全国中学生第30届——32届物理决赛实验试题及答案Doc1
第30届全国中学生物理竞赛复赛试题及参考答案
第30届全国中学生物理竞赛复赛考试试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b)hxyzOθxyθλO八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .第30届全国中学生物理竞赛复赛考试试题答案1参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
第31届全国中学生物理竞赛决赛试题与解答(word版)
第 31 届全国中学生物理竞赛决赛理论考试试题一、(12 分)一转速测量和控制装置的原理如图所示. 在 O 点有电量为 Q 的正电荷,内壁光滑的轻质绝缘细管可绕通过 O 点的竖直轴在水平面内转动, 在管内距离 O 为 L 处有一光电触发控制开关 A ,在 O 端固定有一自由长度为 L/4的轻质绝缘弹簧,弹簧另一端与一质量为 m 、带有正电荷 q 的小球相连 接.开始时,系统处于静态平衡. 细管在外力矩作用下,作定轴转动,小球可在细管内运动.当细管转速ω逐渐变大时,小球到达细管的 A 处刚好相对于细管径向平衡,并触发控制开关, 外力矩瞬时变为零,从而限制转速过大;同时 O 点的电荷变为等量负电荷-Q.通过测量此后小球相对于细管径向平衡点的位置 B ,可测定转速. 若测得 OB 的距离为 L/2,求(1)弹簧系数0k 及小球在 B 处时细管的转速;(2)试问小球在平衡点 B 附近是否存在相对于细管的径向微振动?如果存在,求出该微振 动的周期.二、(14 分)多弹头攻击系统是破解导弹防御体系的有效手段. 如图所示,假设沿某海岸有两个军事目标 W 和 N , 两者相距 L ,一艘潜艇沿平行于该海岸线的航线游弋,并 监视这两个目标,其航线离海岸线的距离为 d . 潜艇接到攻击命令后浮出海面发射一颗可分裂成多弹头的母弹,发射 速度为0v (其大小远大于潜艇在海里游弋速度的大小),假设母弹到达最高点时分裂成三个分弹头,每个分弹头的质量相等,分裂时相对原母弹的速度大小均为 v ,且分布在同一水平面内,分弹头 1、2 为实弹,分弹头 3 迷惑对方雷达探测的假弹头. 如果两个实弹能够分别击中军事目标 W 和 N ,试求潜艇发射母弹时的位置与发射方向,并给出相应的实现条件.三、(14 分)如图所示,某绝热熔器被两块装有阀门 K 1 和 K 2 的固定绝热隔板分割成相等体积0V 的三室 A 、B 、C ,0A B C V V V V ===.容器左端用绝热活塞 H 封闭,左侧 A 室装有11ν=摩尔单原子分子气体,处在压强为 P 0、温度为 T 0 的平衡态;中段 B 室为真空;右侧 C 室装 有ν2 = 2 摩尔双原子分子气体,测得其平衡态温度为 Tc = 0.50 T 0.初始时刻K 1 和 K 2 都处在关闭状态.然后系统依次经历如下与外界无热量交换的热力学过程:(1)打开 K 1,让 V A 中的气体自由膨胀到中段真空 V B 中;等待气体达到平衡态时,缓慢推动活塞 H 压缩气体,使得 A 室体积减小了 30%(AV ' = 0.70 V 0).求压缩过程前后,该部分气体的平衡态温度及压强;(2)保持 K 1 开放,打开 K 2,让容器中的两种气体自由混合后共同达到平衡态. 求此时混合气体的温度和压强;(3)保持 K 1 和 K 2 同时处在开放状态,缓慢拉动活塞 H ,使得 A 室体积恢复到初始体积 AV ''=V 0. 求此时混合气体的温度和压强.提示:上述所有过程中,气体均可视为理想气体,计算结果可含数值的指数式或分式;根据热力学第二定律,当一种理想气体构成的热力学系统从初态(p i ,T i ,V i )经过一个绝热可 逆过程(准静态绝热过程)到达终态(p f ,T f ,V f )时,其状态参数满足方程:?111()ln()ln()0f f if V i i T T S C R T T νν∆=+= (Ⅰ)其中,ν1 为该气体的摩尔数,C V1 为它的定容摩尔热容量,R 为普适气体常量. 当热力学系统由两种理想气体组成,则方程(I )需修改为12()()0if if S S ∆+∆= (Ⅱ)四、(20 分)光纤光栅是一种介质折射率周期性变化的光学器件. 设一光纤光栅的纤芯基体材料折射率为 n 1 =1.51;在光纤中周期性地改变纤芯材料的折射率,其改变了的部分的材料 折射率为 n 2 = 1.55;折射率分别为 n 2 和 n 1、厚度分别为 d 2 和 d 1 的介质层相间排布,总层数为 N ,其纵向剖面图如图 (a) 所示. 在该器件设计过程中,一般只考虑每层界面的单次反射,忽略光在介质传播过程中的吸收损耗. 假设入射光在真空中的波长为λ=1.06μm ,当反射光相干叠加加强时,则每层的厚度 d 1 和 d 2 最小应分别为多少?若要求器件反射率达到 8%,则总层数 N 至少为多少?提示:如图(b)所示,当光从折射率 n 1介质垂直入射到 n 2 介质时,界面上产生反射和透射,有:1212n n n n -=+反射光电场强度入射光电场强度,1122n n n =+透射光电场强度入射光电场强度,2=反射光电场强度反射率入射光电场强度, 五、(20 分)中性粒子分析器(Neutral-ParticleAnalyser )是核聚变研究中测量快离子温度及其能量分布的重要设备.其基本原理如图所示,通过对高能量(200eV~30KeV )中性原子(它们容易穿透探测区中的电磁区域)的能量和动量的测量,可诊断曾与这些中性原子充分 碰撞过的粒子的性质. 为了测量中性原子的 能量分布,首先让中性原子电离然后让离子束以 θ 角入射到间距为 d 、电压为 V 的平行板电极组成的区域,经电场偏转后离开电场区域,在保证所测量离子不碰到上极板的前提下,通过测量入射孔 A和 出射孔 B 间平行于极板方 向 的距 离 l 来 决定 离 子的能量.设 A 与下极板的距离为 h 1,B 与下极板的距离为 h 2,已知离子所带电荷为 q .(1)推导离子能量 E 与 l 的关系,并给出离子在极板内垂直于极板方向的最大飞行距离.(2)被测离子束一般具有发散角Δα(Δα<<θ).为了提高测量的精度,要求具有相同能量 E ,但入射方向在Δα范围内变化的离子在同一小孔 B 处射出,求 h 2 的表达式;并给出此时能量E 与 l 的关系.(3)为了提高离子能量的分辨率,要求具有量程上限能量的离子刚好落在设备允许的 l 的最大值 l max 处,同时为了减小设备的体积,在满足测量要求的基础上,要求极板间距 d 尽可 能小,利用上述第(2)问的结果,求 d 的表达式;若θ = 30°,结果如何?(4)为了区分这些离子的质量,请设计后续装置,给出相应的原理图和离子质量表达式.六、(20 分)超导体的一个重要应用是绕制强磁场磁体,其使用的超导线材属于第二类超导体.如果将这类超导体置于磁感应强度为 a B 的外磁场中,其磁力线将以磁通量子(或称为磁通漩涡线)的形式穿透超导体,从而在超导体中形成正三角形的磁通格子,如图 1 所示. 所谓的磁通量子,如图 2 所示,其中心是半径为ξ的正常态(电阻不为零)区域,而其周围处于超导态(电阻为零),存在超导电流,所携带的磁通量为150 2.07102h Wb e φ-==⨯(磁通量的最小单位)(1)若2510T a B -=⨯,求此时磁通涡旋线之间距离 a .(2)随着 a B 的增大,磁通漩涡线密度不断增加,当 a B 达到某一临界值 B c2 时,整块超导体 都变为正常态, 假设磁通漩涡线芯的半径为ξ = 5×10-9 m ,求所对应的临界磁场 B c2;(3)对于理想的第二类超导体,当有电流 I 通过超导带材时,在安培力的驱动下,磁通漩涡线将会粘滞流动,在超导带内产生电阻(也称为磁通流阻),从而产生焦耳损耗,不利于超导磁体的运行. 磁通漩涡线稳定粘滞流动的速度 v 与单位体积磁通漩涡线所受到的驱动力f A 和a B 的关系为0aA B f v ηφ=, 其中η为比例系数. 外加磁场、电流方向,以及超导带材的尺寸如图 3 所示, 请指出磁通漩涡线流动的方向,并求出磁通漩涡线流动所产生的电阻率(用a B ,Φ0,η,超导体尺寸 b ,c ,d )表示;(4)要使超导材料真正实用化,消除这种磁通流阻成了技术的关键,请给出你的解决方案.七、(20 分)如图,两个质量均为 m 的小球 A 和 B (均可视为质点)固定在中心位于C 、长为 2l 的刚性轻质细杆的两端,构成一质点系. 在竖直面内建立Oxy 坐标,Ox 方向沿水平向右,Oy 方向竖直向上. 