南海希望学校五年级数学计算竞赛试题
小学希望杯五年级数学竞赛题
小学希望杯五年级数学竞赛题1、在一次国际奥林匹克数学竞赛中,中国代表队的平均成绩是90分,男女队各自的平均成绩是88.5分和93分,这次代表队中男队人数是女队人数的多少倍?用方程解:解:设男队是X,女队是Y88.5X+93Y=90(X+Y)1.5X=3YX/Y=2用比例的方法:(93-90)/(90-88.5)=2答:男队人数是女队人数的2倍。
2、甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩比甲班平均成绩高7分,那么,乙班的平均成绩是多少分?解:设乙的平均数是X,则甲是X-781×(51+49)=49X+51(X-7)8100=49X+51X-357100X=8457X=84.57答:乙的平均数是84。
57分3、一个十位数字是0的三位数等于它数字和的67倍;交换它的个位与百位数字得到新的三位数是数字和的m倍则m=。
解:设百位数字是x,个位数字是y100x+y=67(x+y)100x+y=67x+67y33x=66yX=2y把x=2y代入下式100y+x=m(x+y)100y+2y=m2y+my102y=m3ym=102y÷3ym=344、0.6+0.06+0.006+0.0006+……=2002÷(用分数表示)分析:0.6+0.06+0.006+……=0.6666666……(或)=6/9=3/25.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【分析与解】方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.6.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?【分析与解】由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.7.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?【分析与解】方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12×(8-7)=12分.8.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?【分析与解】如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的?。
(完整)五年级下册数学试题第15届希望杯邀请赛第1试试卷通用版
2019年小学第十五届“希望杯”全国数学邀请赛五年级第1试试题以下每题6分,共120分。
1、计算:1.25×6.21×16+5.8=。
2、观察下面数表中的规律,可知x=。
3、图1是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块。
4、非零数字a,b,c能组成6个没有重复数字的三位数,且这6个数的和是5994,则这6个数中的任意一个数都被9整除。
(填“能”或“不能”)5、将4个边长为2的正方形如图2放置在桌面上,则它们在桌面上所能覆盖的面积是。
6、6个大于零的连续奇数的乘积是135135,则这6个数中最大的是。
7、A,B两桶水同样重,若从A桶中倒2.5千克到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么桶B中原来有水千克。
8、图3是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a—b×c的值是。
9、同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人,若两样都带的人数是所有参加春游人数的一半,则参加春游的同学有人。
10、如图4,小正方形的面积是1,则图中阴影部分的面积是。
11、6个互不相同的非零自然数的平均数是12,若将其中一个两位数ab换成ba,(a,b是非零数字),这6个数的平均数变成15,所有满足条件的两位数ab共有个。
12、如图5,在△ABC中,D,E,分别是AB,AC的中点,且图中两个阴影部分(甲和乙)的面=。
积差是5.04,则S△ABC13、松鼠A,B,C共有松果若干个,松鼠A原有松果26颗,从中拿出10颗平均分给B,C,然后松鼠B拿出自己的18颗松果平均分给A,C,最后松鼠C把自己现有的松果的一半平分给A,B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗。
14、已知α是锐角,β是钝角,4位同学在计算0.25(α+β)时,得到的结果依次是15.2°,45.3°,78.6°,112°,其中可能正确的是。
第七届希望杯-五年级-第1试试卷及解析
第七届小学“希望杯”全国数学邀请赛五年级第1试以下每题6分,共120分1、计算:...0.30.030.003--= .(结果写成分数形式)2、计算: 100÷1.2×3÷54⨯= .16153、如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有种不同的走法.4、三个数:23,51,72,各除以大于1的同一个自然数,得到同一个余数,则这个除数是 .5、有2克,5克,20克的砝码各1个,只用砝码和一架已经调节平衡了的天平,能称出种不同的质量.6、下表是某商品的销售计划,请在空格内填入恰当的数字.