s ααα满⾜:,0,,i j i j αα=?,1,i i α=? P94正交基/规范正交基由正交向量组成的基/由规范正交向量组成的基 P95 正交矩阵 TA A E = P97⼆、基本结论1. 线性空间的基本性质 P831)线性空间的零向量是唯⼀的;2)每⼀个向量的负向量是唯⼀的; 3)0,,k k K αοοο==?∈; 4)若k αο=, 则0k αο=或=.2. ⼦空间的判定定理1(P84 定理5.1)例如,例5.8-例5.9推论(P85)如果线性空间U V ?,则()()r U r V ≤.3. 基的性质定理2(P85 定理5.2)(产⽣基的⽅法)推论(P85)含有⾮零向量的线性空间⼀定存在基. 推论(P95)⾮空的欧⽒空间⼀定存在规范正交基.4. 坐标变换与基变换的关系定理3(P88 定理5.3)例1(P88)5. 线性变换的性质线性变换的性质(P88)定理4(P91 定理5.4)(向量与向量的像在同⼀基下的坐标的关系) 定理5(P92 定理5.5)(两组基的线性变换矩阵之间的关系)例2(P92 例5.23)三、向量组的规范正交化定理1(P95 定理5.7)例1(P95 例5.28)例2(P96 例5.29)四、习题解答 1. P98 3.提⽰: 即求1234,,,αααα的极⼤线性⽆关组极其秩. 2. P98 5.提⽰: (1)1V 是1n -维线性空间. 23,,,n e e e是1V 的⼀组基.(3)3V 是1n -维线性空间. ()()()1,0,,0,1,0,1,,0,1,,0,0,,1,1TTT--- 是3V 的⼀组基.(5)5V 是1维线性空间, ()1,2,,1,Tn n - 是5V 的⼀组基.(6)6V 是2维线性空间, ()()1,0,,0,0,0,1,,1,1TT是6V 的⼀组基.3. P98 6.提⽰:(1)()1234,,,αααα11111111111111112121014101110111111002010023002301110111007400013----------- ? ? ? ?=→→→------ ? ? ? ?-()1234,,,4R αααα=, 所以1234,,,αααα是线性空间4K 的⼀组基.(2)设()1234,,,x βαααα= , 则()11234,,,x ααααβ-=.()123451513421,,,23-→-- ---32-6,, 所以β在基1234,,,αααα下的坐标为()1,2,1,3T-.4. P98 7.提⽰: 令()()()21123n n k k x a k x a k x a ο-+-+-++-= , 有120n k k k ==== , 故()()()211,,,,n x a x a x a ---- 线性⽆关, 可以成为线性空间[]n R x 的⼀组基.因为()()()()()()()()21(1)112!!n n f x f a f a x a f a x a f a x a n --'''=+-+-++- , 所以()211n f x x x x -=++++ 在基()()()211,,,,n x a x a x a ---- 下的坐标为()()()()(1)11,,,,2!(1)!Tn f a f a f a f a n -??''' ?-??, 即 ()()2121,121,,1Tn n a aa a n a --+++++++- .5. P98 8.提⽰: (1)过渡矩阵()()1123123,,,,C αααβββ-=;(2)()()()()1123123123123,,,,,,,,,TTx x x y y y ααααβββα--==.6. P99 10.提⽰: 计算基的像()()()()11122122,,,A E A E A E A E , 表⽰()()()()() 11122122,,,A E A E A E A E =()()()()()11122122,,,A E A E A E A E C , 则C 即是所求.7. P99 11. 提⽰: 同上题 8. P99 12.提⽰:(1)同上题;(2)⽤123,,εεε表⽰123,,ηηη, 并计算像()()()123,,A A A ηηη. 余下同(1).9. P99 13.提⽰:(1)()()321123001,,,,010100εεεεεε?? ?= ? ???. 余下同12.(2);(2)()()123123100,,,,00001k k εεεεεε?? ?= ? ???, 余下同上;(3)()()1223123100,,,,110001εεεεεεε?? ?+= ? ???, 余下同上.10. P100 14.提⽰: ()32214212413211110111011101021*********111011101110111000000002311011100000000r r r r r r r r r r r +-+--?------ ? ? ? ?---- ? ? ? ?---故由1234,,,αααα⽣成的⼦空间V 的⼀组基为1110,0123.正交化 11110177711066663244--???????? ? ? ? ?-- ? ? ? ?