初始时质点系中心 C 位于原点 O ,并以初速度 v 0 竖直上抛,上抛过程中,A 、C 、B 三点连线始终水平. 风速大小恒定为 u 、方向沿 x 轴正向,小球在运动中所受空气阻力 f 的大小与相对于空气运动速度v 的大小成正比,方向相反,即f kv =-, k 为正的常量.当C 点升至最高点时,恰好有一沿y 轴正向运动、质量为 m 1、速度大小为 u 1 的小石块(视为质点)与小球 A 发生竖直方向的碰撞,设碰撞是完全弹性的,时间极短. 此后 C 点回落到上抛开始时的同一水平高度,此时它在 Ox 方向上的位置记为 s ,将从上抛到落回的整个过程所用时间记为 T ,质点系旋转的圈数记为 n . 求质点系(1)转动的初始角速度ω0,以及回落到s 点时角速度ωs 与n 的关系;(2)从开始上抛到落回到s点为止的过程中,空气阻力做的功W f与n、s、T的关系. 八、(20 分)太阳是我们赖以生存的恒星. 它的主要成分是氢元素,在自身引力的作用下收缩而导致升温,当温度高到一定程度时,中性原子将电离成质子和电子组成的等离子体,并在其核心区域达到约1.05×107 K 的高温和 1.6×105kg/m3以上的高密度,产生热核聚变而放出巨大能量,从而抗衡自身的引力收缩达到平衡,而成为恒星.太阳内部主要核反应过程为1H+1H→D+e++ν(I)eD+1H→3He+x (II)3He+3He→4He+1H+1H (III)其中第一个反应的概率由弱相互作用主导,概率很低这恰好可以使得能量缓慢释放. 反应产物正电子e+会与电子e-湮灭为γ射线,即e++e-→γ+γ(IV)已知:质子(1H)、氘(D)、氦-3(3He)和电子的质量分别为938.27、1875.61、2808.38、3727.36 和0.51(MeV/c2)(误差为0.01 MeV/c2),c为真空中的光速,中微子νe的质量小于3eV/c2. 普朗克常量h = 6.626×10-34J·s,c =3.0×108 m/s,玻尔兹曼常量k=1.381×10-23J/K.电子电量e = 1.602×10-19 C.(1)试用理想气体模型估算处于热平衡状态的各种粒子的平均动能及太阳核心区的压强(请分别用eV 和atm 为单位);(2)反应式(II)中的x 是什么粒子(α、β、γ、p和n之一)?请计算该粒子的动能和动量的大小,是否可以找到一个参照系,使得x 粒子的动能为零?(3)给出反应式(I)中各反应产物的动能的范围;第一题第二题仅供个人参考第三题第四题第五题第六题第七题第八题仅供个人参考仅供个人用于学习、研究;不得用于商业用途。
第32届全国中学生物理竞赛复赛理论考试试题及答案.
第32届全国中学生物理竞赛复赛理论考试试题2015年9月19日说明:所有解答必须写在答题纸上,写在试题纸上无效。
一、(15分)在太阳内部存在两个主要的核聚变反应过程:碳循环和质子-质子循环;其中碳循环是贝蒂在1938年提出的,碳循环反应过程如图所示。
图中p 、+e 和e ν分别表示质子、正电子和电子型中微子;粗箭头表示循环反应进行的先后次序。
当从循环图顶端开始,质子p 与12C 核发生反应生成13N 核,反应按粗箭头所示的次序进行,直到完成一个循环后,重新开始下一个循环。
已知+e 、p 和He 核的质量分别为0.511 MeV/c 2、1.0078 u 和 4.0026 u (1u≈931.494 MeV/c 2),电子型中微子e ν的质量可以忽略。
(1)写出图中X 和Y 代表的核素;(2)写出一个碳循环所有的核反应方程式; (3)计算完成一个碳循环过程释放的核能。
二、(15分)如图,在光滑水平桌面上有一长为L 的轻杆,轻杆两端各固定一质量均为M 的小球A 和B 。
开始时细杆静止;有一质量为m 的小球C 以垂直于杆的速度0v 运动,与A 球碰撞。
将小球和细杆视为一个系统。
(1)求碰后系统的动能(用已知条件和球C 碰后的速度表出); (2)若碰后系统动能恰好达到极小值,求此时球C 的速度和系统的动能。
三、(20分)如图,一质量分布均匀、半径为r 的刚性薄圆环落到粗糙的水平地面前的瞬间,圆环质心速度v 0与竖直方向成θ(π3π22θ<<)角,并同时以角速度0ω(0ω的正方向如图中箭头所示)绕通过其质心O 、且垂直环面的轴转动。
已知圆环仅在其所在的竖直平面内运动,在弹起前刚好与地面无相对滑动,圆环与地面碰撞的恢复系数为k ,重力加速度大小为g 。
忽略空气阻力。
(1)求圆环与地面碰后圆环质心的速度和圆环转动的角速度; (2)求使圆环在与地面碰后能竖直弹起的条件和在此条件下圆环能上升的最大高度;(3)若让θ角可变,求圆环第二次落地点到首次落地点之间的水平距离s 随θ变化的函数关系式、s 的最大值以及s 取最大值时r 、0v 和0ω应满足的条件。
30届预赛,全国中学生物理竞赛预赛试卷及答案.docx
第30届全国中学生物理竞赛预赛试卷本卷共16题,满分200分.一、选择题•本题共5小题,每小题6分.在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.下列说法正确的是:A.—束单色光从真空射入时,在玻璃表面处发生折射现象,这与光在玻璃中的传播速度不同于在真空中的传播速度B.白纸上有两个非常靠近的小黑斑,实际上是分开的,没有重叠部分.但通过某一显微镜所成的象却是两个连在一起的没有分开的光斑,这与光的衍射现象有关C.雨后虹的形成与光的全反射现象有关D.老年人眼睛常变为远视眼,这时近处物体通过眼睛所成的像在视网膜的前方(瞳孔与视网膜之间),故看不清2.图中A、B是两块金属板,分别与高压直流电源的正负极相连.一个电荷量为q、质量为m的带正电的点电荷自贴近A板处静止释放(不计重力作用).已知当A、B两板平行、两板的面积很大且两板间的距离较小时,它刚到达B板时的速度为“°,在下列情况下以“表示点电荷刚到达B 板时的速度A.若A、B两板不平行,则B.若A板面积很小,B板面积很大,则u< uoC.若A、B两板间的距离很大,则H<W OD.不论A、B两板是否平行、两板面积大小及两板间距离多少,"都等于«()3.□粒子和B粒子都沿垂直于磁场的方向射入同一均匀磁场中,发现这两种粒子沿相同半径的圆轨道运动.若a粒子的质量是nn,B粒子的质量是m2,则a粒子与B粒子的动能之比是m? * m】一m】=4m?A•百 B.云 C.阪 D.孟4.由玻尔理论可知,当氢原子中的核外电子由一个轨道跃迁到另一轨道时,有可能A.发射出光子,电子的动能减少,原子的势能减少B.发射出光子,电子的动能增加,原子的势能减少C.吸收光子,电子的动能减少,原子的势能增加D.吸收光子,电子的动能增加,原子的势能减少5.图示两条虚线Z间为一光学元件所在处,AB为其主光轴.P是一点光源,其傍轴光线通过此光学元件成像于Q点.该光学元件可能是QA.薄凸透镜p•B.薄凹透镜A•BC.凸球面镜D.凹球面镜二、填空题和作图题•只要给出结果,不需写出求得结果的过程.6.(8分)国际上已规定,33Cs 原子的频率/=9192631770Hz (没有误差)•这样,秒的定义______________________________ •国际上已规定一个公认的光速值c=299792458m/s (没有误差).长度单 位由时间单位导出,则米定义为 __ .7. (8分)质量为g 的小滑块,沿一倾角为e 的光滑斜面滑下,斜面质量为m2,置于光滑的水平桌面上.设重力 加速度为g ,斜面在水平桌面上运动的加速度的大小为& (8分)一线光源,已知它发出的光包含三种不同频率的可见光,若要使它通过三棱镜分光,最后能在屏上看到这三种不同频率的光的谱线,则除了光源、三棱镜和屏外,必须的器件至少还应有 •其中一个的位置应在 和 之间,另一个的位置应在 和 之问.绕过轻滑轮连接B 和C 的轻细绳都处于水半位置.现用水平方向的恒定外力F 拉滑轮,使A 的加速度等于0.20g, g 为重力加速度.在这种情况吋,B 、A 之间沿水平方向的作用力的大小等于 ________________ , C 、A之间沿水平方向的作用力的大小等于 ______________ ,外力F 的大小等于 _______________ •10. (14分)i.在做“把电流表改装成电压表”的实验中,必须测出电流表的内阻和用标進电压表对改装成的电压表 进行校准.某同学对图示的器材进行了连线,使所连成的电路 只要控制单刀双掷开关的刀位和调节电阻箱及变阻器,不需.J.