××商品销售计划进价(元/件)销售方式售价(元/件)利润率(%)利润(元/件)原价180020九折7、中心对称图形是:绕某一点旋转180°后能和原来的图形重合的图形,轴对称图形是:沿着一条直线对折后两部分完全重合的图形,图的4个图形中,既是中心对称图形又是的轴对称图形的有个.8,如图,小明做减法时看错了减数,这个减数应当是 .9、已知A=1+1111111++++++,则A的整数部分是___________.234567810、小羽和小曼分别住在一座山两侧的山脚下,一天,小羽在上午9:00从家里出发到小曼家做客,小羽在小曼家玩了2个半小时后回家,到家时是下午14:00,若小羽上山每小时走2里地,下山每小时走3里地,则小羽家和小曼家之间的山路长里.11、今年,小军和小勇的年龄的比是3:5,两年后,两人的年龄的比是2:3,那么,小军今年岁,小勇今年岁.12、一只蚂蚁“侦察兵”在洞外发现了食物,它立刻回到蚁穴通知同伴,假设一只蚂蚁在1分钟内可以把消息传达给4个同伴,那么,不超过分钟,蚁穴里的全部2000只蚂蚁都知道了这个消息,(结果取整数)13、如图4,李明和王亮以不同的方式赛跑,最终获胜的是 .14、用若干个棱长为1的小正方体铁块焊接成的几何体,从正面,侧面,上面看到的视图均如图所示,那么这个几何体至少由个小正方体铁块焊接而成.15、若长方体的三个侧面的面积分别是6,8,12,则长方体的体积是 .16、如图,鼹鼠和老鼠分别从长157米的小路两端A,B开始向另一端挖洞,老鼠对鼹鼠说:“你挖好后,我再挖.”这样一来,由于老鼠原来要挖的一些洞恰好也是鼹鼠要挖的洞,所以老鼠可以少挖个洞.17、如图是1班和2班的男生和女生的人数统计图,已知两个班的人数都不少于30,也不多于40,则1班有名学生,2班有名学生.18、工厂生产一批产品,原计划15天完成,实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的多10件,结果提前4天完成了生产任务,则这批产品有件.19、一辆汽车以不变的速度在行驶,司机看了三次里程表,如图8所示,由此可知汽车每小时行驶千米.20、如图9,三角形BAC的面积是1,E是AC的中点,点D在BC上,且BD:DC=1:2,AD与BE交于点F,则四边形DEFC的面积等于 .751参考答案(1)89/300 (2)380 (3)4 (4) 7 (5)13(6)300,1620,8%,120(7)3个(8)10.5 (9) 3 (10)3 (11) 6 , 10(12) 5 (13) 王亮 (14) 4(15) 24(16) 10 (17) 32 , 40 (18) 165 (19)45 (20) 5/12。
〖2021年整理〗希望杯五年级特第2试
2021年小学第十五届“希望杯”全国数学邀请赛五年级(特)第2试试题一、填空题(每题5分,共60分)1、计算:(+2021×—×(+2021)=。
2、定义:a*b=a×b+a—2b,若3*m=17,则m=。
3、观察下面一组有规律的算式:1+2,3+5,5+8,7+11,……按照此规律,第2021个算式的结果是。
4、相同的3个直角梯形的位置如图1所示,则∠1=。
5、晴晴和云云的年龄之和与年龄之差的积是19,那么他俩的年龄之和除以年龄之差的商是。
6、超市某商品八折促销,为加大促销力度现改为六折促销,因此价格比八折促销时又降低了11元,则这件商品的原价是元。
7、在表1中,8位于第3行第2列,2021位于第a第b列,则a—b=。
8、将2021,2021,2021,2021,2021这五个数分别填在图2中写有“D,O,G,C,W”的五个方格内,使得D+O+G=C+O+W,则共有种不同的填法。
9、不为0的自然数a满足以下两个条件:(1)=m×m;(2)=n×n×n,其中m,n为自然数,则a的最小值是。
10、如图3是一个玩具钟,当时针转一圈时分针转3圈,若开始时两针重合,则当两针下次重合时,时针转过的度数是。
图311、若六位数2017ab能被11整除,则两位数ab=。
12、甲、乙、丙三人相互比较各自的糖果数。
甲说:“我有13颗,比乙少1颗,比丙多1颗。
”乙说:“我不是最少的,丙和我相差4颗,甲有13颗。
”丙说:“我比甲少,甲有14颗,乙比甲多2颗。
”如果每人说的三句话中都有一句话是错的,那么糖果数最少的人有颗糖果。
二、解答题(每小题15分,共60分)每题都要写出推算过程。
13、自然数a,b,c分别是某个长方体的长、宽、高,若两位数ab,bc,满足ab+bc=79,求这个长方体的体积的最大值?14、某校五年级学生总人数在150和180之间,期末考试五年级数学平均成绩是86分,男生平均成绩是85分,女生平均成绩是分,则五年级有多少男生?15、如下图,ABCD是长方形,AEFG是正方形,若AB=6,AD=4,S△ADE=2,求S△ABG?16、某天爸爸开车送小红到距学校1000米的地方后,让她步行去学校,结果小红这天从家到学校用了分钟,若小红骑自行车从家到学校需40分钟,她平均每分钟步行80米,骑自行车比爸爸开车平均每分钟满800米,求小红家到学校的距离?2021年小学第十五届“希望杯”全国数学邀请赛五年级(特)第2试答案解析一、填空题(每题5分,共60分)1、答案:解析:【考察目标】小数的简便计算。
第九届小学希望杯数学竞赛五年级一试试题及答案
第九届小学希望杯数学竞赛五年级一试试题及答案五年级一班的同学们,大家好!欢迎参加第九届小学希望杯数学竞赛。
本次竞赛共设有三道数学题目,大家可以用笔和纸计算,然后将答案填写在试卷上。
祝大家考试顺利,取得优异成绩!一、计算题1. 请计算:345 + 678 - 123 =2. 请计算:789 × 23 =3. 请计算:184 ÷ 4 =二、解答题1. 如果一辆公交车每天能载客120人,那么五天内能载客多少人?2. 如果一本数学书共有365页,小明每天读10页,那么他需要多少天才能读完这本书?3. 小明买了一块长方形的木板,长是24厘米,宽是16厘米,他需要用这块木板做一个正方形的墙壁装饰,这个正方形的一边等于多长?三、综合运用题小明家的果园里,有30棵苹果树,每棵树上有20个成熟的苹果。
小明邀请了一些同学一起来采摘苹果,每个同学每分钟可以采摘3个苹果。
请回答以下问题:1. 如果小明邀请了5个同学,那么10分钟后一共可以采摘多少个苹果?2. 如果小明想将采摘的苹果平均分给每个同学,并且自己也要分一份,那么每个人能分到多少个苹果?3. 如果小明家卖苹果的价格是每个1元,小明打算将采摘的苹果卖给邻居,那么他一共可以卖出多少元的苹果?参考答案:一、计算题1. 345 + 678 - 123 = 9002. 789 × 23 = 181473. 184 ÷ 4 = 46二、解答题1. 一辆公交车五天内能载客600人。
