NANO MATERIAL NANO

合集下载

机械英语单词汇总

机械英语单词汇总

1, Nanometallic 纳米金属2, metallic glasses金属玻璃3, material extrusion 材料挤制成型技术4, additive manufacturingn. 增材制造;添加剂制造5, control algorithm [计] 控制算法6, scanner ['skænə]n. [计] 扫描仪;扫描器;光电子扫描装置7, sensor ['sensə]n. 传感器8, function ['fʌŋ(k)ʃ(ə)n]n. 功能;[数] 函数;9, time delay [time+delay]延时,延迟10, computation [kɒmpjʊ'teɪʃ(ə)n]n. 估计,计算11, continuous track 持续追踪12, alloy ['ælɔɪ]n. 合金13, electrical discharge machining电火花加工14, fabrication [fæbrɪ'keɪʃ(ə)n]制备15, titanium [taɪ'teɪnɪəm; tɪ-]n. [化学] 钛(金属元素)16, penetration [penɪ'treɪʃ(ə)n]n. 渗透;突破;侵入;洞察力17, intensity [ɪn'tensɪtɪ]n. 强度18, graphitization [,ɡræfitai'zeiʃən, -ti'z-] n. [化工][冶] 石墨化19, three-dimensionaladj. 三维的;立体的;真实的20, carbon diffusion 碳扩散21, single-crystal diamond 单晶金刚石22, surface integrity [surface+integrity]表面完整性;表面质量23, diamond ['daɪəmənd] 钻石金刚石24, microstructured 微观构造25, physiotherapy [,fɪzɪo'θɛrəpi]物理疗法26, randomised trials 随机试验27, ion etching 离子浸蚀离子蚀刻28, ion excitation 离子激发29, telemedicine ['tɛlɪ,mɛdɪsɪn]n. (通过遥测、电视、电话等方式求诊的)远距离医学30, smart factory 智慧工厂31, toolbox ['tu:l,bɔks]n. 工具箱32, intelligent manufacturing 智能制造33, error allocation 误差分配34, drilling force 钻削力35, convolutional networks 卷积网络36, architecture ['ɑrkə'tɛktʃɚ]体系架构37, efficiency [ɪ'fɪʃ(ə)nsɪ]n. 效率;效能;功效38, photoexcited [photoexcited]adj. 光激的39, Graphene nanosheets石墨烯纳米薄膜40, electron cyclotron resonance plasma微波电子回旋共振等离子体41, resonance ['rez(ə)nəns]n. [力] 共振;共鸣;反响42, cyclotron ['saɪklətrɒn]n. [核] 回旋加速器,粒子回旋加速器43, p-silicon P型硅44, Photoelectric behavior 光电效应45, evaluate [ɪ'væljʊeɪt]vt. 评价;估价;求…的值46, gait [geɪt]n. 步法,步态47, joint [dʒɒɪnt]n. 关节;接缝;接合处,接合点48, nanostructured materials纳米结构材料49, adhesive force [adhesive+force]粘合力,[力] 附着力50, surface roughness[机][气象] 表面粗糙度;表面光洁度51, Raman spectral analysis 拉曼光谱分析52, covalent bond [covalent+bond]n. [物化] 共价键53, Physical Etching 物理蚀刻54, threshold voltage [threshold+voltage] [电子] 阈值电压;[电子] 阈电压55, film deposition 薄膜沉积56, plasma ['plæzmə]n. [等离子] 等离子体57, electron cyclotron resonance[物] 电子回旋共振58, excitation [,eksaɪ'teɪʃ(ə)n]n. 激发,刺激;激励;激动59, etching ['etʃɪŋ]v. 蚀刻;刻画(etch的ing形式)60, acceptable [ək'septəb(ə)l]adj. 可接受的;合意的;可忍受的61, mean burr thickness 平均毛刺厚度62, delamination [diː,læmɪ'neɪʃən]n. 分层;[生物][化学] 层离63, finite element analysis[数] 有限元分析64, stress [strɛs]n. 压力;65, feed rate [feed+rate][机] 进给速率66, surface quality表面质量;表面符号;外观要求67, printed circuit board 印刷电路板68, Micro-Drilling 微孔钻削69, hole quality 成孔质量70, characteristics [,kærəktə'rɪstɪks]n. 特性,特征;特色(characteristic的复数);特质71, analytical simulation 分析仿真72, application [ˌæplɪ'keɪʃ(ə)n]n. 应用;申请;应用程序;敷用73, layer [ˈler]n. 层,层次;膜;74, spin magnetic moment 自旋磁矩75, antiferromagnetic[,æntɪ,ferəʊmæg'netɪk]adj.反铁磁性的76, ferromagnetic [,ferə(ʊ)mæg'netɪk] adj. [物] 铁磁的;铁磁体77, structure ['strʌktʃə]n. 结构;构造78, carbon film 碳膜79, nanocrystallites 纳米微晶80, magnetoresistancen. [电磁] 磁阻;[物] 磁致电阻81, image feature 影像特征82, calculate ['kælkjʊleɪt]vt. 计算;预测;认为;打算83, detection algorithm 检测算法84, depth map 深度图85, machine vision[计] 机器视觉;计算机视觉86, technical risk 技术风险87, minimize [ˈmɪnɪˌmaɪz]vi. 最小化88, flycutting快速切削(flycut的现在分词形式)89, dynamic accuracy design动态精度设计90, frequency domain[计] 频域;[电子][通信] 频率范围91, workpiece [workpiece]n. 工件;轧件;工件壁厚92, Ultra-precision machine tool超精密机床93, mathematical model 数学模型94, range of motion 活动范围95, mechanical design 机械设计96, robot-assisted 机器人辅助的97, rehabilitation robot 康复机器人98, kinematic [,kɪnə'mætɪk]adj. [力] 运动学上的,[力] 运动学的99, dynamic simulation [计] 动态仿真100, diameter [daɪ'æmɪtə]n. 直径101, specificity [,spesɪ'fɪsətɪ]n. [免疫] 特异性;特征;专一性102, emulate ['emjʊleɪt]n. 仿真;仿效103, coining ['kɒɪnɪŋ]vt. 冲制;压模(coin的ing形式)104, polymer ['pɒlɪmə]n. 聚合物105, module ['mɒdjul]n. 模块;组件;模数106, filler ['fɪlə]n. 装填物107, resin ['rezɪn]n. 树脂;松香108, deformation n. 变形109, autonomous [ɔː'tɒnəməs]adj. 自治的;自主的;自发的110, metallic [mɪ'tælɪk]adj. 金属的,含金属的111, ceramic [sɪ'ræmɪk]adj. 陶瓷的;陶器的;制陶艺术的n. 陶瓷;陶瓷制品112, interaction [ɪntər'ækʃ(ə)n]n.相互作用;[数] 交互作用n.互动113, payload ['peɪləʊd]n.有效载荷,有效负荷;114, magnetic [mæg'netɪk]adj.地磁的;有磁性的;有吸引力的115, ion ['aɪən]n.[化学] 离子116, irradiation [ɪ,reɪdɪ'eɪʃ(ə)n]n.照射;发光,放射。

聚合物纳米技术

聚合物纳米技术

Cleaning Applications



Nano titanium dioxide particles; energy in light to start the chemical reaction that kills the bacteria. Nano colloidal micelles make a better soap. Coated nanofilms provide certain surface characteristics
聚合物奈米技術 Polymer Nano-technology
蘇添貴(Tien-Kuei Su) 貴瑩公司顧問
聚合物奈米技術 Polymer Nano-technology
Background Type of Nanostructures Fabrication Techniques Applications/Benefits - Nanoclay in Packagings Potential Issues
Fabrication Techniques Pores/Voids, Nanofibers



Solvent followed by evaporization, extraction. Change of morphology, phase Additives; nanostructures (US 7115680), X-link (US 7067058,6039872) Incompatible blends Stretching/Orientation Fibrillation Others
- 金屬納米粒子是由化學方法先獲得,然後,分發 (Disperse)到聚合物溶液(Polymer Solution)或 單體溶液聚合

纳米材料轮胎介绍-2013-12-19

纳米材料轮胎介绍-2013-12-19

轮胎性能 Tire Performances
高速测试 High Speed Test
高速性能测试是检测轮胎的速度等级;测试:中国国家标准
Reference Total Run Time Top Speed (km/h) Top Speed Run Time 1 h 54 min 310 4 min Nano Tire 2 h 8 min 320 8 min
总结 Conclusion
通过纳米材料的设计和轮胎配方的优化,纳米材料轮 胎拥有优良的加工性能和使用性能,已经具备了产业化量 产的能力。
Through nano material design and compound optimization, nano compound tire has excellent performances and processability. It has achieved its mass production capability.
0.3
Tanδ
Tanδ
0.26
0.22
0.18
0.14 0.0001
0.001
0.01
0.1Βιβλιοθήκη 1STRAIN纳米材料胶料的Tg不变,对抗湿滑性没有影响;Tand下降降低了滚 动阻力。Nano material compound has no impact on Tg and wet grip. Its lower tand is for lower rolling resistance.
纳米材料提高了轮胎的综合性能,在大量使用白炭黑 填充时也能确保轮胎的抗静电性能;降低滚动阻力,提升 轮胎的耐久性。Nano compound improves endurance, improves antistatic property at high silica dosage, reduces rolling resistance.