改动连线,就能:(1)在与电阻箱断路的条件下测出电流表 单刀双掷开关 的内阻;(2)对改装成的电压表所有的刻度进行校准•试在图 中画出该同学的全部连线.ii. ------------------------------------------------------------------------------------ 有一块横截面为矩形的长板,长度在81cm 与82cm 之间, --------------------------- |宽度在5cm 与6cm 之间,厚度在lcm 与2cm 之间.现用直尺 电阻箱(最小刻度为mm )、卡尺(游标为50分度)和千分尺(螺 旋测微器)去测量此板的长度、宽度和厚度,要求测出后的 最后一位有效数字是估读的.试设想一组可能的数据天灾下单刀开关9. (12分)如图所示,A 为放在水平光滑桌面上的长方形物块,在它上面放有物块B 和C.A 、B 、C 的质量分别为m 、5m 、m.B 、C 与A 之间的静 摩擦系数和滑动摩擦系数皆为0.10, K 为轻滑轮,nKAr-i>fcl —c "1标准电压表面的空格处.板的长度 ClTb 板的宽度 cm,板的厚度 cm,电流表变阻器电池三、计算题•计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分•有数值计算的,答案中必须明确写出数值和单位.11. (20分)在水平地面某处,以相同的速率巾用不同的抛射角分别抛射两个小球A和B,它们的射程相同•已知小球A在空中运行的吋间为7\,求小球B在空中运行的时间几•重力加速度大小为g,不考虑空气阻力.12.(20分)从地球上看太阳时,对太阳直径的张角〃二53°.取地球表面上纬度为1 °的长度匸110km,地球表面处的重力加速度g=10m/s2,地球公转的周期7=365天.试仅用以上数据计算地球和太阳密度之比. 假设太阳和地球都是质量均匀分布的球体.13.(16分)一个用电阻丝绕成的线圈,浸没在量热器所盛的油中,油的温度为0°C.当线圈两端加上一定的电压后,油温渐渐上升.0°C时温度升高的速率为5.0K・miJ,持续一段时间后,油温上升到30°C,此时温度升高的速率变为4.5K・ min1,这是因为线圈的电阻与温度有关.设温度为旷C时线圈的电阻为肌,温度为0°C 吋线圈的电阻为则有R.= R.(1+a 0), a称为电阻的温度系数.试求此线圈电阻的温度系数. 假设量热器及其中的油以及线圈所构成的系统温度升高的速率与该系统吸收热量的速率(即单位时间内吸收的热量)成正比;对油加热过稈中加在线圈两端的电压恒定不变;系统损失的热量可忽略不计.14.(18分)如图所示,一摩尔理想气体,由压强与体积关系的图中的状态A出发,经过一缓慢的直线过程到达状态B,已知状态B的压强与状态A的压强之比为* ,若耍使整个过程的最终结果是气体从外界吸收了热量,则状态B与状态A的体积之比应满足什么条件?己知此理想气体每摩尔的内能瑯T , R为普适气体常量,卩为热力学温度.15.(23分)如图所示,匝数为N、的原线圈和在数为M的副线圈绕在同一闭合的铁心上,副线圈两端与电阻R相联,原线圈两端与平行金属导轨相联.两轨之间的距离为厶,其电阻可不汁.在虚线的左侧,存在方向与导轨所在平血垂直的匀强磁场,磁感应强度的大小为B. pq是一质量为m电阻为r与导轨垂直放置的:金属杆,它可在导轨上沿与导轨平行的方向无摩擦地滑动•假设在任何同-•吋刻通过线圈每一匝的磁通都相同,两个线圈的电阻、铁心中包括涡流在内的各种损耗都忽略不计,且变压器中的电磁场完全限制在变压器铁心中•现于1=0时开始施一外力,使杆从静止出发以恒定的加速度Q向左运动•不考虑连接导线的自感. 若已知在某吋刻t时原线圈中电流的大小/<,i.求此时刻外力的功率ii.此功率转化为哪些其他形式的功率或能量变化率?试分别求岀它们的大小.16.(23分)如图所示,一质量为加半径为R的由绝缘材料制成的薄球壳,均匀带正电,电荷量为Q,球壳下面有与球壳固连的底座,底座静止在光滑水平面上•球壳内部有一劲度系数为"的轻弹簧(质量不计),弹簧始终处于水平位置,其一端与球壳内壁固连,另一端恰位于球心处,球壳上开有一小孔C,小孔位于过球心的水平线上.在此水平线上离球壳很远的0处有一质量也为m电荷量也为Q的带正电的点电荷P,它以足够大的初速比沿水平的0C方向开始运动.并知P能通过小孔C进入球壳内,不考虑重力和底座的影响.已知静电力常量上求P刚进入C孔到刚再由C孔出来所经历的时间.t 令F 表示此时刻外力的大小小表示此时杆的速度,P 表示外力的功率,则有 P = FxFat (1) 在*时刻,由牛顿定律有 (2) 由上两式得P = (ma ^I }BL)at(3)u.在*时刻,杆运动产生的电动势 & = BLat (4)令囲、鶴分别表示原、副线圈两端的感应电动势,并有浜二炭 5、4分别表示原、 副线圈两端的电压,厶表示副线圈中的电流,由欧姆定律有 鶴=» S 二 I Q R根据题的假设,利用法拉弟电磁感应定律.有歹I N* 由(4)、(5)、(6)、(7)式可得U x = atBL -ZjT〃2 晋 WBU r M电阻厂上消耗的功率 电阻R 上消耗的功率变压器内场能的变化率第30届全国中学生物理竞赛预赛试卷参考解答与评分标准 一. 选择题.本题共5小题,每小题6分.在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括 号内.全部选对的得6分.选对但不全的得3分,有选错或不答的得0分・ 答案:1. A 、 B 2. D 3・ D 4. B 、 C 5・ D 二、 填空题和作图题. 答案与评分标准: (共8分)康Cs 跃迁时所对应的电磁波振动9192631770个周期的时间(4分)・ 6. 7. 9. 光在真空中在丽扇面秒的时间内所传播距离的长度(4分) (共8分) /Hjsin &cos&m 2 + ^(Sin 2^(共8分)两个凸透镜(4分).光源(1分)三棱镜(1分).三棱镜(1分)屏(1分)(共12分)0. 10mg (4 分)0. \Qrng (4 分) 2. 2mg (4 分)(共14分)i.连线如图所示(8分)分.只要小数扌是二位数,都给这2分)5. 532 (2分.只要小数点后是三位数.都给这2分)1.8424 (2分.只要小数点后是四位数,都给 这2分)10.电流表电阻箱单刀开关电池单刀双掷开关物理竟赛预赛卷参考解答与评分标准 第1页 共6页标准电压表变阻器(5)(6)(7)N 、R (血一") 外力的功率转化为:杆的动能的变化率 Pg =ma 2^既=〃上-〃上=(叫BL-冷)-(制“(8)(9)(10)(11) (12)(13)(14)Pg 恥atBL — /jf)2三、计算题.计算题的解答应写出必要的文字说明.方程式和靈要的演算步骤.只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位・11・参考解答:取抛射点为坐标原点,兀轴沿水平方向,y轴竖直向上,抛射角为8・抛出时刻时间/取为0,对任何斜抛小球有x = tv^cosO (1)y = ^o sin0 -(2)消去:得小球运动的轨迹方程为(3)取尸0,解出%即为射程d砧sin20a = -------g利用(4)式可彳Q小球在空中运行的时间其中,G为引力恒址,%和松分别为地球和太阳的质M, r为日地距离,T为地球公转周期.令心表示太阳半径,根据题意有(2)由(1)和(2)式得物理竞赛预赛卷参考解答与评分标准第2页共6页d 2v0sing 2"V O COS0 " g \'°以臥表示小球A的抛射角,弘表示小球B的抛射角,现要两小球射程相同,由(4)式有按题意有sin20A = sin20B而2/ =拓如由(5)式,小球A和B在空中运行的时间分别为2%血去g2%sin&Bg(6)(7)(8)(9)(10)本题20分.(1)、(2)式各4分,(4)、(7)式各3分,(8)、(9)、(10)式各2分.12.参考解答:地球绕太阳运行时,由万冇引力定律和牛顿定律有G響叫科(1)由⑺、(8由万有引力定律和牛顿定律,对地球表面处质ht 为加的物体有G 哝 ftl=^g其中R E 为地球半径.摇题意已知 2TT /?E = :360Z代入上式得G%_ 窗g180/风二T -7pL= T -^7(4)(5)(6)⑺由⑶、(6)、(7)式得代入数据,得— = 3.92 Ps评分标准:本题20分.(1)、(2)式各3分,(3)式 (7)、(8)式各2分,(9)式2分(在3・参考解答: /扯热器、油和线圈构成的系统在单位时间内吸收的热员等于通过线圈的电流的电 功率.设加在线圈两端的电压为/当线圈的电阻为他时,电流的功率(1)式中%为0。
全国中学生第30届——32届物理决赛实验试题与答案1