2. 小明需要37天才能读完这本数学书。
3. 这个正方形的一边等于20厘米。
三、综合运用题1. 10分钟后一共可以采摘出 (30棵树 * 20个苹果) + (5个同学 * 10分钟 * 3个苹果) = 600个苹果。
2. 每个人能分到 (600个苹果 / 5个同学) = 120个苹果。
3. 小明一共可以卖出 600元的苹果。
希望以上试题内容能够对大家有所帮助,祝大家取得好成绩!。
小学五年级数学计算竞赛题一
小学五年级数学计算竞赛题一 一、拓展提优试题 1.已知13411a b -=,那么()20132065b a --=______。
2.甲乙两人分别从AB 两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B 地1200米处相遇,并且最后同时到达,那么两地相距 米3.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年 岁,(注:数a 的立方等于a ×a ×a ,数a 的四次方等于a ×a ×a ×a )4.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了 个松果.5.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块 块.6.甲、乙两车从A 城市出发驶向距离300千米远的B 城市.已知甲车比乙车晚出发1小时,但提前1小时到达B 城市.那么,甲车在距离B 城市 千米处追上乙车.7.如图:平行四边形ABCD 中,OE =EF =FD .平行四边形面积是240平方厘米,阴影部分的面积是 平方厘米.8.如图,若长方形S 长方形ABCD =60平方米,S 长方形XYZR =4平方米,则四边形S 四边形EFGH = 平方米.9.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需 分钟.10.对于自然数N ,如果1﹣9这九个自然数中至少有六个数可以整除N ,则称N 是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.11.用1、2、3、5、6、7、8、9这8个数字最多可以组成 个质数(每个数字只能使用一次,且必须使用).12.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有 张 .13.观察下面数表中的规律,可知x = .14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有 人.15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价. 【参考答案】一、拓展提优试题1.2068[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=2.2800[解答] 设两地之间距离为S 。
2023希望杯夏令营比赛试题个人赛——五年级
2023I-A-5卷1.计算:2022.1+2023.3+2021.6+2025.3÷2021.9+2023.8=。
2.计算:2023x2022—2021x2020=。
3.三个有限小数的整数部分分别是4、5和6,这三个有限小数相乘,积的整数部分有种可能值。
4.在横线上填一个自然数,使等式成立:1+0.2+0.002+0.00002÷0.0000002+ (2023)5.下图每行右侧的数表示这一行四个字母所代表的数相加的和,那么A+B+C+D=o1525力—痴6.一个四位数,它与13的和是5的倍数,它与13的差是6的倍数。
这个四位数最大是。
7.一个质数,将它的个位数字换成任意一个其他数字,这个质数都将变成合数,我们称这样的质数为“敏感质数”,例如97就是一个“敏感质数”。
那么三位数中最小的“敏感质数”是。
8.一个数是6个2,5个3,4个5,1个7,1个13的连乘积,则这个数的两位因数中,最大的是O9.三个数176,253,512分别除以自然数n f所得余数的和是23,则〃最大是10.若某个月的第一天是星期六或星期日,则称这样的月份是“幸福月”。
一年最多有个“幸福月”。
11.一个多位数,若将它最高位上的3移到最低位,得到的新数将是原数的一半,那么原数最小是位数。
12.如图,小青蛙从中心的荷叶出发,每次沿线跳到离自己最近的一张荷叶上。
小青蛙跳了4次后停在最初出发的荷叶上,则小青蛙共有种不同的跳法。
13.如图,两个直角三角形的斜边在同一条直线上,48与。
石平行,且AB=BC+EF=4。
若三角形ABC的面积比三角形。
所小6,那么ED=,14.如图,一个圆恰好夹在两个正六边形之间。
若大正六边形的面积为12,则小15.如图,正方形ABCQ和EFG”的面积分别是625和225,且三角形CEG的面积是165,则GB的长为。
16.用27个小正方体拼成一个大正方体(图1),从大正方体的六个面中选三个面按图2的方式涂色,其余三个面按图3的方式涂色,则恰好有两个面被涂色的小正方体最多有个。
2022 奥赛希望杯五年级培训 100题——答案版
2022希望少年俱乐部-五年级培训100题(解析)1.【答案】395【解析】原式=75÷30× 4.67×30+17.9×2.5=2.5×140.1+17.9×2.5=2.5×140.1+17.9=2.5×158=3952.【答案】579557.95【解析】原式=5795.5795×579.5÷5.795=5795.5795×579.5÷5.795=5795.5795×100=579557.953.【答案】27.25【解析】分两段计算,前一段5个数,后一段项数:0.99− 0.11 ÷0.02+1=45原式=0.5× 5 +0.11 + 0.99 × 45 ÷ 2=2.5+1.1 × 45 ÷ 2=2.5 + 24.75=27.254.【答案】5【解析】原式=(0.81+0.83+⋯⋯+0.99)× 0.6=(0.81+0.99)× 10 ÷2× 0.6=1.8× 10 ÷2×0.6=9×0.6=5.4所以结果的整数部分是5。