金属材料表面纳米化研究与进展

金属材料表面纳米化研究与进展

表面技术第53卷第4期金属材料表面纳米化研究与进展杨庆,徐文文,周伟,刘璐华,赖朝彬*(江西理工大学 材料冶金化学学部,江西 赣州 341000)摘要:大多数金属材料的失效都是从其表面开始的,进而影响整个材料的整体性能。

研究表明,在金属材料表面制备纳米晶,实现表面纳米化,可以提升材料的表面性能,延长其使用寿命。

金属材料表面纳米化是指利用反复剧烈塑性变形让表层粗晶粒逐步得到细化,材料中形成晶粒沿厚度方向呈梯度变化的纳米结构层,分别为表面无织构纳米晶层、亚微米细晶层、粗晶变形层和基体层,这种独特的梯度纳米结构对金属材料表面性能的大幅度提升效果显著。

根据国内外表面纳米化的研究成果,首先对表面涂层或沉积、表面自纳米化以及混合纳米化3种金属表面纳米化方法进行了简要概述,阐述了各自优缺点,总结了表面自纳米化技术的优势,在此基础上重点分析了位错和孪晶在金属材料表面自纳米化过程中所起的关键作用,提出了金属材料表面自纳米化机制与材料结构、层错能大小有着密不可分的联系,对金属材料表面自纳米化机制的研究现状进行了归纳;阐明了表面纳米化技术在金属材料性能提升上的巨大优势,主要包括对硬度、强度、腐蚀、耐磨、疲劳等性能的改善。

最后总结了现有表面强化工艺需要克服的关键技术,对未来的研究工作进行了展望,并提出将表面纳米化技术与电镀、气相沉积、粘涂、喷涂、化学热处理等现有的一些表面处理技术相结合,取代高成本的制造技术,制备出价格低廉、性能更加优异的复相表层。

关键词:金属材料;表面纳米化;梯度纳米结构;纳米化机理;表面性能中图分类号:TG178 文献标志码:A 文章编号:1001-3660(2024)04-0020-14DOI:10.16490/ki.issn.1001-3660.2024.04.002Research and Progress on Surface Nanocrystallizationof Metallic MaterialsYANG Qing, XU Wenwen, ZHOU Wei, LIU Luhua, LAI Chaobin*(Department of Materials Metallurgy and Chemistry, Jiangxi University ofTechnology, Jiangxi Ganzhou 341000, China)ABSTRACT: It is well known that the failure of most metallic materials starts from their surfaces, which in turn affects the overall performance of the whole material. Numerous studies have shown that the preparation of nanocrystals on the surface of metallic materials, i.e., surface nanosizing, can enhance the surface properties of materials and extend their service life. Surface nanosizing of metallic materials makes use of repeated violent plastic deformation to make the surface coarse grains gradually收稿日期:2023-02-23;修订日期:2023-06-29Received:2023-02-23;Revised:2023-06-29基金项目:国家自然科学基金项目(52174316,51974139);国家重点研发计划项目(2022YFC2905200,2022YFC2905205);江西省自然科学基金项目(20212ACB204008)Fund:National Natural Science Foundation of China(52174316, 51974139); National Key Research and Development Program of China (2022YFC2905200, 2022YFC2905205); Natural Science Foundation of Jiangxi Province (20212ACB204008)引文格式:杨庆, 徐文文, 周伟, 等. 金属材料表面纳米化研究与进展[J]. 表面技术, 2024, 53(4): 20-33.YANG Qing, XU Wenwen, ZHOU Wei, et al. Research and Progress on Surface Nanocrystallization of Metallic Materials[J]. Surface Technology, 2024, 53(4): 20-33.*通信作者(Corresponding author)第53卷第4期杨庆,等:金属材料表面纳米化研究与进展·21·refine to the nanometer level, forming nanostructured layers with gradient changes of grains along the thickness direction, including surface non-woven nanocrystalline layer, submicron fine crystal layer, coarse crystal deformation layer and matrix layer, and this unique gradient nanostructure is effective for the significant improvement of surface properties of metallic materials. The process technology and related applications of nanocrystalline layers on the surface of metallic materials in China and abroad are introduced, and the research progress of high-performance gradient nanostructured materials is discussed.Starting from the classification of the preparation process of gradient nanostructured materials and combining with the research results of surface nanosizing in China and abroad, a brief overview of three methods of metal surface nanosizing, namely, surface coating or deposition, surface self-nanosizing and hybrid nanosizing, was given, the advantages and disadvantages of each were discussed and the advantages of surface self-nanosizing technology were summarized. On the basis of this, the key role of dislocations and twins in the process of surface self-nanitrification of metallic materials was analyzed, and the mechanism of surface self-nanitrification of metallic materials was inextricably linked to the material structure and the size of layer dislocation energy, and the current research status of the mechanism of surface self-nanitrification of metallic materials was summarized. Finally, the key technologies required to be overcome in the existing surface strengthening process were summarized, and future research work was prospected. It was proposed to combine surface nanosizing technology with some existing surface treatment technologies such as electroplating, vapor deposition, tack coating, spraying, chemical heat treatment, etc., to replace the high-cost manufacturing technologies and prepare inexpensive complex-phase surface layers with more excellent performance.Techniques for the preparation of gradient nanostructured materials include surface coating or deposition, surface self-nanosizing, and hybrid surface nanosizing. Surface coating or deposition technology has the advantages of precise control of grain size and chemical composition, and relatively mature process optimization, etc. However, because the coating or deposition technology adds a cover layer on the material surface, the overall size of the material increases slightly, and there is a certain boundary between the coating and the material, and there will be defects in the specific input of production applications.In addition, the thickness of the gradient layer prepared by this technology is related to the deposition rate, which takes several hours to prepare a sample. The surface self-nanitrification technique, which generates intense plastic deformation on the surface of metal materials, has the advantages of simple operation, low cost and wide application, low investment in equipment and easy realization of unique advantages. The nanocrystalline layer prepared on the surface of metal materials with the surface self-nanitrification technique has a dense structure and no chemical composition difference from the substrate, and no surface defects such as pitting and pores, but the thickness of the gradient layers and nanolayers prepared by this technique as well as the surface quality of the material vary greatly depending on the process. Hybrid surface nanosizing is a combination of the first two techniques, in which a nanocrystalline layer is firstly prepared on the surface of a metallic material by surface nanosizing technology, and then a compound with a different composition from the base layer is formed on its surface by means of chemical treatment.To realize the modern industrial application of this new surface strengthening technology, it is still necessary to clarify the strengthening mechanism and formation kinetics of surface nanosizing technology as well as the effect of process parameters, microstructure, structure and properties on the nanosizing behavior of the material. For different nanosizing technologies, the precise numerical models for nanosizing technologies need to be established and improved, and the surface self-nanosizing equipment suitable for industrial scale production needs to be developed. In the future, surface nanosizing technology will be combined with some existing surface treatment technologies (e.g. electroplating, vapor deposition, adhesion coating, spraying, chemical heat treatment, etc.) to prepare a complex phase surface layer with more excellent performance, which is expected to achieve a greater comprehensive performance improvement of the surface layer of metal materials.KEY WORDS: metal material; surface nanocrystallization; gradient nanostructures; nanocrystallization mechanism; surface properties金属材料在基建工程、航空航天中扮演着重要角色,随着当今科学技术的高速发展,传统金属材料的局限性日趋明显,开发一种综合性能优异的金属材料迫在眉睫。

新型包装材料

新型包装材料

静电, 对包装物也会造成严重的后果。
纳米掺锑二氧化锡微粒具有良好的导电性, 浅色透明性, 良好的耐候性和稳定性 以及低的红外发射率等特性, 在包装材料中添加纳米掺锑二氧化锡微粒时, 涂层的导
电性能才明显改善, 可以消除的静电现象, 使得包装表面不再吸附灰尘, 可减少因摩擦
而导致的擦伤。
应用 功能(智能型纳米包装材料
纳米涂层包装材料具有色彩防伪、理化效应防伪等功能。
应用前景 Application prospect
纳米技术不仅可广泛应用于化纤、塑料、橡 胶、陶瓷、油漆、涂料、纸张等方面, 以改善产品 档,实现产品的某些特殊性能, 同时在无菌包装、 抗菌包装、除臭包装、高阻隔包装等方面也得以 广泛应用。 由于纳米技术是最近10年来新兴的综合科学 技术, 其研究内容涉及现代高新技术各领域多方。 但纳米包装材料的特殊性能, 在节省材料资源, 满 足特殊包装功能要求等方面具有广阔的前景。
但是, 采用紫外线照射法, 由于长期的紫外线照射会导致肉类食品因自动氧化而
变质, 而且还会破坏食品中纤维素和芳香化合物, 降低食品营养价值。 通过采用添加纳米TiO2 制成的塑料薄膜来包装食品, 既可以防止紫外线对食
品的破坏, 又可以使食品保持防腐保鲜。
应用 防静电功能的纳米包装材料
包装材料的质量直接或间接影响产品的质量, 包装不仅对包装物的外观、防潮、 隔热、保温等性能有影响, 而且包装材料和包装容器在运输途中很容易因摩擦而产生
应用 纳米涂层包装材料
纳米材料由于其表面和结构的特殊性, 具有一般材料难以获得的优异性能, 借 助于传统的涂层技术, 添加纳米材料, 可获得纳米复合体系涂层, 使得传统涂层功能改
性。例如, 以纳米硅基陶瓷制成的特种不污染耐磨透明涂料, 涂在玻璃、塑料等物体