第30届全国物理竞赛决赛实验试题实验题目二 研究小灯泡的发光问题”题解与评分标准【问题1】确定灯泡灯丝温度与电阻的关系 (18 分)1.1设计出确定环境温度下灯泡灯丝电阻 R o 的路线图(3分)(若申请了提 示卡1,扣除6分)测量原理电路图如图1所示线路图评分标准: (1) .电路原理正确2分(2) .元件符号使用正确0.5分,连线无断点0.5分 1.2简述测量原理及步骤(6分) 测量原理(4.5分):通过测量在环境温度(室温)下灯泡的灯丝电阻,由公式 T=aR 0.83计算得出 a,即可确定灯泡的灯丝温度与其电阻的关系。
小灯泡由于其通电之后的热效应, 其环境温度下的电阻不能直接测量。
(在原理部分,可能出现以下三种答案)答案1:利用小功率下的灯丝电阻与电功率关系外推到零功率的情况下获得, 此部分 测量线路如图1所示。
图中R 1为电位器,R 2为标准电阻,L 是小灯泡。
记录灯 丝电压及标阻电压,从而获得灯丝电阻与其电功率的关系,画出他们的关系曲线, 外推到功率为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大功率范围的测量,只测量小功 率下的即可。
答案 2.T 17^71圈1测畳灯銘环境温度下电阻的线路图E=l. 0V"12V 弘小灯泡内阻° 氐电位器 &标准电阻游C &光电池并联电 阻 loo" 讥灯泡上电压 讥标阻上电压 讥光电池电压利用低电流下的灯丝电阻与电流关系外推到零电流的情况下获得,此部分测量线路如图1所示。
图中R i为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电流的关系,画出他们的关系曲线,外推到电流为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电流范围的测量,只测量小电流下的即可。
答案 3.利用低电压下的灯丝电阻与电压关系外推到零电压的情况下获得,此部分测量线路如图1所示。
第30届全国中学生物理竞赛预赛试卷及答案word解析版
第30届全国中学生物理竞赛预赛试卷与答案本卷共16题,满分200分.一、选择题.本题共5小题,每小题6分.在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1. 下列说法正确的是:A.一束单色光从真空射入 时,在玻璃表面处发生折射现象,这与光在玻璃中的传播速度不同于在真空中的传播速度有关B.白纸上有两个非常靠近的小黑斑,实际上是分开的,没有重叠部分.但通过某一显微镜所成的象却是两个连在一起的没有分开的光斑,这与光的衍射现象有关C.雨后虹的形成与光的全反射现象有关D.老年人眼睛常变为远视眼,这时近处物体通过眼睛所成的像在视网膜的前方(瞳孔与视网膜之间),故看不清2. 图中A 、B 是两块金属板,分别与高压直流电源的正负极相连.一个电荷量为q 、质量为m 的带正电的点电荷自贴近A 板处静止释放(不计重力作用).已知当A 、B 两板平行、两板的面积很大且两板间的距离较小时,它刚到达B 板时的速度为u 0,在下列情况下以u 表示点电荷刚到达B 板时的速度A. 若A 、B 两板不平行,则u< u 0B.若A 板面积很小,B 板面积很大,则u< u 0C.若A 、B 两板间的距离很大,则u< u 0D.不论A 、B 两板是否平行、两板面积大小及两板间距离多少,u 都等于 u 03. α粒子和β粒子都沿垂直于磁场的方向射入同一均匀磁场中,发现这两种粒子沿相同半径的圆轨道运动.若α粒子的质量是m 1,β粒子的质量是m2,则α粒子与β粒子的动能之比是A. m 2m 1B. m 1m 2C. m 14m 2D. 4m 2m 14. 由玻尔理论可知,当氢原子中的核外电子由一个轨道跃迁到另一轨道时,有可能A. 发射出光子,电子的动能减少,原子的势能减少B. 发射出光子,电子的动能增加,原子的势能减少C. 吸收光子,电子的动能减少,原子的势能增加D. 吸收光子,电子的动能增加,原子的势能减少5. 图示两条虚线之间为一光学元件所在处,AB 为其主光轴.P 是一点光源,其傍轴光线通过此光学元件成像于Q 点.该光学元件可能是A.薄凸透镜B.薄凹透镜C.凸球面镜D.凹球面镜二、填空题和作图题.只要给出结果,不需写出求得结果的过程.6. (8分)国际上已规定133Cs 原子的频率f=9192631770Hz (没有误差).这样,秒的定义________________.国际上已规定一个公认的光速值c=299792458m/s (没有误差).长度单位由时间单位导出,则米定义为_____________________________.7.(8分)质量为m1的小滑块,沿一倾角为θ的光滑斜面滑下,斜面质量为m2,置于光滑的水平桌面上.设重力加速度为g,斜面在水平桌面上运动的加速度的大小为_____________________________8.(8分)一线光源,已知它发出的光包含三种不同频率的可见光,若要使它通过三棱镜分光,最后能在屏上看到这三种不同频率的光的谱线,则除了光源、三棱镜和屏外,必须的器件至少还应有______________.其中一个的位置应在______________和______________之间,另一个的位置应在______________和______________之间.9.(12分)如图所示,A为放在水平光滑桌面上的长方形物块,在它上面放有物块B和C.A、B、C的质量分别为m、5m、m.B、C与A之间的静摩擦系数和滑动摩擦系数皆为0.10,K为轻滑轮,绕过轻滑轮连接B和C的轻细绳都处于水平位置.现用水平方向的恒定外力F拉滑轮,使A的加速度等于0.20g,g为重力加速度.在这种情况时,B、A之间沿水平方向的作用力的大小等于_____________,C、A之间沿水平方向的作用力的大小等于_____________,外力F的大小等于_______________.10.(14分)i.在做“把电流表改装成电压表”的实验中,必须测出电流表的内阻和用标准电压表对改装成的电压表进行校准.某同学对图示的器材进行了连线,使所连成的电路只要控制单刀双掷开关的刀位和调节电阻箱及变阻器,不需改动连线,就能:(1)在与电阻箱断路的条件下测出电流表的内阻;(2)对改装成的电压表所有的刻度进行校准.试在图中画出该同学的全部连线.ii.有一块横截面为矩形的长板,长度在81cm与82cm之间,宽度在5cm与6cm之间,厚度在1cm与2cm之间.现用直尺(最小刻度为mm)、卡尺(游标为50分度)和千分尺(螺旋测微器)去测量此板的长度、宽度和厚度,要求测出后的最后一位有效数字是估读的.试设想一组可能的数据天灾下面的空格处.板的长度_______________cm,板的宽度_______________cm,板的厚度_______________cm,三、计算题.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.(20分)在水平地面某处,以相同的速率v0用不同的抛射角分别抛射两个小球A和B,它们的射程相同.已知小球A在空中运行的时间为T A,求小球B在空中运行的时间T B.重力加速度大小为g,不考虑空气阻力.12.(20分)从地球上看太阳时,对太阳直径的张角θ=53°.取地球表面上纬度为1°的长度l=110km,地球表面处的重力加速度g=10m/s2,地球公转的周期T=365天.试仅用以上数据计算地球和太阳密度之比.假设太阳和地球都是质量均匀分布的球体.13. (16分)一个用电阻丝绕成的线圈,浸没在量热器所盛的油中,油的温度为0℃.当线圈两端加上一定的电压后,油温渐渐上升.0℃时温度升高的速率为5.0K ·min -1,持续一段时间后,油温上升到30℃,此时温度升高的速率变为4.5K ·min -1,这是因为线圈的电阻与温度有关.设温度为θ℃时线圈的电阻为R θ,温度为0℃时线圈的电阻为R 0,则有R θ= R 0 (1+αθ),α称为电阻的温度系数.试求此线圈电阻的温度系数.假设量热器及其中的油以及线圈所构成的系统温度升高的速率与该系统吸收热量的速率(即单位时间内吸收的热量)成正比;对油加热过程中加在线圈两端的电压恒定不变;系统损失的热量可忽略不计.14. (18分)如图所示,一摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为12,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为32RT ,R 为普适气体常量,T 为热力学温度.15. (23分)如图所示,匝数为N 1的原线圈和在数为N 2的副线圈绕在同一闭合的铁心上,副线圈两端与电阻R 相联,原线圈两端与平行金属导轨相联.