5.【答案】13【解析】首先考虑商的十位,6□□×□=□□7,商的十位只能是1,可知除数是6□7,接着考虑商的个位,6□7×□=□□61得知,商的个位只能是3,反推可知除数是687,剩下就可以正常推算。
6.【答案】2754【解析】首先□□□×7=□1□,可知前一个乘数百位是1因为结果是2□□□,可知第2行乘积最高位是2接着是1□□×□=20□,可知,前一个乘数的十位是0,后一个乘数是2再回头可知10□×7=□1□,一定是102×7=714,剩下就容易填了。
小学五年级数学计算能力竞赛试题(含答案)
小学五年级数学计算能力竞赛试题(时间:60分钟总分100分)一、口算(每题1分,共24分)10.5×0.4= 27.9÷0.3= 70.3×3= 27.8+4.3=22.5-7.8= 3.2×0.5= 7.2÷36= 7.25+5.6=1.45×2= 10-2.84= 0.56×0.4= 4.44÷20=6.4÷0.8= 1.3-0.83= 2.5×3.2= 3.4+0.76=4.24÷0.8= 14.3×7= 14.4-7.2= 9.1×30=7.5÷0.5= 56×1.25= 7.6÷0.38= 25×8.8=二、竖式计算。
(1-7小题每题2分,8、9小题每题3分,共20分)⑴ 6.14×2.6=⑵ 3.08×6.05=⑶ 0.64×0.76=⑷ 32.5÷2.6=⑸ 14÷0.56=⑹ 3.12÷2.6=⑺57.6÷0.72=⑻ 5.96×0.12≈⑼28.66÷5.7≈(得数保留两位小数)(得数保留两位小数)三、下面各题能简算的要简算。
(1-6题每题3分,7-10题每题4分,共34分)⑴ 21.3×4+8×2.6 ⑵(2.58+6.5÷2.6)×1.4⑶ 57.6÷[(20-0.8)×2.5] ⑷ 1.25×3.2×2.5⑸ 21÷1.25 ⑹ 4.85×1.2+1.8×4.85⑺ 7.8×1.3+7.8×5+0.78×37⑻ 9.9×6.6+3.3×10.2⑼ 7.5×0.86×6.4÷(0.32×2.5×4.3)⑽ 1÷(2÷3)÷(3÷4)÷(4÷5)÷……÷(99÷100)四、按要求做题(22分)1.(4分)在循环小数0.A .BC .中,小数部分的前30位上的数字的和是150,2.(4分)在□里填上适当的数字,使竖式成立。
五年级希望杯数学竞赛题目
五年级希望杯数学竞赛题目一、题目与解析。
1. 计算:0.125×0.25×0.5×64- 解析:- 把64分解成8×4×2。
- 原式=(0.125×8)×(0.25×4)×(0.5×2)。
- 因为0.125×8 = 1,0.25×4=1,0.5×2 = 1。
- 所以结果为1×1×1 = 1。
2. 计算:(1.25+1.25+1.25+1.25)×25×8- 解析:- 括号里1.25+1.25+1.25+1.25 = 1.25×4。
- 原式=(1.25×4)×25×8。
- 根据乘法交换律和结合律,先算4×25 = 100,1.25×8 = 10。
- 结果为100×10 = 1000。
3. 一个数除以5余3,除以6余4,除以7余5。
这个数最小是多少?- 解析:- 这个数加上2就能被5、6、7整除。
- 5、6、7的最小公倍数为5×6×7=210。
- 所以这个数最小是210 - 2 = 208。
4. 有一个自然数,用它分别去除63,90,130都有余数,三个余数的和为25。
这三个余数中最大的一个是多少?- 解析:- 设这个自然数为x,设除63的余数为a,除90的余数为b,除130的余数为c。
- 则63 = k_1x + a,90=k_2x + b,130 = k_3x + c。
- 已知a + b + c = 25。
- 那么63+90 + 130-(a + b + c)=(k_1 + k_2 + k_3)x。
- 即63+90+130 - 25=(k_1 + k_2 + k_3)x。
- 计算得258=(k_1 + k_2 + k_3)x。
- 把258分解因数:258 = 2×3×43。
希望杯第1-9届五年级数学试题及答案(WORD版)
第一届小学“希望杯”全国数学邀请赛五年级第2试一、填空题1.计算:=________ 。
2.一个四位数,给它加上小数点后比原数小2003.4,这个四位数是________ 。
3.六位数2003□□能被99整除,它的最后两位数是__________ 。
4.如图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是________平方厘米。
5.用1元、5元、10元、50元、100元人民币各一张,2元、20元人民币各两张,在不找钱的情况下,最多可以支付_____种不同的款额。
6.桌面上4枚硬币向上的一面都是“数字”,另一面都是“国徽”,如果每次翻转3枚硬币,至少_____次可使向上的一面都是“国徽”。
7.向电脑输入汉字,每个页面最多可输入1677个五号字。
现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字。
每次复制和粘贴为1次操作,要使整修页面都排满五号字,至少需要_____次操作。
8.图2中的每个小方格都是面积为1的正方形,面积为2的矩形有_____个。
9.由于潮汐的长期作用,月球自转周期与绕地球公转周期恰好相同,这使得月球总是以相同的一面对着我们。
在地球上最多能看到50%的月球面积,从一张月球照片中最多能看到_____50%的月球面积。
(填“大于”、“小于”或“等于”)10.三个武术队进行擂台赛,每队派6名选手,先由两队各出1名选手上擂台比武,负者下台,不再上台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的又一位选手上台……继续下去。
当有两个队的选手全部被击败时,余下的队即获胜。
这时最少要进行_____场比武。
11.两种饮水器若干个,一种容量12升水,另一种容量15升水。
153升水恰好装满这些饮水器,其中15升容量的_____个。
12.跳水比赛中,由10位评委评分,规定:最后得分是去掉1个最高分和1个最低分后的平均数。