生物材料英语单词合集

生物材料英语单词合集

生物材料英语单词生物材料biomaterial 生物材料natural biomaterial 天然生物材料biomedical Material 生物医学材料tissue engineering material 组织工程材料bionic material 仿生材料intelligence materials 智能材料nanoposite纳米复合材料drug delivery material药物缓释材料carrier material载体材料dialysis membrane material透析膜材料nanomaterial纳米材料e*tracellular matri* material细胞外基质材料bio-derived scaffold生物衍生支架blood patible biomaterial血液相容性材料soft-tissue patible material软组织相容性材料hard-tissue patible material硬组织相容性材料biodegradable material生物降解材料polymer drug高分子药物autologous material自体材料allogeneic material同种异体材料artificial synthetic material人工合成材料biomedical polymer material医用高分子材料inorganic nonmetallic material无机非金属材料组织工程tissue engineering组织工程tissue engineered bone组织工程骨tissue engineering corneal epithelium组织工程角膜上皮vascular tissue engineering血管组织工程tissue engineering heart valve组织工程瓣膜tissue Engineered Medical Products组织工程医疗产品nerve tissue engineering神经组织工程tissue engineered cartilage组织工程软骨nanofiber scaffolds for liver tissue engineering肝脏组织工程纳米纤维支架vascularized tissue-engineered scaffold血管化组织工程骨支架tissue-engineered epidermis containing melanocyte含黑色素细胞的组织工程表皮tissue engineering models for cardiac muscle心肌组织的组织工程模型tissue-engineered tracheal epithelial cells组织工程化气管上皮细胞tissue-engineering skin scaffold material组织工程化皮肤支架材料fibers Tissue engineering scaffold纤维组织工程支架种子细胞seed cell种子细胞salivary gland seed cell颌下腺种子细胞interstitial seed cell间质种子细胞cartilage seed cell软骨种子细胞seed cell bank种子细胞库tendon seeding cell肌腱种子细胞embryonic stem cell胚胎干细胞nerve stem cell神经干细胞adult Stem Cell成体干细胞cancer stem cell肿瘤干细胞adipose-derived stem cell脂肪干细胞bone marrow mesenchymal stem cell骨髓间充质干细胞hepatic stem cell ; liver stem cell肝干细胞hematopoietic stem cell造血干细胞peripheral blood hematopoietic stem cell transplantation外周血造血干细胞移植pluripotential hematopoietic stem cell多能造血干细胞multipotential hematopoietic stem cell全能造血干细胞umbilical cord blood transplantation脐带血造血干细胞移植induced pluripotent stem cell诱导多能干细胞endothelial progenitor cell皮祖细胞材料表征方法rapidlyquenching快速凝固法severe(intense)plasticdeformation强烈塑性变形法amorphoussolidcrystallization非晶晶化法in-situposite原位复合法intercalationhybrids插层复合法microemulsion微乳液法templatesynthesis模板合成法self-assembly自组装法graphitearcdischarge石墨电弧放电法rapidlyquenching快速凝固法passivatingtreatment稳定化处理gas-condensatin method气体冷凝法liquid-phase method液相法solid-phase method固相法glucose-Fe ple* coating糖铁络合物涂层surface modification外表修饰改性layer-by-layer self-assembly层层自组装inert gas deposition惰性气体沉积法high energy ball mill高能球磨法freeze drying冷冻枯燥法hydrothermal synthesis水热合成法radiation chemical synthesis辐射化学合成法材料特性检测方法:field ion microscopy (FIM)场离子显微法magnetic force microscopy (MFM)磁力显微法laser interferometer激光干预仪laser diffraction and scattering激光衍射/散射法centrifugal sedimentation离心沉降法*-ray diffractometry (*RD)* 射线衍射法scanning probe microscopy (SPM)扫描探针显微镜infrared absorption spectroscopy红外吸收光谱法*-ray diffractometry line broadening (*RD-LB) * 射线衍射线宽化法small angle *-ray scattering (SA*S) * 射线小角度散射法raman spectrometry拉曼光谱法mossbauer spectrometry穆斯堡尔谱法photon correlation spectroscopy光子相关谱法mercury porosimetry压汞仪法nano impress纳米压痕仪scanning tunneling electron microscopy (STM)扫描隧道电子显微法scanning near-field optical microscopy (SNOM)扫描近场光学显微法atomic force microscopy (AFM) 原子力显微法scanning capacitance microscopy (SCM)扫描电容显微法scanning thermal microscopy (STHM)扫描热显微法材料特性fle*ural strength抗折强度tensile strength抗拉强度pressive strength抗压强度hyperelastic 超弹性finite element 有限元biopatibility生物相容性biomechanics生物力学缓释slow release;controlled-release缓释slow release inde*缓释指数sustained release pellet缓释丸sustained release sponge缓释明胶hydro*ycamptothecin Sustained-released Tablet羟基喜树碱缓释片sustained Release PLGA Microsphere PLGA生物可降解缓释微球slow-release pound Acidifier缓释复合酸化剂drug sustained-release hydrogel film水凝胶药物缓释膜脱细胞支架decellularized scaffold脱细胞支架acellular scaffolds matri*脱细胞支架材料homograft collagenous scaffold同种生物脱细胞支架decellularized scaffold of artery脱细胞动脉支架acellular vascular scaffold脱细胞血管支架cellularized nerve scaffold脱细胞神经支架acellular dermal scaffold脱细胞真皮支架decellularized vascular bioscaffold血管脱细胞生物支架acellular cartilage material脱细胞软骨支架材料detergent-e*tracted muscle scaffold脱细胞骨骼肌支架acellular spinal cord scaffold脱细胞脊髓支架移植transplantation移植organ transplantation器官移植transplanted organ移植器官kidney transplant肾脏移植heart transplant心脏移植transplant rejection移植排斥liver transplantation肝移植*enoplastic transplantation异种移植autoplastic transplantation自体移植bone transplantation骨移植corneal transplant角膜移植tissue transplantation组织移植fat transplantation脂肪移植graft-versus-host disease移植物抗宿主病transplantation antigen移植抗原纳米材料nanophase material纳米材料niobium-o*ide Nano-material铌氧化物纳米材料conductive Nano-material导电纳米材料one-dimensional nanomaterial一维纳米材料nanoposite复合纳米材料nano material Engineering 纳米材料工程nanometer material science; nanometer scale materials; Nanometer scale materials; nanometer materials science纳米材料科学functional nano material; functional nanomaterials功能纳米材料semiconductor nanomaterial; nano sized semiconductor material; nanometer-sized semiconductor materials; semiconductor nano-material 半导体纳米材料inorganic nano-material; inorganic nanometer material; nano-inorganic material; inorganic nano-material无机纳米材料nano materials Chemistry纳米材料化学进展doped nano materials掺杂纳米材料nanotechnology 纳米技术nanoparticle纳米颗粒nanocristal纳米晶体nano Zinc o*ide纳米氧化锌nanospheres纳米球nano-selenium纳米硒nanocrystalline纳米晶nanoscience;nanometer science纳米科学微球microsphere;microparticle微球micro-solder ball微锡球biological microcapsule生物微胶球micro-sphere target微靶球hollow glass micro-spheres空心玻璃微球球壳PLA microsphere聚乳酸微球Immunomagnetic Microsphere; Immuno-magnetic bead免疫磁性微球microspherolitic微球粒状的carbon microsphere碳微球β-Cyclode*trin Polymer Microsphere β-环糊精聚合物微球anion starch microsphere阴离子淀粉微球chitosan Microsphere壳聚糖微球octafluoropropane albumin microsphere八氟丙烷白蛋白微球polyelectrolyte posite Microsphere聚电解质复合微球gelatin microsphere明胶微球alginate microsphere海藻酸钙微球magnetic posite polymer microsphere复合型磁性高分子微球gelatin/ Hydro*yapatite posite Microsphere明胶/羟基磷灰石复合物微球porous Magnetic posite Microsphere多孔磁性复合微球magnetic polyvinyl acetate microsphere磁性聚醋酸乙烯酯微球支架scaffold支架bio-derived scaffold生物衍生支架decellularized scaffold去细胞化支架bio-derived scaffold生物衍生支架biomaterial scaffold 生物支架biological scaffold material生物支架材料 ;PLG scaffold PLG生物支架decellularized vascular bioscaffold血管脱细胞生物支架the creature valves frame生物瓣支架biodegradable stent生物降解支架biological carrier生物载体支架bioactive porous scaffold生物多孔支架胶原collagen胶原e*tracellular matri* 细胞外基质interstitial collagen 间质胶原basement membrane collagen 基膜胶原type I collagen I型胶原type Ⅱ collagen Ⅱ型胶原type Ⅲ collagen Ⅲ型胶原type Ⅴ collagen Ⅴ型胶原type Ⅺ collagen Ⅺ型胶原collagen fiber胶原纤维ceramide胶原因子soluble collagen可溶性胶原collagen Peptide胶原肽collagen casing胶原肠衣collagen synthesis胶原合成collagenases胶原酶类collagen sugar胶原糖bovine-based collagen牛胶原mature collagen fibrils 成熟胶原纤维collagen disease胶原性疾病collagen Biomineralization Reation胶原生物矿化反响collagen sheet胶原敷料collagen/ Chitosan posite Dispersion胶原/壳聚糖复合溶胀液biological collagen fiber生物胶原纤维e*ogenous collagen membrane异种胶原生物膜壳聚糖chitosan壳聚糖chitin 甲壳素sulfonated chitin 磺化甲壳素sulfonated carbo*ymethyl chitin 磺化羧甲基甲壳素hydro*yethyl chitosan 羟乙基壳聚糖acetylated Chitosan 乙酰化壳聚糖carbo*ymethyl chitosan 羧甲基壳聚糖iodine chitin 碘代甲壳素hydrolyzed chitosan 水解壳聚糖calciumphosphate∕chitosan coatings钙磷/壳聚糖涂层oligo-chitosan壳低聚糖chitooligosaccharide壳寡聚糖oligochitosan-Cu壳低聚糖铜配合物chitooligosaccharide-cysteine壳低聚糖-半胱氨酸衍生物chitosan film壳聚糖膜glycol chitosan乙二醇壳聚糖chitosan conduit壳聚糖导管chitosan/ tricalcium phosphate壳聚糖-磷酸三钙复合材料natural Rubber/ Carbo*ymethyl-Chitosan Antibacterial posite天然橡胶/羧甲基壳聚糖抗菌复合材料chitosan-alginate microcapsule壳聚糖-海藻酸钠微囊chitosan derivation壳聚糖衍生物quaternized Chitosan壳聚糖季铵盐pH-sensitive chitosan/ gelatin hydrogel pH敏感性壳聚糖/明胶水凝胶pva/ water-soluble chitosan/ glycerol hydrogel聚乙烯醇/水溶性壳聚糖/甘油水凝胶polycation-modified Chitosan Material多聚阳离子修饰壳聚糖材料chitosan nanoparticle壳聚糖纳米粒thermosensitive Chitosan Hydrogel壳聚糖温敏性水凝胶多糖polysaccharide多糖capsular