两轨之间的距离为L ,其电阻可不计.在虚线的左侧,存在方向与导轨所在平面垂直的匀强磁场,磁感应强度的大小为B . pq 是一质量为m 电阻为r 与导轨垂直放置的金属杆,它可在导轨上沿与导轨平行的方向无摩擦地滑动.假设在任何同一时刻通过线圈每一匝的磁通都相同,两个线圈的电阻、铁心中包括涡流在内的各种损耗都忽略不计,且变压器中的电磁场完全限制在变压器铁心中.现于t=0时开始施一外力,使杆从静止出发以恒定的加速度a 向左运动.不考虑连接导线的自感.若已知在某时刻t 时原线圈中电流的大小I 1,i.求此时刻外力的功率ii.此功率转化为哪些其他形式的功率或能量变化率?试分别求出它们的大小.16. (23分)如图所示,一质量为m 半径为R 的由绝缘材料制成的薄球壳,均匀带正电,电荷量为Q ,球壳下面有与球壳固连的底座,底座静止在光滑水平面上.球壳内部有一劲度系数为η的轻弹簧(质量不计),弹簧始终处于水平位置,其一端与球壳内壁固连,另一端恰位于球心处,球壳上开有一小孔C ,小孔位于过球心的水平线上.在此水平线上离球壳很远的O 处有一质量也为m 电荷量也为Q 的带正电的点电荷P ,它以足够大的初速v 0沿水平的OC 方向开始运动.并知P 能通过小孔C 进入球壳内,不考虑重力和底座的影响.已知静电力常量k .求P 刚进入C 孔到刚再由C 孔出来所经历的时间.17.18.19.20.21.22.。
第32届全国中学生物理竞赛决赛理论考试试题
第32届全国中学生物理竞赛决赛理论考试试题考生须知1、考生考试前务必认真阅读考生须知。
2、考试时间为3个小时。
3、试题从本页开始,共4页,含八道大题,总分为140分。
试题的每一页下面标出了该页的页码和试题的总页数。
请认真核对每一页的页码和总页数是否正确,每一页中是否有印刷不清楚的地方,发现问题请及时与监考老师联系。
4考生可以用发的草稿纸打草稿,但需要阅卷老师评阅的内容一定要写到答题纸上,阅卷老师评只评阅答题纸上的内容,写在草稿纸和本试题纸上的解答一律无效。
以下为试题本试卷解答过程中可能需要下列公式:1221ln x x x dx x x =⎰ ;C x xdx +=⎰2;1,2)1ln(2<<-≈+x x x x 当时 一、(15分)一根轻杆两端通过两根轻质弹簧A 和B 悬挂在天花板下,—物块D 通过轻质弹簧C 连在轻杆上。
A 、B 和C 的劲度系数分别为K 1、K 2和K 3.D 的质量为m 。
C 与轻杆的连接点到A 和B 的水平距离分别为a 和b ;整个系统的平衡时,轻杆接近水平,如图所示。
假设物块D 在竖直方向做微小振动,A 、B 始终可视为竖直,忽略空气阻力。
(1)求系统处于平衡位置时各弹簧相对于各自原长的伸长:(2)求物体D 上下微小振动的固有频率;(3)当a 和b 满足什么条件时,物块D 的固有频率最大。
并求出该固有频率的最大值.二,(20分)如图,轨道型电磁发射器是由两条平行固定长直刚性金属导轨、高功率电源、接触导电性能良好的电枢和发射体等构成。
电流从电流源输出,通过导轨、电枢和另一条导轨构成闭合回路,在空间中激发磁场。
载流电枢在安培力作用下加速,推动发射体前进。
已知电枢质量m s ,发射体质量为rn a ,导轨单位长度的电阻为'r R 。
导轨每增加单位长度整个回路的电感增加量为'r L ,电枢引入的电阻为s R 、电感为s L ;回路连线引入的电阻为c R 、电感为c L 。
全国中学生第30届——32届物理决赛实验试题和答案Doc1
第30届全国物理竞赛决赛实验试题实验题目二“研究小灯泡的发光问题”题解与评分标准【问题1】确定灯泡灯丝温度与电阻的关系(18分)1.1设计出确定环境温度下灯泡灯丝电阻R0的路线图(3分)(若申请了提示卡1,扣除6分)测量原理电路图如图1所示。
线路图评分标准:(1).电路原理正确2分(2).元件符号使用正确0.5分,连线无断点0.5分。
1.2简述测量原理及步骤(6分)测量原理(4.5分):通过测量在环境温度(室温)下灯泡的灯丝电阻,由公式T=aR0.83计算得出a,即可确定灯泡的灯丝温度与其电阻的关系。
小灯泡由于其通电之后的热效应,其环境温度下的电阻不能直接测量。
(在原理部分,可能出现以下三种答案)答案1:利用小功率下的灯丝电阻与电功率关系外推到零功率的情况下获得,此部分测量线路如图1所示。
图中R1为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电功率的关系,画出他们的关系曲线,外推到功率为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大功率围的测量,只测量小功率下的即可。
答案2.利用低电流下的灯丝电阻与电流关系外推到零电流的情况下获得,此部分测量线路如图1所示。
图中R1为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电流的关系,画出他们的关系曲线,外推到电流为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电流围的测量,只测量小电流下的即可。
答案3.利用低电压下的灯丝电阻与电压关系外推到零电压的情况下获得,此部分测量线路如图1所示。
图中R1为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电压的关系,画出他们的关系曲线,外推到电压为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电压围的测量,只测量低电压下的即可。
原理部分评分标准:(1)明确需要测量室温下的电阻,利用测量到的室温度和电阻来确定a,1分(2)①由于小灯泡的热效应直接与其电功率相对应,因此用功率为零来获得室温下的电阻较为合理,得3分。
第30届全国中学生物理竞赛决赛试题(word版)
第30届全国中学生物理竞赛决赛试题一.(15分)一质量为m 的小球在距水平地面h 高处以水平速度gh 2抛出,空气阻力不计,小球每次落地反弹时,水平速度不变,竖直速度按同样的比率减小。
若自第一次反弹开始小球的运动轨迹与其在地面的投影之间所包围的面积总和为2218h ,求小球在各次与地面碰撞过程中所受到的总冲量。
提示:小球每次做斜抛运动(从水平地面射出又落至地面)的轨迹与其在地面投影之间所包围的面积等于其最大高度与水平射程乘积的三分之二。
二.(15分)质量均为m的小球1和小球2由一质量可忽略、长度为l的刚性轻杆连接,竖直地靠在墙角,如图所示。
假设墙和地面都是光滑的。
初始时给2一个微小的向右的初速度。
问系统在运动过程中,当杆与竖直墙面之间的夹角为何值时,球1开始离开墙面?三.(25分)太空中有一飞行器靠其自身动维持在地球赤道正上方R L α=处,相对于赤道上一地面物质供应站保持静止。
这里,R e 为地球半径,α为常数,m αα>,而13132-⎥⎦⎤⎢⎣⎡=E E e m R GM ωα,e M 和e ω分别为地球的质量和自 转角速度,G 为引力常数。
设想从供应站到飞行器有一用于运送物资的刚性、管壁匀质、质量为p m 的竖直输送管。
输送管下端固定在地面上,并设法保持输送管与地面始终垂直。
推送物资时,把物资放入输送管下端的平板托盘上,沿管壁向上推进,并保持托盘运动速度不致过大。
忽略托盘和管壁之间的摩擦力,考虑地球自转,但不考虑地求公转。
设某次所推送物资和托盘总质量为m 。
(1) 在把物资从地面送到飞行器的过程中,地球引力和惯性离心力做的功分别是多少?(2) 在把物资从地面送到飞行器的过程中,外推力至少需要做多少正功?(3) 当飞机离地面的高度(记为L 0)为多少时,在把物资送到飞行器的过程中,地球引力和惯性离心力所做功的和为零?(4) 如果适当地控制飞行器的动力,使飞行器在不输送物资时对输送管的作用力恒为零,在不输送物资的情况下,计算当飞行器离地面的高度为e R L α=时,地面供应站对输送管的作用力;并对0L L >,0L L =,0L L R e m <<α三种情形,分别给出供应站对输送管道的作 用力的大小和方向。
第32届全国中学生物理竞赛预赛试卷及答案(标准word版)
第32届全国中学生物理竞赛预赛试卷本卷共16题,满分200分.一、选择题.本题共5小题,每小题6分.在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意。