10位评委给甲、乙两位选手打出的平均数是9.75和9.76,其中最高分和最低分的平均数分别昌9.83和9.84,那么最后得分_____高。
第九届小学希望杯数学竞赛五年级一试试题及答案
第九届小学希望杯数学竞赛五年级一试试题及答案一、选择题(每题2分,共40分)1.下面哪一个数是2的倍数?A. 15B. 12C. 9D. 62.求10+20的结果是多少?A. 30B. 25C. 40D. 153.45÷5=?A. 9B. 8C. 7D. 64.如果一个四边形的长是7cm,宽是4cm,那么它的面积是多少?A. 21cm²B. 28cm²C. 16cm²D. 32cm²5.下面哪一个数字是奇数?A. 12B. 8C. 7D. 166.如果一个数加上8等于25,那么这个数是多少?A. 17B. 18C. 15D. 207.一个三角形的底是6cm,高是3cm,那么它的面积是多少?A. 9cm²B. 12cm²C. 15cm²D. 18cm²8.如果一个数减去4等于10,那么这个数是多少?A. 14B. 11C. 15D. 169.27÷3=?A. 9B. 8C. 7D. 610.在1-50中,个位数为7的数字有几个?A. 4B. 5C. 6D. 711.8×5=?A. 40B. 35C. 45D. 3012.54÷9=?A. 6B. 7C. 8D. 913.如果一个长方形的长是5cm,宽是3cm,那么它的周长是多少?A. 10cmB. 12cmC. 16cmD. 14cm14.下面哪一个数字是偶数?A. 13B. 18C. 25D. 3115.求45-21的结果是多少?A. 24B. 26C. 20D. 2216.如果一个数减去5等于8,那么这个数是多少?A. 13B. 12C. 11D. 1417.一个正方形的边长是4cm,那么它的面积是多少?A. 12cm²B. 16cm²C. 8cm²D. 20cm²18.如果3个苹果共卖给两个人,每人分多少个?A. 1B. 2C. 3D. 419.在1-100中,十位数为2的数字有几个?A. 9B. 10C. 11D. 1220.9×6=?A. 45B. 54C. 36D. 63二、填空题(共20分)1.计算:20+15=______2.计算:36÷6=______3.一个矩形的长是8cm,宽是4cm,周长是______cm。
小学五年级数学计算能力竞赛试题(含答案)
五年级数学计算能力竞赛试题(时间:60分钟总分100分)一、口算(每题0.5分,共20分)0.8×0.5= 1.25×4= 4.3×3= 24÷30=3.7-2.5= 2.2×0.6= 0.75+0.25= 17÷100=2.8×4= 0.15÷0.3= 20-0.2= 2.5×0.4=5.5+55= 5.6÷0.2= 1÷0.01= 3.5×0.6= 10.8÷9= 0.95-0.36= 0.13×4= 84÷4.2=2.26-0.6= 0.63+0.47= 0.87÷0.3= 100÷12.5=5.2×4= 0.25×40= 1.69÷1.3=6.5+0.35=1.44÷1.2= 20-14.2= 3.5×0.4=2.5×2.4=9.1÷7= 0.72÷0.6= 2.3×0.6= 11-1.1=9÷2.5÷4= 4.5×6×0.2=1.7+0.3-1.7+0.3=2.3×0.2÷2.3×0.2=二、计算下面各题。
(每题2分,共30分)15.4+5.6÷7 12.3×3.1-25.9 (16.7-1.4)÷3 2.3-1.5+4.5×4 5.6÷0.8-1.9×3 18-(0.6+2.4×5)(0.24÷0.3+5)×1.5 (5-0.68)÷1.2+0.8 (80-9.8)×0.6-2.21 (12.5-3.6×2.5)÷2 [18.95-(8.43+3.87)] ×2.8(41-37.4)×(0.9+6.2) 1.7×[34.8÷(4.3+1.7)]1.25÷[(12-9.5)×0.2] (1.9-1.9×0.9)÷(3.8-2.8)三、用简便方法计算(2,共30分)2.65+8.63+7.35+11.37 8.5-0.26-1.74 1.8×10.13.34+6.17-1.34+3.83 1.25×3.2×2.5 930÷0.6÷50.875×101-0.875 23.4-0.8-13.4-7.2 1.25×88 18.74×0.18+1.26×0.18 1.9×2.3+1.9×2.7-1.9 0.87×60+87×0.5-8.7 0.9999×0.7+0.1111×3.70.9+0.99+0.999+0.9999 9595×96-9696×95四、解决下列问题(20分)1. 在□填上合适的数字。
2020年五年级希望杯题型分类汇编
一、计算习题综合一、计算1、计算:2016×20172017-2017×201620162、计算:32.2 ÷ 2.7+386 ÷ 54-4.88 ÷ 0.273、计算:6051×0.125-0.375×1949+3.75×1.24、计算: 1+2+3+...+2016+2017+2016+...+3+2+15、计算: 2015.2015+2016.2016+2017.2017+2018.2018+1934.19346、计算:1.2×67+6.7×88=7、计算:20.16×32+2.016×680=8、计算:5.62×49-5.62×39+43.8=9、计算:1.25×8×6.21×2+5.8= 10、计算:2019×20182019-2018×20192018 =11、计算:(56×0 .57×0 .85)÷( 2.8×19×1 .7) =二、新定义1、把+, -, ×, ÷四个运算符号分别填入下面等式的○内, 使等式成立(每个运算符号只能使用一次):(132○7○6)○(12○3)=62、a=20172 0 16 2 01 6 ⋅⋅⋅ 20 16,求a÷7 得到的余数10个2013、用[a]表示不超过a 的最大整数,{a}表示a 的小数部分,即{a}=a-[a],定义一种运算“⊕”:a⊕b=(a-b)÷(b+1),求[3.9]⊕{5.6}+[4.7]的值。