polysaccharide荚膜多糖core polysaccharide核心多糖acid polysaccharide酸性多糖tremella polysaccharides银耳多糖fungus polysaccharides食用菌多糖polysaccharides 聚多糖Polysaccharide Nano-particle聚多糖纳米粒natural Polysaccharide天然聚多糖high molecular weight polysaccharide高分子量聚多糖water-soluble Polysaccharose水溶性接枝聚多糖proteoglycans from the e*tracellular matri*细胞外基质蛋白聚多糖polysaccharide nanocrystals modified material聚多糖纳米晶改性材料natural gather cationic biological polysaccharide天然的聚阳离子多糖polyanion mucopolysaccharide聚阴离子粘多糖polygalacturonase多聚半乳糖醛酸酶水凝胶hydrogel; aquogel; lyogel 水凝胶aquagel fiber水凝胶纤维thermo-sensitive hydrogel温敏水凝胶PVA/ Glutin/ Startch Hydrogel PVA/明胶/淀粉水凝胶physical Cross-linking Polyurethane Hydrogel 物理交联型聚氨酯水凝胶polyacrylamide gel 聚丙烯酰胺水凝胶hydrogel bolster水凝胶衬垫poly ( N-acryloylglycine) hydrogels 聚N-丙烯酰基甘氨酸水凝胶pH-sensitive hydrogel pH值敏感的水凝胶thermosensitive Chitosan Hydrogel壳聚糖温敏性水凝胶smart hydrogel; Intelligent hydrogel智能水凝胶pH and Temperature Sensitive Starch Hydrogel pH值/温度双重敏感淀粉水凝胶polymeric hydrogel聚合水凝胶nanogel纳米水凝胶biodegradable pH-and temperature-sensitive hydrogel温度和pH双重敏感性可生物降解水凝胶AAm/ Ac hydrogel丙烯酰胺/丙烯酸水凝胶supramolecular hydrogel超分子水凝胶silicone hydrogel 硅水凝胶聚乳酸polylactic acid 聚乳酸poly-L-lactic acid聚左乳酸poly(lactide-co-glycolide)聚(乳酸-乙醇酸)poly(lactic acid-co-aspartic acid)聚(乳酸-天冬氨酸)polylactic acid fiber聚乳酸纤维poly(L-lactide) nano-fiber scaffold聚乳酸纳米纤维支架材料polylactic resin聚乳酸树脂金属材料metallic material金属材料biomedical metallic material生物医用金属材料Zr-Based Biomedical Alloy Zr基生物医用金属材料high property alloy steel 高性能合金钢Al-Li alloy铝锂合金magnesium alloy镁合金superalloy高温合金biodegradable metallic material可生物降解性金属材料stainless steel 不锈钢nickel-cobalt alloy镍钴铬合金carbon/ metal nanoposite纳米金属/碳复合材料the knitted medical e*pandable metallic stent针织医用金属支架biomedical porous metal生物医用多孔金属材料nickel titanium shape memory alloy镍钛形状记忆合金生物瓷biological ceramic生物瓷piezoelectric bioceramics压电生物瓷hydro*yapatite Bioceramics羟基磷灰石生物瓷biodegradable ceramics降解性生物瓷bioactive ceramics活性生物瓷absorbable bioceramics可吸收生物瓷bioinert ceramics惰性生物瓷bioceramic coatings生物瓷涂层bioceramics生物瓷学aluminium o*ide bioceramic氧化铝生物瓷电纺丝electrospining电纺丝electrospinning setups电纺丝设备blow-electro spinning气-电纺丝electrospinning technique电纺丝技术electrospinning installation电纺丝装置ABC-spinning高速气电纺丝electrospinning classification电纺丝分类coa*ial electrospraying(electrospinning)同轴电雾化(电纺丝)spinning machine spindle纺丝电锭electrospun silk fibroin/ poly(ε-caprolactone) ultrafine fiber membrane 电纺丝素蛋白/聚己酯超细纤维膜electrospun fibers drug formulation电纺丝超细纤维药物剂型electrospun fiber电纺丝纤维electrospun ultrafine fiber电纺丝超细纤维continuous Spinning of Piezoelectric PZT Ceramic Fibers PZT压电瓷纤维连续纺丝electrospinning solution 电纺丝液海藻酸alginic acid 海藻酸ammonium alginate海藻酸铵calcium alginate gel海藻酸钙凝胶sodium alginate海藻酸钠alginate potassium海藻酸钾alginate calcium海藻酸钙alginate lyase海藻酸裂解酶algin ink海藻酸钠墨水modified calcium alginate gel改性海藻酸钙凝胶alginate-chitosan microcapsule海藻酸钙-几丁聚糖微胶囊Ca alginate immobilized yeast海藻酸钙固定化酵母DEET-calcium alginate microsphere避蚊胺-海藻酸钙微球PVA-alginate gel PVA-海藻酸盐凝胶barium alginate microcapsule海藻酸钡微囊antibacterial alginate/ gelatin blend fiber抗菌海藻酸/明胶共混纤维poly-ornithine alginate microcapsule多聚鸟氦酸/海藻酸微囊alginate-chitosan-alginate Ion海藻酸-壳聚糖-海藻酸离子聚已酯polycaprolactone聚已酯polycarpolaction聚已酸酯 PCL ; ; polycaprolactonepolycaprolactone glycol聚已酯乙二醇poly (caprolactone)聚ε-已酯chitin-polycaprolactone bone plate甲壳素聚已酯接骨板chitin-polycaprolactone bone plate甲壳素-聚已酯接骨板poly(L-lactic acid)-block-poly(ε-caprolactone)(PLLA-b-PCL)左旋聚乳酸/聚已酯chitin-polycaprolactone bone plate甲壳素—聚已酯接骨板polycaprolactone/polyethylene glycol/polylactide (PCEL) Tri-ponent copolymer聚已酯/聚乙二醇/聚乳酸三元共聚物micropore polycaprolactone membrane微孔聚已酯膜poly(ε-caprolactone)/ poly ( ethylene glycol) block copolymer端氨基聚乙二醇-聚已酯二嵌段共聚物fibre/ polycaprolactone position竹纤维/聚已酯复合化聚羟基乙酸polyglycolic acid;PLGA聚羟基乙酸poly lactic acid-glycolic acid copolymer聚羟基乙酸共聚物poly lactic-co-glycolic acid乳酸-聚羟基乙酸polyglycolic acid scaffold聚羟基乙酸支架collagen-polyglycolic acid scaffold without cells无细胞的胶原-聚羟基乙酸支架polyglycolic acid collagen carrier聚羟基乙酸-胶原载体poly ( glycolic acid) grafted starch copolymer聚羟基乙酸接枝淀粉共聚物injectable PLGA microspheres loading estradiol注射用雌二醇聚乳酸羟基乙酸缓释微球丝素蛋白silk fibroin丝素蛋白regenerated fibroin protein再生丝素蛋白wild antheraea pernyi silk fibroin柞蚕丝素蛋白silk fibroin protein solution丝素蛋白溶液acrylic fibre silk protein丝素蛋白腈纶porous silk fibroin多孔丝素蛋白silk fibre丝素蛋白纤维PLA/丝素蛋白 PLA/silk fibroin石墨烯graphene石墨烯graphene transistor石墨烯晶体管graphite o*ide film氧化石墨烯膜chemically reduced graphene o*ide原氧化石墨烯graphene quantum dot石墨烯量子点single layer graphene层石墨烯graphene paper石墨烯纸low Pt loading graphene posite低载铂量的铂/石墨烯〔Pt/RGO〕复合材料graphene/ carbon nanotube石墨烯/碳纳米管photoluminescent graphene荧光石墨烯Ni-Fe layered double hydro*ide/ graphene镍-铁层状双氢氧化物/石墨烯titanate/ o*ide grapheme/ polyurethane posite钛酸钠/石墨烯/聚氨酯复合材料聚丙烯酰胺polyacrylamide聚丙烯酰胺polyacrylamide gel聚丙烯酰胺凝胶hydrolyzed polyacrylamide水解聚丙烯酰胺methene polyacrylamide甲叉聚丙烯酰胺potassium salt of partially hydrolyzed polyacrylamide聚丙烯酰胺钾盐amphoteric polyacrylamide两性聚丙烯酰胺polyacrylamide for medical use;medical polyacrylamide医用聚丙烯酰胺polyacrylamide aqueous solution聚丙烯酰胺水溶液low-molecular weight cationic polyacrylamide低相对分子质量阳离子聚丙烯酰胺modified polyacrylamide grouting material改性聚丙烯酰胺灌浆材料polyacrylamide gel electrophoresis聚丙烯酰胺凝胶电泳chitosan-graft-polyacrylamide 壳聚糖-聚丙烯酰胺接枝共聚物cationic-type polyacrylamide emulsion 阳离子型聚丙烯酰胺乳液聚乙烯Polyethylene 聚乙烯polyvinyl聚乙烯基polyethylene film聚乙烯膜porous polyethylene多孔聚乙烯polyethylene pipe聚乙烯管linear polyethylene 线性聚乙烯low pressure polyethylene低压聚乙烯polyvinyl resin聚乙烯树脂polyvinyl ether聚乙烯醚polythene strip聚乙烯片cellular polyethylene泡沫聚乙烯polyethylene paper聚乙烯纸chlorosulfonated polyethylene e*ternal coating氯磺化聚乙烯防腐层short-chain branched polyethylene短链支化聚乙烯high-density polythylene高密度聚乙烯ultra-high molecular weight polyethylene超高分子量聚乙烯polyethelene debris cytokine聚乙烯微粒细胞因子polyethylene wa* micropowder聚乙烯蜡微粉polythene and carbon black posite material聚乙烯炭黑复合导电材料聚四氟乙烯polytetrafluoroethylene;PTFE聚四氟乙烯teflon seal聚四氟乙烯油封epo*y teflon环氧聚四氟乙烯teflon asbestos聚四氟乙烯石棉polytetrafluoroethylene resin聚四氟乙烯树脂PTFE microporous membrane聚四氟乙烯微孔薄膜e*panded polytetrafluoroethylene mesh膨体聚四氟乙烯补片e*pansible polytetrafluoroethylene膨体聚四氟乙烯聚乙烯亚胺polyethyleneimine聚乙烯亚胺polyethyleneimine resin聚乙烯亚胺树脂polyethylene imine fractionation聚乙烯亚胺沉淀modified polyethyleneimine改性聚乙烯亚胺polyethyleneimine nanoparticles as gene delivery system聚乙烯亚胺纳米基因载体hyperbranched and linear polyethylenimine超支化及线性聚乙烯亚胺纤维蛋白fibrin纤维蛋白fibrinogen纤维蛋白原fibrin glue纤维蛋白胶plasma fibrinogen血纤维蛋白原fibrinolysin纤维蛋白溶酶fibrin adhesive纤维蛋白粘着剂fibrinopeptide纤维蛋白肽myofibrillar protein肌原纤维蛋白fibrin glue stand纤维蛋白胶支架fibrin sealant纤维蛋白封闭剂modified fibrinogen posite scaffold改进纤维蛋白原支架fibrin-targeted contrast agent纤维蛋白靶向比照剂明胶gelatin明胶gelatin sponge明胶海绵gelatin medium明胶培养基hydrolyzed gelatin水解明胶animal gelatin动物明胶photogelatin ; photographic gelatin照相明胶gelatin particle明胶微粒gelatin agar明胶琼脂 TTGA ;edible glutin食用明胶bone matri* gelatin骨基质明胶silver halide sensitized gelatin hologram卤化银明胶全息图gelatin/ chitosan posite film明胶-壳聚糖复合膜dichromated gelatin重铬酸盐明胶polyvinyl alcohol-gelatin esterified hydrogel聚乙烯醇明胶酯化水凝胶gelatin/ β-tricalcium phosphate porous posite microsphere明胶/β-磷酸三钙多孔复合微球gelatin/ hydro*yapatite posite microsphere明胶/羟基磷灰石复合物微球nano-hydro*yapatite/ chitosan-gelatin posite scaffold纳米羟基磷灰石/壳聚糖-明胶复合支架材料one side anti-static gelatine coating substrate单面涂布防静电明胶底层gelatin nanoparticle纳米明胶gelatin-network gel method明胶网络凝胶法zedoary turmeric oil gelatin microsphere莪术油明胶微球自组装肽self-assembling peptide自组装肽self-assembly peptide hydrogels自组装肽水凝胶nanofiber self-assembly peptide纳米自组装肽self-assembling peptide nanotube自组装环肽纳米管self-assembly oligopeptide自组装寡肽self-assembling peptide sequence自组装短肽序列self-assembling cyclic peptide membrane环肽自组装单层膜3D打印three-dimensional printing,3D printing 3D打印3D printer 3D打印机bioprinting生物打印bio-printer生物打印机bioprinted skin生物打印的皮肤。