把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.2014年3月8日凌晨2点40分,马来西亚航空公司一架波音777-200飞机与管制中心失去联系.2014年3月24日晚,初步确定失事地点位于南纬31º52′、东经115 º 52′的澳大利亚西南城市珀斯附近的海域.有一颗绕地球做匀速圆周运动的卫星,每天上午同一时刻在该区域正上方对海面拍照,则 A.该卫星一定是地球同步卫星 B.该卫星轨道平面与南纬31 º 52′所确定的平面共面 C.该卫星运行周期一定是地球自转周期的整数倍 D.地球自转周期一定是该卫星运行周期的整数倍2.23892U (铀核)衰变为22288Rn (氡核)要经过A.8次α衰变,16次β衰变B.3次α衰变,4次β衰变C.4次α衰变,16次β衰变D. 4次α衰变,4次β衰变3.如图,一半径为R 的固定的光滑绝缘圆环,位于竖直平面内;环上有两个相同的带电小球a 和b(可视为质点),只能在环上移动,静止时两小球之间的距离为R 。
现用外力缓慢推左球a 使其到达圆环最低点c ,然后撤除外力.下列说法正确的是A.在左球a 到达c 点的过程中,圆环对b 球的支持力变大 B .在左球a 到达c点的过程中,外力做正功,电势能增加。
C.在左球a 到达c 点的过程中,a 、b 两球的重力势能之和不变D.撤除外力后,a 、b 两球在轨道上运动过程中系统的能量守恒4.如图,O 点是小球平抛运动抛出点;在O 点有一个频闪点光源,闪光频率为30Hz ;在抛出点的正前方,竖直放置一块毛玻璃,小球初速度与毛玻璃平面垂直.在小球抛出时点光源开始闪光.当点光源闪光时,在毛玻璃上有小球的一个投影点.已知图中O 点与毛玻璃水平距离L=1.20 m ,测得第一、二个投影点之间的距离为0.05 m .取重力加速度g =10m/s 2.下列说法正确的是A.小球平抛运动的初速度为4m/sB .小球平抛运动过程中,在相等时间内的动量变化不相等C .小球投影点的速度在相等时间内的变化量越来越大 D.小球第二、三个投影点之间的距离0.15m5.某同学用电荷量计(能测出一段时间内通过导体横截面的电荷量)测量地磁场强度,完成了如下实验:如图,将面积为S ,电阻为"的矩形导线框abcd 沿图示方位水平放置于地面上某处,将其从图示位置绕东西轴转180º,测得通过线框的电荷量为Q 1;将其从图示位置绕东西轴转90 º ,测得通过线框的电荷量为Q 2.该处地磁场的磁感应强度大小应为A.22214Q Q S R +B. 2221Q Q S R +C. 2221212Q Q Q Q S R ++ D. 222121Q Q Q Q S R ++ 二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的过程.6.(10分)水平力F 方向确定,大小随时间的变化如图a 所示;用力F 拉静止在水平桌面上的小物块,在F 从0开始逐渐增大的过程中,物块的加速度a 随时间变化的图象如图b 所示.重力加速度大小为10m/s 2。
第30届全国中学生高中物理竞赛复赛试题(word版,有答案)
第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即 max ()0θθ=v .(4)(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v .(4’)]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20maxsin 14gR θ⎫=⎪⎪⎭v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为(r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v(4)代替 (3) 式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v(6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为,则22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l r α+∆+∆=+=+v v .(9)由此得2022(2)28r l r F t m l r-∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r-'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ]也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件)0-v(13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分;第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对的导数为d (())d d d d d Y X t Y X t X t=例如,函数cos ()t θ对自变量的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量、ω和的函数,按题意 可表示为k E k L αβγλω= (1)式中,为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则、ω、和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---====(2)在一般情形下,若[]q 表示物理量的单位,则物理量可写为()[]q q q = (3)式中,()q 表示物理量在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω=(4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5)[][][][]k E L αβγλω=将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8) 所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,r k k k E E E =+ (10) 其中,22,c c 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11)注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为32,r 2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得 2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13) 由此解得 16k =(14) 于是E k =16lw 2L 3.(15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭由(15)、(16)式得w =.(17)以在杆上距O 点为处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v .(18)设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19) ()()sin n N L r g L r a λθλ--=- (20) 式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4c t L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==.(22)由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg Lθ--=(23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为. 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为. 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1)式中,为液滴在容器口的速率,是静电力常量. 由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R-=---v . (2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-.