4、定义新运算: x◎y=18+x –a ×y, 其中a 是一个不变的数.如:1◎2=18+1–a ×2如果2◎3=8, 那么3◎5= , 5◎3=5、用1,2,3,4,5和+,-,×,÷组合成一个算式不使用括号,计算结果最大是______ 规定a△b=a÷(a+b),那么2△1.8 = _______三、整数问题1、有一串数,最前面的 4 个数是 2,0,1,6,从第5 个数起,每一个数是它前面相邻 4 个数之和的个位数字,问在这一串数中,会依次出现 2,0,1,7 这4 个数吗?2、小华在电脑上玩一种游戏:输入一个大于零的自然数,则输出的数比输入的数扩大一倍还多 1,若先输入的数既不是质数,也不是合数,再将输出的数输入,…则输出的数中,首先超过 100 的数是多少?3、从1123 个1×1 的正方形纸片中,依次取出 1 个,3 个,5 个,7 个,…,(2n-1) 个,求最大的n。
2020希望数学个人战五年级
2020希望数学国际精英挑战营巅峰对决五年级个人战第一部分:90秒一题,共10题1.计算:67 × 25-63 × 5 × 5 = __________.2.算式1+12+123+1234+12345+123456+1234567+12345678+123456789计算结果的末三位数是________.3.下面的算式中,每个汉字代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,则“希望数学”代表的四位数是________.4.(a÷b)÷(c÷d )÷(e×f ) =().A.(a×c×e )÷(b×d×f )B.(a×d×f )÷(b×c×e )C.(a×d )÷(b×c×e×f )D.a÷b÷c÷d÷e×fE.a÷b÷c÷d÷e÷f5.飞飞有2枚大小相同的游戏币.如果飞飞按照相同的速度同时旋转这两枚游戏币,旋转方向如下图所示,那么旋转过程中不可能...出现的状态是().A.B.C.D.E.6.如图,每个小正方形的边长都是2,则阴影三角形的面积是_______.7.一条长方形彩带,宽2cm,把它剪成宽仍是2cm的10条小彩带,拼成如图所示的图案,中间4条最短的小彩带长度相同.原来的长方形彩带长_________cm.8.猪妈妈让呼呼、噜噜和嘟嘟帮忙运砖盖房子.根据图中的信息计算,三只小猪共运了_______块砖.9.海绵宝宝抓到_______只水母.10.钢铁侠把三个棱长分别是1 cm,6 cm,8 cm的正方体铁块放在一起熔化后,铸成一个大正方体铁块.这个大正方体铁块的棱长是________cm.第二部分:180秒一题,共15题11.乐乐家养了一些小鸡和小鸭.任意捉住6只,其中至少有2只不是小鸭;任意捉住9只,其中至少有1只是小鸭.乐乐家的小鸡和小鸭最多共有________只.12.由三个互不相同的数字组成的三位数中,最大的质数是________.13.只有相邻方格中的数字可以交换位置,那么由图1变到图2至少需要交换________次.图1 图214.如图所示,E,F,G,H是大正方形ABCD各边的中点,M,N分别为EF,FG的中点,阴影部分的面积为11cm2,那么MN = ________ cm.15. 在1~2020的自然数中,共有404个数是5的倍数.把这404个数相乘,积的末尾有________个连续的0.16. 循环小数0.327ax y ••=,其中x ,y 是互不相同的数字,则整数a =________.17. 2019年国庆节是星期二,则2020年国庆节是( ).A .星期一B .星期二C .星期三D .星期四E .星期五18. 只含有一个的长方形叫“一星”长方形.下图中有_______个“一星”长方形.19. 喜羊羊正在和6位小伙伴围坐在一张圆桌旁讨论捉拿灰太狼的对策.这时,迟到的慢羊羊和懒羊羊也要加入一起讨论.安排慢羊羊和懒羊羊的座位,有_______种不同的方法.20.青青草原有三块一样大的草地,草以固定的速度生长.吃全部三块草地的草,50只羊18天正好吃完;只吃两块草地的草,40只羊12天正好吃完;只吃一块草地的草,70只羊________天正好吃完.21.由围成的正方体不可能...是().A.B.C.D.E.22.观察下表自然数的排列,按此规律,表中共有________个2020.23.一个数分别除以7,11,13,所得商的和是21,所得余数的和是21.这个数是_______.24.如图,在平行四边形ABCD中,EF∥AD,GH∥AB,△EBH的面积为6,△DGF的面积为8,△ECG的面积为18,平行四边形ABCD的面积为________.25.a是一个自然数,若a2的因数比a的因数多16个,则a最小是________.答案题目12345678910答案1002051820C D22803051259题目11121314151617181920答案129839240019D62562题目2122232425答案C4746036。
广东省佛山市南海西约小学五年级数学解决问题竞赛(含答案)
广东省佛山市南海西约小学五年级数学解决问题竞赛(含答案)一、拓展提优试题1.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.2.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.3.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.4.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH5.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.6.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.7.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.8.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).11.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.12.