纳米材料基础(英文ppt)

纳米材料基础(英文ppt)

ClassificationClassification is based on the number of dimensions, which are not confined to the nanoscale range (<100 nm).(1) zero-dimensional (0-D),(2) one-dimensional(1-D),(3) two-dimensional (2-D), and(4) three-dimensional (3-D).2One-dimensional nanomaterialsOne dimension that is outside the nanoscale.This leads to needle like-shaped nanomaterials.1-D materials include nanotubes, nanorods, andnanowires.1-D nanomaterials can beAmorphous or crystallineSingle crystalline or polycrystallineChemically pure or impureStandalone materials or embedded in within another medium Metallic, ceramic, or polymeric4Two-dimensional nanomaterials Two of the dimensions are not confined to the nanoscale.2-D nanomaterials exhibit plate-like shapes.Two-dimensional nanomaterials include nanofilms,nanolayers, and nanocoatings.2-D nanomaterials can be:Amorphous or crystallineMade up of various chemical compositionsUsed as a single layer or as multilayer structuresDeposited on a substrateIntegrated in a surrounding matrix materialMetallic, ceramic, or polymeric5Three Three--dimensional space showing the relationships among 0among 0--D, 1D, 1--D, 2D, 2--D, and D, and 33-D D nanomaterials nanomaterials nanomaterials..7Summaryof 2-D and3-Dcrystallinestructures 8Matrix-reinforced and layerednanocompositesThese materials are formed of two or more materials with very distinctive properties that act synergistically to create properties that cannot be achieved by each single material alone. The matrix of the nanocomposite, which can be polymeric, metallic, or ceramic, has dimensions larger than the nanoscale, whereas the reinforcing phase is 9commonly at the nanoscale.Carbon materials2s and 2p electrons available for bondingDiamond and graphite are twoallotropes of carbon:pure forms of the same element that differ in structure.11DIAMOND- chemical bonding is purely covalent - highly symmetrical unit cell - extremely hard - low electrical conductivity - high thermal conductivity (superior) - optically transparent - used as gemstones and industrial grinding, machining and cutting12GRAPHITE• Layered structure with strong bonding within the planar layers and weak, van der Waals bonding between layers • Easy interplanar cleavage, applications as a lubricant and for writing (pencils) • Good electrical conductor • Chemically stable even at high temperatures • excellent thermal shock resistanceApplications:Commonly used as heating elements (in non- oxidizing atmospheres), metallurgical crucibles, casting molds, electrical contacts, brushes and resisto1r3s, high temperature refractories, welding electrodes, air purification systems, etc.GraphiteGraphite is a layered compound. In each layer, the carbon atoms are arranged in a hexagonal lattice with separation of 0.142 nm, and thedistance between planes is 0.335 nmThe acoustic and thermal properties of graphite are highly anisotropic, since phonons propagate very quickly along the tightly-bound planes, but are slower to travel from one plane to another.14/wiki/GraphiteGrapheneGraphene is an one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. It can be viewed as an atomic-scale chicken wire made of carbon atoms and their bondsThe carbon-carbon bondlength in graphene is about0.142 nm. Graphene is thebasic structural element ofsome carbon allotropesincluding graphite, carbon15nanotubes and fullerenes.Allotropes of carbon3D 0D1D16a) diamond b) graphite c) lonsdaleite(hexagonal diamond) d) - f) fullerenes (C60, C540, C70); g) amorphous carbon h) carbon nanotube2D - ???Wikipedia17SCIENCE, June 2010If there's a rock star in the world of materials, it's graphene: single-atom–thick sheets of carbon prized forits off-the-charts ability to conduct electrons and for being all but transparent.Those qualities make graphene a tantalizing alternative for use as a transparent conductor, the sort now found in everything from computer displays and flat panel TVs to ATM touch screens and solar cells. But the material has been tough to manufacture in anything larger than flakes a few centimeters across. Now researchers have managed to create rectangular sheets of graphene 76 centimeters in the diagonal direction and even use them to create a working touchscreen display18Quantum effectsThe overall behavior of bulk crystalline materials changes when the dimensions are reduced to the nanoscale. For 0-D nanomaterials, where all the dimensions are at the nanoscale, an electron is confined in 3-D space. No electron delocalization (freedom to move) occurs. For 1-D nanomaterials, electron confinement occurs in 2-D, whereas delocalization takes place along the long axis of the nanowire/rod/tube. In the case of 2-D nanomaterials, the conduction electrons will be confined across the thickness but delocalized in the plane of the sheet.19Electrons confinementFor 0-D nanomaterials the electrons are fully confined. For 3-D nanomaterials the electrons are fully delocalized. In 1-D and 2-D nanomaterials, electron confinement and delocalization coexist. The effect of confinement on the resulting energy states can be calculated by quantum mechanics, as the “particle in the box” problem. An electron is considered to exist inside of an infinitely deep potential well (region of negative energies), from which it cannot escape and is confined by the dimensions of the nanostructure.20Energieswhere h¯ ≡ h/2π, h is Planck’s constant, m is the mass of the electron, L is the width (confinement) of the infinitely deep potential well, and nx, ny, and nz are the principal quantum numbers in the three dimensions x, y, and z.The smaller the dimensions of the nanostructure(smaller L), the wider is the separation between theenergy levels, leading to a spectrum of21discreet energies.What’s different at the nanoscale?Each of the different sized arrangement of gold atoms absorbs and reflects light differently based on its energylevels, which are determined by size and bonding arrangement. This is true for many materials when the particles have a size that is less than 100 nanometers in atleast one dimension.22Energy levels in infinite quantum well23The finite potential wellFor the finite potential well, the solution to the Schrodinger equation gives a wavefunction with an exponentially decaying penetration into the classically forbidden region.Confining a particle to a smaller space requires a larger confinement energy. Since the wavefunction penetration effectively "enlarges the box", the finite well energy levels are lower than thosefor the infinite well.The solution for -L/2 < x < L/2 and elsewhere must satisfy the equationWith the substitution24The finite potential well25Comparison of Infinite and Finite Potential WellsEigenstates with E < V0 are bound or localized.26Eigenstates with E > V0 are unbound or delocalizedElectron energy densityThe behavior of electrons in solids depends upon the distribution of energy among the electrons:This distribution determines the probability that a given energy state will be occupied, but must be multiplied by the density of states function to weight the probability by the number of states available at a given energy.Density of states in (a) metal, (b) semimetal (e.g.graphite).27。