(3)由此得max ()mg h R RQ kq-=.(4)容器的最高电势为maxmax Q V kR=(5)由(4) 和 (5)式得max ()mg h R V q-=(6)评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿轴负方向,如图所示.1. 在电容器参考系中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变. 2. 现在让介电常数为的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为,方向沿轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系中电场不再为零. 试求电容器参考系中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、、、B 或(和)表出. )参考解答:1. 一个带电量为的点电荷在电容器参考系中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1)在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v .(6)为了求出电容器参考系中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系中的电场和磁场. 考虑一带电量为的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9)可见,在电容器参考系中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v .(11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片.若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为,金属片原长为,圆弧所对的圆心角为,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=-(2)式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3)2221()l l T T α∆=-(4)联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯--(5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为. 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a)图(b) 参考解答: 1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到处时,该处介质的折射率()1n x bx =+. 因折射率随x 线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1)的均匀介质的光程相同,即2111112nh h bh δ==+(2)忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=-(3)于是()212112y h bh δδδ=+=+.(4)由几何关系有1tan h y θ=.(5)hx故()22tan 2b y h y δθ=+.(6)从介质出来的光经过狭缝后仍平行于轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得d 0()=h.(7)处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=.(8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==.(9)由此得y A θθ===.(10)除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A .(11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求.事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ==.(12)这些狭缝显然彼此等间距,,光线在焦点处依然相互加强而形成亮纹.评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分, (6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为. 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<,»1-12x . 参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有E e +E g =¢E e +¢E g .(1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=.(2)式中,α和分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c .(3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-=(4)由(1)、(2)、(3)、(4)式解得e E E E γγ+'=(5)由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、e p '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ' (6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=> 此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e e m cE E -.(8)将(8)式代入(6)式得 ¢E g »2E e E g2E g +m e 2c 42E e. (9)代入数据,得¢E g »29.7´106eV .(10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第30届全国物理竞赛决赛实验试题实验题目二“研究小灯泡的发光问题”题解与评分标准【问题1】确定灯泡灯丝温度与电阻的关系(18分)设计出确定环境温度下灯泡灯丝电阻R0的路线图(3分)(若申请了提示卡1,扣除6分)测量原理电路图如图1所示。
线路图评分标准:(1).电路原理正确2分(2).元件符号使用正确分,连线无断点分。
简述测量原理及步骤(6分)测量原理(分):通过测量在环境温度(室温)下灯泡的灯丝电阻,由公式T=计算得出a,即可确定灯泡的灯丝温度与其电阻的关系。
小灯泡由于其通电之后的热效应,其环境温度下的电阻不能直接测量。
(在原理部分,可能出现以下三种答案)答案1:利用小功率下的灯丝电阻与电功率关系外推到零功率的情况下获得,此部分测量线路如图1所示。
图中R1为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电功率的关系,画出他们的关系曲线,外推到功率为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大功率范围的测量,只测量小功率下的即可。
答案2.利用低电流下的灯丝电阻与电流关系外推到零电流的情况下获得,此部分测量线路如图1所示。
图中R1为电位器,R2为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电流的关系,画出他们的关系曲线,外推到电流为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电流范围的测量,只测量小电流下的即可。
答案3.利用低电压下的灯丝电阻与电压关系外推到零电压的情况下获得,此部分测量线路如图1所示。
图中R1为标准电阻,L是小灯泡。
记录灯丝电压及标阻电压,从而获得灯丝电阻与其电压的关系,画出他们的关系曲线,外推到电压为零即可获得环境温度下的电阻。
为测出环境温度下的灯丝电阻,可不必进行大电压范围的测量,只测量低电压下的即可。