-= ? ? ? ? ? ? ? ? ? ? ? ????????? ,单位化 1117610206610224--,. 故空间V 的⼀组规范正交基为1117610206610224--,. 11. P100 16. 17.提⽰:(1)、(2)C 是正交矩阵1T T CC E CC -?=?=(3)()TT TAB AB ABB A E ==(4)TTT A O A O A O A O E O B O B O B OB ??==12. P100 3.提⽰: P64 11. 13. P100 4.12,,,n ααα是⼀组基.14. P100 5.提⽰:(1)()()()22123111,,1,1,11,,011001x x x x x ααα??=+++=;(2)()223321,,21x x x x ??++=.14. P100 6.提⽰: 同12.(2). 15. P101 7.提⽰: (1)关于y 轴对称;(2)投影到x 轴;(3)关于直线y=x 对称; (4)逆时针旋转900.16. P101 8.提⽰: ()()()(),,,x x A A B B C C D D A y y ''''?=?=?=?=??= ? ? ????? .(1)1001x x x y y y ??--==;(2)10202x x x y y y==;(3)2222 11x x y x y x y y ??+== -+-.17. P102 10.x ααα=的解即为所求.18. P102 11.提⽰:(2)设{}1U α=, 有()()()()()()1111011R U R U nU U R U R U n R U R U n αοαο=?=?=?⊥+=≠?=?=- 19. P102 12.提⽰: A 是正交矩阵12 11T TA A AA E A A -?=??=??=?=±??另⼀⽅⾯,由**1T AA A E A A A A A -=?==, 1,1ij ij ij ij A a A A a A ?===-=-??当当20. P102 13.提⽰: 由12.(1)及01A B A B +=??=-及()()TTTT T BA B A B A B A +=+=+()0TB A B A B A B A B A B A ??+?=+?-+=+?+=五、知识扩展1. 设B 是秩为2的54?矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9TTTααα==--=--是齐次⽅程组Bx ο=的解向量, 求Bx ο=的解空间的⼀组规范正交基.提⽰: ()2R B =?基础解系含有两个解向量, 即Bx ο=的解空间的基中含有两个解向量. ⼜12,αα线性⽆关, 故12,αα是Bx ο= 的解空间的⼀组基. 将12,αα正交化规范化, 即得Bx ο=的解空间的⼀组规范正交基.。
线性变换的矩阵
线性变换可以用矩阵表示,矩阵 的行数和列数分别与输入和输出 空间的维数相等。
线性变换的性质
01
02
03
线性变换具有齐次性,即对于任 意标量k和任意向量x,有 kT(x)=T(kx)。
线性变换具有加法性质,即对于 任意两个向量x和y,有 T(x+y)=T(x)+T(y)。
线性变换具有数乘性质,即对于 任意标量k和任意向量x,有 T(kx)=kT(x)。
04
线性变换的矩阵表示方法
向量空间中的线性变换
线性变换的定义
线性变换是向量空间中一种保持向量加法和标量乘法不变的映射。
线性变换的性质
线性变换具有传递性、加法性质、数乘性质和结合性质。
线性变换的分类
根据映射的性质,线性变换可以分为可逆线性变换和不可逆线性 变换。
向量空间中的矩阵表示
矩阵的定义
矩阵是数学中一个重要的概 念,它由数字组成,按照一 定的排列顺序形成。
线性变换的几何意义
线性变换可以理解为在向量空间中,将一个向量 进行平移、旋转、缩放等几何变换。
线性变换可以用来描述物理现象,如力的合成与 分解、速度和加速度的合成等。
线性变换可以用来解决实际问题,如图像处理、 信号处理、控制系统等领域。
02
矩阵与线性变换的关系
矩阵表示线性变换
01
矩阵是线性变换的一种简洁表示形式,可以将线性变换中的 变换关系用矩阵的形式表示出来。
矩阵乘法的结果是一个新的向量,这个向量的坐标值是原向量在新的基下 的坐标值。
线性变换的矩阵表示
01
对于一个给定的线性变换,可 以找到一个矩阵,使得该矩阵 左乘任意向量时,等价于对该 向量进行该线性变换。
第七章线性变换总结篇(高等代数)
第 7 章 线性变换7.1 知识点归纳与要点解析.线性变换的概念与判别1. 线性变换的定义域 P 中的任意数 k ,都有: 注: V 的线性变换就是其保持向量的加法与数量乘法的变换。
2. 线性变换的判别设 为数域 P 上线性空间 V 的一个变换,那么:3. 线性变换的性质也线性无关。
如果:是V 中任意一组向量,如果:数域P 上的线性空间V 的一个变换称为线性变换, 如果对 V 中任意的元素和数kk为V 的线性变换lk V, k,l P性质 性质 性质 设V 是数域P 上的线性空间, 为V 的线性变换,2,L , S , V 。
1.2. 3. 0 0,若1,2丄,s 线性相关,那么 2,LS 也线性相关。