Nano Materials Science Editorial Board

Nano Materials Science Editorial Board
Editorial Board Members
Structural Materials
Yanping Cao, China Shaohua Chen, China Yuli Chen, China Zengtao Chen, Canada Huiling Duan, China Xiqiao Feng, China Xue Feng, China
Energy Materials
Qiaoliang Bao, Australia Wenbin Cai, China Xiaobo Chen, USA Fangyi Cheng, China Hongjin Fan, Singapore Xing Fan, China Zaiping Guo, Australia Jr-Hau He, Saudi Arabia Chenguo Hu, China Jinsong Hu, China Mohammad Javad Parnian, Canada Sophie Le Caër, France Qing Li, China Wenfeng Lin, UK Yongsong Luo, China Zhangquan Peng, China Lidong Sun, China Qiang Sun, China Deli Wang, China Guoxiong Wang, China Shuangyin Wang, China Xin Wang, Singapore Junliang Zhang, China Huijun Zhao, Australia Junwu Zhu, China
Metallic Materials
Andrew Godfrey, China Jianfeng Nie, Australia Nobuhiro Tsuji, Japan

纳米材料简介ppt课件

纳米材料简介ppt课件
17
The end
18
纳米粒子表面积大、表面活性中心多,为催化剂提供了必要条件。 目前纳米粉材如铂黑、银、氧化铝和氧化铁等广泛用于高分子聚合 物氧化、还原及合成反应的催化剂。如用纳米镍粉作为火箭固体燃 料反应催化剂,燃烧效率提高100倍;以粒度小于100nm的镍和铜锌合金的纳米材料为主要成分制成加氢催化剂,可使有机物的氢化 率达到传统镍催化剂的10倍;用纳米TiO2制成光催化剂具有很强的 氧化还原能力,可分解废水中的卤代烃、有机酸、酚、硝基芳烃、 取代苯胺及空气中的甲醇、甲醛、丙酮等污染物。
12
C 5 hapter 纳米材料的应用
1、在半导体中的应用
当前微处理器已达到550万个晶体管的集成度、600MHZ的频率和 0.18的线宽,仍满足不了技术发展的需要。根据Intel公司预测,到 2011年微处理器将达到10亿个晶体管的集成度、10GHz 的频率和0.07的线宽,这使以硅为主要材料的超大规模集成电路(VLSI) 的工艺和原理达到极限要继续发展必须寻求工艺和技术突破。“光电 集成”就是其中一个途径,在硅电路中用光连接取 代电连接。然而大块的硅或锗的发光效率很低,且发光波段在近红外, 不适合“光电集成”。寻求一种有效产生光发射的硅基材料已成为材 料科学的一个热点。半导体纳米材料在可见光区具有较高的发光效, 发光波段与发光效率可由纳米材料的尺寸得以控制。此,多孔硅中的 量子点结构、二元半导体化合物中的嵌埋结构及半导体超晶格材料, 在光纤通讯和光探测器方面有广泛的应用。
4
C 3 hapter 纳米材料的纳米效应
1、量子尺寸效应
2、小尺寸效应 3、表面效应 4、宏观量子隧道效应 5、库仑阻塞和量子隧穿 6、介电陷域效应
5
表面效应
6
布朗运动

特高压电气设备用纳米复合绝缘材料与应用关键技术

特高压电气设备用纳米复合绝缘材料与应用关键技术

特高压电气设备用纳米复合绝缘材料与应用关键技术1.纳米复合绝缘材料是一种新型的绝缘材料,具有优异的电气性能和机械性能。

Nanocomposite insulation material is a new type of insulation material with excellent electrical and mechanical properties.2.纳米复合绝缘材料由纳米颗粒和基质材料组成,通过特定工艺方法制备而成。

Nanocomposite insulation material is composed of nano particles and matrix materials, prepared through specific processing methods.3.纳米复合绝缘材料可以显著提高电气设备的绝缘性能,减小设备体积和重量。

Nanocomposite insulation material can significantly improve the insulation performance of electrical equipment and reduce the volume and weight of the equipment.4.纳米复合绝缘材料的关键技术包括纳米颗粒的选取、分散和增韧等方面。

The key technologies of nanocomposite insulation materials include the selection, dispersion, and toughening of nano particles.5.纳米复合绝缘材料的研究和应用对于特高压电气设备的性能提升具有重要意义。

Research and application of nanocomposite insulation materials are of great significance for the performance improvement of ultra-high voltage electrical equipment.6.纳米复合绝缘材料的应用可以提高特高压电气设备的工作可靠性和安全性。

不同材料表面构筑水凝胶涂层的通用策略

不同材料表面构筑水凝胶涂层的通用策略

不同材料表面构筑水凝胶涂层的通用策略1.利用化学交联和物理交联的方法,可以在不同材料表面构筑水凝胶涂层。

Using methods of chemical crosslinking and physical crosslinking, water gel coatings can be constructed on the surfaces of different materials.2.水凝胶涂层可以提高材料的稳定性和耐久性。

Water gel coatings can improve the stability and durability of materials.3.通过在材料表面构筑水凝胶涂层,可以实现材料的抗污染和防腐蚀功能。

By constructing water gel coatings on the surface of materials, the functions of anti-pollution and anti-corrosion of materials can be achieved.4.超疏水表面结构可以用于构筑水凝胶涂层,提高材料的防水性能。

Superhydrophobic surface structure can be used to construct water gel coatings to improve the waterproof performance of materials.5.聚合物材料在表面构筑水凝胶涂层可以提高其抗撕裂性能。

Constructing water gel coatings on the surface of polymer materials can improve their tear resistance performance.6.金属材料的耐蚀性能可以通过构筑水凝胶涂层得到显著提升。

The corrosion resistance of metal materials can be significantly improved by constructing water gel coatings.7.纳米材料表面构筑水凝胶涂层可以增强其光电性能和化学稳定性。

纳米建筑材料的作文400字左右

纳米建筑材料的作文400字左右

纳米建筑材料的作文400字左右纳米建筑材料是一种通过纳米技术制造的新型建筑材料,具有非常小的尺寸和特殊的性能。

Nano building materials are a new type of building materials manufactured through nanotechnology, with very small dimensions and special properties.纳米建筑材料包括纳米水泥、纳米混凝土、纳米涂料和纳米防水材料等多种类型。

Nano building materials include nano-cement, nano-concrete, nano-coatings, and nano-waterproof materials, among others.这些纳米建筑材料具有高强度、耐久性好、防水性能强等特点,能够大大提高建筑物的质量和使用寿命。

These nano building materials have the characteristics of high strength, good durability, strong waterproof performance, and can greatly improve the quality and service life of buildings.与传统建筑材料相比,纳米建筑材料更环保、更节能,可以减少能源消耗和减少对环境的污染。