原理部分评分标准:(1)明确需要测量室温下的电阻,利用测量到的室内温度和电阻来确定a,1分(2)①由于小灯泡的热效应直接与其电功率相对应,因此用功率为零来获得室温下的电阻较为合理,得3分。
②当功率为零时,电流或者电压也会为零,因此解法2和3也有道理。
但鉴于灯丝电阻与电流、电压呈现明显的非线性;受测量仪器精度限制,小电流(或低电压)区域的数值误差大。
因此利用电流(或电压)外推方法不可取解法2和3得2分。
(3)此部分只测量小功率范围(电压、电流)分。
实验步骤:(分)(1)连接线路,将电位器R1滑到图一中的下端,使与灯泡部分并联的电阻较小。
(2)检查无误后,按下开关。
(3)记录灯泡电压与标值电阻的电压。
每个过程分。
自行设计表格,将所获得的数据列入表格,并用作图法给R0(9分)(1)直流稳压电源的输出电压=(可自行设定固定电压的数值,但应能够满足测量要求)。
(2)室温t0=℃(3)标准电阻阻值=Ω(或100Ω,此时标阻电压是下面列表的5倍)。
表1 测量环境温度下的电阻R0序号测量数据计算所得数据灯丝电压(mV)标阻电压(mV)灯丝电流(mA)灯丝电阻(Ω)灯丝电功率(mW)1 2 3 4 5 6 7 8 9 10解答一:测量电阻与功率的关系解答二:测量电阻与电流的关系解答三:测量电阻与电压的关系利用室温下的灯丝电阻:R0=Ω(由灯丝电阻与电功率关系外推得出)和室内温度为℃,由公式T=求得=a·,可计算得a=,故而有小灯泡温度与电阻的关系为T=·,当我们测得小灯泡的电阻即可获得其温度值。
评分标准:1.设计的表格及数据记录清晰合理、数据不缺项1分(含实验测量数据、有效数字、电压固定电压、温度等参数)2.测量数据区间合适1分(测量的灯泡电阻阻值区间应在小阻值区间)3.测量数据足量能够给出结论(实验点不少于8个),1分4.从绘制的数据曲线观察,数据点具有很好的规律,无明显离散满分1分,如离散较大扣1分,说明电源电压选择不合理,在操作中可能出现了反复调整小灯泡电压的情况。
5.坐标轴的比例能够可靠表示有效数字位1分(分度合理)6.图名、坐标轴方向、坐标轴参量名、数据单位、数据点、外推直线,1分(错3个以下扣分,3个以上扣1分)7.外推求出R0,记录温度,计算出a,共3分(1)R0的范围:在标准答案±Ω以内,满分2分在标准答案±Ω以内,得1分(即扣1分)在标准答案±Ω以内,得分(即扣分)以上范围以外,不得分,如不是上述方法,而直接给出R0则不给分。
(2)a值范围;在标准答案±2以内,满分1分在标准答案±3以内,得分(即扣分)以上范围以外,不得分【问题2】研究灯泡发光强度与灯丝温度的关系(12分)画出你实验用的线路图、简述其工作原理及实验步骤(5分)(若申请了提示卡二,扣6分)线路图如下图3测量灯泡发光强度与灯丝温度关系的线路图工作原理:(1)由V3和R3可得出光电流,虽然光电池不能直接收到灯泡发出的所有光线,但光电流仍可以线性地反映出灯泡发光强度;(2)而由V2和R2可通过小灯泡的电流,利用V1的测量值可进而得出此时的灯泡电阻,由T=可求出灯泡的温度,最终可获得灯泡的温度与其发光强度的关系。
步骤:(1)用文具夹子将样品板与光电池板固定好,保持两者之间位置不变。
记录测量数据如下表序号灯丝电压(V)标阻电压(v)灯丝电阻(Ω)灯丝温度(K)光电池电压(mV)光电流(mA)1 9412 10603 11594 12525 13386 14187 14928 15679 163710 170411 176812 183613 189914 196115 201616 2102(2)在未闭合开光之前,记录下V3,并在计算中扣除本底电流。
(3)调节电位器增大标阻电压,从灯泡发光开始测量。
(4)调节电位器,记录灯泡灯丝的电压、标准电阻的电压、光电池的电压。
线路图评分标准:(2分)(1)光电流采用电压测量1分。
(2)其余部分连接正确1分工作原理:1分步骤:2分,每个步骤分。
用作图法研究灯泡发光强度与灯丝温度的关系,给出你的结论。
(6分)相关参数:直流电源电压值=标阻阻值=Ω光电池并联定值电阻=100Ω(注:此两只电阻不能换位)灯泡的本底电流电压很小,近似为零,可以忽略利用表2中灯丝温度与光电流的数据汇出图4。
评分标准:(6分)(1)相关参数1分(缺项扣分,电阻换位扣分)。
(2)数据记录1分(自灯泡发光至其额定电压测量少于8个数据点,扣.5分;数据项:“灯丝电压、标阻电压、光电池电压”的名称、单位、有效数字有错误,扣分)。
(3)数据计算分:(灯丝温度1分,光电流分。
注:电阻可以不计算)。
(4)绘图1分(图名、坐标轴方向、坐标轴参量名、数据单位、数据点、曲线光滑、分度合理、比例恰当。
注:错3项以下扣分,3个以上扣1分,但错误的曲线不会因为图名、坐标轴方向、坐标轴参量名等给分)。
(5)结论阐述分。
(由图4可见灯丝温度越高,由其产生的光电流越强,说明其发光强度越强。
xxxK以下发光强度几乎为零,xxxK以后光强迅速增加,xxxK后增速加快)求出灯泡额定电压下的灯泡温度(1分)当我们测得小灯泡的电阻即可获得其温度值。
当小灯泡电压U=时,小灯泡温度T=2102K(直接根据额定电压计算,而不是通过测量导出额定电压下电阻,然后再计算出温度的情况,则不给分)第31届全国物理竞赛决赛实验试题【实验题目】(30分)利用“组装电源元件盒”中的电子元件,设计一个能最大效率地将交流电压转变为直流电压的整流滤波电路,对设计的电路进行连接组装,使其成为一个直流电源。
用电流表测量该电源的特征参数——开路电压、最大输出功率及电源内阻,研究该电源输出的交流电压与直流电压的比值随负载电阻变化的关系。
然后用该直流电源及标阻电阻箱,采用电桥法精确测定“待测电阻”盒中三个未知电阻的阻值。
【实验器材】1.组装电源元件盒1只(内有交流电源、二极管、电解电容、电阻等供使用);2. 2.数字式电流表1只(仅电流档可用);3.标准电阻箱1只(准确度等级为级);4.待测电阻盒1只(内含R1、R2及Rx三个待测电阻);5.连接导线若干。
【实验要求】1.(9分)用提供的实验器材设计一个桥式整流加π型滤波的电源电路,使其能将12V交流电压变为直流电压,画出设计电路图;用导线连接组装该电路为直流电源,测量所给出的数字电流表的内阻,并用该电流表研究组装电源的输出电压随负载的变化状况。
测量当负载电阻R L在[50Ω-1000Ω]范围内变化时该电源输出的交流、直流电流,列表记录测试数据并计算不同负载时该电源的纹波系数Ku值。
(注:此处定义纹波系数Ku=交流电压有效值/直流电压值×100%)2.(3分)利用实验数据画出纹波系数Ku值随负载RL的变化曲线,说明该电源在什么负载条件下可以达到Ku≤1%。
3.数字式万用表是自动量程表,只需选择测量功能与测量范围,不用选择量程,本万用表只有电流档插孔可用,其他功能(插孔)不能使用,该电流表是数字电压表头改装而成,它有一定的输入内阻,万用表上的[sel]按键可以切换直流/交流测量功能,其它功能按键不需使用。
4.标准电阻箱是六旋电阻箱,电阻调整范围为Ω,准确度等级为级。
5.“待测电阻”盒,内有R1、R2及R x三个电阻,电阻阻值未知,要求通过实验方法精确地测出各电阻的阻值。
一.画出设计电路图,组装电路并测量(本部分9分)1.用12V交流电源作为输入,设计将交流转换为直流的桥式整流加π型滤波的电源电路,画出电源与测试电路原理图,用文字说明电路的工作原理,并说明各元件在电路中起到的作用。
(5分)画出电源电路与测试电路的电路图(3分)若本项内容不会做,可以申请(求助卡-1),要求给出设计电路图,但需扣除4分。
1)画出输入交流电压12V、桥式整流(得1分),电压未标(得分);画其他整流(非桥式整流)不得分。
2)画出π滤波电路、电阻200Ω(得1分),电阻2000Ω(分);非π滤波电路不得分。
3)画出电流表及可变化负载电阻R L(得1分);负载部分没画不得分。
说明该电路的工作原理(1分)12V 交流电压经过由4个二极管组成的桥式整流电路后成为直流脉动电压,再经过由电解电容和电阻组成的π型滤波电路,电压的脉动幅度大大减小,成为可以供负载使用的直流稳压电源。
用可变电阻箱作为负载电阻,电流表串接在带负载电阻的输出回路中。
说明电路中各元件的作用(1分)二极管——有单向导通功能,阻止反向电流的流通;电解电容——有隔离直流流通和积蓄电能功能,能够充电与放电,充放电时间与负载有关;电阻——有阻碍电流流通的功能,与电解电容组合可以改变电路的充放电时间。
(答对1项得分,全对得1分)2.用导线连接组装设计的电路,制成一个直流电源。
用所给的电阻箱和数字式直流毫安表研究该电源的开路输出电压U 0及毫安表的内阻r o (电压档无法使用)。