设线性变换 为单射, 如果2,LS 线性无关,那么 2,L ,注:设V 是数域P 上的线性空间,2,L 2,L ,S 是V 中的两个向量组,c 11 1c 12记:1, 2,L , mc 21 1 LLc 22 2 2LLc 1s sc 2S Sc m1 1c m2 22,L , Sc 11c 21c m1c 12 Mc 22 M c m2Mc 1sc ms于是,若 dim V n ,2,L ,n 是V 的一组基, 是V 的线性变换,1, 2,L1b 11 12b 21 1LL Lmb m1 1记:1, 2,L ,m那么:1, 2,L , mb 11 b 21L c m1 b 12b 22Lcm2, 12,1, 2,LMM Mb 1n b 2n Lc mnb 12 2 L b 1n nb 22 2 Lb 2n n1, 2 Lmb 11 b 21 Lc m1 , ,L , b 12b 22Lc m21,2 ,L ,nM MMb 1nb 2nLc mnm 是矩阵B 的列向量组, 如果i 1 , i 2 ,L , i r是1, 2,L , m 的 一 个 极 大 线性 无 关 组 , 那 么2L m 的一个极大线性无关组,因此向量组秩等于秩 B 。
线性变换与特征值
线性变换与特征值线性变换是线性代数中非常重要的概念之一,与特征值有密切的联系。
在本文中,我们将探讨线性变换以及特征值的相关概念和性质。
1. 线性变换的定义与性质线性变换是指将一个向量空间中的向量映射到另一个向量空间中的映射,同时保持加法和标量乘法运算。
设V和W是两个向量空间,如果对于任意的向量x,y∈V和任意的标量a,b∈F,其中F是域,满足以下条件:1)T(x + y) = T(x) + T(y),对任意的x,y∈V;2)T(ax) = aT(x),对任意的向量x∈V和标量a∈F;则称映射T:V→W为线性变换。
线性变换具有以下性质:a) 零向量的线性变换是零向量;b) 线性变换保持向量的线性组合,即对于任意的向量x1,x2,...,xn∈V和标量a1,a2,...,an∈F,有T(a1x1+a2x2+...+anxn) = a1T(x1) + a2T(x2) +...+ anT(xn);c) 线性变换保持向量的线性无关性,即对于任意的向量x1,x2,...,xn∈V,如果它们线性无关,则它们的像T(x1),T(x2),...,T(xn)也线性无关。
2. 特征值与特征向量对于一个线性变换T:V→V,如果存在一个非零向量v∈V,使得T(v) = λv,其中λ是一个标量,则称λ为线性变换T的特征值,v称为对应于特征值λ的特征向量。
特征值与特征向量的求解可以通过解方程组得到。
设A是线性变换T的矩阵表示,则有Av = λv,即(A - λI)v = 0,其中I是单位矩阵。
如果(A - λI)的秩小于n(n为矩阵A的阶数),则零解v = 0是唯一解,此时λ不是特征值。
如果(A - λI)的秩大于等于n,则零解v = 0以外存在非零解,此时λ是特征值。
特征值与特征向量的性质如下:a) 线性变换T的每个特征值都对应至少一个特征向量;b) 特征向量构成由零向量组成的空间V的一个子空间;c) 特征向量对应的特征值是线性变换的一个性质,与特征向量的长度和方向无关。
平面向量的线性映射和线性变换
平面向量的线性映射和线性变换平面向量的线性映射和线性变换是线性代数中的重要概念,它们用来描述平面上向量的变换规律和性质。
本文将介绍线性映射和线性变换的定义、性质以及应用,并通过实例进行解释。
一、线性映射的定义和性质线性映射是指将一个向量空间的元素映射到另一个向量空间的变换,同时满足两个性质:加法性和齐次性。
具体来说,对于平面向量空间中的两个向量u和v,以及任意一个实数k,满足以下两个性质的映射T称为线性映射:1. 加法性:T(u+v) = T(u) + T(v)2. 齐次性:T(ku) = kT(u)线性映射的定义表明其具有保持向量加法和数乘运算的特性。
线性映射可以用矩阵来表示,对于平面向量空间中的一个线性映射T,可以用一个二阶矩阵A来表示,即T(x) = Ax。
二、线性变换的定义和性质线性变换是指将平面上的向量变换到平面上的另一个向量的一种特殊线性映射。
它是线性代数研究的一个重要分支,也是计算机图形学等领域的基础。
对于平面上的任意一个向量x,线性变换T将其变换为另一个向量y。
线性变换满足以下性质:1. T(u+v) = T(u) + T(v)2. T(ku) = kT(u)线性变换可以用矩阵来表示,即T(x) = Ax。
其中矩阵A是一个2×2的矩阵。
三、线性映射和线性变换的应用线性映射和线性变换在各个领域有广泛的应用。
以下是几个常见的应用:1. 计算机图形学:线性变换在计算机图形学中被广泛应用,用于平面上的图像变换、旋转、缩放等操作。
通过对向量进行线性变换,可以实现图像的变形和处理。
2. 物理学:线性映射和线性变换在物理学中用于描述物体的运动和变形规律。
通过将物体的向量表示进行线性映射或线性变换,可以研究物体在不同条件下的运动和形态变化。
3. 金融学:线性变换在金融学中被广泛应用,用于风险评估、证券定价、投资组合优化等领域。
通过对金融数据进行线性变换,可以提取出关键特征,并对市场进行有效分析。