Compared with traditional building materials, nano building materials are more environmentally friendly and energy-saving, which can reduce energy consumption and environmental pollution.纳米建筑材料还具有自洁能力和抗菌功能,能够有效减少建筑物的污染和维护成本。

纳米材料(nano material)与纳米粒子(nano particle)

纳米材料(nano material)与纳米粒子(nano particle)

纳米材料(nano material)与纳米粒子(nano particle)佚名【期刊名称】《中国粉体工业》【年(卷),期】2005(000)004【摘要】纳米级结构材料简称为纳米材料(nano material),是指其结构单元的尺寸介于1nm~100nm范围之间。

由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。

并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

【总页数】2页(P11-12)【正文语种】中文【中图分类】TB383【相关文献】1.A Facile Synthesis of ZnCo2O4 Nanocluster Particles and the Performance as Anode Materials for Lithium Ion Batteries [J], Yue Pan;Kui Cheng;Weijia Zeng;Lin Li;Yuzi Zhang;Yingnan Dong;Dianxue Cao;Guiling Wang;Brett L.Lucht;Ke Ye2.A Facile Synthesis of ZnCo2O4 Nanocluster Particles and the Performance as Anode Materials for Lithium Ion Batteries [J],Yue;Pan;Weijia;Zeng;Lin;Li;Yuzi;Zhang;Yingnan;Dong;Dianxue;Cao;Guiling; Wang;Brett;L.Lucht;Ke;Ye;Kui;Cheng;3.Nano-Materials and Composition on the Basis of Cobalt Nano-Particlesand Fine Humic Acids as Stimulators of New Generation Growth [J], Polishchuk Svetlana Dmitrievna; Nazarova Anna Anatolievna; Kutskir Maxim Valerievich; ChurilovGennady Ivanovich4.Carbon Nanosheets Encapsulated NiSb Nanoparticles as Advanced Anode Materials for Lithium-Ion Batteries [J], Qichang Pan;YananWu;Wentao Zhong;Fenghua Zheng;Youpeng Li;Yanzhen Liu;JunhuaHu;Chenghao Yang5.Effect of Aluminum Nano-Particles on Microrelief and Dielectric Properties of PE+TlInSe&lt;sub&gt;2&lt;/sub&gt;Composite Materials [J], E. M. Gojayev;Kh. R. Ahmadova;S. I. Safarova;G. S. Djafarova;Sh. M. Mextiyeva因版权原因,仅展示原文概要,查看原文内容请购买。

纳米材料 英文介绍

纳米材料 英文介绍

• Enhancement of elastomeric properties:人造橡胶图片 -- for oil resistant HNBR(氢化丁腈橡胶) by the inclusion of Zinc(锌) di-methacrylate
• Thermal insulating coatings: --a layer of nanoporous(纳米多孔) silica(硅) on PI (聚酰亚胺)thin film coated by a 70nm thick Al films
பைடு நூலகம்
– Better elevated temperature behaviour
• Chemical-related properties – Enhanced corrosion and degradation resistance
APPLICATIONS OF NANOCOMPOSITES
• Automobiles: --Air intake cover, fuel tank and other under the hood components due to the improved mechanical and thermal stability
– Better damage tolerance • Physical-related properties
– Controlled thermal expansion and conductivity
– Directional electrical and magnetic properties
Thank you for your watching
Definition of Nanocomposites

knm1000纳米陶瓷的元素

knm1000纳米陶瓷的元素

knm1000纳米陶瓷的元素英文回答:KNM1000 is a type of nanoceramic material that is known for its exceptional properties and applications in various industries. It is composed of several different elementsthat contribute to its unique characteristics.One of the primary elements found in KNM1000 is zirconium oxide (ZrO2). Zirconium oxide is a highly stable and durable material that is known for its high meltingpoint and resistance to corrosion. It is often used in the production of ceramics, refractory materials, and dental implants.Another key element in KNM1000 is aluminum oxide(Al2O3). Aluminum oxide is also a highly stable materialthat exhibits excellent thermal and electrical conductivity. It is commonly used in the production of abrasives, refractories, and electrical insulators.Silicon dioxide (SiO2) is another important element found in KNM1000. Silicon dioxide is a versatile material that is known for its high strength, hardness, and resistance to wear. It is commonly used in the production of glass, ceramics, and semiconductors.In addition to these elements, KNM1000 may also contain trace amounts of other elements such as yttrium oxide(Y2O3), magnesium oxide (MgO), and calcium oxide (CaO). These elements can further enhance the material's properties and performance in specific applications.Overall, the combination of these elements in KNM1000 results in a nanoceramic material that possesses exceptional mechanical, thermal, and electrical properties. It is widely used in various industries, including aerospace, automotive, electronics, and healthcare.中文回答:KNM1000是一种纳米陶瓷材料,以其卓越的性能和在各个行业中的应用而闻名。

NanoZS操作规程

NanoZS操作规程

NanoZS90操作规程仪器使用前需热机15到30min。

指示灯闪烁时不要打开盖子。

粒度测试1.选择File—New—Measurement File建立测试文件夹:2.比色皿中加样1ml左右(参照仪器样品区盖上的示意图),盖上盖子,溢出的样品用纸巾擦干。

确定样品池中无气泡。

打开软件“Zetasizer Software”,仪器按钮变为绿色,按下按钮,样品仓盖子弹起,将比色皿标有三角的面正对自己插入槽中,然后关上盖子。

3.选择measure—manual,出现设置窗口,点击measurement type,选择“size”。

点击Sample ,输入样品名称:输入样品名称点击“Material”输入粒子的成分、折光指数及“Adsorption”:粒子的折光指数点击“Dispersant ”输入分散剂的名称、测试温度和分散剂的黏度及折光指数:可选择其他分散剂点击“Temperature”输入测试温度和温度平衡时间(建议设在120s以上):点击“Cell”的类型:点击“Measurement ”输入测试角度、测试时间及次数:点击“Processing ”,选择数据分析模式:General purpose :一般已知或未知的样品皆可使用此分析模式;通用模式,适用于分析连续分布的样品;Multiple narrow modes :适用于多种窄分布的混合样品; Protein analysis :对于比较小的粒子分辨率较高测试次数,每个样品至少测试三次参数设置完毕之后,点击ok,出现测量窗口,点击绿色图标开始测试。

结果会自动保存。

4.利用Expert advise检测测试质量。

检测不同浓度下的样品尺寸,粒径大小应不依赖于样品浓度。

5.测量下个样品时,在测试窗口中点击setting,然后输入其样品名称和相关测试条件。

6.如要编辑结果,必须将测试窗口关闭。

7.数据处理:在“Intensity stats table”(或“V olume Stats Table”、或“Number Stats Table”)页面,选择Edit---Copy Size Statistics Table或Copy Size statistics graph,粘贴于excell等表格中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NANO MATERIAL NANO MATERIAL NANO MATERIAL 纳米材料应用现状及发展趋势摘要纳米材料是近期发展起来的多功能材料,本文概述了纳米材料的结构特性、主要制备工艺及应用现状和发展趋势,由于纳米材料具有许多特殊功能和效应,将在工业和国防等领域中发挥巨大潜力,并将为人类社会带来巨大影响。

1 前言纳米材料是指由极细晶粒组成,特征维度尺寸在1~100 纳米范围内的一类固体材料,包括晶态、非晶态和准晶态的金属、陶瓷和复合材料等,是80 年代中期发展起来的一种新型多功能材料。

由于极细的晶粒和大量处于晶界和晶粒内缺陷中心的原子,纳米材料在物化性能上表现出与微米多晶材料巨大的差异,具有奇特的力学、电学、磁学、光学、热学及化学等诸方面的性能,目前已受到世界各国科学家的高度重视。

以纳米材料及其应用技术为重要组成部分的纳米科学技术,被认为对当代科学技术的发展有着举足轻重的作用。

美国IBM公司首席科学家Armstrong 认为:“正像70 年代微电子技术产生了信息革命一样,纳米科学技术将成为下一代信息的核心。

”我国科学家钱学森也指出:“纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而将引起21 世纪又一次产业革命。

”由于纳米科学技术具有极其重要的战略意义,美、英、日、德等国都非常重视这一技术的研究工作。

美国国家基金会把纳米材料列为优先支持项目,拨巨款进行专题研究。

英国从1989 年起开始实施“纳米技术研究计划”。

日本把纳米技术列为六大尖端技术探索项目之一,并提供1187 亿美元的专款发展纳米技术。

我国组织实施的新材料高技术产业化专项中也将纳米材料列为其中之一。

纳米材料正在向国民经济和高技术各个领域渗透,并将为人类社会进步带来巨大影响。

2 纳米材料的结构和特性我们所使用的常规材料在三维方向上都有足够大的尺寸,具有宏观性。

纳米材料则是一些低维材料,即在一维、二维甚至三维方向上尺寸极小,为纳米级(无宏观性) ,故纳米材料的尺寸至少在一个方向上是几个纳米长(典型为1~10nm) 。

如果在三维方向上都是几个纳米长,为3D 纳米微晶,如在二维方向上是纳米级的,为2D 纳米材料,如丝状材料和纳米碳管;层状材料或薄膜等为1D 纳米材料。

纳米颗粒可以是单晶,也可以是多晶,可以是晶体结构,也可以是准晶或无定形相(玻璃态) ;可以是金属,也可以是陶瓷、氧化物或复合材料等。

纳米微晶的突出特征是晶界原子的比例很大,有时与晶内的原子数相等。

这表明纳米微晶内界面很多,平均晶粒直径越小,晶界越多,在晶界面上的原子也越多;此外,晶粒越小,比表面积越大,表面能也越高。

近几年来的研究结果表明,在纳米微晶内,所有的晶间区域包括晶界、三角结合处(即三个或更多的相邻晶粒的交线) 甚为重要。

晶界上原子的排列结构相当复杂,到目前为止还没能获得准确的结论。

据分析认为,晶界上的原子排列类似于气态而不同于晶态或玻璃态。

正是由于纳米微晶在结构上与组成上的特殊性,使得纳米材料具有许多与众不同的特异性能,主要表现在以下几方面:2.1 力学性能许多纳米金属的室温硬度比相应粗晶高2~7倍;纳米材料具有更高的强度,例如,6nm 的纳米铁晶体的强度比多晶铁提高12 倍,硬度提高了2~3 个数量级;韧性更大,如美国Argonnel 实验室制成的纳米CsF2 陶瓷晶体在室温下可弯曲100 %。