观察下表中的数的规律,可知第8行中,从左向右第5个数是.13.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.16.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.17.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.18.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.19.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.20.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.21.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.22.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.23.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米24.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块25.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…26.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?27.数一数,图中有多少个正方形?28.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.29.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.30.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是A31.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.32.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个元,笔每支元.33.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)34.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.35.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;36.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.37.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.38.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.39.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.40.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是 .【参考答案】一、拓展提优试题1.解:1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,即不能被3整除的数共有18个.故答案为:18.2.解:10÷2=5(颗)18÷2=9(颗)此时A 有:26﹣10+9=25(颗)此时C 有:25×4=100(颗)原来C 有:100﹣9﹣5=86(颗)答:松鼠C 原有松果 86颗.故答案为:86.3.解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.4.解:根据分析,如下图所示:长方形S 长方形ABCD =S 长方形XYZR +△AEF +△EFR +△FBG +△FGX +△HCG +△HGY +△DHE +△HEZ=S 长方形XYZR +2×(a +b +c +d )⇒60=4+2×(a +b +c +d )⇒a +b +c +d =28四边形S 四边形EFGH =△EFR +△FGX +△HGY +△HEZ +S 长方形XYZR=a +b +c +d +S 长方形XYZR=28+4=32(平方米).故答案是:32.5.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.6.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240. 如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可. 大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:20167.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:1208.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.9.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.10.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.11.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.故答案为:B.12.解:由图可知,第1行的数为1,第2行的最后一个数为2×2=4,第3行的最后一个数为3×3=9,…所以第7行最后一个数为7×7=49,则第8行第1个数为49+1=50,第5个数为50+4=54,故答案为:54.13.