室温下的纳米TiO2 陶瓷晶体表现出很高的韧性,压缩至原长度的1P4 仍不破碎。

2.2 热学性能一般纳米金属材料的热容是传统金属的2 倍;直径为10nm 的Fe 、Au 和Al 熔点分别由其粗晶熔点的1540 ℃、1063 ℃和660 ℃降到33 ℃、27 ℃和18 ℃。

2nm 的金的颗粒熔点仅为330 ℃, 比通常金的熔点低700 ℃以上,而纳米银粉的熔点仅为100 ℃;此外,纳米材料的热膨胀可调,可用于具有不同热膨胀系数的材料的连接。

2.3 磁学性能当晶粒尺寸减小到纳米级时,晶粒之间的铁磁相互作用开始对材料的宏观磁性有重要影响,使得纳米材料具有高磁化率和高矫顽力,低饱和磁矩和低磁耗纳米磁性金属的磁化率是普通金属的20 倍,而饱和磁矩是普通金属的1P2。

2.4 光学性能各种纳米微粒几乎都呈黑色,它们对可见光的反射率将显著降低,一般低于1 %。

粒度越细,光的吸收越强烈,利用这一特性,纳米金属有可能用于制作红外线检测元件、隐身飞机上的雷达波吸收材料。

2.5 电学性能电导率低,纳米固体中的量子隧道效应使电子运输表现出反常现象,例如,纳米硅氢合金中的氢含量大于5 %(原子分数) 时,电导率下降2 个数量级,并出现通道电阻效应。

纳米材料的电导率随颗粒尺寸的减小而下降。

2.6 高扩散性纳米晶体的自扩散速率为传统晶体的1016至1019倍,是晶界扩散的100 倍。

高的扩散速率使纳米材料的固态反应可在室温或低温下进行。

2.7 表面活性随着纳米微粒粒径减小,比表面积增大,表面原子数增多及表面原子配位不饱和性导致大量的悬键和不饱和键等,使得纳米微粒具有高的表面活性,适于作催化剂和贮氢材料。

例如,纳米晶Li - MgO 对甲烷向高级烃转化的催化激活温度比普通Li 浸渗的MgO 至少低200 ℃;又如,普通多晶Mg2Ni 的吸氢只能在高温下进行,低温吸氢需长时间或高压力,而纳米晶Mg2Ni 在200 ℃以下,即可吸氢,无须活化处理。

3 纳米材料的制备方法由于纳米材料具有独特的结构和特征,使其表现出一系列与普通多晶体和非晶物质不同的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90 年代材料科学研究的热点。

纳米材料的合成与制备包括粉体、块体及薄膜材料的制备,其制备方法有物理法、化学法、物理- 化学法和机械法等,也可以按照制备环境对一些常用的合成和制备纳米材料的方法进行分类。

目前应用较广的制备方法主要有以下几种:3.1 惰性气体凝聚原位加压成形法该法首先由H. V. Gleiter 教授提出,其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落运输系统及原位加压成形(烧结) 系统组成。

其制备过程是:在高真空反应室中惰性气体保护下使金属受热升华并在液氮冷却镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒刮落进入漏斗并导入模具,在10 - 6 Pa 高真空下,加压系统以1 - 5GPa 的压力使纳米粉原位(加压) 烧结成块。

采用该法已成功制得Pd、Cu、Fe 、Ag、Mg、Sb、Ni3Al 、NiAl 、TiAl 、Fe5 Si95等合金块状纳米材料。

近年来,在该装置基础之上,通过改进金属升华的热源及方式(如采用感应加热、等离子法、电子束加热法、激光热解法、磁溅射等) 以及改良其它装备,可以获得克级到几十克级的纳米晶体样品。

如采用等离子喷射加热法,可使高熔点的W、Mo 、Ta 、Al2O3 、SiO2 和C 等物质稳定地蒸发;美国采用激光加热制备出Si3N4 、SiC、BN、非晶Si 等无机非金属纳米粉;日本则在激光制备纳米金属粉末方面取得了显著成果,已制备出Fe 、Ti 、Ni 、Cr 、Sn、Zr 、Mo 、Ta 、W及其化合物,平均粒度在4 - 100nm 范围内。

纳米超饱和合金、纳米复合材料等也正在利用此法进行研究。

目前该法正向多组分、计量控制、多副模具、超高压力等方向发展。

这种方法的特点是适用范围广,微粉表面洁净,有助于纳米材料的理论研究。

但工艺设备复杂,产量极低,很难满足性能研究及应用的要求。

近年来,尽管发展了一些新的纳米粉制备方法如电化学沉积、电火花侵蚀,但与这些方法相衔接的纳米粉的分散、表面处理及成形方法尚未得到发展。

3.2 机械合金化法机械合金化法是INCO 公司于60 年代末发展起来的技术。

将合金粉末或预合金粉末在氩气等保护性气氛中,通过机械研磨过程中高速运行的硬质钢球与研磨体之间相互碰撞,对粉末粒子反复进行熔结、断裂、再熔结的过程使晶粒不断细化,达到纳米尺寸。

此方法可将金属粉末、金属间化合物粉末或难混溶粉末研磨成纳米颗粒。

在大多数情况下,只需研磨几个小时或十几个小时就足以形成要求的纳米颗粒。

如钛合金采用机械合金法可制得10nm 左右的颗粒。

通过高能球磨已制备出纳米晶纯金属如C、Si 、Ge ;金属间化合物如TiNi 、Al3 Fe 、Ni3Al 、Ti3Al ;过饱和固溶体如Ti - Mg、Fe - Al 、Cu - Ag ;复合材料如Fe - SiC、Al -SiC、Cu - Fe3O4 等。

机械合金化可以使相图上几乎互不相溶的几种元素制成固溶体,这是常规熔炼方法无法做到的。

机械合金化法工艺简单、体系广、产量大、操作成分可连续调节,特别是在难熔金属的合金化、非平衡相的生成及开发特殊使用合金等方面显示出较强的活力,该法在国外已进入实用化阶段。

如美国INCO公司使用的球磨机直径为2m ,长3m ,每次可处理约1000kg 粉体。

该法在我国也受到重视,但该法也存在一些问题,如晶粒尺寸不均匀、球磨及氧化带来污染等,很难得到洁净的纳米晶体界面,对一些基础性研究工作不适宜。

3.3 非晶合金晶化法该法是近年来发展极为迅速的一种新工艺,它是通过控制非晶态固体的晶化动力学过程使晶化的产物为纳米尺寸的晶粒。

非晶晶化法制备纳米材料的前提是将原料用急冷技术制成非晶薄带或薄膜,然后控制退火条件,使非晶全部或部分晶化,生成晶粒尺寸保持在纳米级。

晶化通常采用等温退火法,近年来还发展了分级退火、脉冲退火、激波诱导等方法。

目前利用该法已制备出Ni 、Fe 、Co 、Pd 基等多种合金系列的纳米晶体,也可制备出金属间化合物和单质半导体纳米晶体。

此法在纳米软磁材料的制备方面应用最为广泛。

该法的特点是成本低、产量大、界面清洁致密,样品中无微孔隙,晶粒度变化易控制,并有助于研究纳米晶的形成机理及用来检验经典的形核长大理论在快速凝固条件下应用的可能性。

其局限性只适用于非晶形成能力较强的合金系。

3.4 高压高温固相淬火法该法是将真空电弧炉熔炼的样品置于高压腔体内,加压至数GPa 后升温,通过高压控制原子的长程扩散及晶体的生长速率,从而实现晶粒的纳米化,然后再从高温下固相淬火以保留高温、高压组织。

该法的特点是工艺简单,界面清洁,能直接制备大块致密的纳米晶,但需很高的压力,大块尺寸获得困难。

3.5 大塑性变形法早在90 年代初,俄罗斯科学院的R. Z. Valiev 等人即发现采用纯剪切大变形方法可获得亚微米级晶粒尺寸的纯铜组织,近年来,他们在发展多种塑性变形方法的基础上,已成功制备出晶粒尺寸为20 - 30纳米的纯Fe 、Fe - C - Mn - Si - V 低合金钢、Al - Cu -Zr 、Al - Mg - Li - Zr 、Ti - Al - Mo - Si 等合金的块体纳米材料。

相关文档
最新文档