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.14.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12015.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.故答案为:103416.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.17.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.18.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.19.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,由题意可得:80+70﹣x+6=2x156﹣x=2x3x=156x=52则2x=2×52=104答:则参加春游的同学共有104人.故答案为:104.20.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的(2)S△ABC :S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC +S△CGD)×2=360﹣(+40)×2=160.故答案是:16021.解:由于甲的速度是乙的速度的1.5倍所以两人速度比为:1.5:1=3:2,所以两人在E点相遇时,甲行了:(100×4)×=240(米);乙行了:400﹣240=160(米);则EC=240﹣100×2=40(米),DE=160﹣100=60(米);三角形ADE的面积比三角形BCE的面积大:60×100÷2﹣40×100÷2=3000﹣2000,=1000(平方米).故答案为:1000.22.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.5100.5小时 2.55 3.5小时10111小时 2.564小时10121.5小时57 4.5小时12.5132小时585小时12.5142.5小时7.59 5.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.故答案为:330.23.2800[解答] 设两地之间距离为S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南海希望学校五年级数学计算竞赛试题
2016-2017学年度第一学期
一、填空。
1、40.8÷1.32 的商用循环小数表示是(),保留两位小数是()。
2、甲、乙两数的和是145.2,甲数的小数点向右移动一位等于乙数,甲数是()。
3、一个两位数,个位数字与十位数字的和是7,如果把这个数的个位数字与十位数字对调,得到的新两位数比原来的两位数大9,那么原来的两位数是()。
4、一个三角形的面积是5.6 平方米,高是2 米,底是()米。
5、有一个直角三角形的两条直角边分别为30 厘米和40 厘米,它的斜边是50 厘米,斜边上的高是()厘米。
6、一个三位小数四舍五入保留两位小数的近似值是3.90,这个三位小数最大是(),最小是()。
7、把5米长的绳子平均分成8段,每段长(),每段占全长的(),每段是5米的()。
8、在1、2、3、……99、100中,数字2在一共出现了()次。
9、五年级开展数学竞赛,一共20题,答对一题得7分,答错一题扣4分,王磊得74分,他答对了()题。
10、甲、乙两数是互质数,且最小公倍数是156,那么甲、乙两数可能是()和()。
11、一只皮箱的密码是一个三位数。
小光说:“它是954。
”小明说:“它是358。
”小亮说:“它是214。
”小强说:“你们每人都只猜对了位置不同的一个数字。
”这只皮箱的密码是()。
12、一个三位数,它是2和5的倍数,百位上的数是最小的质数,十位上的数是百位上的数的倍数,这个三位数最大是()。
13、36的因数有()个,这些因数的和是()。
14、正方形有()条对称轴。
二、判断。
1、10.333333 不是循环小数。
()
2. 三角形面积是平行四边形面积的一半。
()
3、真分数都小于1,假分数都大于1。
()
4、如果A是奇数,那么1093+89+A+25的结果还是奇数。
()
5、一个分数的分子和分母都是质数,它一定是最简分数。
()
三、选择。
1、两数相除,被除数扩大100 倍,除数缩小10 倍,商()。
A、扩大10 倍
B、缩小10 倍
C、扩大1000 倍
2、平行四边形的一个角变为直角,则这个图形一定是()。
A、长方形
B、平行四边形
C、梯形
3、两个三角形的面积相等,则下列说法正确的是()。
A、这两个三角形一定等底等高。
B、这两个三角形一定完全一样。
C、底与高的乘积相等。
D、一定能拼成一个平行四边形
4、修一段公路,7 人11 天可以完成;照这样计算,如果要提前4 天完成,应增加()人。
A、4
B、7
C、11
D、18
5、算一个上底是acm,下底是bcm,高是3cm的梯形面积,应该使用()公式。
A、S=ab
B、S=3a÷2
C、S=3(a+b)÷2
D、S=ab÷2
6、分子加上12,分数的大小不变,分母应该加上()。
A、12
B、36
C、27
D、不能做
四、计算(能简算的要简算)。
6.84×10.1 87×2.5+8.7×75 49.84-(51.17-12.56)÷27
(1+3+5+7+……+97+99)÷17
五、应用题。
1、果园里有桃树1080棵,比杏树的4倍少320棵。
杏树有多少棵?
2、买足球3个,排球5个,需要228元;买足球6个,排球2个,需要312元。
现在体育组买了11个足球,9个排球,共需要多少元?
3、一次比赛,共5名评委参加评分,选手丁哈哈得分情况是:如果去掉一个最高分和一个最低分,平均分是9.58分;如果去掉一个最高分,平均分是9.4分;如果去掉一个最低分,平均分是9.66分。
如果5个分都保留算平均分,他应该得多少分?。